hyers–ulam stability of the quadratic functional equation

25
Hyers-Ulam-Rassias Stability M. Ait Sibaha, B. Bouikhalene and E. Elqorachi vol. 8, iss. 3, art. 89, 2007 Title Page Contents Page 1 of 25 Go Back Full Screen Close HYERS-ULAM-RASSIAS STABILITY OF THE K -QUADRATIC FUNCTIONAL EQUATION MOHAMED AIT SIBAHA, BELAID BOUIKHALENE University of Ibn Tofail, Faculty of Sciences Department of Mathematics Kenitra, Morocco EMail: [email protected] [email protected] ELHOUCIEN ELQORACHI Laboratory LAMA , Harmonic Analysis and Functional Equations Team Department of Mathematics, Faculty of Sciences University Ibn Zohr, Agadir, Morocco EMail: [email protected] Received: 26 January, 2007 Accepted: 08 June, 2007 Communicated by: K. Nikodem 2000 AMS Sub. Class.: 39B82, 39B52, 39B32. Key words: Group, Additive equation, Quadratic equation, Hyers-Ulam-Rassias stability. Abstract: In this paper we obtain the Hyers-Ulam-Rassias stability for the functional equation 1 |K| kK f (x + k · y)= f (x)+ f (y), x, y G, where K is a finite cyclic transformation group of the abelian group (G, +), acting by automorphisms of G. As a consequence we can derive the Hyers-Ulam-Rassias stability of the quadratic and the additive functional equations.

Upload: univ-ibnzohr

Post on 21-Nov-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhaleneand E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 1 of 25

Go Back

Full Screen

Close

HYERS-ULAM-RASSIAS STABILITY OF THEK-QUADRATIC FUNCTIONAL EQUATION

MOHAMED AIT SIBAHA, BELAID BOUIKHALENEUniversity of Ibn Tofail, Faculty of SciencesDepartment of MathematicsKenitra, MoroccoEMail: [email protected] [email protected]

ELHOUCIEN ELQORACHILaboratory LAMA , Harmonic Analysis and Functional Equations TeamDepartment of Mathematics, Faculty of SciencesUniversity Ibn Zohr, Agadir, MoroccoEMail: [email protected]

Received: 26 January, 2007

Accepted: 08 June, 2007

Communicated by: K. Nikodem

2000 AMS Sub. Class.: 39B82, 39B52, 39B32.

Key words: Group, Additive equation, Quadratic equation, Hyers-Ulam-Rassias stability.

Abstract: In this paper we obtain the Hyers-Ulam-Rassias stability for the functional equation1

|K|∑k∈K

f(x + k · y) = f(x) + f(y), x, y ∈ G,

whereK is a finite cyclic transformation group of the abelian group(G, +), acting byautomorphisms ofG. As a consequence we can derive the Hyers-Ulam-Rassias stability ofthe quadratic and the additive functional equations.

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 2 of 25

Go Back

Full Screen

Close

Contents

1 Introduction 3

2 Main Results 8

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 3 of 25

Go Back

Full Screen

Close

1. Introduction

In the book,A Collection of Mathematical Problems[32], S.M. Ulam posed thequestion of the stability of the Cauchy functional equation. Ulam asked: if we re-place a given functional equation by a functional inequality, when can we assert thatthe solutions of the inequality lie near to the solutions of the strict equation?

Originally, he had proposed the following more specific question during a lecturegiven before the University of Wisconsin’s Mathematics Club in 1940.

Given a groupG1, a metric group (G2, d), a numberε > 0 and a mappingf : G1 −→ G2 which satisfies the inequalityd(f(xy), f(x)f(y)) < ε forall x, y ∈ G1, does there exist an homomorphismh : G1 −→ G2 and aconstantk > 0, depending only onG1 andG2 such thatd(f(x), h(x)) ≤kε for all x in G1?

A partial and significant affirmative answer was given by D.H. Hyers [9] underthe condition thatG1 andG2 are Banach spaces.

In 1978, Th. M. Rassias [18] provided a generalization of Hyers’s stability theo-rem which allows the Cauchy difference to be unbounded, as follows:

Theorem 1.1.Letf : V −→ X be a mapping between Banach spaces and letp < 1be fixed. Iff satisfies the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ θ(‖x‖p + ‖y‖p)

for someθ ≥ 0 and for all x, y ∈ V (x, y ∈ V \ {0} if p < 0), then there exists aunique additive mappingT : V −→ X such that

‖f(x)− T (x)‖ ≤ 2θ

|2− 2p|‖x‖p

for all x ∈ V (x ∈ V \ {0} if p < 0).If, in addition,f(tx) is continuous int for each fixedx, thenT is linear.

