double-layer potentials for a generalized bi-axially symmetric helmholtz equation

15
arXiv:0810.3979v1 [math.AP] 22 Oct 2008 A double layer potentials for generalized bi-axially symmetric equation Anvar Hasanov Institute of Mathematics, Uzbek Academy of Sciences, 29, F. Hodjaev street, Tashkent 100125, Uzbekistan E-mail: [email protected] Abstract In the paper ”Fundamental solutions of generalized bi-axially symmetric Helmholtz equation” (Complex Variables and Elliptic Equations, 52 (8), 2007, 673-683), fundamental solutions of general- ized bi-axially symmetric Helmholtz equation (GBSHE) H λ α,β (u) uxx + uyy + 2α x ux + 2β y uy - λ 2 u =0, 0 < 2α, 2β< 1, α,β,λ = const, were constructed in R + 2 = {(x, y): x> 0,y> 0} . In the present paper (in case of λ = 0) using the constructed fundamental solutions, a double layer potentials are defined and investigated. Limiting theorems are proved, and integral equations concerning a denseness of potentials of a double layer are found. MSC: Primary 35J15, 35J70. Key Words and Phrases: Singular partial differential equation; Generalized bi-axially symmet- ric equation; Degenerated Elliptic Equations; Generalized axisymmetric potentials; A double layer potentials. 1 Introduction In the monograph of Gilbert [1], by applying a method of complex analysis, integral representation of solutions of the generalized bi-axially Helmholtz equation (GBSHE) H λ α,β (u) u xx + u yy + 2α x u x + 2β y u y λ 2 u =0, H λ α,β where 0 < 2α, 2β< 1,α,β,λ are constants, are constructed through analytic functions. When λ =0 this equation is known as the equation of generalized axially symmetric potential theory (GASPT). This name is due to Weinstein, who first considered fractional dimensional space in potential theory [2, 3]. The special case where λ = 0 has also been investigated by Erdelyi [4, 5], Gilbert [6-12], Ranger [13], Henrici [14, 16]. There are many works [17-29] in which some problems for the equation H λ α,β were studied. In the paper [33] fundamental solutions of the equation H λ α,β are constructed. In case of λ = 0 fundamental solutions look like q 1 (x,y; x 0 ,y 0 )= k 1 ( r 2 ) αβ F 2 (α + β; α,β;2α, 2β; ξ,η) , (1.1) q 2 (x,y; x 0 ,y 0 )= k 2 ( r 2 ) αβ1 x 12α x 12α 0 F 2 (1 α + β;1 α,β;2 2α, 2β; ξ,η) , (1.2) q 3 (x,y; x 0 ,y 0 )= k 3 ( r 2 ) α+β1 y 12β y 12β 0 F 2 (1 + α β; α, 1 β;2α, 2 2β; ξ,η) , (1.3) 1

Upload: independent

Post on 29-Nov-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

arX

iv:0

810.

3979

v1 [

mat

h.A

P] 2

2 O

ct 2

008

A double layer potentials for generalized bi-axially symmetric

equation

Anvar Hasanov

Institute of Mathematics, Uzbek Academy of Sciences,

29, F. Hodjaev street, Tashkent 100125, Uzbekistan

E-mail: [email protected]

Abstract

In the paper ”Fundamental solutions of generalized bi-axially symmetric Helmholtz equation”

(Complex Variables and Elliptic Equations, 52 (8), 2007, 673-683), fundamental solutions of general-

ized bi-axially symmetric Helmholtz equation (GBSHE)

Hλα,β (u) ≡ uxx + uyy +

xux +

yuy − λ

2u = 0, 0 < 2α, 2β < 1, α, β, λ = const,

were constructed in R+

2 = (x, y) : x > 0, y > 0 . In the present paper (in case of λ = 0) using the

constructed fundamental solutions, a double layer potentials are defined and investigated. Limiting

theorems are proved, and integral equations concerning a denseness of potentials of a double layer

are found.

MSC: Primary 35J15, 35J70.

Key Words and Phrases: Singular partial differential equation; Generalized bi-axially symmet-

ric equation; Degenerated Elliptic Equations; Generalized axisymmetric potentials; A double layer

potentials.

1 Introduction

In the monograph of Gilbert [1], by applying a method of complex analysis, integral representation of

solutions of the generalized bi-axially Helmholtz equation (GBSHE)

Hλα,β (u) ≡ uxx + uyy +

xux +

yuy − λ2u = 0,

(

Hλα,β

)

where 0 < 2α, 2β < 1, α, β, λ are constants, are constructed through analytic functions. When λ = 0

this equation is known as the equation of generalized axially symmetric potential theory (GASPT). This

name is due to Weinstein, who first considered fractional dimensional space in potential theory [2, 3]. The

special case where λ = 0 has also been investigated by Erdelyi [4, 5], Gilbert [6-12], Ranger [13], Henrici

[14, 16]. There are many works [17-29] in which some problems for the equation Hλα,β were studied. In

the paper [33] fundamental solutions of the equation Hλα,β are constructed. In case of λ = 0 fundamental

solutions look like

q1 (x, y;x0, y0) = k1

(

r2)−α−β

F2 (α+ β;α, β; 2α, 2β; ξ, η) , (1.1)

q2 (x, y;x0, y0) = k2

(

r2)α−β−1

x1−2αx1−2α0 F2 (1 − α+ β; 1 − α, β; 2 − 2α, 2β; ξ, η) , (1.2)

q3 (x, y;x0, y0) = k3

(

r2)−α+β−1

y1−2βy1−2β0 F2 (1 + α− β;α, 1 − β; 2α, 2 − 2β; ξ, η) , (1.3)

