core-corona geometrical scaling from rhic to lhc energies

20
Core-Corona Geometrical scaling from RHIC to LHC energies pp - (A-A) similarities Mihai Petrovici Work done in collaboration with: C.Andrei, I.Berceanu, A.Lindner, A.Pop, M.Tarzila, V.Topor Pop LIGHT UP Workshop, CERN, June 14-16, 2018

Upload: khangminh22

Post on 18-Mar-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

Core-Corona�Geometrical scaling from RHIC to LHC energies �

pp - (A-A) similarities �

Mihai Petrovici

Work done in collaboration with:

C.Andrei, I.Berceanu, A.Lindner, A.Pop, M.Tarzila, V.Topor Pop

LIGHT UP Workshop, CERN, June 14-16, 2018

Outline

- Physics motivation - Core-corona interplay - impact on the experimental trends - Geometrical scaling Au-Au @ RHIC, Pb-Pb @ LHC - <pT> vs. [(dN/dy)/Sperp]1/2

- The slope of <pT>=f(mass) vs. [(dN/dy)/Sperp]1/2

- <βT> from BGBW fits vs. [(dN/dy)/Sperp]1/2

Au-Au & Cu-Cu @ RHIC, Pb-Pb & Xe-Xe @ LHC

p+p vs. Pb-Pb @ LHC

- Outlook

2

Statistical model: - for µB << mN the thermal degrees of freedom dominated by mesons - for higher µB more baryons are excited

µH =350 -400 MeV, TH = 150-160 MeV

Chiral transition: µB > µE - first order µB < µE - crossover realistic u,d,s masses

Quark-Hadron continuity:

Liquid-gas phase transition: µNM ≅ 924 MeV n0 = 0.17 fm-3

Their meeting point Triple point H – remnant for finite Nc T

Large Nc limit of QCD

- quarks loops are suppressed by 1/Nc relative to gluon contribution

⇒ cold dense matter in the Nc=∞ world for µB >> mN – quarkyonic matter

- large Nc QCD phase diagram: - three regions, i.e.:

- confined - deconfined

- quarkionic phase - separated by

1st order phase transition

Superconducting quark matter

Superfluid nuclear matter ⇒

Physics motivation

K. Fukushima and T. Hatsuda, Rept.Prog.Phys.74(2011)014001 3

Au-Au Pb-Pb Pb-Pb pp

200 2700 5020 7000

≈4.7 ≈11.8 ≈15.9 ≈18.7

≈0.9 ≈2.3 ≈3.1 ≈3.6

Physics motivation

M.Dittmar et al., Proceedings HERA-LHC Workshop arXiv:[hep-ph]0511119

D. d’Enterria, Eur.Phys.J. A31(2007)816)

Following A.H. Mueller approximations NP A715(2003)20

4

Core-Corona effect

M. Petrovici, I. Berceanu, A. Pop, M. Târzila, and C. Andrei, Phys.Rev. C96(2017)014908

F.Becattini, J.Manninen, J.Phys.G 35 (2008) 104013, Phys.Lett.B 673(2009)19 J.Aichelin, K.Werner, Phys.Rev.C 79(2009)064907, J.Phys.G 37(2010)094006, Phys.Rev.C 82(2010)034906 P.Bozek, Phys.Rev.C 79 (2009) 054901 C.Schreiber, K.Werner, J.Aichelin, Phys.Atom.Nucl. 75(2012)640 M.Gemard and J.Aichelin, Astron.Nachr. 335(2014)660

Glauber MC

How should we define “Corona” ?

<Npart>

Ncoll=1

Ncoll<3

Ncoll<4

Ncoll<5

Ncoll<6

Pb-Pb 2.76 TeV

Pb-Pb

Au-Au b=0

5

<bN

N>

(fm

)

Core-Corona effect

ALICE Coll., Phys.Rev. C88(2013)044910 ALICE Coll., Phys.Rev.Lett 111(2013)222301 ALICE Coll., Phys.Lett. B728(2014)216 ALICE Coll., Phys.Rev. C91(2015)024609 M. Petrovici, I. Berceanu, A. Pop, M. Târzila, and C. Andrei, Phys.Rev. C96(2017)014908 6

Full symbols - experiment Open symbols – core-corona interplay

(1)

(2)

(3)

(4)

dNch/dη dNch/dη dNch/dη

Core properties In progress

Centrality (%)

0 10 20 30 40 50 60 70 80 90 100

(Ge

V)

kin

T

0.1

0.12

0.14

0.16

0.18

0.2

Centrality (%)

