appendix: useful figures and tables - springer

35
APPENDIX: Useful Figures and Tables 385

Upload: khangminh22

Post on 12-May-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

APPENDIX: Useful Figures and Tables

385

F

Fro

m C

lary

et

al.

(19

71

)

FIG

. A

.1.

CH

AR

T F

OR

DE

TE

RM

ININ

G T

HE

TE

MP

ER

AT

UR

E H

IST

OR

Y A

T T

HE

CE

NT

ER

OF

A S

HA

PE

WIT

H G

= 0

.30

w

00

0'

:>

"':I o o t:)

'"d

::0

o (')

tz:j en

en

tz:j Z

Q Z

tz:j

tz:j ::0 Z

Q

F F

rom

Cla

ry e

t a/

. (1

97

1)

FIG

. A

.2.

CH

AR

T F

OR

DE

TE

RM

ININ

G T

HE

TE

MP

ER

A T

UR

E H

IST

OR

Y A

T T

HE

CE

NT

ER

OF

A S

HA

PE

WIT

H G

= 0

.50

>

'"tI

'"tI

t:r:l Z

t) >;: w

0

0

-..J

F F

rom

Cla

ry e

t al.

(19

71

)

FIG

. A

.3.

CH

AR

T F

OR

DE

TE

RM

ININ

G T

HE

TE

MP

ER

AT

UR

E H

IST

OR

Y A

T T

HE

CE

NT

ER

OF

A S

HA

PE

WIT

H G

= 0

.70

w

00

0

0

"%j o o t:i

""d ~

o (')

trl

lfJ

lfJ

trl

Z

Q 52 trl

trl ~ 52 Q

s:::!!

D

lG')

'<

.

CT~

CD

' U"1

g~

~C/J

0.-<

D

l()

-:x:

CD

:Il

~O

Q.s::

O

m

--{

C

T:I

l 0

-O

()

?'(

) :x: ~

:Il

-{

F

Fro

m C

lary

et a

l. (1

97

1)

FIG

. A

.4.

CH

AR

T F

OR

DE

TE

RM

ININ

G T

HE

TE

MP

ER

A T

UR

E H

IST

OR

Y A

T T

HE

CE

NT

ER

OF

A S

HA

PE

WIT

H G

= 0

.90

>

'i:I

'i:I

trl Z

t:1 ~

w

00

<

.0

390 FOOD PROCESS ENGINEERING

TABLE A.1. DIFFUSIVITY DATA FOR GASES THROUGH PACKAGING MATERIALS

Diffusivity at 25' C

Materia] Gas D Do Ed (c m2/s) (c m2/s) (J/mole)

Polystyrene He 10.4 X 10-6 0.0019 3.1 H2 4.36 0.0036 4.0 O2 0.11 0.125 8.3

CO2 0.058 0.128 8.7

Polyvinyl He 9.52 0.011 4.2 acetate H2 2.10 0.013 5.2 (glassy) O2 0.051 6.31 11.1

CH4 0.0019 2.3 X 105 19.3

Polyethylene He 3.07 0.037 5.6 (Density O2 0.17 0.43 8.8 0.964) CO2 0.124 0.19 8.5

CO 0.096 0.251 8.8 N2 0.093 0.33 9.0

CH4 0.057 2.19 10.4

Source: J. Crank and G. Park, Diffusion in Pollmers, New York: Academic Press, 1968. Note: D = Do exp (-Ed/RT). D is in cm2/sec. d = activation energy.

TA

BL

E A

.2.

PR

OP

ER

TIE

S O

F S

OL

ID M

AT

ER

IAL

S

Mat

eria

l T

emp

erat

ure

D

ensi

ty

Spe

cifi

c H

eat

Th

erm

al C

on

du

ctiv

ity

(C

) (k

g/m

3)

(kJ/

kg

K)

(W/m

K)

Met

als

Alu

min

um

20

2707

0.

896

203

Bra

ss

20

85

22

0.

385

98

Cas

t iro

n 20

7

59

3

0.46

5 54

C

oppe

r 20

8

95

4

0.38

3 38

6 L

ead

20

11

37

0.13

0 35

S

teel

; 1 %

C

20

7801

0.

473

45

Sta

inle

ss s

teel

(30

8)

20

78

49

0.

461

15

Sta

inle

ss s

teel

(30

4)

0 7

81

7

0.46

1 14

T

in

20

73

04

0.

227

61

Insu

lati

ng

Mat

eria

ls

Asb

esto

s 37

.8

577

0.16

8 C

ork

bo

ard

30

16

0 0.

0433

F

iber

insu

lati

on

bo

ard

21

23

7 0.

048

Gla

ss w

ool

37.8

64

.1

0.04

14

Po

lyst

yre

ne

foam

0

24

0.03

64

Po

lyu

reth

ane

foam

0

32

0.02

6

Bui

ldin

g m

ater

ials

B

rick

, bui

ldin

g 20

0.

69

Con

cret

e, s

ton

e 21

23

07

0.83

7 0.

935

Gla

ss, w

indo

w

21

2723

0.

837

0.77

9 W

ood,

oak

l g

rain

21

8

17

2.

386

0.20

8 »

Woo

d, o

ak II

gra

in

21

81

7

2.38

6 0.