1

q4 (x, y;x0, y0) = k4

(

r2)α+β−2

x1−2αy1−2βx1−2α0 y1−2β

0 F2 (2 − α− β; 1 − α, 1 − β; 2 − 2α, 2 − 2β; ξ, η) ,

(1.4)

where

k1 =22α+2β

Γ (α) Γ (β) Γ (α+ β)

Γ (2α) Γ (2β), (1.5)

k2 =22−2α+2β

Γ (1 − α) Γ (β) Γ (1 − α+ β)

Γ (2 − 2α) Γ (2β), (1.6)

k3 =22+2α−2β

Γ (α) Γ (1 − β) Γ (1 + α− β)

Γ (2α) Γ (2 − 2β), (1.7)

k4 =24−2α−2β

Γ (1 − α) Γ (1 − β) Γ (2 − α− β)

Γ (2 − 2α) Γ (2 − 2β), (1.8)

r2

r21

r22

=

x

+

x0

2

+

y

+

y0

2

, ξ =r2 − r21r2

, η =r2 − r22r2

, (1.9)

F2 (a; b1, b2; c1, c2;x, y) =

∞∑

m,n=0

(a)m+n (b1)m (b2)n

(c1)m (c2)nm!n!xmyn, (1.10)

F2 (a; b1, b2; c1, c2;x, y) is a hypergeometric function of Appell ([31], p. 219 (7); [32], p. 14, (12)) and

(a)n = Γ (a+ n) /Γ (a) is symbol of Pochhammer ([31], p. 69; [32], p. 1, (2)). Fundamental solutions

(1.1) - (1.4) possess the following properties:

x2α ∂q1 (x, y;x0, y0)

∂x

x=0

= 0, y2β ∂q1 (x, y;x0, y0)

∂y

y=0

= 0, (1.11)

q2 (x, y;x0, y0)|x=0 = 0, y2β ∂q2 (x, y;x0, y0)

∂y

y=0

= 0, (1.12)

x2α ∂q3 (x, y;x0, y0)

∂x

x=0

= 0, q3 (x, y;x0, y0)|y=0 = 0, (1.13)

q4 (x, y;x0, y0)|x=0 = 0, q4 (x, y;x0, y0)|y=0 = 0. (1.14)

In this paper, using fundamental solutions (1.1) - (1.4) in the domain Ω ⊂ R2+ = (x, y) : x > 0, y > 0,

a double layer potentials for the equation H0α,β are investigated.

2 Green’s formula

Let’s consider identity

x2αy2β[

uH0α,β (v) − vH0

α,β (u)]

=∂

∂x

[

x2αy2β (vxu− vux)]

+∂

∂y

[

x2αy2β (vyu− vuy)]

. (2.1)

Integrating both parts of identity (2.1) on area Ω ⊂ R2+ = (x, y) : x > 0, y > 0, and using Green’s

formula, we find

x2αy2β[

uH0α,β (v) − vH0

α,β (u)]

dxdy =

S

x2αy2βu (vxdy − vydx) − x2αy2βv (uxdy − uydx) , (2.2)

2

where S = ∂Ω is a boundary of the domain Ω.

If u (x, y), v (x, y) are solutions of the equation H0α,β than from the formula (2.2) we have

S

x2αy2β

(

u∂v

∂n− v

∂u

∂n

)

ds = 0, (2.3)

where∂

∂n=dy

ds

∂x−dx

ds

∂y,dy

ds= cos (n, x) ,

dx

ds= − cos (n, y) , (2.4)

n is exterior normal to a curve S. The following identity takes place also

x2αy2β[

u2x + u2

y

]

dxdy =

S

x2αy2βu∂u

∂nds, (2.5)

where u (x, y) is a solution of the equation H0α,β . If in the formula (2.3) to suppose v = 1, we have

S

x2αy2β ∂u

∂nds = 0. (2.6)

Integral from a normal derivative of a solution of the equation H0α,β with weight x2αy2β along the

boundary S of the domain Ω is equal to zero.

3 A double layer potential w(1) (x0, y0)

Let Ω ⊂ R2+ = (x, y) : x > 0, y > 0 be a domain bounded by intervals (0, a), (0, b) of an axis OX , OY

respectively, and a curve Γ with the extremities in points A (a, 0), B (0, b). The parametrical equation

of a curve Γ will be x = x (s) , y = y (s), where s the length of an arc counted from a point A (a, 0).

Concerning a curve Γ we shall assume, that:

(i) functions x = x (s) , y = y (s) have continuous derivatives x′ (s) , y′ (s) on a segment[0, l] , not converted

simultaneously in zero;

(ii) derivatives x′′ (s) , y′′ (s) satisfy to Hoelder condition on [0, l] , where l length of a curve Γ;

(iii) in a neighborhoods of points A (a, 0) and B (0, b) conditions

dx

ds

≤ cy1+ε (s)

dy

ds

≤ cx1+ε (s) , 0 < ε < 1, c = const (3.1)

are satisfied and a point (x, y) is a coordinate of a variable point on a curve Γ . Consider an integral,

where µ1 (s) ∈ C [0, l]

w(1) (x0, y0) =

l∫

0

x2αy2βµ1 (s)∂q1 (x, y;x0, y0)

∂nds. (3.2)

Integral (3.2) we call as a double layer potential with denseness µ1 (s).

Lemma 3.1. Identities

w(1)1 (x0, y0) =

l∫

0

x2αy2β ∂q1 (x, y;x0, y0)

∂nds =

−1, if (x0, y0) ∈ Ω,

−1

2, if (x0, y0) ∈ Γ,

0, if (x0, y0) ∈Ω

(3.3)

3

are true.