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 4 of 25

Go Back

Full Screen

Close

During the 27th International Symposium on functional equations, Th. M. Ras-sias asked the question whether such a theorem can also be proved forp ≥ 1. Z.Gajda [7] following the same approach as in [18], gave an affirmative answer toRassias’ question forp > 1. However, it was showed that a similar result for thecasep = 1 does not hold.

In 1994, P. Gavruta [8] provided a generalization of the above theorem by replac-ing the function(x, y) 7−→ θ(‖x‖p + ‖y‖p) with a mappingϕ(x, y) which satisfiesthe following condition:

∞∑n=0

2−nϕ(2nx, 2ny) <∞ or∞∑

n=0

2nϕ( x

2n+1,y

2n+1

)<∞

for everyx, y in a Banach spaceV .Since then, a number of stability results have been obtained for functional equa-

tions of the forms

(1.1) f(x+ y) = g(x) + h(y), x, y ∈ G,and

(1.2) f(x+ y) + f(x− y) = g(x) + h(y), x, y ∈ G,whereG is an abelian group. In particular, for the classical equations of Cauchy andJensen, the quadratic and the Pexider equations, the reader can be referred to [4] –[22] for a comprehensive account of the subject.

In the papers [24] – [31], H. Stetkær studied functional equations related to theaction by automorphisms on a groupG of a compact transformation groupK. Writ-ing the action ofk ∈ K onx ∈ G ask · x and lettingdk denote the normalized Haarmeasure onK, the functional equations (1.1) and (1.2) have the form

(1.3)∫

K

f(x+ k · y)dk = g(x) + h(y), x, y ∈ G,

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 5 of 25

Go Back

Full Screen

Close

whereK = {I} andK = {I,−I}, respectively,I denoting the identity.The purpose of this paper is to investigate the Hyers-Ulam-Rassias stability of

(1.4)1

|K|∑k∈K

f(x+ k · y) = f(x) + f(y), x, y ∈ G,

whereK is a finite cyclic subgroup ofAut(G) (the group of automorphisms ofG),|K| denotes the order ofK, andG is an abelian group.

The set up allows us to give a unified treatment of the stability of the additivefunctional equation

(1.5) f(x+ y) = f(x) + f(y), x, y ∈ G,

and the quadratic functional equation

(1.6) f(x+ y) + f(x− y) = 2f(x) + 2f(y), x, y ∈ G.

In particular, we want to see how the compact subgroupK enters into the solutionsformulas.

The stability problem for the quadratic equation (1.6) was first solved by Skofin [23]. In [4] Cholewa extended Skof’s result in the following way, whereG is anabelian group andE is a Banach space.

Theorem 1.2.Letη > 0 be a real number andf : G −→ E satisfies the inequality

(1.7) |f(x+ y) + f(x− y)− 2f(x)− 2f(y)| ≤ η for all x, y ∈ G.

Then for everyx ∈ G the limit q(x) = limn−→+∞f(2nx)

22n exists andq : G −→ E isthe unique quadratic function satisfying

(1.8) |f(x)− q(x)| ≤ η

2, x ∈ G.

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 6 of 25

Go Back

Full Screen

Close

In [5] Czerwik obtained a generalization of the Skof-Chelewa result.

Theorem 1.3. Let p 6= 2, θ > 0, δ > 0 be real numbers. Suppose that the functionf : E1 −→ E2 satisfies the inequality

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ ≤ δ+ θ(‖x‖p + ‖y‖p) for all x, y ∈ E1.

Then there exists exactly one quadratic functionq : E1 −→ E2 such that

‖f(x)− q(x)‖ ≤ c+ kθ‖x‖p

for all x ∈ E1 if p ≥ 0 and for allx ∈ E1 \ {0} if p ≤ 0, where

• c = ‖f(0)‖3

, k = 24−2p andq(x) = limn−→+∞

f(2nx)4n , for p < 2.

• c = 0, k = 22p−4

andq(x) = limn−→+∞f(2nx)

4n , for p > 2.

Recently, B. Bouikhalene, E. Elqorachi and Th. M. Rassias [1], [2] and [3] provedthe Hyers-Ulam-Rassias stability of the functional equation (1.4) with K = {I, σ}(σ is an automorphism ofG such thatσ ◦ σ = I).

The results obtained in the present paper encompass results from [2] and [18]given in Corollaries2.5and2.6below.

