hsc physics - nsw department of education

112
2020 HSC Study Day Series HSC Physics HSC 2020 NSW Department of Education www.aurora.nsw.edu.au

Upload: khangminh22

Post on 13-Mar-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

2020 HSC Study Day Series

HSC Physics

HSC 2020

NSW Department of Education www.aurora.nsw.edu.au

2020 HSC Study Day Series

Details

Date: Tuesday 9th June 2020

Time: 8:50am – 3:10 pm

Location: Adobe Connect room https://connect.schools.nsw.edu.au/aurora-hsc-study1/

Materials: Available to download via this Dropbox link

Recordings: The sessions will be recorded and accessible for registered participants after the event via the same Dropbox link above. These recordings will be accessible until the HSC exam.

Program

Time Session

8:50 – 9:00 am Welcome

9:00 – 9:40 am Moving up a mark range / Exam tips

Brett McKay, Head Teacher Science, Kirrawee High School

9:45 – 10:45 am Module 5 – Advanced Mechanics Paul Looyen, Head of Faculty, Macarthur Anglican School

10:45 – 11:15 am Morning tea break

11:15 – 12:15 pm Module 6 – Electromagnetism Professor Tim Bedding, School of Physics, University of Sydney

12:20 – 1:20 pm Module 7 – Nature of Light Professor Tim Bedding, School of Physics, University of Sydney

1:20 – 2:00 pm Lunch break

2:00 – 3:00 pm Module 8 – From Universe to the atom Brett McKay, Head Teacher Science, Kirrawee High School

3:00 – 3:10 pm Conclusion Image on front cover attribution: Sourced from https://www.scitecheuropa.eu/quantum-flagship/93097/

2020 HSC Study Day Series

Setting up Adobe Connect Teachers will need:

• A good, stable Dept of Ed internet connection using an ethernet cable (wifi not recommended) • Data projector • Speakers

The sessions will be held via Adobe Connect. Please ensure there is only one connection per school. The presentation can be displayed on a data projector through any computer with an ethernet cable and speakers. The information below will help with setting up if you are not familiar with Adobe Connect.

• You will need to perform all necessary setup in advance of your online session so that you have time to resolve any connection or access issues. The Adobe room will be opened 30 mins prior to commencing to allow time for set up.

• Test your computer prior to accessing your online room by going to the Meeting Connection Diagnostic. Ensure you install any add-ins, if prompted to do so by the connection test.

• The following guide may also be useful Quick Start Guide for Participants.

Entering the Adobe room Teachers log in once for their class. To enter your online room, click on the Adobe Connect link provided above. Enter by typing in your Department of Education ID (eg: jane.citizen@detnsw) in the Username field then your DoE password in the Password field. The first thing you should do when you enter the room is complete the audio setup wizard. (‘Meeting’ drop down menu-> Audio Setup Wizard)

For technical help: If you are having any issues with technology, please contact the Aurora College IT Support Team on 1300 610 733 or [email protected]

Rights and responsibilities Duty of care for students throughout the day remains with the registered schools and their respective teachers. Please ensure adequate supervision is provided during the day. Respectful and active participation in the event is strongly encouraged through the ‘chat’ pod.

Evaluation Constructive feedback is essential, links to online surveys will also be distributed during and shortly after the event. There are two surveys and they both close on 21st September:

• Teachers https://www.surveymonkey.com/r/HSCSTUDYDAYSTEACHER2020 • Students https://www.surveymonkey.com/r/HSCSTUDYDAYSSTUDENT2020

We look forward to your participation.

Page 1 of 9

MOVING UP A MARK RANGE Brett Mckay Kirrawee High

Aurora College HSC Physics Online Study Day

Band 6

• demonstrates an extensive knowledge and understanding of scientific concepts, including complex and

abstract ideas • communicates scientific understanding succinctly, logically, and consistently using correct and precise

scientific terms and application of nomenclature in a variety of formats and wide range of contexts • designs and plans investigations to obtain accurate, reliable, valid and relevant primary and secondary data,

evaluating risks, mitigating where applicable, and making modifications in response to new evidence • selects, processes, and interprets accurate, reliable, valid, and relevant qualitative and quantitative, primary or

secondary data, and represents it using a range of scientific formats to derive trends, show patterns and relationships, explain phenomena, and make predictions

• designs solutions to scientific problems, questions, or hypotheses using selected accurate, reliable, valid, and relevant primary and secondary data, and scientific evidence, by applying processes, modelling and formats

• applies knowledge and information to unfamiliar situations to propose comprehensive solutions or explanations for scientific issues or scenarios

Band 5

• demonstrates thorough knowledge and understanding of scientific concepts, including complex and abstract

ideas • communicates scientific understanding, logically, and effectively using correct scientific terms and application

of nomenclature in a variety of formats and wide range of contexts • designs and plans investigations to obtain accurate, reliable, valid and relevant primary and secondary data,

evaluating risks, mitigating where applicable, and making some modifications in response to new evidence • selects, processes, and interprets accurate, reliable, valid, and relevant qualitative and quantitative, primary or

secondary data, and represents it using a range of scientific formats to derive trends, show patterns and relationships

• designs solutions to scientific problems, questions, or hypotheses using selected accurate, reliable, and valid primary and secondary data, and scientific evidence, by applying processes, and formats

• applies knowledge and information to unfamiliar situations to propose explanations for scientific issues or scenarios

Band 4

• demonstrates sound knowledge and understanding of scientific concepts • communicates scientific understanding effectively using scientific terms and application of nomenclature • designs and plans investigations to obtain primary and secondary data and evaluates risks • processes and interprets primary and secondary data, and represents it using a range of scientific formats • identifies scientific problems, questions, or hypotheses and applies processes, and formats to primary or

secondary data • applies knowledge and information relevant to scientific issues or scenarios

Band 3

• demonstrates basic knowledge and understanding of scientific concepts • communicates scientific understanding using basic scientific terms and application of nomenclature • implements scientific processes to obtain primary and secondary data and identifies risks • processes primary or secondary data, and represents it using scientific formats • responds to scientific problems, questions, or hypotheses • recalls scientific knowledge and information

Band 2

• demonstrates limited knowledge and understanding of scientific concepts • communicates scientific understanding using limited scientific terms • partially outlines investigations to obtain data and information • provides simple descriptions of scientific phenomena • recalls basic scientific knowledge and information

Band 1

A mark in this band indicates that the student has achieved below the minimum standard expected

Page 2 of 9

Feedback from First New Exam in 2019

New syllabus but same principles used in marking shed

• Some new or altered expectations:

• Derivation

Syllabus mentioned

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

• Reading and format

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

• Working scientifically skills to show experimentation and development of knowledge

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

• Reinforcing old rules

• Language of the syllabus

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

• Cross modular and inquiry questions

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

• Year 11 as background knowledge

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Page 3 of 9

Important Points for Numerical Questions

Which approach is best?

Calculate the acceleration an electron experiences when a 5mN force East is applied

Important Steps

1. C____________________________________________________________________________

2. A____________________________________________________________________________

3. U____________________________________________________________________________

4. S____________________________________________________________________________

5. E_____________________________________________________________________________

6. D____________________________________________________________________________

a.

a = 4.5545x10-33

b.