Proof. (i). Let (x0, y0) ∈ Ω. We shall cut out from the domain Ω a circle of small radius ρ with the

center in a point (x0, y0) and the remained part Ω , we shall designate through Ωρ. Cρ is a circuit of

the cut out circle. A functionq1 (x, y;x0, y0) is a regular solution of the equation H0α,β in the domain Ωρ.

Using the formula of derivation of hypergeometric function Appell ([32], p. 19, (20))

∂m+nF2 (a; b1, b2; c1, c2;x, y)

∂xm∂yn=

(a)m+n (b1)m (b2)n

(c1)m (c2)n

F2 (a+m+ n; b1 +m, b2 + n; c1 +m, c2 + n;x, y)

(3.4)

we have

∂q1 (x, y;x0, y0)

∂x= −2 (α+ β) k1

(

r2)−α−β−1

(x− x0)F2 (α+ β;α, β; 2α, 2β; ξ, η)−

−2 (α+ β) k1

(

r2)

−α−β−1x0F2 (α+ β + 1;α+ 1, β; 2α+ 1, 2β; ξ, η)−

−2k1

(

r2)

−α−β−1(x− x0)

[

(α+ β)α

2αξF2 (α+ β + 1;α+ 1, β; 2α+ 1, 2β; ξ, η) +

+(α+ β)β

2βηF2 (α+ β + 1;α, β + 1; 2α, 2β + 1; ξ, η)

]

.

(3.5)

By virtue of an adjacent relation ([32], p. 21)

b1c1xF2 (a+ 1; b1 + 1, b2; c1 + 1, c2;x, y) +

b2c2yF2 (a+ 1; b1, b2 + 1; c1, c2 + 1;x, y)

= F2 (a+ 1; b1, b2; c1, c2;x, y) − F2 (a; b1, b2; c1, c2;x, y) ,(3.6)

from (3.5), we define

∂q1 (x, y;x0, y0)

∂x= −2 (α+ β) k1x0

(

r2)−α−β−1

F2 (α+ β + 1;α+ 1, β; 2α+ 1, 2β; ξ, η)

−2 (α+ β) k1 (x− x0)(

r2)

−α−β−1F2 (α+ β + 1;α, β; 2α, 2β; ξ, η) .

(3.7)

Similarly, we find

∂q1 (x, y;x0, y0)

∂y= −2 (α+ β) k1y0

(

r2)−α−β−1

F2 (α+ β + 1;α, 1 + β; 2α, 1 + 2β; ξ, η)

−2 (α+ β) k1 (y − y0)(

r2)

−α−β−1F2 (α+ β + 1;α, β; 2α, 2β; ξ, η) .

(3.8)

Then from (2.4) follows

∂q1 (x, y;x0, y0)

∂n= − (α+ β) k1

(

r2)−α−β

F2 (α+ β + 1;α, β; 2α, 2β; ξ, η)∂

∂n

[

ln r2]

+2 (α+ β) k1y0(

r2)

−α−β−1F2 (α+ β + 1;α, 1 + β; 2α, 1 + 2β; ξ, η)

dx (s)

ds

−2 (α+ β) k1x0

(

r2)

−α−β−1F2 (α+ β + 1;α+ 1, β; 2α+ 1, 2β; ξ, η)

dy (s)

ds.

(3.9)

Applying (2.6) and considering identity (1.11) we shall receive the formula

w(1)1 (x0, y0) = lim

ρ→0

x2αy2β ∂q1 (x, y;x0, y0)

∂nds. (3.10)

4

Substituting (3.9) into (3.10), we define

w(1)1 (x0, y0)

= − (α+ β) k1 limρ→0

x2αy2β(

r2)−α−β

F2 (1 + α+ β;α, β; 2α, 2β; ξ, η)∂

∂n

[

ln r2]

ds

−2 (α+ β) k1x0 limρ→0

x2αy2β(

r2)−α−β−1

F2 (1 + α+ β; 1 + α, β; 1 + 2α, 2β; ξ, η)dy (s)

dsds

+2 (α+ β) k1y0 limρ→0

x2αy2β(

r2)−α−β−1

F2 (1 + α+ β;α, 1 + β; 2α, 1 + 2β; ξ, η)dx (s)

dsds

= − (α+ β) k1 limρ→0

J1 (x0, y0) − 2 (α+ β) k1x0 limρ→0

J2 (x0, y0) + 2 (α+ β) k1y0 limρ→0

J3 (x0, y0) .

(3.11)

Introducing polar coordinates x = x0 + ρ cosϕ, y = y0 + ρ sinϕ, we find

J1 (x0, y0) = −2 (α+ β) k1 limρ→0

2π∫

0

(x0 + ρ cosϕ)2α (y0 + ρ sinϕ)2β

·(

ρ2)

−α−βF2 (1 + α+ β;α, β; 2α, 2β; ξ, η, ζ) dϕ.

(3.12)

Using formulas ([30], p. 253, (26), [31], p. 113, (4))

F2 (a; b1, b2; c1, c2;x, y)

=

∞∑

i=0

(a)i (b1)i (b2)i

(c1)i (c2)i i!xiyiF (a+ i, b1 + i; c1 + i;x)F (a+ i, b2 + i; c2 + i; y) ,

(3.13)

F (a, b; c, x) = (1 − x)−bF

(

c− a, b; c,x

x− 1

)

, (3.14)

we define

F2 (a; b1, b2; c1, c2;x, y)

= (1 − x)−b1 (1 − y)−b2

∞∑

i=0

(a)i (b1)i (b2)i

(c1)i (c2)i i!