346

'"0

Woo

d, p

ine

1 g

rain

21

49

7 2.

805

0.10

4 '"0

tr

:l W

ood,

pin

e II

gra

in

21

497

2.80

5 0.

242

Z

0 - ~ uo

<D

......

W

<0

"" T

AB

LE

A.3

. P

RO

PE

RT

IES

OF

DR

Y A

IR A

T A

TM

OS

PH

ER

IC P

RE

SS

UR

E

"rj

0 V

olum

etri

c 0

coef

fici

ent

0

of

Spe

cifi

c T

her

mal

T

her

mal

K

inem

atic

P

ran

dtl

'i:

I T

emp

erat

ure

D

ensi

ty

expa

nsio

n h

eat

con

du

ctiv

ity

d

iffu

siv

ity

V

isco

sity

vi

scos

ity

nu

mb

er

::0

0 T

p

{3 X

10"

c p

k

a X

10

" J1

X 10

" v

X 1

06

(")

Pr

t:<:l

en

C

K

kg

/m"

l/K

k

J/k

gK

W

/mK

m

's

Ns/

m'

m'/

s en

-20

25

3.15

1.

365

3.97

1.

005

0.02

26

16.8

1

6.2

79

12

.0

0.71

t:<

:l Z

0 27

3.15

1.

252

3.65

1.

011

0.02

37

19.2

1

7.4

56

13

.9

0.71

Q

......

10

283.

15

1.20

6 3.

53

1.01

0 0.

0244

20

.7

17

.84

8

14

.66

0.

71

Z

t:<:l

20

293.

15

1.16

4 3.

41

1.01

2 0.

0251

22

.0

18

.24

0

15.7

0.

71

t:<:l

30

303.

15

1.12

7 3.

30

1.01

3 0.

0258

23

.4

18.6

82

16

.58

0.

71

::0

......

40

313.

15

1.09

2 3.

20

1.01

4 0.

0265

24

.8

19.1

23

17.6

0.

71

Z

Q

50

323.

15

1.05

7 3.

10

1.01

6 0.

0272

26

.2

19

.51

5

18

.58

0.

71

60

333.

15

1.0

25

3.

00

1.01

7 0.

0279

27

.6

19.9

07

19.4

0.

71

70

343.

15

0.9

96

2.

91

1.01

8 0.

0286

29

.2

20.3

98

20.6

5 0.

71

80

35

3.15

0.

968

2.83

1.

019

0.02

93

30.6

2

0.7

90

21

.5

0.71

90

36

3.15

0.

942

2.76

1.

021

0.03

00

32.2

21

.231

22

.82

0.71

100

373.

15

0.91

6 2.

69

1.02

2 0.

0307

33

.6

21.6

73

23.6

0.

71

120

393.

15

0.8

70

2.

55

1.02

5 0.

0320

37

.0

22.5

55

25.9

0.

71

140

413.

15

0.82

7 2.

43

1.02

7 0.

0333

40

.0

23

.34

0

28.2

0.

71

150

423.

15

0.8

10

2.

37

1.02

8 0.

0336

41

.2

23.7

32

29.4

0.

71

160

433.

15

0.78

9 2.

31

1.03

0 0.

0344

43

.3

24.1

24

30.6

0.

71

180

453.

15

0.75

5 2.

20

1.03

2 0.

0357

47

.0

24.9

09

33

.00

0.

71

200

473.

15

0.72

3 2.

11

1.03

5 0.

0370

49

.7

25.6

93

35.5

0.

71

250

523.

15

0.65

3 1.

89

1.04

3 0.

0400

60

.0

27.5

57

42.2

0.

71

Ad

apte

d f

rom

: R

aznj

evic

, K

. 19

78.

Han

db

oo

k o

f T

her

mo

dy

nam

ic T

able

s an

d C

har

ts.

Hem

isp

her

e P

ub

lish

ing

Co

rpo

rati

on

, W

ashi

ngto

n.

TA

BL

E A

.4.

TH

ER

MO

DY

NA

MIC

PR

OP

ER

TIE

S O

F W

AT

ER

AT

TH

E S

AT

UR

AT

ION

PR

ES

SU

RE

Coe

ffic

ient

of

vo

lum

etri

c th

erm

al

Spe

cifi

c T

her

mal

T

her

mal

A

bso

lute

K

inem

atic

P

ran

dtl

T

emp

erat

ure

D

ensi

ty

expa

nsio

n h

eat

con

du

ctiv

ity

d

iffu

siv

ity

vi

scos

ity

visc

osit

y n

um

ber

T

p (3

X 1

04

c p

k (l

' X

10"

/1.

X 1

0"

u X

106

P

r C

K

k

g/m

' 1

1K

k

J/k

gK

W

/mK

m

'/s

Pa'

s m

'/s

0 27

3.15

9

99

.9

-0.7

4.

226

0.5

58

0.

131

17

93

.63

6

1.78

9 1:

3.7

5 27

8.15

1

00

0.0

4.

206

0.5

68

0

.13

5

15

34

.74

1

1.5

35

11

.4

10

283.

15

999.

7 0.

95

4.19

5 0

.57

7

0.1

37

1

29

6.4

39

1

.30

0

9.5

15

288.

15

999.

1 4.

187

0.58

7 0.

141

11

35

.61

0

1.1

46

8.