0 10 20 30 40 50 60 70 80 90 100

(Ge

V)

kin

T

0.1

0.12

0.14

0.16

0.18

0.2

0 10 20 30 40 50 60 70 80 90 100

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0 10 20 30 40 50 60 70 80 90 100

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

b(fm)2 4 6 8 10 12 14 = 2.76 TeV

NNsPb-Pb,

,kinT

,kinT

, cores

β

, PRCs

β

r/R

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 = 2.76 TeV

NNsPb-Pb

core, 0-5%

core, 80-90%

PRC,0-5%

PRC,80-90%

BGBW

Based on ALICE data, see references in: M. Petrovici, I. Berceanu, A. Pop, M. Târzila, and C. Andrei, Phys.Rev. C96(2017)014908

PRC – ALICE Coll., Phys.Rev. C88 (2013) 044910

7

Core-corona in pp K. Werner, SQM 2017, July 10-15 2017, Utrecht

8

Sperp & dN/dy estimates

0 50 100 150 200 250 300 350 400>part<N

0

20

40

60

80

100

120

140

160

180)2 (

fmS

(Au-Au)NNs7.7 GeV11.5 GeV19.6 GeV27 GeV39 GeV62.4 GeV130 GeV200 GeV

(Pb-Pb)NNs2.76 TeV5.02 TeV

geomScore)geom(S

varScore)var(S

Glauber Monte Carlo approach

10 210 310 (GeV)NNs

1

1.5

2

2.5

3

3.5

4

4.5

)-1

(fm

geom

(dN

/ dy

) / S

(Au-Au & Pb-Pb)Centralities

0-5%5-10%10-20%20-30%30-40%40-50%50-60%60-70%70-80%

pp4Λ

4Λ 10

BES

RHIC 62.4; 130; 200 GeV

LHC

Geometrical scaling

~Local parton-hadron duality picture and dimensionality argument

- Y.L.Dokshitzer, V.A.Khoze and S.Troian, J.Phys.G 17 (1991) 1585 - T. Lappi, Eur.Phys.J. C71 (2011) 1699 - E. Levin and A.H. Rezaeian, Phys.Rev.D 83 (2011) 114001

decreases as a function of: - collision energy - centrality

n - no. of charged part. from a gluon fragmentation

9M. Petrovici, A.Lindner, , A. Pop, M. Târzila, and I.Berceanu, arXiv:[hep-ph]1805.04060

<pT> vs. [(dN/dy)/Sperp]1/2

STAR Collaboration, Phys.Rev. C96(2017)044904 STAR Collaboration, Phys.Rev. C79(2009)034909 ALICE Collaboration, Phys.Rev. C}{88}{2013}{044910} ALICE Collaboration, Phys.Rev.Lett. 116(2016)222302 ALICE Collaboration, Eur.Phys.J. C75(2015)226 A.K.Dash, ALICE Collaboration , 9th Int. Workshop on MPI at LHC, Dec. 11-15, 2017

10

10 210 310

(GeV)NNs

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Slo

pe

+K

p

geomS

varS

a)

0

0.2

0.4

0.6

b)

0

0.2

0.4

0.6

Off

set

102

103

10

(GeV)NN

s

0

0.2

0.4

0.6

<pT> vs. [(dN/dy)/Sperp]1/2

11

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

> (G

eV/c

)T

<p

NNs200 GeV2.76 TeV5.02 TeV

Experiment

Particles+π+K

p

a)

2 2.5 3 3.5 4 4.50.81

1.2 +π

2 2.5 3 3.5 4 4.50.81

1.2

Dat

a / F

it +K

2 2.5 3 3.5 4 4.5

)-1 (fmgeom(dN / dy) / S

0.81

1.2 p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

> (G

eV/c

)T

<p

NNs200 GeV2.76 TeV5.02 TeV

Core

Particles+π+K

p

b)

2 2.5 3 3.5 4 4.5Data / Fit

0.81

1.2 +π

2 2.5 3 3.5 4 4.50.81

1.2

Dat

a / F

it +K

2 2.5 3 3.5 4 4.5

)-1 (fmgeom(dN / dy) / S

0.81

1.2 p

<pT> vs. [(dN/dy)/Sperp]1/2

Core-Corona effect

12

The slope of <pT>=f(mass) vs. [(dN/dy)/Sperp]1/2

)-1 (fmgeom(dN / dy) / S

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

> =

f(mas

s)T

Slop

e: <

p

(Au-Au)NNs7.7 GeV11.5 GeV19.6 GeV27 GeV39 GeV62.4 GeV130 GeV200 GeV

(Pb-Pb)NNs2.76 TeV5.02 TeV

Particles, p+, K+πa)