General Set-Up.LetK be a compact transformation group of an abelian topologicalgroup(G,+), acting by automorphisms ofG. We letdk denote the normalized Haarmeasure onK, and the action ofk ∈ K on x ∈ G is denoted byk · x. We assumethat the functionk 7−→ k · y is continuous for ally ∈ G.A continuous mappingq : G −→ C is said to beK-quadratical if it satisfies thefunctional equation

(1.9)∫

K

q(x+ k · y)dk = q(x) + q(y), x, y ∈ G.

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 7 of 25

Go Back

Full Screen

Close

WhenK is finite, the normalized Haar measuredk onK is given by∫K

h(k)dk =1

|K|∑k∈K

h(k)

for anyh : K −→ C, where|K| denotes the order ofK. So equation (1.9) can inthis case be written

(1.10)1

|K|∑k∈K

q(x+ k · y) = q(x) + q(y), x, y ∈ G.

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 8 of 25

Go Back

Full Screen

Close

2. Main Results

Let ϕ : G × G −→ R+ be a continuous mapping which satisfies the followingcondition

(2.1) ψ(x, y)

=∞∑

n=1

2−n

∫K

∫K

· · ·∫

K

ϕ

x+∑

ij<ij+1, kij∈{k1,k2,...,kn−1}

(ki1ki2 · · · kip) · x,

y +∑

ij<ij+1, kij∈{k1,k2,...,kn−1}

(ki1ki2 · · · kip) · y

dk1dk2 . . . dkn−1 <∞,

for all p such that1 ≤ p ≤ n − 1, for all x, y ∈ G (uniform convergence). In whatfollows, we setϕ(x) = ϕ(x, x) andψ(x) = ψ(x, x) for all x ∈ G.

The main results of the present paper are based on the following proposition.

Proposition 2.1. Let G be an abelian group and letϕ : G × G −→ R+ be acontinuous control mapping which satisfies (2.1). Suppose thatf : G −→ C iscontinuous and satisfies the inequality

(2.2)

∣∣∣∣∫K

f(x+ k · y)dk − f(x)− f(y)

∣∣∣∣ ≤ ϕ(x, y)

for all x, y ∈ G. Then, the formulaq(x) = limn−→∞

fn(x)2n , with

(2.3) f0(x) = f(x) and fn(x) =

∫K

fn−1(x+ k · x)dk for all n ≥ 1,

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 9 of 25

Go Back

Full Screen

Close

defines a continuous function which satisfies

(2.4) |f(x)− q(x)| ≤ ψ(x) and∫

K

q(x+ k · x)dk = 2q(x) for all x ∈ G.

Furthermore, the continuous functionq with the condition (2.4) is unique.

Proof. Replacingy by x in (2.2) gives

(2.5) |f1(x)− 2f(x)| =∣∣∣∣∫

K

f(x+ k · x)dk − 2f(x)

∣∣∣∣ ≤ ϕ(x)

and consequently

|f2(x)− 2f1(x)| =∣∣∣∣∫

K

f1(x+ k1 · x)dk1 − 2

∫K

f(x+ k1 · x)dk1

∣∣∣∣(2.6)

≤∫

K

|f1(x+ k1 · x)− 2f(x+ k1 · x)|dk1

≤∫

K

ϕ(x+ k1 · x)dk1.

Next, we prove that

(2.7)

∣∣∣∣fn(x)

2n− fn−1(x)

2n−1

∣∣∣∣≤ 2−n

∫K

∫K

· · ·∫

K

ϕ

x+∑

ij<ij+1, kij∈{k1,k2,...,kn−1}

(ki1ki2 · · · kip) · x

dk1dk2 . . . dkn−1

for all n ∈ N \ {0}. Clearly (2.7) is true for the casen = 1, since settingn = 1 in(2.7) gives (2.5). Now, assume that the induction assumption is true forn ∈ N\{0},

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 10 of 25

Go Back

Full Screen

Close

and consider

|fn+1(x)− 2fn(x)| =∣∣∣∣∫

K

fn(x+ kn · x)dkn − 2

∫K

fn−1(x+ kn · x)dkn

∣∣∣∣(2.8)

≤∫

K

|fn(x+ kn · x)− 2fn−1(x+ kn · x)|dkn.