1 20

29

3.15

9

98

.2

2.1

4.18

2 0

.59

7

0.1

43

9

93

.41

4

1.0

06

7.

0

25

298.

15

997.

1 4.

178

0.6

06

0

.14

6

88

0.6

37

0

.88

4

6.1

30

3

03

.15

99

5.7

3.0

4.17

6 0

.61

5

0.1

49

7

92

.37

7

0.8

05

5.

4 35

30

8.15

99

4.1

4.17

5 0

.62

4

0.1

50

7

19

.80

8

0.7

25

4.

8 4

0

313.

15

99

2.2

3.

9 4.

175

0.6

33

0.

151

65

8.0

26

0

.65

8

4.3

45

318.

15

99

0.2

4.

176

0.6

40

0

.15

5

60

5.0

70

0.

611

3.9

50

32

3.15

98

8.1

4.6

4.17

8 0

.64

7

0.1

57

5

55

.05

6

0.5

56

3.

55

55

328.

15

98

5.7

4.

179

0.6

52

0

.15

8

50

9.9

46

0.

517

3.27

6

0

333.

15

98

3.2

5.

3 4.

181

0.6

58

0

.15

9

47

1.6

50

0

.47

8

3.0

0

65

338.

15

98

0.6

4.

184

0.6

63

0.

161

43

5.4

15

0

.44

4

2.76

70

34

3.15

9

77

.8

5.8

4.18

7 0

.66

8

0.1

63

4

04

.03

4

0.41

5 2.

55

75

348.

15

97

4.9

4.

190

0.67

1 0

.16

4

37

6.5

75

0

.36

6

2.23

>-

80

35

3.15

9

71

.8

6.3

4.19

4 0

.67

3

0.1

65

3

52

.05

9

0.3

64

2.

25

'"0

85

358.

15

968.

7 4.

198

0.6

76

0

.16

6

32

8.5

23

0

.33

9

2.04

'"0

trJ

9

0

363.

15

96

5.3

7.

0 4.

202

0.6

78

0

.16

7

30

8.9

09

0

.32

6

1.95

Z

95

36

8.15

9

61

.9

4.20

6 0

.68

0

0.1

68

2

92

.23

8

0.3

10

1.

84

t:I

......

><::

w

c.o

w

w

co

>I>- >'%

j 0

TA

BL

E A

A.

(Co

nti

nu

ed

) 0 t:

I C

oeff

icie

n t

'1:i

of

volu

met

ric

::u

ther

mal

S

peci

fic

Th

erm

al

Th

erm

al

Ab

solu

te

Kin

emat

ic

Pra

nd

tl

0 (")

Tem

per

atu

re

Den

sity

ex

pans

ion

hea

t co

nduc

tivi

ty

dif

fusi

vit

y

visc

osit

y vi

scos

ity

nu

mb

er

t<:l

T

{3 X

104

k

W

t P

c p

a

X 1

06

J1 X

106

V

X

106

w

P

r C

K

k

g/m

" l/

K

kJ/

kg

K

W/m

K

m2/s

P

a's

m2/s

t<:

l Z

10

0 37

3.15

95

8.4

7.5

4.21

1 0.

682

0.1

69

2

77

.52

8

0.29

4 1.

75

Q ......

110

383.

15

951.

0 8.

0 4.

224

0.68

4 0

.17

0

254.

973

0.26

8 1.

57

Z

t<:l

120

393.

15

943.

5 8.

5 4.

232

0.68

5 0.

171

23

5.3

60

0.

244

1.43

t<:

l 13

0 40

3.15

93

4.8

9.1

4.25

0 0

.68

6

0.17

2 2

11

.82

4

0.22

6 1.

32

::u

140

413.

15

926.

3 9.

7 4.

257

0.68

4 0.

172

20

1.0

36

0.

212

1.23

.....

. Z

Q

150

423.

15

916.

9 10

.3

4.27

0 0

.68

4

0.17

3 1

85

.34

6

0.20

1 1.

17

160

433.

15

907.

6 10

.8

4.28

5 0

.68

0

0.17

3 1

71

.61

6

0.19

1 1.

10

170

443.

15

897.

3 11

.5

4.39

6 0

.67

9

0.17

2 1

62

.29

0

0.18

1 1.

05

180

453.

15

886.

6 12

.1

4.39

6 0.

673

0.17

2 15

2.00

3 0.

173

1.01

19

0 46

3.15

87

6.0

12.8

4.

480

0.67

0 0.

171

145.

138

0.16

6 0.

97

200

473.

15

862.

8 13

.5

4.50

1 0.

665

0.1

70

13

9.25

4 0.

160

0.95

21

0 48

3.15

85

2.8

14.3

4.

560

0.65

5 0.

168

13

1.4

09

0.

154

0.92

22

0 49

3.15

83

7.0

15.2

4.

605

0.6

52

0.

167

12

4.5

44

0.

149

0.90

23

0 50

3.15

82

7.3

16.2

4.

690

0.63

7 0.

164

119.

641

0.14

5 0.

88

240

513.

15

809.

0 17

.2

4.73

1 0

.63

4

0.1

62

1

13

.75

7

0.14

1 0.

86

250

523.

15

799.

2 18

.6

4.85

7 0.

618

0.1

60

1

09

.83

4

0.13

7 0.