0.04± = -0.33 α 0.04± = 0.57 β 0.04± = 0.64 γ

1 1.5 2 2.5 3 3.5 4 4.5

)-1 (fmgeom(dN / dy) / S

0.60.8

11.21.4

Dat

a / F

it

)-1 (fmgeom(dN / dy) / S

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

> =

f(mas

s)T

Slop

e: <

p

(Au-Au)NNs7.7 GeV11.5 GeV19.6 GeV27 GeV39 GeV62.4 GeV130 GeV200 GeV

(Pb-Pb)NNs2.76 TeV5.02 TeV

Particlesp, -, K-π

0.03± = -0.96 α 0.04± = 1.14 β 0.03± = 0.41 γ

b)

1 1.5 2 2.5 3 3.5 4 4.5

)-1 (fmgeom(dN / dy) / S

0.60.8

11.21.4

Dat

a / F

it

13

<βT> from BGBW fits vs. [(dN/dy)/Sperp]1/2

Boltzmann-Gibbs Blast Wave

)-1 (fmgeom(dN / dy) / S

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9> Tβ<

(Au-Au)NNs7.7 GeV11.5 GeV19.6 GeV27 GeV39 GeV62.4 GeV130 GeV200 GeV

(Pb-Pb)NNs2.76 TeV5.02 TeV

All particlesAntiparticles

4x4 + a3x3 + a2x2x + a1 + a0Fit function: a 0.04± = -1.16 0a

0.04± = 1.78 1a 0.01± = -0.72 2a

0.00± = 0.14 3a 0.00± = -0.01 4a

1 1.5 2 2.5 3 3.5 4 4.5

)-1 (fmgeom(dN / dy) / S0

0.5

1

1.5

2

Dat

a / F

it

)-1 (fmgeom(dN / dy) / S

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8> Tβ<

(Au-Au)NNs19.6 GeV27 GeV39 GeV130 GeV200 GeV

(Pb-Pb)NNs2.76 TeV5.02 TeV

4x4 + a3x3 + a2x2x + a1 + a0Fit function: a 0.06± = -1.18 0a

0.06± = 1.73 1a 0.02± = -0.67 2a

0.00± = 0.12 3a 0.00± = -0.01 4a

1.5 2 2.5 3 3.5 4 4.5

)-1 (fmgeom(dN / dy) / S

0.60.8

11.21.4

Dat

a / F

it

14

STAR Collaboration, Phys.Rev. C79(2009)034909 ALICE Collaboration, Phys.Rev. C}{88}{2013}{044910}

Cu-Cu; Au-Au @ RHIC vs. Xe-Xe and Pb+Pb @ LHC

2 2.5 3 3.5 4 4.5

)-1 (fmgeom(dN / dy) / S

0

0.2

0.4

0.6

0.8

1

1.2

1.4

> (G

eV/c

)T

<p

NNs200 GeV (Au-Au)200 GeV (Cu-Cu)2.76 TeV (Pb-Pb)5.02 TeV (Pb-Pb)5.44 TeV (Xe-Xe)

Particles+π+K

p

)-1 (fmgeom(dN / dy) / S

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

> =

f(mas

s)T

Slop

e: <

p

NNs200 GeV (Au-Au)200 GeV (Cu-Cu)2.76 TeV (Pb-Pb)5.02 TeV (Pb-Pb)5.44 TeV (Xe-Xe)

Particles, p+, K+π

0.01± = -1.81 α 0.03± = 2.00 β 0.01± = 0.26 γ

2 2.5 3 3.5 4 4.5

)-1 (fmgeom(dN / dy) / S

0.60.8

11.21.4

Dat

a / F

it

)-1 (fmgeom(dN / dy) / S

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8> Tβ<

NNs200 GeV (Au-Au)200 GeV (Cu-Cu)2.76 TeV (Pb-Pb)5.02 TeV (Pb-Pb)5.44 TeV (Xe-Xe)

4x4 + a3x3 + a2x2x + a1 + a0Fit function: a 0.10± = -1.70 0a

0.08± = 2.46 1a 0.02± = -1.05 2a

0.01± = 0.21 3a 0.00± = -0.02 4a

2 2.5 3 3.5 4 4.5

)-1 (fmgeom(dN / dy) / S

0.60.8

11.21.4

Dat

a / F

it

<pT> vs. [(dN/dy)/Sperp]1/2 The slope of <pT>=f(mass) vs. [(dN/dy)/Sperp]1/2 <βT> from BGBW fits vs. [(dN/dy)/Sperp]1/2

BRAHMS Collaboration, arXic:[nucl.ex]1602.01183 F.Bellini, ALICE Collaboration, QM2018