Then ∣∣∣∣fn+1(x)

2n+1− fn(x)

2n

∣∣∣∣(2.9)

≤ 1

2

∫K

∣∣∣∣fn(x+ kn · x)2n

− fn−1(x+ kn · x)2n−1

∣∣∣∣ dkn

≤ 2−(n+1)

∫K

∫K

· · ·∫

K

ϕ

x+∑

ij<ij+1, kij∈{k1,k2,...,kn}

(ki1ki2 · · · kip) · x

dk1dk2 . . . dkn,

so that the inductive assumption (2.7) is indeed true for all positive integers. Hence,for r > s we get∣∣∣∣fr(x)

2r− fs(x)

2s

∣∣∣∣(2.10)

≤r−1∑n=s

∣∣∣∣fn+1(x)

2n+1− fn(x)

2n

∣∣∣∣≤

r−1∑n=s

2−(n+1)

∫K

· · ·∫

K

ϕ

x+∑

ij<ij+1 , kij∈{k1,k2,...,kn}

(ki1ki2 · · · kir) · x

dk1 . . . dkn,

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 11 of 25

Go Back

Full Screen

Close

which by assumption (2.1) converges to zero (uniformly) asr ands tend to infinity.Thus the sequence of complex functionsfn(x)

2n is a Cauchy sequence for each fixedx ∈ G and then this sequence converges for each fixedx ∈ G to some limit inC,which is continuous onG. We call this limitq(x). Next, we prove that

(2.11)

∣∣∣∣fn(x)

2n− f(x)

∣∣∣∣≤

n∑l=1

2−l

∫K

· · ·∫

K

ϕ

x+∑

ij<ij+1 , kij∈{k1,k2,...,kl−1}

(ki1ki2 · · · kip) · x

dk1 . . . dkl−1

for all n ∈ N \ {0}. We get the case ofn = 1 by (2.5)

(2.12) |f1(x)− 2f(x)| =∣∣∣∣∫

K

f(x+ k · x)dk − 2f(x)

∣∣∣∣ ≤ ϕ(x),

so the induction assumption (2.11) is true forn = 1. Assume that (2.11) is true forn ∈ N \ {0}. By using (2.9), we obtain

|fn+1(x)− 2n+1f(x)|(2.13)

≤ |fn+1(x)− 2fn(x)|+ 2|fn(x)− 2nf(x)|

≤∫

K

· · ·∫

K

ϕ

x+∑

ij<ij+1, kij∈{k1,k2,...,kn}

(ki1ki2 · · · kip) · x

dk1dk2 . . . dkn

+2n+1

n∑l=1

2−l

∫K

· · ·∫

K

ϕ

x+∑

ij<ij+1, kij∈{k1,k2,...,kl−1}

(ki1ki2 · · · kip) · x

dk1dk2 . . . dkl−1

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 12 of 25

Go Back

Full Screen

Close

so (2.11) is true for alln ∈ N \ {0}. By letting n −→ +∞, we obtain the firstassertion of (2.4). We now shall show thatq satisfies the second assertion of (2.4).By using (2.2) we get∣∣∣∣∫

K

f1(x+ k1 · x)dk1 − f1(x)− f1(x)

∣∣∣∣(2.14)

=

∣∣∣∣∫K

∫K

f(x+ k1 · x+ k2 · (x+ k1 · x))dk1dk2

−∫

K

f(x+ k1 · x)dk1 −∫

K

f(x+ k1 · x)dk1

∣∣∣∣≤∫

K

∣∣∣∣∫K

f(x+ k1 · x+ k2 · (x+ k1 · x))dk2

− f(x+ k1 · x)− f(x+ k1 · x)∣∣∣∣dk1

≤∫

K

ϕ(x+ k1 · x)dk1.

Make the induction assumption

(2.15)

∣∣∣∣∫K

fn(x+ k · x)dk − 2fn(x)

∣∣∣∣≤∫

K

· · ·∫

K

ϕ

x+∑

ij<ij+1, kij∈{k1,k2,...,kn}

(ki1ki2 · · · kip) · x

dk1 . . . dkn,

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 13 of 25

Go Back

Full Screen

Close

which is true forn = 1 by (2.14). Forn+ 1 we have∣∣∣∣∫K

fn+1(x+ kn+1 · x)dkn+1 − 2fn+1(x)

∣∣∣∣=

∣∣∣∣∫K

∫K

fn(x+ kn+1 · x+ k · (x+ kn+1 · x)dkn+1dk − 2

∫K

fn(x+ kn+1 · x))dkn+1

∣∣∣∣≤∫

K

∣∣∣∣∫K

fn(x+ kn+1 · x+ k · (x+ kn+1 · x))dk − 2fn(x+ kn+1 · x)∣∣∣∣ dkn+1

≤∫

K

{∫K

· · ·∫

K

ϕ

(x

+ kn+1 · x+∑

ij<ij+1, kij∈{k1,k2,...,kn}

(ki1ki2 · · · kip) · (x+ kn+1 · x)

)dk1 . . . dkn

}dkn+1

=

∫K

· · ·∫

K

ϕ

x+∑

ij<ij+1, kij∈{k1,k2,...,kn+1}

(ki1ki2 · · · kip) · x

dk1 . . . dkn+1.