F = ma

5x10-3 = 9.109x10

-31 x a

a = 5x10-3 x 9.109x10

-31

a = 4.5545x10-33

ms-2 East

c.

F = ma

𝑎𝑎 =𝐹𝐹𝑚𝑚

a = 5x10-3 / 9.109x10-31

a = 4.6x10-33 ms-2 East

Page 4 of 9

Graphical Questions

Measurements of the distance travelled by the projectile from the base of the platform are made for a range of initial velocities.

Initial velocity of projectile (m s

–1)

Distance travelled from base of platform (m)

1.4 1.0 2.3 1.7 3.1 2.2 3.9 2.3 4.2 3.0

(a) Graph the data on the grid provided and draw the line of best fit. 2 marks

Important points for graphs and diagrams

G__________________________________________________________________________________

R__________________________________________________________________________________

A__________________________________________________________________________________

P__________________________________________________________________________________

H__________________________________________________________________________________

S__________________________________________________________________________________

Page 5 of 9

I

D

E

A

S

U

Written Answers

Page 6 of 9

Outline the similarities and differences between the effects of electric fields and gravitational fields on matter. In your answer, refer to the definitions of these fields

__________________________________________________________________________________________

__________________________________________________________________________________________

__________________________________________________________________________________________

__________________________________________________________________________________________

Sample Answer An electric field is a region in space where a force acts on a charged particle.

A gravitational field is a region in space where an object with mass affects other objects with mass.

Electric field strength is given by E= F/q (force per unit charge), whereas gravitational field strength is given by g = F/m (force per unit mass).

Both fields produce forces of attraction, but only electric fields repel (due to like charges).

Electric and gravitational fields vary in strength due to magnitudes of the charge or mass respectively.

Both fields decrease in strength with the square of the separation distance from a point charge or mass.

Important Points Show your knowledge

• _______________________________________________________________

• _______________________________________________________________

Plan your answer: IDEAS

Use tables or headings to provide structure

Reread to check for contradictions and question is being answered

Page 7 of 9

Application or Experimental Questions

Is your answer?

• Valid

• Reliable

• Realistic

• Safe

Include

• Variables o I______________________________

How changed (and measured) o D_______________________________

How measured o C______________________________

How kept the same

• How have you checked for and improved reliability? o R_______________________________

Only for checking or improving reliability of individual measurements o C_______________________________

If variables aren’t controlled, it won’t be reliable

• Analysis o D_______________________________

Techniques How recorded

o M_________________________________ What equations or techniques will be used, like averaging Units

Page 8 of 9

Applying Knowledge

Why does a current flow in the solenoid? 0.64 out 2

The magnetic field around the bar magnet passes through the turns of the coil, resulting in a certain enclosed magnetic flux. An emf is induced when the coil is moved because the enclosed magnetic flux decreases as the coil is moved away from the magnet. Since the coil terminals are short-circuited, this emf will cause a current to flow.

Explain the reason for changes in the reading on the electronic balance as the solenoid is removed. 1.18 out of 4

As the coil is moved away, initially the reading on the balance becomes less and then it goes back to 42.42 g. The induced current in the coil that results from the change in flux produces a magnetic field that tends to maintain the flux through the solenoid. The field due to the induced current in the coil has a south pole at the bottom of the coil, resulting in a force of attraction on the magnet causing the force and, therefore the reading on the balance due to the bar magnet to decrease. As the coil is moved further away, the interaction between the magnet and the coil effectively disappears and the reading on the balance returns to 42.42 g.

Page 9 of 9

Summary

• Make your knowledge visible, not expecting the marker to imply information

• Answer with the most scientific answer you can

• Always show equations and substitution

• Always remember to change units

• Use 2B pencils, black pens and rulers to maximise the ability for the marker to read

• Write as legibly as possible as the markers don’t have time to reread multiple times

• Use diagrams, tables, graphs to help visualise your answer

• Plan and proof read your answers

[email protected]

2/06/2020

1

Moving up a mark range / Exam TipsBRETT MCKAY

KIRRAWEE HIGH SCHOOL

AURORA COLLEGE HSC PHYSICS ONLINE STUDY DAY 

How many letter f in this paragraph

Finished files are the result of years of 

scientific study combined with the experience 

of years.

Session outline

1. Where am I at and what is my goal?

2. Lessons from 2019

3. General Feedback

4. Improvements in numerical questions

5. Improvements in extended responses

6. Improvements in investigation style questions

7. Summary with tips and suggestions

8. Two achievable changes

2/06/2020

2

Where am I at and what is my goal?

• Marks are based on the standards, not the difficulty of the test

• The differences between people are:

• Ability to recall content

• Ability to clearly describe and explain content

• Ability to apply content

• Ability to adjust to unfamiliar circumstances

• What is your current performance level?

Where am I at and what is my goal?Band 6

• demonstrates an extensive knowledge and understanding of scientific concepts, including complex and abstract ideas

• communicates scientific understanding succinctly, logically, and consistently using correct and precise scientific terms and application of nomenclature in a variety of formats and wide range of contexts

• designs and plans investigations to obtain accurate, reliable, valid and relevant primary and secondary data, evaluating risks, mitigating where applicable, and making modifications in response to new evidence

• selects, processes, and interprets accurate, reliable, valid, and relevant qualitative and quantitative, primary or secondary data, and represents it using a range of scientific formats to derive trends, show patterns and relationships, explain phenomena, and make predictions

• designs solutions to scientific problems, questions, or hypotheses using selected accurate, reliable, valid, and relevant primary and secondary data, and scientific evidence, by applying processes, modelling and formats

• applies knowledge and information to unfamiliar situations to propose comprehensive solutions or explanations for scientific issues or scenarios

Lessons from 2019

• New syllabus but same principles used in marking shed

• Some new expectations:

• Derivation

• Reading and format

• Working scientifically skills to show experimentation and development of knowledge

• Reinforcing old rules

• Language of the syllabus

• Cross modular and inquiry questions

• Year 11 as background knowledge

2/06/2020

3

Derivations • derive quantitatively and apply the concepts of gravitational force 

and gravitational potential energy in radial gravitational fields to a 

variety of situations, including but not limited to:  

• the concept of escape velocity 

• total potential energy of a planet or satellite in its orbit U

• total energy of a planet or satellite in its orbit U K

• energy changes that occur when satellites move between 

orbits(ACSPH096)

• Kepler’s Laws of Planetary Motion(ACSPH101)

Derivations

Look for capitals in questions. They are there for a reason

2/06/2020

4

Working scientifically skills to show experimentation and development of knowledge

• Outline a thought experiment that relates to the 

prediction of time dilation.

• Outline experimental evidence that validated the 

prediction of time dilation.

Use the language of the syllabus

• Justify the validity of the student’s model using 

information from the graph.

• Outline experimental evidence that validated the 

prediction of time dilation.

• Describe how specific experiments have 

contributed to our understanding of the electron 

and ONE other fundamental particle. 

Cross modular or cross inquiry questions

2/06/2020

5

Year 11 prior knowledge

Numerical QuestionsWhich approach is best?

b.