86

Ad

apte

d f

rom

: R

aznj

evic

, K

. 19

78.

Han

db

oo

k o

f T

her

mo

dy

nam

ic T

able

s an

d C

har

ts.

Hem

isp

her

e P

ub

lish

ing

Co

rpo

rati

on

, W

ashi

ngto

n.

APPENDIX 395

TABLE A.S. PROPERTIES OF ICE AS A FUNCTION OF TEMPERATURE

Temperature (C)

-101 - 73 - 45.5 - 23 - 18 - 12 - 7

o

Thermal Conductivity (W/mK)

3.50 3.08 2.72 2.41 2.37 2.32 2.27 2.22

Specific Heat (kJ/kg K)

1.382 1.587 1.783 1.922 1.955 1.989 2.022 2.050

Density (kg/m3)

925.8 924.2 922.6 919.4 919.4 919.4 917.8 916.2

Adapted from Dickerson (1969)

TA

BL

E A

.6.

PR

OP

ER

TIE

S O

F S

AT

UR

AT

ED

ST

EA

M

w

<0

Vap

or

Spe

cifi

c V

olum

e (m

3 /kg

) E

nth

alp

y (

kJ/

kg

) E

ntr

op

y (

kJ/

kg

·K)

O"l

Tem

per

atu

re

Pre

ssu

re

>%j

(C)

(kP

a)

Liq

uid

Sat

'd V

apor

L

iqu

id

Sat

'd V

apo

r L

iqu

id

Sat

'd V

apo

r 0 0

0.01

0.

6113

0.

0010

002

206.

136

0.00

25

01.4

0.

0000

9.

1562

t:1

3

0.75

77

0.00

1000

1 16

8.13

2 12

.57

2506

.9

0.04

57

9.07

73

'" 6

0.93

49

0.00

1000

1 13

7.73

4 25

.20

2512

.4

0.09

12

9.00

03

::0

9 1.

1477

0.

0010

003

113.

386

37.8

0 25

17.9

0.

1362

8.

9253

0 ()

12

1.40

22

0.00

1000

5 93

.784

50

.41

2523

.4

0.18

06

8.85

24

trl

15

1.70

51

0.00

1000

9 77

.926

62

.99

2528

.9

0.22

45

8.78

14

en

en

18

2.06

40

0.00

1001

4 65

.038

75

.58

2534

.4

0.26

79

8.71

23

trl

21

2.48

7 0.

0010

020

54.5

14

88.1

4 25

39.9

0.

3109

8.

6450

Z

24

2.

985

0.00

1002

7 45

.883

1

00

.70

25

45.4

0.

3534

8.

5794

Q

27

3.

567

0.00

1003

5 38

.774

11

3.25

25

50.8

0.

3954

8.

5156

.....

. Z

30

4.

246

0.00

1004

3 32

.894

12

5.79

25

56.3

0.

4369

8.

4533

tr

l 33

5.

034

0.00

1005

3 28

.011

13

8.33

25

61.7

0.

4781

8.

3927

tr

l 36

5.

947

0.00

1006

3 23

.940

15

0.86

· 25

67.1

0

.51

88

8

.33

36

::0

.....

. 40

7.

384

0.00

1007

8 19

.523

16

7.57

25

74.3

0.

5725

8

.25

70

Z

45

9.

593

0.00

1009

9 15

.258

18

8.45

25

83.2

0.

6387

8.

1648

Q

50

12.3

49

0.00

1012

1 12

.032

20

9.33

25

92.1

0.

7038

8.

0763

55

15

.758

0.

0010

146

9.56

8 23

0.23

26

00.9

0.

7679

7.

9913

60

19

.940

0.

0010

172

7.67

1 25

1.13

26

09.6

0.

8312

7.

9096

65

25

.03

0.00

1019

9 6.

197

2'72

.06

2618

.3

0.89

35

7.83

10

70

31.1

9 0.

0010

228

5.04

2 29

2.98

26

26.8

0.

9549

7.

7553

75

38

.58

0.00

1025

9 4.

131

313.

93

2635

.3

1.01

55

7.68

24

80

47.3

9 0.

0010

291

3.40

7 33

4.91

26

43.7

1.

0753

7.

6122

85

57

.83

0.00

1032

5 2.

828

355.

90

2651

.9

1.13

43

7.54

45

90

70.1

4 0.

0010

360

2.36

1 37

6.92

26

60.1

1.

1925

7.

4 79

1 95

84

.55

0.00

1039

7 1.

9819

39

7.96

26

68.1

1.

2500

7.

4159

10

0 10

1.35

0.

0010

435

1.67

29

419.

04

2676

.1

1.30

69

7.35

49

105

120.

82

0.00

1047

5 1.

4194

44

0.15

26

83.8

1.

3630

7.

2958

11

0 14

3.27

0.

0010

516

1.21

02

46

1.3

0

2691

.5

1.41

85

7.23

87

115

169.

06

0.00

1055

9 1.

0366

48

2.48

26

99.0

1.

4734

7.

1833

12

0 19

8.53

0.

0010

603

0.89

19

503.

71

2706

.3

1.52

76

7.12

96

125

232.

1 0.

0010

649

0.77

06

524.

99

2713

.5

1.58

13

7.07

75

130

270.

1 0.