15

|η|<2.4

A

A

p

p

Phys.Lett. B708(2014)249 J. Phys. G Nucl. Part. Phys. 38(2011)124051

ALICECMS

ALICE Collaboration,Nucl.Phys. A 931 (2014) c888

ALICE Collaboration, Nat.Phys. 13(2017)535

p+p vs. Pb+Pb @ LHC

Long range near side correlations

Transverse flow – BGBW fits

Strangeness relative yields

16

p+p vs. Pb+Pb @ LHC

α=1

α=10 A.Bzdak, B.Schenke, P.Tribedy and R.Venugopalan, Phys.Rev. C87(2013)064906

McLarren, M.Praszalowicz and B.Schenke, Nucl.Phys. A916(2013)210

Rpp=1fm!fpp - maximal radius for which the energy density of the Yang-Mill fields is larger than

1.5 2 2.5 3 3.5 4 4.5

)-1 (fmgeom(dN / dy) / S0

0.2

0.4

0.6

0.8

1

1.2

1.4

> (G

eV/c

)T

<p

NNs2.76 TeV (Pb-Pb)5.02 TeV (Pb-Pb)

4Λ7 TeV (pp): 4Λ7 TeV (pp): 10

Particles+π+K

p

)-1 (fmgeom(dN / dy) / S

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

> =

f(mas

s)T

Slop

e: <

p

(Pb-Pb)NNs2.76 TeV5.02 TeV

(pp)NNs4Λ7 TeV:

4Λ7 TeV: 10

Particles, p+, K+π

0.02± = -1.26 α 0.03± = 1.56 β 0.01± = 0.28 γ

1.5 2 2.5 3 3.5 4 4.5

)-1 (fmgeom(dN / dy) / S

0.60.8

11.21.4

Dat

a / F

it

)-1 (fmgeom(dN / dy) / S

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8> Tβ<

(Pb-Pb)NNs2.76 TeV5.02 TeV

(pp)NNs4Λ7 TeV:

4Λ7 TeV: 10

4x4 + a3x3 + a2x2x + a1 + a0Fit function: a 0.12± = -1.11 0a 0.11± = 1.66 1a 0.03± = -0.68 2a

0.01± = 0.14 3a 0.00± = -0.01 4a

1.5 2 2.5 3 3.5 4 4.5

)-1 (fmgeom(dN / dy) / S

0.60.8

11.21.4

Dat

a / F

it

<pT> vs. [(dN/dy)/Sperp]1/2 The slope of <pT>=f(mass) vs. [(dN/dy)/Sperp]1/2 <βT> from BGBW fits vs. [(dN/dy)/Sperp]1/2

ALICE Collaboration, Nucl.Phys. A931(2014)c888 17

pp - Pb+Pb similarities @ LHC within HIJING/BB v2.0 model

0

0.5

1

1.5

2

2.5

3

10

0.5

1

1.5

2

2.5

3

1pT [GeV/c] pT [GeV/c]

Ratio

Rm

b

Ratio

Rm

b

18

V.Topor Pop and M.Petrovici, arXiv:[hep-ph]1806.00359

ALICE Collaboration, Phys.Lett. 712B(2012)309

R. Derradi de Souza , ALICE Collaboration, J. Phys. Conf. Ser. 779, no. 1(2017)012071

dNthch/dη=4.7

dNexpch/dη=5.7

dNthch/dη=25.2

dNexpch/dη=27.1

_

There are still some differences between pp & A-A BGBW - fits

L1 π: 0.5-1.15 GeV/c; K: 0.2-1.25 GeV/c; p: 0.3-2.30 GeV/c Λ: ≤ 2.75 GeV/c; Ξ: ≤ 3.25 GeV/c ; Ω: ≤ 3.0 GeV/c

L2 π: 0.5-1.35 GeV/c; K: 0.2-1.65 GeV/c; p: 0.3-2.45 GeV/c Λ: ≤ 2.50 GeV/c; Ξ: ≤ 2.70 GeV/c ; Ω: ≤ 3.40 GeV/c

pp 7 TeV Pb-Pb 2.76 TeV

M.Petrovici et al. AIP Conf.Proc. 1852, 050003-1 (2017) 19

M.Es+enne,STARColl.arXiv:nucl-ex/0411034

Au-Au 200 GeV

Outlook

- larger statistics => multi-differential analysis - very good PID as low as possible in pT - charged particle multiplicity - event-shape - different ranges in Δη and ΔΦ relative to L(T)P - Core-corona interplay in A-A and pp - plays an important role in understanding the origin of different experimentally evidenced trends - pp as high as possible in charged particle multiplicity - Understanding the similarities and differences between pp and A-A at high fg

in

- lower mass A-A collisions ?

20