F = ma

5x10‐3 =  9.109x10‐31 x a 

a = 5x10‐3 x 9.109x10‐31

a = 4.5545x10‐33 ms‐2 East

a.

a = 4.5545x10‐33

c.

F = ma

a = 5x10‐3 / 9.109x10‐31

a = 4.6x10‐33 ms‐2 East

Calculate the acceleration an electron experiences when a 5.0 mN force East is applied

Numerical QuestionsWhich approach is best?

b.

F = ma

5x10‐3 =  9.109x10‐31 x a 

a = 5x10‐3 x 9.109x10‐31

a = 4.5545x10‐33 ms‐2 East

a.

a = 5.49x1027

c.

F = ma

a = 5x10‐3 / 9.109x10‐31

a = 4.6x10‐33 ms‐2 East

Calculate the acceleration an electron experiences when a 5mN force East is applied

2/06/2020

6

Numerical Questions

• Changed units

• Answer

• Units

• Substitution

• Equation

• Direction

Graphical Questions

Measurements of the distance travelled by the projectile from the base of the 

platform are made for a range of initial velocities. 

(a) Graph the data on the grid provided and draw the line of best fit.  2

Initial velocity of projectile (m s–1) Distance travelled from base of platform (m)

1.4 1.0

2.3 1.7

3.1 2.2

3.9 2.3

4.2 3.0

Which is best?Is this an outlier?If yes label and explain

Gradient?

m/(m/s) = s

Construction lines

2/06/2020

7

Diagrams and Graphs

• Gradient: Meaning and drawn an accurate line of best fit

• Reading:   2B read so use a 2B pencil, you may go over afterwards with pen

• Areas:  Have your worked out if it has a meaning

• Plot data points with crosses

• Have you explained your graph: outliers, construction lines

• Scales: Labelled with variable and unit and used greater than 70% of paper

2018 HSC

Outline the similarities and differences between the effects of electric fields and 

gravitational fields on matter. In your answer, refer to the definitions of these fields

2/06/2020

8

Outline: Sketch in general terms; indicate the main features of

An electric field is a region in space where a force acts on a charged particle. 

A gravitational field is a region in space where an object with mass affects other objects with mass. 

Electric field strength is given by E= F/q (force per unit charge), whereas gravitational field strength is given by g = F/m (force per unit mass). 

Both fields produce forces of attraction, but only electric fields repel (due to like charges). 

Electric and gravitational fields vary in strength due to magnitudes of the charge or mass respectively. 

Both fields decrease in strength with the square of the separation distance from a point charge or mass.

Outline the similarities and differences between the effects of electric fields and gravitational fields on matter. In your answer, refer to the definitions of these fields

An electric field is a region in space where a force acts on a charged particle. 

A gravitational field is a region in space where an object with mass affects other objects with mass. 

Electric field strength is given by E= F/q (force per unit charge), whereas gravitational field strength is given by g = F/m (force per unit mass). 

Both fields produce forces of attraction, but only electric fields repel (due to like charges). 

Electric and gravitational fields vary in strength due to magnitudes of the charge or mass respectively. 

Both fields decrease in strength with the square of the separation distance from a point charge or mass.

Outline the similarities and differences between the effects of electric fields and gravitational fields on matter. In your answer, refer to the definitions of these fields

An electric field is a region in space where a force acts on a charged particle. 

A gravitational field is a region in space where an object with mass affects other objects with mass. 

Electric field strength is given by E= F/q (force per unit charge), whereas gravitational field strength is given by g = F/m (force per unit mass). 

Both fields produce forces of attraction, but only electric fields repel (due to like charges). 

Electric and gravitational fields vary in strength due to magnitudes of the charge or mass respectively. 

Both fields decrease in strength with the square of the separation distance from a point charge or mass.

2/06/2020

9

Important Points

• Show your knowledge

• Language of syllabus

• Use equations to express physics knowledge

• Plan your answer: IDEAS 

• Use tables or headings to provide structure

• Reread to check for contradictions and question is being answered

Question 21 (6 marks) 2012(a) Outline a first‐hand investigation that could be performed to measure a value for acceleration due to gravity.  3 marks

A computer‐based timing system should be set up using a sensor to measure how 

long it takes for a mass to fall to the ground from several heights between 0.5 m 

and 3.0 m. 

To increase reliability several readings for each height should be recorded. 

The results should be plotted on a time vs height graph. The acceleration due to 

gravity is equal to 2 x the reciprocal of the slope of the line of best fit. 

Question 21 (6 marks) 2012(a) Outline a first‐hand investigation that could be performed to measure a value for acceleration due to gravity.  3 marks

A computer‐based timing system should be set up using a sensor to measure how 

long it takes for a mass to fall to the ground from several heights between 0.5 m 

and 3.0 m. 

To increase reliability several readings for each height should be recorded. 

The results should be plotted on a time vs height graph. The acceleration due to 

gravity is equal to 2 x the reciprocal of the slope of the line of best fit. 

Dependent Variable

Independent Variable

2/06/2020

10

Question 21 (6 marks) 2012(a) Outline a first‐hand investigation that could be performed to measure a value for acceleration due to gravity.  3 marks

A computer‐based timing system should be set up using a sensor to measure how 

long it takes for a mass to fall to the ground from several heights between 0.5 m 

and 3.0 m. 

To increase reliability several readings for each height should be recorded. 

The results should be plotted on a time vs height graph. The acceleration due to 

gravity is equal to 2 x the reciprocal of the slope of the line of best fit. 

Reliability

What has been controlled?

Question 21 (6 marks) 2012(a) Outline a first‐hand investigation that could be performed to measure a value for acceleration due to gravity.  3 marks

A computer‐based timing system should be set up using a sensor to measure how 

long it takes for a mass to fall to the ground from several heights between 0.5 m 

and 3.0 m. 

To increase reliability several readings for each height should be recorded. 

The results should be plotted on a time vs height graph. The acceleration due to 

gravity is equal to 2 x the reciprocal of the slope of the line of best fit. Analysis

Accuracy, Reliability and Validity

(b) How would you assess the accuracy of the result of the investigation?

(c) How would you increase the reliability of the data collected?

(d) How would you assess the reliability of the data collected?

2/06/2020

11

Accuracy, Reliability and Validity

(b) How would you assess the accuracy of the result of the investigation? 0.26

Indicates that the value obtained experimentally should be compared with an          

accepted standard value obtained from a reliable source. 

(c) How would you increase the reliability of the data collected? 0.85

States that repetition of the experiment is required to establish reliability 

(d) How would you assess the reliability of the data collected? 0.07

States that the less the measurements vary from the mean, the more reliable is the 

experimental data. 

Be ready to apply your knowledge• Why short 

circuit?

• Why is the 

balance in 

grams?

Putting it all together

Why does a current flow in the solenoid?       0.64 out 2

Explain the reason for changes in the reading on the electronic balance as the 

solenoid is removed. 1.18 out of 4

2/06/2020

12

Putting it all together

Why does a current flow in the solenoid?       0.64 out 2

• The magnetic field around the bar magnet passes through the turns of the coil, 

resulting in a certain enclosed magnetic flux. An emf is induced when the coil is 

moved because the enclosed magnetic flux decreases as the coil is moved away 

from the magnet. Since the coil terminals are short‐circuited, this emf will cause 

a current to flow.