Thus (2.15) is true for alln ∈ N\{0}. Now, in view of the condition (2.1), q satisfiesthe second assertion of (2.4).

To demonstrate the uniqueness of the mappingq subject to (2.4), let us assumeon the contrary that there is another mappingq′ : G −→ C such that

|f(x)− q′(x)| ≤ ψ(x) and∫

K

q′(x+ k · x)dk = 2q′(x) for all x ∈ G.

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 14 of 25

Go Back

Full Screen

Close

First, we prove by induction the following relation

(2.16)

∣∣∣∣fn(x)

2n− q′(x)

∣∣∣∣≤ 1

2n

∫K

· · ·∫

K

ψ

x+∑

ij<ij+1, kij∈{k1,k2,...,kn}

(ki1ki2 · · · kip) · x

dk1 . . . dkn.

Forn = 1, we have

|f1(x)− 2q′(x)| =∣∣∣∣∫

K

f(x+ k · x)dk −∫

K

q′(x+ k · x)dk∣∣∣∣(2.17)

≤∫

K

ψ(x+ k · x)dk

so (2.16) is true forn = 1. By using the following

|fn+1(x)− 2n+1q′(x)| =∣∣∣∣∫

K

fn(x+ k · x)dk − 2n

∫K

q′(x+ k · x)dk∣∣∣∣(2.18)

≤∫

K

|fn(x+ k · x)− 2nq′(x+ k · x)|dk

we get the rest of the proof by proving that

1

2n

∫K

· · ·∫

K

ψ

x+∑

ij<ij+1, kij∈{k1,k2,...,kn}

(ki1ki2 · · · kip) · x

dk1 . . . dkn

converges to zero. In fact by setting

X = x+∑

ij<ij+1, kij∈{k1,k2,...,kn}

(ki1ki2 · · · kip) · x

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 15 of 25

Go Back

Full Screen

Close

it follows that

1

2n

∫K

· · ·∫

K

ψ

x+∑

ij<ij+1, kij∈{k1,k2,...,kn}

(ki1ki2 · · · kip) · x

dk1 . . . dkn

=1

2n

∫K

· · ·∫

K

+∞∑r=1

2−r

∫K

· · ·∫

K

ϕ

X +∑

ij<ij+1, kij∈{kn+1,kn+2,...,kn+r−1}

(ki1ki2 · · · kiq) ·X

dkn+1 . . . dkn+r−1

}dk1 . . . .dkn

=+∞∑r=1

2−(n+r)

∫K

· · ·∫

K

ϕ

x+∑

ij<ij+1, kij∈{k1,k2,...,kn+r−1}

(ki1ki2 · · · kil) · x

dk1 . . . dkn+r−1

=+∞∑

m=n+1

2−m

∫K

· · ·∫

K

ϕ

x+∑

ij<ij+1, kij∈{k1,k2,...,km−1}

(ki1ki2 · · · kil) · x

dk1 . . . dkm−1.

In view of (2.1), this converges to zero, soq = q′. This ends the proof.

Our main result reads as follows.

Theorem 2.2. LetK be a finite cyclic subgroup of the group of automorphisms ofthe abelian group(G,+). Letϕ : G×G −→ R+ be a mapping such that

(2.19) ψ(x, y)

=∞∑

n=1

|K|(2|K|)n

∑k1,...,kn−1∈K

ϕ

x+∑

ij<ij+1; kij∈{k1,...,kn−1}

(ki1ki2 · · · kip) · x,

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 16 of 25

Go Back

Full Screen

Close

y +∑

ij<ij+1; kij∈{k1,...,kn−1}

(ki1ki2 · · · kip) · y

<∞,

for all x, y ∈ G. Suppose thatf : G −→ C satisfies the inequality

(2.20)

∣∣∣∣∣ 1

|K|∑k∈K

f(x+ k · y)− f(x)− f(y)

∣∣∣∣∣ ≤ ϕ(x, y)

for all x, y ∈ G. Then, the limitq(x) = limn−→∞fn(x)2n , with

(2.21) f0(x) = f(x) and fn(x) =1

|K|∑k∈K

fn−1(x+ k · x) for all n ≥ 1,

exists for allx ∈ G, andq : G −→ C is the uniqueK-quadratical mapping whichsatisfies

(2.22) |f(x)− q(x)| ≤ ψ(x) for all x ∈ G.