0010

697

0.66

85

546.

31

2720

.5

1.63

44

7.02

69

135

313.

0 0.

0010

746

0.58

22

567.

69

2727

.3

1.68

70

6.97

77

140

316.

3 0.

0010

797

0.50

89

589.

13

2733

.9

1.73

91

6.92

99

145

415.

4 0.

0010

850

0.44

63

610.

63

2740

.3

1.79

07

6.88

33

TA

BL

E A

.6.

(Co

nti

nu

ed

)

Vap

or

Spe

cifi

c V

olum

e (m

"/kg

) E

nth

alp

y (

kJ/

kg

) E

ntr

op

y (

kJ/

kg

·K)

Tem

per

atu

re

Pre

ssu

re

(e)

(kP

a)

Liq

uid

Sat

'd V

apo

r L

iqu

id

Sat

'd V

apo

r L

iqu

id

Sat

'd V

apo

r

150

475.

8 0.

0010

905

0.39

28

632.

20

2746

.5

1.84

18

6.83

79

155

543.

1 0.

0010

961

0.3

46

8

653.

84

2752

.4

1.89

25

6.79

35

160

617.

8 0.

0011

020

0.30

71

675.

55

2758

.1

1.94

27

6.75

02

165

700.

5 0.

0011

080

0.27

27

697.

34

2763

.5

1.99

25

6.7

07

8

170

791.

7 0.

0011

143

0.24

28

719.

21

2768

.7

2.04

19

6.6

66

3

175

892.

0 0.

0011

207

0.21

68

741.

17

2773

.6

2.09

09

6.62

56

180

1002

.1

0.00

1127

4 0

.19

40

5

763.

22

2778

.2

2.13

96

6.58

57

190

1254

.4

0.00

1141

4 0

.15

65

4

807.

62

2786

.4

2.23

59

6.5

07

9

200

1553

.8

0.00

1156

5 0

.12

73

6

852.

45

2793

.2

2.33

09

6.43

23

225

2548

0.

0011

992

0.0

78

49

96

6.78

28

03.3

2.

5639

6.

2503

25

0 39

73

0.00

1251

2 0

.05

01

3

1085

.36

2801

.5

2.79

27

6.0

73

0

275

5942

0.

0013

168

0.0

32

79

12

10.0

7 27

85.0

3.

0208

5.

8938

30

0 85

81

0.00

1043

6 0.

0216

7 13

44.0

27

49.0

3.

2534

5.

7045

Sou

rce:

Abr

idge

d fr

om J

.H.

Kee

nan,

F.G

. Key

es,

P.G

. H

ill,

an

d J

.G.

Moo

re, S

team

Ta

ble

s-M

etri

c U

nits

. N

ew Y

ork:

Jo

hn

Wil

ey

&

Son

s, I

nc.,

196

9. W

ith

per

mis

sion

of

the

auth

ors

an

d p

ubli

sher

s.

>

'"1:1

'"1:1

t.%j

Z o ~

w

CD

--

l

TA

BL

E A

.7.

PR

OP

ER

TIE

S O

F S

UP

ER

HE

AT

ED

ST

EA

M (

ST

EA

M T

AB

LE

), S

I U

NIT

S (

u, s

pe

cif

ic v

olu

me

, m

3 Ik

g; H

, en

tha

lpy,

kJ I

kg;

S,

en

tro

py,

kJ I

kg

·K)

w

<.D

A

bsol

ute

Pre

ssur

e,

kP

a T

emp

erat

ure

(C)

00

(Sat

. Tem

p., C

) 1

00

15

0 20

0 25

0 3

00

3

60

4

20

5

00

>

rj

0 v

17.1

96

19.5

12

21.8

25

24.1

36

26.4

45

29.2

16

31.9

86

35

.67

9

0

10

H

2687

.5

2783

.0

2879

.5

2977

.3

3076

.5

3197

.6

3320

.9

3489

.1

tj

(45.

81)

s 8.

4479

8.

6882

8.

9038

9.

1002

9.

2813

9.

4821

9

.66

82

9

.89

78

'i

j

v 3.

418

3.88

9 4.

356

4.8

20

5.

284

5.83

9 6.

394

7.13

4 ::0

0

50

H

2682

.5

2780

.1

2877

.7

29

76

.0

3075

.5

3196

.8

3320

.4

3488

.7

C":l

(81.

33)

s 7.

6947

7.

9401

8.

1580

8.

3556

8.

5373

8.

7385

8

.92

49

9

.15

46

l"

l U

)

v 2.

270

2.58

7 2.

900

3.21

1 3.

520

3.89

1 4.

262

4.7

55

U

)

75

H

2679

.4

2778

.2

2876

.5

2975

.2

3074

.9

3196

.4

3320

.0

34

88

.4

l"l

(91.

78)

s 7.

5009

7.

7496

7.

9690

8.

1673

8.

3493

8.

5508

8

.73

74

8

.96

72

Z

u

1.69

58

1.93

64

2.17

2 2.

406

2.63

9 2.

917

3.19

5 3

.56

5

Q

100

H

2676

.2

2776

.4

2875

.3

2974

.3

3074

.3

3195

.9

3319

.6

3488

.1

- Z (9

9.63

) s

7.36

14

7.61

34

7.83

43

8.0

33

3

8.21

58

8.41

75

8.60

42

8.8

34

2

l"l

v 1.