Putting it all together

Explain the reason for changes in the reading on the electronic balance as the 

solenoid is removed. 1.18 out of 4

As the coil is moved away, initially the reading on the balance becomes less and 

then it goes back to 42.42 g. The induced current in the coil that results from the 

change in flux produces a magnetic field that tends to maintain the flux through 

the solenoid. The field due to the induced current in the coil has a south pole at the 

bottom of the coil, resulting in a force of attraction on the magnet causing the force 

and, therefore the reading on the balance due to the bar magnet to decrease. As the 

coil is moved further away, the interaction between the magnet and the coil 

effectively disappears and the reading on the balance returns to 42.42 g.

Summary

• Make your knowledge visible, not expecting the marker to imply information

• Answer with the most scientific answer you can

• Always show equations and substitution first

• Always remember to change units

• Use 2B pencils, black pens and rulers to maximise the ability for the marker to read

• Write as legibly as possible as the markers don’t have time to reread multiple times

• Use diagrams, tables, graphs to help visualise your answer

• Plan and proof read your answers

2/06/2020

13

Good Luck

[email protected]

Module 5

Advanced mechanics Mr Paul Looyen

TIP: I have a YouTube channel called High School Physics Explained as well as a website

associated with it

There are many videos that cover most if not all the concepts covered today. As well as this, there are a series of videos “How well do you know’ that use

HSC style MC questions to test understanding and lots of HSC exam style questions explained

www.youtube.com/c/highschoolphysicsexplained and www.physicshigh.com

Inquiry Question: How can models that are used to explain projectile motion be used to analyse and make predictions?

What is projectile motion?

Projectile motion is a form of 2-dimensional motion where one is component has no acceleration and the other component has constant acceleration.

Most common is under the influence of gravity, so the vertical component has a = g, and horizontal component a = 0.

These components are INDEPENDENT of each other.

How do we solve projectile problems?

To solve, treat each component separately as a one-dimensional problem and since time will be the same for both, unknown variables can be calculated.

TIP: See videos - “RUDE” for good setting out technique - “Projectiles Explained” for sample questions set out

Let’s see how well you know?

Choose the correct answer. Can you state WHY it is correct and why the others are not?

Inquiry Question: Why do objects move in circles?

How do we define circular motion?

Circular motion is defined as motion where a constant force is applied in such a way that it always is perpendicular to the direction of motion, where the speed is constant.

This is called the centripetal force

This causes the object to travel in a circle with the force directed towards its centre. (NB: If the force is variable to the speed is changing, the path will not be circular)

If the force stops, then the object will continue in a straight path that is at a tangent to the circle

In the example of the amusement ride, such as the Rotor at Luna Park, or the Graviton, the rider appears stuck to the wall as the ride spins. The centripetal force is the normal force the rider experiences and is directed towards the centre.

NB: although the rider is applying an outward force ON TO the wall, the rider is NOT experiencing an outward force.

Let’s see how well you know?

Choose the correct answer. Can you state WHY it is correct and why the others are not?

Solving circular motion problems

Solving centripetal motion problems usually involves the centripetal force formula, where m is the mass, v is the velocity and r is the radius. v can also be determined by the circumference divided by the period. But note, the average velocity is always 0 because the motion is periodic, the object always returns to the same position. This issue is resolved by examining in the motion not in a linear fashion, but by an angular fashion.

By looking at the path as a rotation about an angle, a full circle will mean a displacement of 360°.

However, the unit of degrees is not an SI unit, whereas radians is. So displacement is measure in radians, where a full circle is 2π radians.

Therefore, angular velocity (ω) is equal to 2π divided by the period.

What are the forces involved in circular motion?

There are three situations examined in the syllabus – a car around a bend, the same car where the road is banked and conical pendulums

Examining the conical pendulum first

In the conical pendulum, there are two forces present as it swings – the weight and the tension on the string.

These two ADD to provide the centripetal force. Another way of viewing this is that the horizontal component of the tension is the centripetal force

Once way of solving this is by vector analysis

The velocity of the pendulum ends up being the square root of the product of ‘g’, the radius, and tan of the angle. Note mass is not included, its independent of mass

Now let’s examine cars on curved roads

If the road surface is level, the only force that causes the car to turn is the frictional force on the road

Therefore the centripetal force is the frictional force, where N is the Normal and μ is the coefficient of friction

When the road is banked, it’s a little more complex, and in this case we will only consider where the surface is smooth, ie we will not include friction (its quite complex if we do consider it)

(You can look at this if you wish in the video “Conical Pendulums and Banking Explained)

The normal generated is both due to the banking and the fact it’s going around in a circle. The horizontal component of this normal is the centripetal force.

When you do the vector analysis of this you again get the velocity equal to the square root of the product of ‘g’, the radius, and tan of the angle. Just like the conical pendulum, and like the conical pendulum, its independent of the mass of the car.

You will note that you can achieve a greater velocity if you increase ‘r’, and/or angle.

NB: Do NOT memorise the formula. Know HOW the formula is derived.

This is true for many formulas in physics

Torque

Finally, let’s examine torque which is commonly referred to a turning force

You will be familiar with torque when using a wrench or spanner. You can loosen, or tighten a bolt, buy not varying the force you apply, by how far you apply the force from the centre – i.e. the radius

Thus torque is simply force times radius, as long as the force is perpendicular to the radius.

If the force is not perpendicular, the value of the torque is equal to the radius x the perpendicular component of the force

Let’s see how well you know?

Choose the correct answer. Can you state WHY it is correct and why the others are not?

Inquiry Question: How does the force of gravity determine the motion of planets and satellites?

What is the nature of gravity?

Gravity, as Sir Isaac Newton explained it, is a force of mutual attraction between two objects, where the value is determined by the product of their masses and inversely proportional to the square of the distance between them

A gravitational field, which shows lines of force is region where a mass can experience a force due to that field. The formula is simply based on the mass of the object generating the field and the point where it is measured.

You will note that the symbol is ‘g’. This is the same as the symbol for the acceleration due to gravity. So although it is the same value, acceleration and gravitational field strength are two different concepts

How does gravity affect the motion of planets and satellites?

When a satellite is in a circular orbit, it is under the influence of gravity. This gravitational force is the centripetal force that causes it to remain in orbit as long as it is moving.

By equating the gravitational force with the centripetal force, the orbital velocity can be derived

What are Kepler’s Laws?

Johannes Kepler determined the relationship between the radius of the planets and their period – ie he determined that r3 / T2 is a constant.

Isaac Newton was able to explain why it is constant by using the Law of Gravitation

Let’s see how well you know?

Choose the correct answer. Can you state WHY it is correct and why the others are not?

Energy and gravity

When an object moves in a gravitational field away from the a central mass, we have to do work, and thereby increase its potential energy (U). However, the amount of work done decrease as distance increases

The only place where U is 0 is at an infinite point away from the mass

Therefore the definition of U is always a negative value

If a rocket is to escape the earths gravitational field, its needs to provided a velocity such that the kinetic energy is has is always greater than the potential energy. In other words, as its U is converted to U, K can never get to 0. With this relationship, you can determine the escape velocity. You will not that the further you are away from a central mass, the lower the required escape velocity

A satellite in orbit will have both potential energy (U) and kinetic energy (K) by way that it has an orbital velocity

The combined energy can thus be derived

If a satellite is moved into a higher orbit, U increases, but K decreases. However, the total energy also increases. (Gets closer to 0). This is due to the fact work has to be done on the system to get it to a higher orbit

Let’s see how well you know?