Proof. In this case, the induction relations corresponding to (2.7) and (2.11) can bewritten as follows

(2.23)

∣∣∣∣fn(x)

2n− fn−1(x)

2n−1

∣∣∣∣≤ |K|

(2|K|)n

∑k1,...,kn−1∈K

ϕ

x+∑

ij<ij+1; kij∈{k1,...,kn−1}

(ki1ki2 · · · kip) · x

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 17 of 25

Go Back

Full Screen

Close

for anyn ∈ N \ {0}.

(2.24)

∣∣∣∣fn(x)

2n− f(x)

∣∣∣∣≤

n∑l=1

|K|(2|K|)l

∑k1,...,kl−1∈K

ϕ

x+∑

ij<ij+1; kij∈{k1,...,kl−1}

(ki1ki2 · · · kip) · x

,

for all integersn ∈ N \ {0}. So, we can easily deduce thatq(x) = limn−→+∞fn(x)2n

exists for allx ∈ G andq satisfies the inequality (2.22). Now, we will show thatq isaK-quadratical function. For allx, y ∈ G, we have∣∣∣∣∣ 1

|K|∑k∈K

f1(x+ k · y)− f1(x)− f1(y)

∣∣∣∣∣(2.25)

=

∣∣∣∣∣ 1

|K|∑k∈K

1

|K|∑k1∈K

f((x+ k · y) + k1 · (x+ k · y))

− 1

|K|∑k1∈K

f(x+ k1 · x)−1

|K|∑k1∈K

f(y + k1 · y)

∣∣∣∣∣=

∣∣∣∣∣ 1

|K|∑k∈K

1

|K|∑k1∈K

f((x+ k1 · x) + k · (y + k1 · y))

− 1

|K|∑k1∈K

f(x+ k1 · x)−1

|K|∑k1∈K

f(y + k1 · y)

∣∣∣∣∣

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 18 of 25

Go Back

Full Screen

Close

≤ 1

|K|∑k1∈K

∣∣∣∣∣ 1

|K|∑k∈K

f((x+ k1 · x) + k · (y + k1 · y))

− f(x+ k1 · x)− f(y + k1 · y)

∣∣∣∣∣≤ 1

|K|∑k1∈K

ϕ(x+ k1 · x, y + k1 · y).

Make the induction assumption

(2.26)

∣∣∣∣∣ 1

|K|∑k∈K

fn(x+ k · y)2n

− fn(x)

2n− fn(y)

2n

∣∣∣∣∣≤ 1

(2|K|)n

∑k1,...,kn∈K

ϕ

x+∑

ij<ij+1; kij∈{k1,...,kn}

(ki1ki2 · · · kip) · x, y

+∑

ij<ij+1; kij∈{k1,...,kn}

(ki1ki2 · · · kip) · y

which is true forn = 1 by (2.26). By using∣∣∣∣∣ 1

|K|∑k∈K

fn(x+ k · y)− fn(x)− fn(y)

∣∣∣∣∣=

∣∣∣∣∣ 1

|K|∑k′∈K

1

|K|∑k′∈K

fn−1(x+ k · y + k′ · (x+ k · y))

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 19 of 25

Go Back

Full Screen

Close

− 1

|K|∑k′∈K

fn−1(x+ k′ · x)− 1

|K|∑k∈K

fn−1(y + k′ · y)

∣∣∣∣∣=

∣∣∣∣∣ 1

|K|∑k′∈K

1

|K|∑k∈K

fn−1(x+ k′ · x+ k · (y + k′ · y))

− 1

|K|∑k′∈K

fn−1(x+ k′ · x)− 1

|K|∑k′∈K

fn−1(y + k′ · y)

∣∣∣∣∣≤ 1

|K|∑k′∈K

∣∣∣∣∣ 1

|K|∑k∈K

fn−1(x+ k′ · x+ k · (y + k′ · y))

− fn−1(x+ k′ · x)− fn−1(y + k′ · y)

∣∣∣∣∣we get the result (2.26) for all n ∈ N \ {0}. Now, in view of the condition (2.19), qis aK-quadratical function. This completes the proof.