(

x

1 − x

)i (y

1 − y

)i

·

·F

(

c1 − a, b1 + i; c1 + i;x

x− 1

)

F

(

c2 − a, b2 + i; c2 + i;y

y − 1

)

,

(3.15)

where F (a, b; c;x) is hypergeometric function of Gauss ([31], p. 69, (2)). Hence

F2 (1 + α+ β;α, β; 2α, 2β; ξ, η)

=(

ρ2)α+β (

ρ2 + 4x20 + 4x0ρ cos ϕ

)

−α (

ρ2 + 4y20 + 4y0ρ sin ϕ

)

−βP11,

(3.16)

where

P11 =

∞∑

i=0

(1 + α+ β)i (α)i (β)i

(2α)i (2β)i i!j!

(

4x20 + 4x0ρ cos ϕ

ρ2 + 4x20 + 4x0ρ cos ϕ

)i (4y2

0 + 4y0ρ sin ϕ

ρ2 + 4y20 + 4y0ρ sin ϕ

)i

·F

(

α− β − 1, α+ i; 2α+ i;4x2

0 + 4x0ρ cos ϕ

ρ2 + 4x20 + 4x0ρ cos ϕ

)

·F

(

β − α− 1, β + i; 2β + i;4y2

0 + 4y0ρ sin ϕ

ρ2 + 4y20 + 4y0ρ sin ϕ

)

.

Using value of hypergeometric function of Gauss ([31], p. 112, (46))

F (a, b; c; 1) =Γ (c) Γ (c− a− b)

Γ (c− a) Γ (c− b), c 6= 0,−1,−2, ...,Re(c− a− b) > 0,

5

it is not complicated to calculate that

limρ→0

P11 =Γ (2α) Γ (2β)

Γ (α) Γ (β) Γ (1 + α+ β). (3.17)

Thus, by virtue of equality (3.17) from (3.12) at ρ→ 0, we obtain

(α+ β) k1 limρ→0

J1 (x0, y0) = 1. (3.18)

Similarly, considering equalities limρ→0

ρ ln ρ = 0, we define

2 (α+ β) k1x0 limρ→0

J2 (x0, y0) = 2 (α+ β) k1y0 limρ→0

J3 (x0, y0) = 0. (3.19)

Hence, by virtue of (3.18) and (3.19), from (3.11) at (x0, y0) ∈ Ω follows

w(1)1 (x0, y0) = −1. (3.20)

(ii). Let (x0, y0) ∈ Γ. We shall lead a circuit Cρ of small radius ρ with the center in a point (x0, y0).

The remained part of a curve, we shall designate through Γ − Γρ. Let’s designate through C′

ρ a part of

a circuit Cρ laying inside of the domain Ω. We shall consider domain Ωρ which is limited by a curve

Γ − Γρ, C′

ρ and segments [0, a], [0, b] axes of coordinates. Then we have

w(1)1 (x0, y0) =

l∫

0

x2αy2β ∂q1 (x, y;x0, y0)

∂nds = lim

ρ→0

Γ−Γρ

x2αy2β ∂q1 (x, y;x0, y0)

∂nds. (3.21)

As the point (x0, y0) lays outside of domain Ωρ, then in this domain q1 (x, y;x0, y0) is a regular solution

of the equationH0α,β and by virtue of (2.6) we have∫

Γ−Γρ

x2αy2β ∂

∂nq1 (x, y;x0, y0) ds =

C′

ρ

x2αy2β ∂

∂nq1 (x, y;x0, y0) ds. (3.22)

Substituting (3.22) in (3.21), we get

w(1)1 (x0, y0) =

l∫

0

x2αy2β ∂q1 (x, y;x0, y0)

∂nds = lim

ρ→0

C′

ρ

x2αy2β ∂q1 (x, y;x0, y0)

∂nds. (3.23)

Similarly, introducing again polar coordinates with the center in a point (x0, y0), we define

w(1)1 (x0, y0) = −

1

2. (3.24)

(iii). If (x0, y0) ∈Ω , then a function q1 (x, y;x0, y0) is a regular solution of the equation H0α,β. Hence, on

the basis of the formula (2.6)

w(1)1 (x0, y0) =

l∫

0

x2αy2β ∂

∂nq1 (x, y;x0, y0) ds = 0. (3.25)

The lemma is proved.

Lemma 3.2. The following identities are true:

w(1)1 (x0, 0) =

−1, if x0 ∈ (0, a) ,

−1

2, if x0 = 0, or x0 = a,

0, if a < x0.

(3.26)

6

Proof. (i). Let x0 ∈ (0, a). We lead a straight line y0 = h (h is enough small number) and we consider

domain Ωh which is the part of area Ω laying above a straight line y0 = h . Applying the formula (2.6),

we obtain

w(1)1 (x0, 0) = lim

h→0

x1∫

0

x2αy2β ∂q1 (x, y;x0, 0)

∂y

y=h

dx, (3.27)

where x1 (ε) is an abscissa of a point intersection of a curve Γ from a straight line y0 = h. By virtue of

(3.8) from (3.27), follows

w(1)1 (x0, 0) = −2 (α+ β) k1 lim

h→0h1+2β

x1∫

0

x2α

F

(

α+ β + 1, α; 2α,−4xx0

(x− x0)2

+ h2

)

[

(x− x0)2

+ h2]α+β+1

dx. (3.28)

Using the formula (3.14) of equality (3.28), we have

w(1)1 (x0, 0) = −2 (α+ β) k1 lim

h→0h1+2β

x1∫

0

x2α

F

(

α− β − 1, α; 2α,4xx0

(x+ x0)2

+ h2

)

[

(x− x0)2 + h2

]β+1 [

(x+ x0)2 + h2

]αdx. (3.29)