Choose the correct answer. Can you state WHY it is correct and why the others are not?

Two more questions to consider from 2019 HSC

Appendix

Syllabus reference

2/06/2020

1

Module 5Module 5

Advanced mechanicsAdvanced mechanics

Mr Paul Looyen

High School Physics ExplainedHigh School Physics Explained

YouTube channel

Many videos that cover most if not all the concepts covered today

A series of videos “How well do you know’ that use HSC style MC questions to test understanding

Lots of HSC exam style questions explained

3 inquiry questions3 inquiry questionsHow can models that are used to explain projectile motion be used to analyse and make predictions?

Why do objects move in circles?

How does the force of gravity determine the motion of planets and satellites?

2/06/2020

2

How can models that are used to explain projectile motion be used to analyse and make predictions?How can models that are used to explain projectile motion be used to analyse and make predictions?

What is projectile motion?

How do we solve projectile problems

2/06/2020

3

2/06/2020

4

VERT

vy =uy = usin60 m/sa = -9.8 m/s/ssy = 34 mt =

HOR

vx = ucos60 m/ssx = 45 mt =

2/06/2020

5

Why do objects move in circles?Why do objects move in circles?

How do we define circular motion?

What are the forces involved in circular motion?

Solving circular motion problems

Why do objects move in circles?Why do objects move in circles?

Energy

What is torque?

How do we define circular motion?

2/06/2020

6

How do we define circular motion?

Solving circular motion problems

Solving circular motion problems

2/06/2020

7

π

3π2

π2

0, 2π

Solving circular motion problems

π

3π2

0, 2π

Solving circular motion problemsπ2

What are the forces involved in circular motion?

Conical pendulum

2/06/2020

8

T

mg

What are the forces involved in circular motion?

Conical pendulum

T

mgFc

What are the forces involved in circular motion?

Tmg

Fc

What are the forces involved in circular motion?

Conical pendulum

θ

tanθ = Fc

mg

v = g•r•tanθ

2/06/2020

9

What are the forces involved in circular motion?

Banked roads

What are the forces involved in circular motion?

Banked roads

Fc

What are the forces involved in circular motion?

Banked roads

Fc

Fc = μN = μmg

2/06/2020

10

θ

Banked roads

N

mg

Nsinθ

Ncosθ

θ

θ

Banked roads

N

mgFc

Nsinθ

Ncosθ

θ

θ

Banked roads

2/06/2020

11

N

mgFc

Nsinθ

Ncosθ

θ

θ

v = g•r•tanθ

Banked roads

What is torque?

2/06/2020

12

q

What is torque?

What is torque?

2/06/2020

13

What is torque?

τ = F•r•sinθ

θ

= m 0.15 4 0.8 1.89

2/06/2020

14

How does the force of gravity determine the motion of planets and satellites?

How does the force of gravity determine the motion of planets and satellites?

What is the nature of gravity?

How does gravity affect the motion of planets and satellites?

How does the force of gravity determine the motion of planets and satellites?

How does the force of gravity determine the motion of planets and satellites?

Examine satellites in orbit mathematically

What are Kepler’s Laws?

Energy and gravity

What is the nature of gravity?

2/06/2020

15

GMr2g =

What is the nature of gravity?

How does gravity affect the motion of planets and satellites?

Gravitational force

How does gravity affect the motion of planets and satellites?

2/06/2020

16

Gravitational force Centripetal force

How does gravity affect the motion of planets and satellites?

Gravitational force Centripetal force=How does gravity affect the motion of planets and satellites?

Gravitational force Centripetal force=

Velocity

How does gravity affect the motion of planets and satellites?

2/06/2020

17

Gravitational force Centripetal force=

Velocity

v = G•Mr

r3

T2

What are Kepler’s Laws?

v = G•Mr

=2πrT

What are Kepler’s Laws?

2/06/2020

18

v = G•Mr

=2πrT

What are Kepler’s Laws?

Given in the formula sheetBut know how it is derived

v = G•Mr

v’ = G•M2r

1

2v’ = G•M

r

= =

2/06/2020

19

U = 0

rU

K ≥ U

1/2mv2 ≥ G•Mr

Energy and gravity

U = - G•Mr

Energy and gravity

2/06/2020

20

U = - G•Mr

K=1/2mv2

v = G•Mr

Energy and gravity

U = - G•Mr

K=1/2mv2

v = G•Mr K = G•M

2r

Energy and gravity

U = - G•Mr

K=1/2mv2

v = G•Mr K = G•M

2r

Energy and gravity

2/06/2020

21

Know about - experimental design- Models and how we

validate them

Don’t forget key concepts such as LC and LCM and Laws of motion

2/06/2020

1

Module 6: ElectromagnetismProf. Tim Bedding 

(School of Physics, University of Sydney)

2/06/2020

2

What is a field?  Example: gravity

Newton’s law of gravity: two masses attract  (inverse square law)

Electric field

Coulomb’s law: two charges attract or repel (inverse square law)

2/06/2020

3

Examples of electric fields

relates electric field between the plates (approximately uniform) to potential difference between the plates

Magnetic fieldtwo currents attract or repel:

2/06/2020

4

Examples of magnetic field

the Earth:

where N is number of turns and L is length of solenoid

Summary: Electric and Magnetic fields

2/06/2020

5

A changingmagnetic field produces an electric field!induces

Michael Faraday

We can change the magnetic field by:1. moving the magnet or the solenoid2. changing the current in the solenoid

battery

ammeter

moving coil

If we place a loop of wire in the region of changing magnetic field, the induced electric field will drive a current around the loop.Better yet, use a solenoid with N coils.

Faraday’s 1831 experiment showing induction

2/06/2020

6

Faraday’s Law

• emf: the “total electric field” pushing the current around the loop (units: volts)• magnetic flux: the “amount” of magnetic field passing through the loop• the minus sign reminds us about the direction (Lenz’s Law)

Magnetic flux: two examples

B = magnetic fieldA = area of the loopθ = angle as shown

there will be an induced emf if the flux changes:

2/06/2020

7

Direction of the induced current (Lenz’s Law)wire loop

How to determine the direction of the induced current:1. the change in magnetic flux through the loop induces an emf around the loop, 

which drives a current2. this induced current creates a new magnetic field.3. the flux from this new magnetic field must oppose the change in flux that caused it.

Another example: two solenoids

1. changing current in solenoid 12. changing magnetic flux through solenoid 23. induced emf around solenoid 24. induced current in solenoid 2

• suppose current in 1 is increasing• what is direction of induced current in 2?

2/06/2020

8

Better arrangemnt:put coil 1 inside coil 2

why? more magnetic flux, which means higher induced emf

transform from one voltage to anotherp = primary (coil 1)s = secondary (coil 2)

What else does electromagetism predict?