Corollary 2.3. LetK be a finite cyclic subgroup of the group of automorphisms ofG, let δ > 0. Suppose thatf : G −→ C satisfies the inequality

(2.27)

∣∣∣∣∣∑k∈K

f(x+ k · y)− |K|f(x)− |K|f(y)

∣∣∣∣∣ ≤ δ

for all x, y ∈ G. Then, the limitq(x) = limn−→∞fn(x)2n , with

(2.28) f0(x) = f(x) and fn(x) =1

|K|∑k∈K

fn−1(x+ k · x) for n ≥ 1

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 20 of 25

Go Back

Full Screen

Close

exists for allx ∈ G, andq : G −→ C is the uniqueK-quadratical mapping whichsatisfies

(2.29) |f(x)− q(x)| ≤ δ

|K|for all x ∈ G.

Corollary 2.4. LetK be a finite cyclic subgroup of the group of automorphisms ofthe normed space(G, ‖·‖), let θ ≥ 0 andp < 1. Suppose thatf : G −→ C satisfiesthe inequality

(2.30)

∣∣∣∣∣ 1

|K|∑k∈K

f(x+ k · y)− f(x)− f(y)

∣∣∣∣∣ ≤ θ(‖x‖p + ‖y‖p)

for all x, y ∈ G. Then, the limitq(x) = limn−→∞fn(x)2n , with

(2.31) f0(x) = f(x) and fn(x) =1

|K|∑k∈K

fn−1(x+ k · x) for n ≥ 1

exists for allx ∈ G, andq : G −→ C is the uniqueK-quadratical mapping whichsatisfies

(2.32) |f(x)− q(x)|

≤∞∑

n=1

|K|(2|K|)n

∑k1,...,kn−1∈K

∥∥∥∥∥∥x+∑

ij<ij+1; kij∈{k1,...,kn−1}

(ki1ki2 · · · kip) · x

∥∥∥∥∥∥p

for all x ∈ G.

Corollary 2.5 ([18]). LetK = {I}, θ ≥ 0 andp < 1. Suppose thatf : G −→ Csatisfies the inequality

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 21 of 25

Go Back

Full Screen

Close

(2.33) |f(x+ y)− f(x)− f(y)| ≤ θ(‖x‖p + ‖y‖p)

for all x, y ∈ G. Then, the limitq(x) = limn−→∞fn(x)2n , with

(2.34) fn(x) = f(2nx) for n ∈ N \ {0}exists for allx ∈ G, andq : G −→ C is the unique additive mapping which satisfies

(2.35) |f(x)− q(x)| ≤ 2θ ‖x‖p

2− 2pfor all x ∈ G.

Corollary 2.6 ([2]). LetK = {I, σ}, whereσ : G −→ G is an involution ofG, andlet ϕ : G×G −→ [0,∞) be a mapping satisfying the condition

(2.36) ψ(x, y) =∞∑

n=0

2−2n−1[ϕ(2nx, 2ny)

+ (2n − 1)ϕ(2n−1x+ 2n−1σ(x), 2n−1y + 2n−1σ(y))] <∞for all x, y ∈ G. Letf : G −→ C satisfy

(2.37) |f(x+ y) + f(x+ σ(y))− 2f(x)− 2f(y)| ≤ ϕ(x, y)

for all x, y ∈ G. Then, there exists a unique solutionq : G −→ C of the equation

(2.38) q(x+ y) + q(x+ σ(y)) = 2q(x) + 2q(y) x, y ∈ Ggiven by

(2.39) q(x) = limn−→+∞

2−2n{f(2nx) + (2n − 1)f(2n−1x+ 2n−1σ(x))}

which satisfies the inequality

(2.40) |f(x)− q(x)| ≤ ψ(x, x)

for all x ∈ G.

Remark1. We can replace in Theorem2.2 the condition thatK is a finite cyclicsubgroup by the condition thatK is a compact commutative subgroup ofAut(G).

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 22 of 25

Go Back

Full Screen

Close

References

[1] B. BOUIKHALENE, E. ELQORACHIAND Th.M. RASSIAS, On the Hyers-Ulam stability of approximately Pexider mappings,Math. Inequa. and Appl.,(accepted for publication).

[2] B. BOUIKHALENE, E. ELQORACHI AND Th.M. RASSIAS, On the gener-alized Hyers-Ulam stability of the quadratic functional equation with a generalinvolution,Nonlinear Funct. Anal. Appl.(accepted for publication).

[3] B. BOUIKHALENE AND E. ELQORACHI, Ulam-Gavruta-Rassias stabilityof the Pexider functional equation,International J. of Appl. Math. and Stat.,IJAMAS, 7 (2007), 27–39.

[4] P.W. CHOLEWA, Remarks on the stability of functional equations,Aequa-tiones Math.,27 (1984), 76–86.

[5] S. CZERWIK, On the stability of the quadratic mapping in normed spaces.Abh.Math. Sem. Univ. Hamburg,62 (1992), 59–64.