2853

1.

4443

1.

6012

1.

7570

1.

9432

2.

129

2.37

6 l"

l ::0

15

0 H

27

72.6

28

72.9

29

72.7

30

73.1

31

95.0

33

18.9

3

48

7.6

Z

(1

11.3

7)

s 7.

4193

7.

6433

7.

8438

8.

0720

8.

2293

8.

4163

8

.64

66

Q

v

0.4

708

0.53

42

0.59

51

0.64

58

0.72

57

0.7

96

0

0.8

89

3

400

H

2752

.8

2860

.5

2964

.2

3066

.8

3190

.3

3315

.3

34

84

.9

(143

.63)

s

6.92

99

7.17

06

7.37

89

7.56

62

7.77

12

7.95

98

8.1

91

3

v 0.

2999

0

.33

63

0.

3714

0

.41

26

0.

4533

0

.50

70

70

0 H

28

44.8

29

53.6

30

59.1

31

84.7

33

10.9

3

48

1.7

0

64

.97

) s

6.88

65

7.10

53

7.29

79

7.50

63

7.69

68

7.9

29

9

v 0.

2060

0.

2327

0.

2579

0

.28

73

0.

3162

0.

3541

10

00

H

2827

.9

2942

.6

3051

.2

3178

.9

3306

.5

34

78

.5

(179

.91)

s

6.69

40

6.92

47

7.12

29

7.33

49

7.52

75

7.7

62

2

v 0.

1324

8 0

.15

19

5

0.1

69

66

0

.18

98

8

0.20

95

0.2

35

2

1500

H

27

96.8

29

23.3

30

37.6

3.

1692

32

99.1

34

73.1

(1

98.3

2)

s 6.

4546

6

.70

90

6.

9179

7.

1363

7.

3323

7

.56

98

v

0.11

144

0.12

547

0.1

41

13

0

.15

61

6

0.1

75

68

20

00

H

2902

.5

3023

.5

3159

.3

3291

.6

34

67

.6

(212

.42)

s

6.54

53

6.76

64

6.99

17

7.19

15

7.43

17

v 0

.08

70

0

0.0

98

90

0

.11

18

6

0.1

24

14

0

.13

99

8

2500

H

28

80.1

30

08.8

31

49.1

32

84.0

34

62.1

(2

23.9

9)

s 6

.40

85

6.

6438

6.

8767

7.

0803

7

.32

34

v

0.0

70

58

0.

0811

4 0.

0923

3 0

.10

27

9

0.1

16

19

30

00

H

2855

.8

2993

.5

3138

.7

3276

.3

34

56

.5

(233

.90)

s

6.2

87

2

6.53

90

6.78

01

6.98

78

7.2

33

8

Sou

rce:

Abr

idge

d fr

om

J.H

. K

een

an,

F.G

. Key

es, P

.G. H

ill,

an

dJ.

G. M

oore

, Ste

am

Ta

ble

s-M

etri

c U

nits

. New

Yor

k: J

oh

n W

iley

&

Son

s, I

nc.,

1969

. W

ith

per

mis

sion

of

the

auth

ors

an

d p

ubli

sher

s.

T A

BL

E A

.B.

RH

EO

LO

GIC

AL

PR

OP

ER

TIE

S O

F F

LU

ID F

OO

DS

Con

sist

ency

C

oeff

icie

n t

Flo

w

Tem

per

atu

re

(m)

Beh

avio

r M

easu

rem

ent

Pro

du

ct

(C)

Com

posi

tion

(P

a so

) In

dex

(n)

M

eth

od

R

efer

ence

Oli

ve o

il 20

no

rmal

0.

084

1.0

un

kn

ow

n

Mo

hse

nin

(9

70

) H

on

ey

24

norm

al

5.6

1.0

Cap

illa

ry

Ch

arm

(19

78)

tub

e S

oy b

ean

oil

30

norm

al

0.04

1.

0 u

nk

no

wn

M

oh

sen

in (

97

0)

Ho

ney

24

no

rmal

6.

18

1.0

sing

le

Ch

arm

(9

78

) cy

lind

er

Who

le m

ilk

20

norm

al

0.02

12

1.0

un

kn

ow

n

Mo

hse

nin

(9

70

) S

kim

mil

k 25

no

rmal

0.

0014

1.

0 u

nk

no

wn

M

oh

sen

in (

97

0)

Cre

am

3 20

'/cf

at

0.00

62

1.0

un

kn

ow

n

Mo

hse

nin

(9

70

) C

ream

3

30%

fat

0.

0138

1.

0 u

nk

no

wn

M

oh

sen

in (

97

0)

App

le ju

ice

27

200

Bri

x 0.

0021

1.

0 C

apil

lary

S

arav

aco

s (1

968)

tu

be

App

le ju

ice

27

600

Bri

x 0.

03

1.0

Cap

illa

ry

Sar

avac

os

(196

8)

tub

e G

rap

eju

ice

27

200

Bri

x 0.

0025

1.

0 C

apil

lary

S

arav

aco

s (1

968)

tu

be

Gra

pe

juic

e 27

60

0 B

rix

0.11

1.

0 C

apil

lary

S

arav

aco

s (1

968)

tu

be

To

mat

o c

on

cen

trat

e 32

5.