• Faraday’s Law: a changing magnetic field produces an electric field

• Maxwell suggested that a changing electric field produces a magnetic field

• so we have an intriguing possibility: 

changing B 

changing E 

2/06/2020

1

The Nature of Light (including Special Relativity)

Prof. Tim Bedding (School of Physics, University of Sydney)

https://xkcd.com/660/

What is a wave?a pattern (or disturbance) that moves through a medium

https://www.acs.psu.edu/drussell/Demos/waves‐intro/waves‐intro.html

2/06/2020

2

What does electromagetism predict?

• Faraday’s Law: a changing magnetic field produces an electric field

• Maxwell suggested that a changing electric field produces a magnetic field

• so we have an intriguing possibility: 

changing B 

changing E 

Travelling pattern of E and B fields:

calculate the speed

2/06/2020

3

Chabay & Sherwood: Matter and Interactions (Vol. II)

The pattern is created by an accelerating charge:

Electromagnetic waves

https://en.wikipedia.org/wiki/Electromagnetic_radiation#/media/File:Electromagneticwave3D.gif

2/06/2020

4

What happens if you run alongside this pattern?

The weird effects in Special Relativity

1. moving clocks appear to run slow (“time dilation”)

2. moving objects appear to be shorter (“length contraction”)

3. moving objects have more momentum than expected

4. there is energy associated with the mass of an object (E=mc2)

2/06/2020

5

Do these matter in everyday life?

• mostly not, we can happily use Newton’s Laws in most situations

• exceptions include: particles moving at high speed (e.g., astronomy, LHC); the GPS system in your pocket!

https://home.cern/topics/large‐hadron‐collider

The Large Hadron Collider (CERN)

2/06/2020

6

GPS (Global Positioning System)

What are “Reference Frames”?

The framework against which we measure ourselves (a system of coordinates).

It only makes sense to talk about speed with respect to a reference frame.

“How fast am I travelling?”

› Speed relative to what?

– Relative to a lamp post: 100 km/h

– Relative to a passenger: 0 km/h

– Relative to oncoming traffic: 200 km/h

2/06/2020

7

Special Relativity only considers Inertial Frames of Reference

› Inertial Frames of Reference are a Special kind of reference frame:

– moving at a constant velocity (no acceleration)

not inertialinertial (approximately)

Einstein’s Postulates1. Principle of relativity:

“The laws of physics are the same in every inertial reference frame.”

An experiment will give the same results in all inertial frame.

You cannot tell (without looking out the window) how fast the train is moving relative to the ground

2/06/2020

8

2. Speed of light:

“The speed of light (in vacuum) is the same in all inertial frames of reference, regardless the motion of the source.”

c = 3.00 x 108 m/s

The speed of light is independent of the speed of the source of light!

Einstein’s Postulates

Exercise: what speed does B measure?

2/06/2020

9

The speed of light• Light is a moving pattern of electric and 

magnetic fields• according to Maxwell’s equations, this 

pattern moves with a speed 

• Einstein imagined running alongside the moving pattern.  What would you find?

• he decided Maxwell’s equations took priority over Newton’s Laws (and over common sense!): the pattern will always appear to move with speed c, no matter what 

• this is weird, and it has several weird consequences…

The weird effects in Special Relativity

1. moving clocks appear to run slow (“time dilation”)

2. moving objects appear to be shorter (“length contraction”)

3. moving objects have more momentum than expected

4. there is energy associated with the mass of an object (E=mc2)

2/06/2020

10

Example – the muon– muon is like a heavy electron, but

decays after about 2.2 μs

– many are created in the atmosphere (a few km up) when high-energy particle collides with air molecule

– muons travel towards ground at close to speed of light and are detected

– how far could a muon travel in 2.2μs? Hint: speed=distance/time

– Answer: 2.94x108 m/s x 2.2x10-6 s = 650 m)

– puzzle: how can it reach the ground?!

1. Time Dilation

= time measured in rest frame of object

= time measured in a different reference frame

= relative speed of the two frames of reference

2/06/2020

11

Example – the muon– “muon is like a heavy electron, but decays

after about 2.2 μs”

– this lifetime is measured in the rest frame of the muon

– in our lab frame, what time does this correspond to? Use the equation!

– Answer: 2.2 μs / √(1-0.982) = 11.1 μs

– so in our lab frame, we observe the muon would live for about 11.1 μs

– During this time, how far would it travel (as measured in our lab frame)?

– Answer: 3.3 km

The weird effects in Special Relativity

1. moving clocks appear to run slow (“time dilation”)

2. moving objects appear to be shorter (“length contraction”)

3. moving objects have more momentum than expected

4. there is energy associated with the mass of an object (E=mc2)

2/06/2020

12

2. Length contraction (refers to objects)

= length of object measured in its rest frame

= length of object measured in our frame

= relative speed of the two frames of reference (i.e., speed of object relative to us)

Note: length contraction is only along the direction of motion

v

Example – the muon in its rest frame– in the muon’s frame, the Earth is moving

towards it

– consider the Earth’s atmosphere as the object (with a length 3.3km, say)

– this length appears less in the muon’s frame – use the equation!

– Answer: 3300m / √(1-0.982) = 660m

– so in the muon’s frame, the Earth’s atmosphere (the distance between where it was created and where it hits the ground) is only about 660m

– everything is consistent (but weird!)

2/06/2020

13

The weird effects in Special Relativity

1. moving clocks appear to run slow (“time dilation”)

2. moving objects appear to be shorter (“length contraction”)

3. moving objects have more momentum than expected

4. there is energy associated with the mass of an object (E=mc2)

3. Example – the muon– in our lab frame, what momentum does the

muon appear to have? Use the equation!

– Answer: m0 v / √(1-0.982) = 5.0 m0v

– so in our lab frame, we observe the muon to have a momentum that is 5 times greater than expected

2/06/2020

14

The weird effects in Special Relativity

1. moving clocks appear to run slow (“time dilation”)

2. moving objects appear to be shorter (“length contraction”)

3. moving objects have more momentum than expected

4. there is energy associated with the mass of an object (E=mc2)

4. E = mc2

• mass can be converted to energy (and c2 is a very big number!) 

Page 1 of 13

I

D

E

A

S

FROM THE UNIVERSE TO THE ATOM

Brett Mckay Kirrawee High Aurora College HSC Physics Online Study Day

Page 2 of 13

Origins of the Elements Inquiry question: What evidence is there for the origins of the

elements?

Page 3 of 13

Page 4 of 13

Question 22 (3 marks) Spectra can be used to determine the chemical composition and surface temperature of stars.

Describe how spectra provide information about OTHER features of stars.

Page 5 of 13

Identify ideas:

Production:

Radiation:

Power Output::

Surface Temperature:

Page 6 of 13

Page 7 of 13

Structure of the Atom Inquiry question: How is it known that atoms are made up of

protons, neutrons and electrons?

Sample Answer

When calculating the momentums of the three particles, alpha, X and proton, the law of conservation of momentum indicates that the mass of X is similar to the mass of a proton. This is how Chadwick discovered the neutron

Page 8 of 13

Quantum Mechanical Nature of the Atom Inquiry question: How is it known that classical physics

cannot explain the properties of the atom?