Let’s introduce a new variable of an integration x = x0 + ht , then

w(1)1 (x0, 0) = −2 (α+ β) k1 lim

h→0

l2∫

l1

(x0 + ht)2α

F

(

α− β − 1, α; 2α,4x0 (x0 + ht)

(2x0 + ht)2 + h2

)

(1 + t2)β+1

[

(2x0 + ht)2+ h2

]α dt, (3.30)

where

l1 = −x0

h, l2 =

x1 − x0

h. (3.31)

By virtue of that

limh→0

F

(

α− β − 1, α; 2α,4x0 (x0 + ht)

(2x0 + ht)2+ h2

)

= F (α− β − 1, α; 2α, 1) =Γ (2α) Γ (1 + β)

(α+ β) Γ (α+ β) Γ (α),

and+∞∫

−∞

dt

(1 + t2)β+1

=πΓ (2β)

22β−1βΓ2 (β),

then from (3.30) follows

w(1)1 (x0, 0) = −1. (3.32)

(ii). Let x0 = 0 . Then from (3.31), we have l1 = 0, limh→0

l2 = x1/h = +∞ . Hence, from (3.30) it is

similarly defined

w(1)1 (0, 0) = −

1

2. (3.33)

(iii). Let x0 = a . Then from (3.31) by virtue of a condition (3.1), we have limh→0

l1 = −∞, limh→0

l2 =

(x1 − a) /h = 0. Hence, from (3.30) follows

w(1)1 (a, 0) = −

1

2. (3.34)

7

(iv). Let a < x0. Then from (3.31) it is had limh→0

l1 = −∞, limh→0

l2 = (x1 − x0) /h = −∞. Hence, from

(3.30) follows

w(1)1 (x0, 0) = 0. (3.35)

Lemma is proved.

Lemma 3.3. The following identities are fair

w(1)1 (0, y0) =

−1, if y0 ∈ (0, b) ,

−1

2, if y0 = 0 or y0 = b,

0, if b < y0.

(3.36)

This lemma can be proved as lemma 3.2.

Theorem 3.1. For any points (x, y) , (x0, y0) ∈ R2+ and x 6= x0, y 6= y0 the inequality is fair

|q1 (x, y;x0, y0)| ≤ k1Γ (2α) Γ (2β)

Γ2 (α+ β)

(

r21)−α (

r22)−β

F

[

α, β;α + β;

(

1 −r2

r21

)(

1 −r2

r22

)]

. (3.37)

Proof. By virtue of identity (3.15), we have

q1 (x, y;x0, y0) = k1

(

r21)

−α (

r22)

−β∞∑

i=0

(α+ β)i (α)i (β)i

(2α)i (2β)i i!

(

1 −r2

r21

)i(

1 −r2

r22

)i

·F

(

α− β, α+ i; 2α+ i; 1 −r2

r21

)

F

(

β − α, β + i; 2β + i; 1 −r2

r22

)

.

(3.38)

The following inequalities take place

F

(

α− β, α+ i; 2α+ i; 1 −r2

r21

)

≤Γ (2α) Γ (β) (2α)i

Γ (α+ β) Γ (α) (α+ β)i

,

F

(

β − α, β + i; 2β + i; 1 −r2

r22

)

≤Γ (2β) Γ (α) (2β)i

Γ (α+ β) Γ (β) (α+ β)i

.

Hence, from (3.38) we define to an inequality (3.37). The theorem is proved. From an inequality (3.37)

on the basis of the formula ([31], p. 117, (12))

F (a, b; a+ b; z) = −Γ (a+ b)

Γ (a) Γ (b)F (a, b; 1; 1 − z) ln (1 − z)

+Γ (a+ b)

Γ2 (a) Γ2 (b)

∞∑

j=0

Γ (a+ j) Γ (b+ j)

(j!)2 [2ψ (1 + j) − ψ (a+ j) − ψ (b+ j)] (1 − z)

j,

−π < arg (1 − z) < π, a, b 6= 0,−1,−2, ...

follows that q1 (x, y;x0, y0) has a logarithmic singularity at r = 0.

Theorem 3.2. If the curve Γ satisfies to conditions (3.1) the inequality takes place

Γ

x2αy2β

∂q1 (x, y;x0, y0)

∂n

ds ≤ C1, (3.39)

where C1 = const. The proof of the theorem 3.2 follows from lemmas 3.1-3.3.

Theorem 3.3. If µ1 (t) ∈ [0, l], for a double layer potential (3.2) the following limiting formulas take

place

w(1)i (t) = −

1

2µ1 (t) +

l∫

0

µ1 (s)K1 (s, t) ds, (3.40)

8

w(1)e (t) =

1

2µ1 (t) +

l∫

0

µ1 (s)K1 (s, t) ds, (3.41)

where

K1 (s, t) = x2α (s) y2β (s) ∂q1 [x (s) , y (s) ;x0 (t) , y0 (t)] /∂n, (x (s) , y (s)) , (x0 (t) , y0 (t)) ∈ Γ,

and w(1)i (t) , w

(1)e (t) are limiting values of a double layer potential (3.2) at (x0 (t) , y0 (t)) → Γ from the

inside and the outside, respectively. The proof of the theorem 3.3 follows from a lemma 3.1 and theorems

3.1, 3.2.

4 A double layer potential w(2) (x0, y0)

Using the second fundamental solution (1.2) equation H0α,β , we shall define a double layer potential by

the formula

w(2) (x0, y0) =

l∫

0

x2αy2βµ2 (s)∂q2 (x, y;x0, y0)

∂nds, (4.1)

where µ2 (s) ∈ C [0, l].