[6] G.L. FORTI, Hyers-Ulam stability of functional equations in several variables,Aequationes Math., 50 (1995), 143–190.

[7] Z. GAJDA, On stability of additive mappings,Internat. J. Math. Sci.,14(1991),431–434.

[8] P. GAVRUTA, A generalization of the Hyers-Ulam-Rassias stability of approx-imately additive mappings,J. Math. Anal. Appl., 184(1994), 431–436.

[9] D.H. HYERS, On the stability of the linear functional equation,Proc. Nat.Acad. Sci. U. S. A.,27 (1941), 222–224.

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 23 of 25

Go Back

Full Screen

Close

[10] D.H. HYERS AND Th.M. RASSIAS, Approximate homomorphisms,Aequa-tiones Math.,44 (1992), 125–153.

[11] D.H. HYERS, G.I. ISACAND Th.M. RASSIAS,Stability of Functional Equa-tions in Several Variables, Birkhäuser, Basel, 1998.

[12] K.-W. JUN AND Y.-H. LEE, A generalization of the Hyers-Ulam-Rassias sta-bility of Jensen’s equation,J. Math. Anal. Appl.,238(1999), 305–315.

[13] S.-M. JUNG,Hyers-Ulam-Rassias Stability of Functional Equations in Math-ematical Analysis,Hadronic Press, Inc., Palm Harbor, Florida, 2003.

[14] S.-M. JUNG, Stability of the quadratic equation of Pexider type,Abh. Math.Sem. Univ. Hamburg,70 (2000), 175–190.

[15] S.-M. JUNGAND P.K. SAHOO, Hyers-Ulam stability of the quadratic equationof Pexider type,J. Korean Math. Soc.,38(3) (2001), 645–656.

[16] S.-M. JUNGAND P.K. SAHOO, Stability of a functional equation of Drygas,Aequationes Math.,64(3) (2002), 263–273.

[17] C.-G. PARK, On the stability of the linear mapping in Banach modules,J.Math. Anal. Appl.,275(2002), 711–720.

[18] Th.M. RASSIAS, On the stability of the linear mapping in Banach spaces,Proc. Amer. Math. Soc.,72 (1978), 297–300.

[19] Th.M. RASSIAS, The problem of S. M. Ulam for approximately multiplicativemappings,J. Math. Anal. Appl.,246(2000), 352–378.

[20] Th.M. RASSIAS, On the stability of functional equations and a problem ofUlam,Acta Applicandae Mathematicae,62 (2000), 23–130.

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 24 of 25

Go Back

Full Screen

Close

[21] Th.M. RASSIASAND P. SEMRL, On the behavior of mappings which do notsatisfy Hyers-Ulam stability,Proc. Amer. Math. Soc.,114(1992), 989–993.

[22] Th.M. RASSIASAND J. TABOR,Stability of Mappings of Hyers-Ulam Type,Hardronic Press, Inc., Palm Harbor, Florida 1994.

[23] F. SKOF, Local properties and approximations of operators,Rend. Sem. Math.Fis. Milano,53 (1983), 113–129.

[24] H. STETKÆR, Functional equations on abelian groups with involution,Aequa-tiones Math.,54 (1997), 144–172.

[25] H. STETKÆR, D’Alembert’s equation and spherical functions,AequationesMath.,48 (1994), 164–179.

[26] H. STETKÆR, On operator-valued spherical functions,J. Funct. Anal.,224(2005), 338–351.

[27] H. STETKÆR, Wilson’s functional equation on groups,Aequationes Math.,49(1995), 252–275.

[28] H. STETKÆR, Functional equation on abelian groups with involution,Aequa-tiones Math.,54 (1997), 144–172.

[29] H. STETKÆR, Functional equation on abelian groups with involution, II,Ae-quationes Math.,55 (1998), 227–240.

[30] H. STETKÆR, Functional equations and matrix-valued spherical functions,Aequationes Math.,69 (2005), 271–292.

[31] H. STETKÆR, Trigonometric functional equation of rectangular type,Aequa-tiones Math.,56 (1998), 251–270.

Hyers-Ulam-RassiasStability

M. Ait Sibaha, B. Bouikhalene

and E. Elqorachi

vol. 8, iss. 3, art. 89, 2007

Title Page

Contents

JJ II

J I

Page 25 of 25

Go Back

Full Screen

Close

[32] S.M. ULAM, A Collection of Mathematical Problems, Interscience Publ. NewYork, 1961. Problems in Modern Mathematics, Wiley, New York 1964.