Analyse the way in which scientists use observations and mathematical ideas to improve scientific models. In your answer refer to the work of scientists who have contributed to our understanding of the atom. 8 Marks

Sample Answer

Scientific models are used to explain observations and help us understand ideas but they are all limited in some way. If an observation is not consistent with the model, then the model needs to be changed.

In the Geiger–Marsden gold foil alpha scattering experiment it was observed that positive alpha particles mostly passed through the atom, but sometimes bounced back. Rutherford took these observations to come up with a model of the atom that had a dense positive nucleus surrounded by orbiting electrons. A limitation with this model, though, is that for an electron to be orbiting it would be accelerating and giving off electromagnetic radiation, thereby losing energy and spiralling into the nucleus

Niels Bohr improved upon this model based upon evidence from the hydrogen spectrum. He postulated that electrons could occupy only specific energy levels (orbits) and can jump from one level to another without travelling between. He developed a mathematical model

that could explain the specific wavelengths of the hydrogen emission and absorption spectra based on electrons jumping between the specific integer levels. The model is conceptual but relies on Rydberg’s mathematical equation:

where l = wavelength, nf = final energy level, ni = initial energy level and R is a constant.

This model was also limited in that it only worked for hydrogen and it was not able to explain why the electrons were quantised in this way.

Page 9 of 13

Properties of the Nucleus Inquiry question: How can the energy of the atomic nucleus

be harnessed?

Page 10 of 13

Page 11 of 13

Identify:

Page 12 of 13

Inquiry question: How is it known that human understanding of matter is still incomplete?

Page 13 of 13

Our understanding of matter is still incomplete and the Standard Model of matter is still being validated and tested. Technology plays a substantial role in this. Explain the role of technology in developing both the Standard Model of matter and our understanding in ONE other area of physics. 9 Marks

Sample Answer

Trying to understand new physics drives innovation and develops new technologies. For example, the Large Hadron Collider (LHC) and the state-of-the-art equipment associated with it were specifically designed and created to answer questions about the Higgs boson in the Standard Model of matter.

Technology has had an obvious role in testing and validating aspects of the Standard Model. If the LHC could not detect the Higgs boson, the theory of the Standard Model would have to be altered or changed in a significant way.

2/06/2020

1

FROM THE UNIVERSE TO THE ATOMMODULE 8

WHAT BACKGROUND INFORMATION DO I NEED?

• ADDS ON FROM MODULE 7

• SPECTRA

• DUAL NATURE OF LIGHT

• RELATIVITY

• QUANTA

• FROM OLD OPTIONS

• QUANTA TO QUARKS

• ASTROPHYSICS

2/06/2020

2

HOW IS IT KNOWN THAT HUMAN UNDERSTANDING OF MATTER IS STILL INCOMPLETE?

LISA HARVEY-SMITH

WE ARE STARDUST, WE ARE

GOLDEN, WE ARE BILLION YEAR

OLD CARBON

QUOTING WOODSTOCK

2/06/2020

3

ORIGINS OF THE ELEMENTSINQUIRY QUESTION: WHAT EVIDENCE IS THERE FOR

THE ORIGINS OF THE ELEMENTS?

2/06/2020

4

KNOW YOUR BASIC FACTS

HUBBLE’S INVESTIGATIONS

KNOW BASIC NON-SE UNITS

HERTZSPRUNG-RUSSELL DIAGRAM

2/06/2020

5

HERTZSPRUNG-RUSSELL

DIAGRAM

SPECTRA

2/06/2020

6

SPECTRA

EXAMPLE OF WHY YOU NEED TO READ WHO QUESTION.

ONLY A DESCRIBE BUT MUST PROVIDE LINKS

2/06/2020

7

Observation from spectra Information Provided

Darker, broader absorption spectral lines High density star

fainter, narrower absorption spectral lines Lower density star

Shift in frequency of lines in absorption spectra can reveal information about the motion

Shift to lower frequencies, motion awayShift to higher frequencies, motion towardsShift both ways to broaden lines show rotational motion

• Watch for cross module questions• Be specific• Work with units

2/06/2020

8

Step 1: Identify

Production: Nuclear FusionRadiation: Blackbody radiationSurface Temperature: Wien’s LawPower Output:

WattsWatts are part of the units in data:Intensity of solar radiation at a distance r from the sun .............. 1360 W m-2

m-2 divided by metres squared = divided by areaSo times by area will determine power

Step 2: DescribeAdd characteristics

2/06/2020

9

STRUCTURE OF THE ATOMINQUIRY QUESTION: HOW IS IT KNOWN THAT ATOMS ARE

MADE UP OF PROTONS, NEUTRONS AND ELECTRONS?

• EXPERIMENTAL WORK

In an experiment, an electrically charged oil drop was suspended in air by an electric field.The electric field could be adjusted to balance the weight of the oil drop.

If more drops were suspended and measurements taken, which of the following properties would all of the oil drops be observed to have in common?

A. The mass of each drop would be a multiple of a fundamental mass.

B. The mass of each drop would be the same as each of the other drops.

C. The charge of each drop would be a multiple of a fundamental charge.

D. The charge of each drop would be the same as each of the other drops.

KNOW THE PHYSICS PRINCIPLES AND TERMINOLOGY

When calculating the momentums of the three particles, alpha, X and proton, the law of conservation of momentum indicates that the mass of X is similar to the mass of a proton. This is how Chadwick discovered the neutron

2/06/2020

10

QUANTUM MECHANICAL NATURE OF THE ATOMINQUIRY QUESTION: HOW IS IT KNOWN THAT CLASSICAL PHYSICS CANNOT EXPLAIN THE PROPERTIES OF THE ATOM?

• CLASSICAL IDEAS

• NON-CLASSICAL IDEAS

• DEVELOPMENT OF IDEAS

• OBSERVATIONS

• MATHEMATICAL IDEAS

• MODEL DEVELOPMENT

• LIMITATION TO IMPROVEMENT

• THEORIES

• LAWS

• WORK OF SCIENTISTS

• CONTRIBUTIONS

ANALYSE THE WAY IN WHICH SCIENTISTS USE OBSERVATIONS AND MATHEMATICAL IDEAS TO IMPROVE SCIENTIFIC MODELS. IN YOUR ANSWER REFER TO THE WORK OF SCIENTISTS WHO HAVE CONTRIBUTED TO OUR UNDERSTANDING OF THE ATOM. 8 MARKS

2/06/2020

11

Criteria Marks• Shows a comprehensive understanding of the way scientists use observations and

mathematical ideas to improve models

• Clearly refers to the work of scientists who have contributed to the understanding of the atom

• Makes clear the relationship between limitations in models and improvements by new models

• Draws out and relates implications

8

• Shows a sound understanding of the way scientists use observations and mathematical ideas to improve models of the atom

• Refers to the work of scientists who have contributed to the understanding of theatom

• Makes links between limitations in models and improvements by new models

6–7

• Outlines specific observations and features of models of the atom

• Links observations and/or models to ways in which scientists improve upon models 4–5

• Outlines some features of a scientific model

OR

• Shows some understanding of the way scientists have improved on scientific models 2–3

• Provides some relevant information 1

START WITH IDENTIFY AND DESCRIBE

• SCIENTIFIC MODELS ARE USED TO EXPLAIN OBSERVATIONS AND HELP US

UNDERSTAND IDEAS BUT THEY ARE ALL LIMITED IN SOME WAY. IF AN

OBSERVATION IS NOT CONSISTENT WITH THE MODEL, THEN THE MODEL

NEEDS TO BE CHANGED.