Lemma 4.1. Takes place identities

w(2)1 (x0, y0) =

l∫

0

x2αy2β ∂q2 (x, y;x0, y0)

∂nds =

i (x0, y0) − 1, if (x0, y0) ∈ Ω,

i (x0, y0) −1

2, if (x0, y0) ∈ Γ,

i (x0, y0) , if (x0, y0) ∈Ω ,

(4.2)

where

i (x0, y0) = k2 (1 − 2α)x1−2α0

b∫

0

y2β(

r2)α−1 (

r22)−β

F

(

α+ β − 1, β; 2β;r22 − r2

r22

)∣

x=0

dy. (4.3)

This lemma can be proved similarly as lemma 3.1.

Theorem 4.1. For any points (x, y) , (x0, y0) ∈ R2+ and x 6= x0, y 6= y0 the inequality is fair

|q2 (x, y;x0, y0)| ≤Γ (2 − 2α) Γ (2β) k2

Γ2 (1 − α+ β)

x1−2αx1−2α0

(r21)1−α

(r22)βF

[

1 − α, β; 1 − α+ β;

(

1 −r2

r21

)(

1 −r2

r22

)]

.

(4.4)

Theorem 4.2. If the curve Γ satisfies to conditions (3.1), the inequality takes place∫

Γ

x2αy2β

∂q2 (x, y;x0, y0)

∂n

ds ≤ C2, (4.5)

where C2 = const. The proof of theorems 4.1 and 4.2 follows from the formula

∂q2 (x, y;x0, y0)

∂n

= − (1 − α+ β) k2

(

r2)α−β−1

(xx0)1−2α F2 (2 − α+ β; 1 − α, β; 2 − 2α, 2β; ξ, η)

∂n

[

ln r2]

−4k2

(

r2)α−β−2

(xx0)1−2α

x0F2 (1 − α+ β; 1 − α, β; 2 − 2α, 2β; ξ, η)dy (s)

ds

+k2 (1 − 2α)(

r2)α−β−1

x−2αx1−2α0 F2 (1 − α+ β; 1 − α, β; 2 − 2α, 2β; ξ, η)

dy (s)

ds

+4k2

(

r2)α−β−2

(yy0)1−2β y0F2 (1 − α+ β; 1 − α, β; 2 − 2α, 2β; ξ, η)

dx (s)

ds.

(4.6)

9

Theorem 4.3. If µ2 (s) ∈ [0, l], for a double layer potential (4.1) the following limiting formulas take

place

w(2)i (t) = −

1

2µ2 (t) +

l∫

0

µ2 (s)K2 (s, t) ds, (4.7)

w(2)e (t) =

1

2µ2 (t) +

l∫

0

µ2 (s)K2 (s, t) ds, (4.8)

where

K2 (s, t) = x2α (s) y2β (s) ∂q2 [x (s) , y (s) ;x0 (t) , y0 (t)] /∂n, (x (s) , y (s)) , (x0 (t) , y0 (t)) ∈ Γ

and w(2)i (t), w

(2)e (t) are limiting values of a double layer potential (4.1) at (x0 (t) , y0 (t)) → Γ from the

inside and outside, respectively. The proof of the theorem 4.3 follows from a lemma 4.1 and theorems

4.1, 4.2.

5 A double layer potential w(3) (x0, y0)

Using the third (1.3) equation H0α,β fundamental a solution, we shall define a double layer potential by

the formula

w(3) (x0, y0) =

l∫

0

x2αy2βµ3 (s)∂q3 (x, y;x0, y0)

∂nds, (5.1)

where µ3 (s) ∈ C [0, l].

Lemma 5.1. The identities

w(3)1 (x0, y0) =

l∫

0

x2αy2β ∂q3 (x, y;x0, y0)

∂nds =

j (x0, y0) − 1, if (x0, y0) ∈ Ω,

j (x0, y0) −1

2, if (x0, y0) ∈ Γ,

j (x0, y0) , if (x0, y0) ∈Ω ,

(5.2)

is true. Where

j (x0, y0) = k3 (1 − 2β) y1−2β0

a∫

0

x2α(

r2)β−1 (

r21)−α

F

(

α+ β − 1, α; 2α;r21 − r2

r21

)∣

y=0

dx. (5.3)

The proof of this lemma to be spent just as the proof of a lemma 3.1.

Theorem 5.1. For any points (x, y) , (x0, y0) ∈ R2+ and x 6= x0, y 6= y0 the inequality is fair

|q3 (x, y;x0, y0)| ≤Γ (2α) Γ (2 − 2β) k2

Γ2 (1 + α− β)

y1−2βy1−2β0

(r21)α

(r22)1−β

F

[

α, 1 − β; 1 + α− β;

(

1 −r2

r21

)(

1 −r2

r22

)]

.

(5.4)

Theorem 5.2. If the curve Γ satisfies to conditions (3.1), the inequality takes place

Γ

x2αy2β

∂q3 (x, y;x0, y0)

∂n

ds ≤ C3, (5.5)

10

where C3 = const. The proof of theorems 5.1 and 5.2 follows from the formula

∂q3 (x, y;x0, y0)

∂n

= − (1 + α− β) k3

(

r2)

−α+β−1(yy0)

1−2βF2 (2 + α− β;α, 1 − β; 2α, 2 − 2β; ξ, η)

∂n

[

ln r2]

−4k3

(

r2)

−α+β−2x0 (yy0)

1−2β F2 (1 + α− β;α, 1 − β; 2α, 2 − 2β; ξ, η)dy (s)

ds

− (1 − 2β) k3

(

r2)

−α+β−1y−2βy1−2β

0 F2 (1 + α− β;α, 1 − β; 2α, 2 − 2β; ξ, η) dx(s)ds

+2 (1 + α− β) k3

(

r2)

−α+β−2(yy0)

1−2β F2 (2 + α− β;α, 2 − β; 2α, 3 − 2β; ξ, η)dx (s)

ds.