8%T

.S.

0.22

3 0.

59

Coa

xial

H

arp

er a

nd

cy

lin

der

E

I S

ahri

gi (

1965

) T

om

ato

co

nce

ntr

ate

32

30

%T

.S.

18.7

0.

4 C

oaxi

al

Har

per

an

d

cyli

nder

E

I S

ahri

gi (

1965

) T

om

ato

pu

ree

un

kn

ow

n

unkn

own

0.92

0.

554

Coa

xial

C

har

m (

1978

) cy

lind

er

Cor

n sy

rup

27

48

.4%

T.S

. 0.

053

1.0

Coa

xial

H

arp

er (

1960

) cy

lin

der

>

A

pric

ot p

ure

e 21

17

.7%

T.S

. 5.

4 0.

29

Coa

xial

H

arp

er(1

96

0)

'i:i

cyli

nder

'i:

i A

pric

ot p

ure

e 25

1

9%

T.S

. 20

.0

0.3

Coa

xial

W

atso

n (

1968

) t<:

l Z

cy

lin

der

t:

l n

arro

w g

ap

......

Apr

icot

pu

ree

27

13.8

% T

.S.

7.2

0.41

C

apil

lary

S

arav

aco

s (1

968)

:x:

tub

e w

A

pric

ot c

one.

25

2

6%

T.S

. 67

.0

0.3

Coa

xial

W

atso

n (

1968

) C

D

cyli

nd

er

CD

nar

row

gap

T A

BLE

A.B

. (C

on

tin

ued

) """ 0 0

Con

sist

ency

C

oeff

icie

nt

Flo

w

'"%j

Tem

per

atu

re

(m)

Beh

avio

r M

easu

rem

ent

0 0 P

rodu

ct

(C)

Com

posi

tion

(P

a sn

) In

dex

(n)

Met

ho

d

Ref

eren

ce

t::l

App

lesa

uce

24

unkn

own

0.66

0.

408

Cap

illa

ry

Ch

arm

(197

8)

'"d

tub

e ~

App

lesa

uce

25

31.7

%T

.S.

22.0

0.

4 C

oaxi

al

Wat

son

(19

68)

0 n cy

lind

er

t:%j

r:n

nar

row

gap

r:n

A

pple

sauc

e 27

11

.6%

T.S

. 12

.7

0.28

C

apil

lary

S

arav

aco

s (1

968)

t:%

j tu

be

Z

App

lesa

uce

24

unkn

own

0.5

0.64

5 C

oaxi

al

Ch

arm

(197

8)

q cy

lind

er

......

Ch

arm

(197

8)

Z

App

lesa

uce

unkn

own

unkn

own

5.63

0.

47

Coa

xial

t:%

j

cyli

nder

t:%

j

Pea

r pur

ee

27

14.6

%T

.S.

5.3

0.38

C

apil

lary

S

arav

aco

s (1

968)

~

......

tub

e Z

P

ear

pure

e 27

15

.2%

T.S

. 4.

25

0.35

C

oaxi

al

Har

per

(19

60)

q

cyli

nder

P

ear

pure

e 32

18

.31%

T.S

. 2.

25

0.48

6 C

oaxi

al

Har

per

an

d

cyli

nder

L

eber

man

n (

1964

) P

ear

pure

e 32

45

.75%

T.S

. 35

.5

0.47

9 C

oaxi

al

Har

per

an

d

cyli

nder

L

eber

man

n (1

964)

P

each

pur

ee

27

10.0

%T

.S.

4.5

0.34

C

apil

lary

S

arav

acos

(196

8)

tub

e P

each

pur

ee

27

10.0

%T

.S.

0.94

0.

44

Coa

xial

H

arp

er (1

960)

Ban

ana

pure

e 24

un

know

n 6.

5 cy

lind

er

0.45

8 C

oaxi

al

Ch

arm

(197

8)

Ban

ana

pure

e 24

un

know

n 10

.7

cyli

nder

0.

333

Cap

illa

ry

Ch

arm

(19

78)

tub

e B

anan

a pu

ree

20

unkn

own

6.89

0.

46

Cap

illa

ry

Ch

arm

(19

78)

tub

e B

anan

a pu

ree

42

unkn

own

5.26

0.

486

Cap

illa

ry

Ch

arm

(19

78)

tub

e B

anan

a pu

ree

49

unkn

own

4.15

0.

478

Cap

illa

ry

Ch

arm

(197

8)

tub

e N

ote:

Thi

s ta

ble

is

no

t in

ten

ded

to

pro

vide

a

com

plet

e li

st

of

rheo

logi

cal

prop

erti

es a

vail

able

for

li

quid

fo

od

prod

ucts

. V

aria

bili

ties

wit

h t

emp

erat

ure

an

d c

once

ntra

tion

may

be

illu

stra

ted

mor

e ac

cura

tely

in

ref

eren

ces

prov

ided

.

TA

BL

E A

.9.

SP

EC

IFIC

HE

AT

S O

F F

OO

DS

Com

posi

tion

S

peci

fic

Hea

t W

ater

P

rote

in

Car

bo

hy

dra

te

Fat

Ash

E

q. (

3.31

) E

q. (

3.32

) E

q. (

3.33

) E

x&er

imen

tall

Pro

du

ce

(%)

(%)

(%)

(%)

(%)

(kJ/

kg

K)

(kJ I

kg K

) (k

J Ikg

K)

kJ/

kg

K)

Bee

f 68

.3

20.7

0.