2/06/2020

12

EXPLAIN AND SUBSTANTIATECLEAR LINKS

• IN THE GEIGER–MARSDEN GOLD FOIL ALPHA SCATTERING EXPERIMENT IT WAS

OBSERVED THAT POSITIVE ALPHA PARTICLES MOSTLY PASSED THROUGH THE

ATOM, BUT SOMETIMES BOUNCED BACK. RUTHERFORD TOOK THESE

OBSERVATIONS TO COME UP WITH A MODEL OF THE ATOM THAT HAD A DENSE

POSITIVE NUCLEUS SURROUNDED BY ORBITING ELECTRONS. A LIMITATION

WITH THIS MODEL, THOUGH, IS THAT FOR AN ELECTRON TO BE ORBITING IT

WOULD BE ACCELERATING AND GIVING OFF ELECTROMAGNETIC RADIATION,

THEREBY LOSING ENERGY AND SPIRALLING INTO THE NUCLEUS

LINK PARAGRAPHS OR IDEASINCLUDE MATHEMATICS AT APPROPRIATE TIME

NIELS BOHR IMPROVED UPON THIS MODEL BASED UPON EVIDENCE FROM THE HYDROGEN SPECTRUM. HE POSTULATED THAT ELECTRONS COULD OCCUPY ONLY SPECIFIC ENERGY LEVELS (ORBITS) AND CAN JUMP FROM ONE LEVEL TO ANOTHER WITHOUT TRAVELLING BETWEEN. HE DEVELOPED A MATHEMATICAL MODEL

THAT COULD EXPLAIN THE SPECIFIC WAVELENGTHS OF THE HYDROGEN EMISSION ANDABSORPTION SPECTRA BASED ON ELECTRONS JUMPING BETWEEN THE SPECIFIC INTEGERLEVELS. THE MODEL IS CONCEPTUAL BUT RELIES ON RYDBERG’S MATHEMATICALEQUATION:

where l = wavelength, nf = final energy level, ni = initial energy level and R is a constant.

This model was also limited in that it only worked for hydrogen and it was not able to explain why the electrons were quantised in this way.

2/06/2020

13

PROPERTIES OF THE NUCLEUSINQUIRY QUESTION: HOW CAN THE ENERGY OF THE

ATOMIC NUCLEUS BE HARNESSED?The following equation describes the natural decay process of uranium-238.

238 U 234Th + 4He92 90 2

Which row of the table describes the changes in total mass and total binding energy in the decay of uranium-238?

A.

B.

C.

D.

Total mass Total bindingenergy

Decreases Increases

Decreases Decreases

Increases Increases

Increases Decreases

Line of stability

Number of neutrons

Number of protons

Which arrow would correctly describe beta negative (b–) decay on the graph?

A. B.

C. D.

The graph shown plots isotopes in terms of their numbers of protons and neutrons. When anisotope undergoes nuclear decay, it will move to a different location on the graph. Themovement can be represented with an arrow.

2/06/2020

14

Identify:• Mass defect• Kinetic energy

• UNITS NEED TO BE CONSISTENT.

• YOU CAN CALCULATE THE ENERGY IN

ELECTRON VOLTS, CONVERTING THAT

FOR PLUTONIUM AS WELL

CALCULATIONS

2/06/2020

15

EXPLAIN

• IDENTIFY THE FACTORS THAT EFFECT K

• MASS

• MASS DIFFERENCE IS AROUND 48.5X AND PLUTONIUM GREATER THAN ALPHA, SO CAN’T EXPLAIN

• VELOCITY

• MUST BE REASON

• WHAT ELSE EXPLAINS MASS AND VELOCITY

• MOMENTUM

• HOW CAN IT BE USED?

2/06/2020

16

INQUIRY QUESTION: HOW IS IT KNOWN THAT HUMAN UNDERSTANDING OF MATTER IS STILL

INCOMPLETE?

• INDIVIDUAL DETAILS IS STILL REQUIRED The table lists the first generation of quarks and antiquarks.

Quarks Antiquarks

Name Symbol Charge Name Symbol Charge

Up u + 2e3

Antiup u − 2e3

Down d − 1e3

Antidown d + 1e3

The Standard Model of matter states that baryons, such as protons and neutrons, consist of three quarks.

Using the table, which of the following represents the quark composition for a neutron and an antineutron, respectively?

A. uud and uud

B. uud and uud

C. udd and udd

D. udd and udd

OUR UNDERSTANDING OF MATTER IS STILL INCOMPLETE AND THE STANDARD MODEL OF MATTER IS STILL BEING VALIDATED AND TESTED. TECHNOLOGY PLAYS A SUBSTANTIAL ROLE IN THIS.

EXPLAIN THE ROLE OF TECHNOLOGY IN DEVELOPING BOTH THE STANDARD MODEL OF MATTER AND OUR UNDERSTANDING IN ONE OTHER AREA OF PHYSICS.9 MARKS

DO WE NEED TO ANSWER THE FIRST PARAGRAPH?

EXPLAIN: RELATE CAUSE AND EFFECT; MAKE THE RELATIONSHIPS BETWEEN THINGS EVIDENT;

PROVIDE WHY AND/OR HOW

ROLE OF TECHNOLOGY

DEVELOPING STANDARD MODEL

OTHER AREA OF PHYSICS

2/06/2020

17

Criteria Marks

• Explains the role of technology in developing the Standard Model of matter and ONE other area of physics

9

• Explains the role of technology in developing the Standard Model of matter and describes its role in ONE other area of physics

OR

• Describes the role of technology in developing the Standard Model of matter and explains its role in ONE other area of physics

7–8

• Describes the role of technology in developing the Standard Model of matter and/or ONE other area of physics

5–6

• Outlines the role of specific technologies in developing the Standard Model of matter

AND/OR

• Outlines the role of technology in another area

3–4

• Provides some relevant information 1–2

DESCRIBE OR EXPLAIN?

• TRYING TO UNDERSTAND NEW PHYSICS DRIVES INNOVATION AND DEVELOPS NEW TECHNOLOGIES. FOR EXAMPLE, THE LARGE HADRON COLLIDER (LHC) AND THE STATE-OF-THE-ART EQUIPMENT ASSOCIATED WITH IT WERE SPECIFICALLY DESIGNED AND CREATED TO ANSWER QUESTIONS ABOUT THE HIGGS BOSON IN THE STANDARD MODEL OF MATTER.

• TECHNOLOGY HAS HAD AN OBVIOUS ROLE IN TESTING AND VALIDATINGASPECTS OF THE STANDARD MODEL. IF THE LHC COULD NOT DETECT THEHIGGS BOSON, THE THEORY OF THE STANDARD MODEL WOULD HAVE TO BEALTERED OR CHANGED IN A SIGNIFICANT WAY.