(5.6)

Theorem 5.3. If µ3 (s) ∈ [0, l] , for a double layer potential (5.1) the following limiting formulas take

place

w(3)i (t) = −

1

2µ3 (t) +

l∫

0

µ3 (s)K3 (s, t) ds, (5.7)

w(3)e (t) =

1

2µ3 (t) +

l∫

0

µ3 (s)K3 (s, t) ds, (5.8)

where

K3 (s, t) = x2α (s) y2β (s) ∂q3 [x (s) , y (s) ;x0 (t) , y0 (t)] /∂n, (x (s) , y (s)) , (x0 (t) , y0 (t)) ∈ Γ

and w(3)i (t), w

(3)e (t) are limiting values of a double layer potential (5.1) at (x0 (t) , y0 (t)) → Γ from the

inside and outside, respectively. The proof of the theorem 5.3 follows from a lemma 5.1 and theorems

5.1, 5.2.

6 A double layer potential w(4) (x0, y0)

Using the fourth fundamental a solution (1.4) of the equation H0α,β , we shall define a double layer

potential by the formula

w(4) (x0, y0) =

l∫

0

x2αy2βµ4 (s)∂q4 (x, y;x0, y0)

∂nds, (6.1)

where µ4 (s) ∈ C [0, l].

Lemma 6.1. Identities

w(2)1 (x0, y0) =

l∫

0

x2αy2β ∂q2 (x, y;x0, y0)

∂nds =

k (x0, y0) − 1, if (x0, y0) ∈ Ω,

k (x0, y0) −1

2, if (x0, y0) ∈ Γ,

k (x0, y0) , if (x0, y0) ∈Ω ,

(6.2)

takes place, where

k (x0, y0) = k4 (1 − 2β)x1−2α0 y1−2β

0

a∫

0

x(

r2)β−1 (

r21)α−1

F

(

β − α, 1 − α; 2 − 2α;r21 − r2

r21

)∣

y=0

dx

+k4 (1 − 2α)x1−2α0 y1−2β

0

b∫

0

y(

r2)α−1 (

r22)β−1

F

(

α− β, 1 − β; 2 − 2β;r22 − r2

r22

)∣

x=0

dy.

(6.3)

11

The proof of this lemma also to be spent just as the proof of a lemma 3.1.

Theorem 6.1. For any points (x, y) , (x0, y0) ∈ R2+ and x 6= x0, y 6= y0 the inequality is fair

|q2 (x, y;x0, y0)|

≤Γ (2 − 2α) Γ (2 − 2β) k4

Γ2 (2 − α− β)

x1−2αy1−2βx1−2α0 y1−2β

0

(r21)1−α

(r22)1−β

F

[

1 − α, 1 − β; 2 − α− β;

(

1 −r2

r21

)(

1 −r2

r22

)]

.

(6.4)

Theorem 6.2. If the curve Γ satisfies to conditions (3.1), the inequality takes place∫

Γ

x2αy2β

∂q4 (x, y;x0, y0)

∂n

ds ≤ C4, (6.5)

where C4 = const. The proof of theorems 6.1 and 6.2 follows from the formula

∂q4 (x, y;x0, y0)

∂n= −k4 (2 − α− β)

(

r2)α+β−2

(xx0)1−2α

(yy0)1−2β

·F2 (3 − α− β; 1 − α, 1 − β; 2 − 2α, 2 − 2β; ξ, η)∂

∂n

[

ln r2]

+k4 (1 − 2α)(

r2)α+β−2

x−2αx1−2α0 (yy0)

1−2βF2 (2 − α− β; 1 − α, 1 − β; 2 − 2α, 2 − 2β; ξ, η)

dy (s)

ds

−k4 (1 − 2β)(

r2)α+β−2

(xx0)1−2α y−2βy1−2β

0 F2 (2 − α− β; 1 − α, 1 − β; 2 − 2α, 2 − 2β; ξ, η)dx (s)

ds

−2k4 (2 − α− β)(

r2)α+β−3

x1−2αx2−2α0 (yy0)

1−2βF2 (3 − α− β; 2 − α, 1 − β; 3 − 2α, 2 − 2β; ξ, η)

dy (s)

ds

+2k4 (2 − α− β)(

r2)α+β−3

(xx0)1−2α

y1−2βy2−2β0 F2 (3 − α− β; 1 − α, 2 − β; 2 − 2α, 3 − 2β; ξ, η)

dx (s)

ds(6.6)

Theorem 6.3. If µ4 (s) ∈ [0, l], for a double layer potential (6.1) the following limiting formulas take

place

w(4)i (t) = −

1

2µ4 (t) +

l∫

0

µ4 (s)K4 (s, t) ds, (6.7)

w(4)e (t) =

1

2µ4 (t) +

l∫

0

µ4 (s)K4 (s, t) ds, (6.8)

where

K4 (s, t) = x2α (s) y2β (s) ∂q4 [x (s) , y (s) ;x0 (t) , y0 (t)] /∂n, (x (s) , y (s)) , (x0 (t) , y0 (t)) ∈ Γ

and w(4)i (t) , w

(4)e (t) are limiting values of a double layer potential (6.1) at (x0 (t) , y0 (t)) → Γ from the

inside and outside, respectively. The proof of the theorem 6.3 follows from a lemma 6.1 and theorems

6.1, 6.2.

In the further, the studied theory of a double layer potentials will be used at solving of boundary value

problems for the equation H0α,β .

Acknowledgements. I am grateful to Professor Robert P. Gilbert for the stimulation for studying

this equation via his fundamental works on bi-axially symmetric equations.

References

[1] Gilbert R., 1969, Function Theoretic Methods in Partial Differential Equations. New York, London:

Academic Press.

12

[2] Weinstein A., 1948, Discontinuous integrals and generalized potential theory. Trans. Amer. Math.

Soc., 63, 342-354.

[3] Weinstein A., 1953, Generalized axially symmetric potentials theory. Bull. Amer. Math. Soc., 59,

20-38.

[4] Erdelyi A. 1956, Singularities of generalized axially symmetric potentials. Comm. Pure Appl. Math.,

2, 403-414.

[5] Erdelyi A. 1965, An application of fractional integrals. J. Analyse. Math., 14, 113-126.

[6] Gilbert R., 1960, On the singularities of generalized axially symmetric potentials. Arch. Rational

Mech. Anal., 6, 171-176.

[7] Gilbert R., 1962, Some properties of generalized axially symmetric potentials. Amer. J. Math., 84,

475-484.

[8] Gilbert R, 1964, ”Bergman’s” integral operator method in generalized axially symmetric potential

theory. J. Mathematical Phys., 5, 983-987.

[9] Gilbert R., 1965, On the location of singularities of a class of elliptic partial differential equations in

four variables. Canad. J. Math., 17, 676-686.

[10] Gilbert R. and Howard H., 1965, On solutions of the generalized axially symmetric wave equation

represented by Bergman operators, Proc. London Math. Soc., 15 (2), 346-360.

[11] Gilbert R., 1967, On the analytic properties of solutions to a generalized axially symmetric Schrood-

inger equations. J. Differential equators, 3, 59-77.

[12] Gilbert, R., 1968, An investigation of the analytic properties of solutions to the generalized axially

symmetric, reduced wave equation in n+ 1 variables, with an application to the theory of potential

scattering. SIAM J. Appl. Math. 16 (1), 30-50.

[13] Ranger K. B., 1965, On the construction of some integral operators for generalized axially symmetric

harmonic and stream functions. J. Math. Mech., 14, 383-402.

[14] Henrici P., 1953, Zur Funktionentheorie der Wellengleichung, Comment. Math. Helv., 27, 235-293.

[15] Henrici P., 1957, On the domain of regularity of generalized axially symmetric potentials. Proc.

Amer. Math. Soc., 8, 29-31.

[16] Henrici P., 1960, Complete systems of solutions for a class of singular elliptic Partial Differential

Equations. Boundary Value Problems in differential equations, University of Wisconsin Press, Madi-

son, 19-34.

[17] Huber A., 1954, On the uniqueness of generalized axisymmetric potentials. Ann. Math., 60, 351-358.

13

[18] Weinacht R. J., 1974, Some properties of generalized axially symmetric Helmholtz potentials. SIAM

J. Math. Anal. 5, 147-152.

[19] Lo C.Y., 1977, Boundary value problems of generalized axially symmetric Helmholtz equations.

Portugaliae Mathematica. 36(3-4), 279-289.

[20] Marichev O.I., 1978, Integral representation of solutions of the generalized double axial symmetric

Helmholtz equation (Russian). Differencial’nye Uravnenija, Minsk, 14(10), 1824-1831.

[21] McCoy P.A., 1979, Polynomial approximation and growth of generalized axisymmetric potentials.

Canadian Journal of Mathematics, 31(1), 49-59.

[22] McCoy P.A., 1980, Best Lp - Approximation of Generalized bi-axisymmetric Potentials. Proceedings

of the American Mathematical Society, 79(3), pp. 435-440.

[23] Fryant A.J., 1979, Growth and complete sequences of generalized bi-axially symmetric potentials.

Journal of Differential Equations, 31(2), 155-164.

[24] Altin A., 1982, Solutions of type rm for a class of singular equations. International Journal of

Mathematical Science, 5(3), 613-619.

[25] Altin A., 1982, Some expansion formulas for a class of singular partial differential equations. Pro-

ceedings of American Mathematical Society, 85(1), 42-46.

[26] Ping N.P. and Bo L.X., 1983, Some notes on solvability of LPDO. Journal of Mathematical Research

and Expositions, 3(1), 127-129.

[27] Altin A. and Eutiquio Y., 1983, Some properties of solutions of a class of singular partial differential

equations. Bulletin of the Institute of Mathematics Academic Sinica, 11(1), 81-87.

[28] Kumar P., 2005, Approximation of growth numbers generalized bi-axially symmetric potentials.

Fasciculi Mathematics, 35, 51-60.

[29] Rassias J.M., and Hasanov A., 2007, Fundamental Solutions of Two Degenerated Elliptic Equa-

tions and Solutions of Boundary Value Problems in Infinite Area. International Journal of Applied

Mathematics and Statistics, 8(7), 87-95.

[30] Burchnall J.L., Chaundy T.W. Expansions of Appell’s double hypergeometric functions. // Quart.

J. Math. Oxford Ser. 11, 1940 p. 249-270.

[31] Erdelyi A., Magnus W., Oberhettinger F. and Tricomi F. G., 1973, Higher transcendental functions

(Russian), vol. I, Izdat. Nauka, Moscow.

[32] P. Appell and J. Kampe de Feriet, 1926, Fonctions Hypergeometriques et Hyperspheriques; Polynomes

d’Hermite, Gauthier - Villars. Paris.

14

[33] A. Hasanov, 2007, Fundamental solutions of generalized bi-axially symmetric Helmholtz equation.

Complex Variables and Elliptic Equations, 52(8), 673-683.

15