0 10

.0

1.0

3.39

3.

35

3.35

3.

52

(Ham

bu

rger

) F

ish,

can

ned

70

.0

27.1

0.

0 0.

3 2.

6 3.

43

3.31

3.

35

Sta

rch

12

.0

0.5

87.0

0.

2 0.

3 1.

976

1.61

2 1.

754

Ora

ng

e ju

ice

87.5

0.

8 11

.1

0.2

0.4

3.87

3 3.

818

3.82

2 L

iver

, raw

bee

f 74

.9

15.0

0.

9 9.

1 1.

1 3.

554

3.52

1 3.

525

Dry

mil

k,

3.5

35.6

52

.0

1.0

7.9

1.76

3 1.

365

1.52

0 n

on

fat

Bu

tter

15

.5

0.6

0.4

81.0

2.

5 2.

064

2.39

0 2.

043

2.0

51

-2.1

35

M

ilk,

who

le

87.0

3.

5 4.

9 3.

9 0.

7 3.

860

3.76

8 3.

831

3.85

2 p

aste

uri

zed

B

lueb

erri

es,

73.0

0.

4 23

.6

0.4

2.6

3.50

8 3.

073

3.44

5 sy

rup

pac

k C

od, r

aw

82.6

15

.0

0.0

0.4

2.0

3.75

1 3

.63

0

3.69

7 S

kim

mil

k 90

.5

3.5

5.1

0.1

0.8

3.94

8 3.

935

3.93

5 3

.97

7-4

.01

9

To

mat

o s

oup,

81

.4

1.8

14.6

1.

8 0.

4 3.

718

3.47

1 3.

676

con

cen

trat

e B

eef,

lean

77

.0

22.0

1.

0 3

.55

9

3.51

2 3.

579

Egg

yol

k 49

.0

13.0

11

.0

1.0

2.90

5 2.

457

2.44

9 2.

810

Fis

h, f

resh

76

.0

19.0

1.

4 3.

617

3.43

7 3.

500

3.6

00

B

eef,

lea

n 71

.7

21.6

0.

0 5.

7 1.

0 3.

458

3.40

4 3.

437

3.43

3 P

ota

to

79.8

2.

1 17

.1

0.1

0.9

3.6

80

3

.59

6

3.63

4 3.

517

App

le, r

aw

84.4

0.

2 14

.5

0.6

0.3

3.7

93

3.

734

----

-.. 3.759·~ 3

.72

6-4

.01

9

Bac

on

49

.9

27.6

0.

3 17

.5

4.7

2.92

6 2.

864

2.85

1 2.

01

Cu

cum

ber

96

.1

0.5

1.9

0.1

1.4

4.09

0 4.

073

4.06

1 4.

103

Bla

ckb

erry

, 76

.0

0.7

22.9

0.

2 0.

2 3.

588

3.48

7 3.

521

syru

p p

ack

P

ota

to

75.0

0.

0 23

.0

0.0

2.0

3.5

59

3.

429

3.48

3 3.

517

Vea

l 68

.0

21.0

0.

0 10

.0

1.0

3.38

3 3.

056

3.34

9 3.

223

Fis

h

80.0

15

.0

4.0

0.3

0.7

3.68

4 3.

408

3.65

1 3.

60

:>

Che

ese,

65

.0

25.0

1.

0 2.

0 7.

0 3.

307

2.77

6 3.

215

3.26

5 '"t:

1 '"t:

1 co

ttag

e t<:

l S

hri

mp

66

.2

26.8

0.

0 1.

4 0.

0 3.

337

3.11

1 3.

404

3.01

4 Z

t:1

S

ard

ines

57

.4

25.7

1.

2 11

.0

0.0

3.11

5 2.

972

3.00

2 3.

014

~

Bee

f, r

oas

t 60

.0

25.0

0.

0 13

.0

0.0

3.08

1 3.

098

3.11

5 3

.05

6

Car

rot,

fre

sh

88.2

1.

2 9.

3 0.

3 1.

1 3

.88

9

3.83

1 3.

864

3.8

1-3

.93

5

.... 'R

eid

y,

G.A

. 19

68.

Th

erm

al P

rope

rtie

s of

Foo

ds a

nd

Met

ho

ds

of

Th

eir

Det

erm

inat

ion

. M

.S.

Th

esis

Fo

od

Sci

ence

Dep

artm

ent,

0 .....

. M

ichi

gan

Sta

te U

nive

rsit

y, E

ast

Lan

sing

, M

ichi

gan.

402 FOOD PROCESS ENGINEERING

TABLE A.10. THERMAL CONDUCTIVITY OF SELECTED FOOD PRODUCTS

Moisture Content Temperature Thermal Conductivity Product (%) (C) (W!mK)

Apple 85.6 2 to 36 0.393 Applesauce 78.8 2 to 36 0.516 Beef, freeze dried

- 1000 mm Hg pressure 0 0.065 - 0.001 mm Hg pressure 0 0.037

Beef, lean - perpendicular to fibers 78.9 • 7 0.476 - perpendicular to fibers 78.9 62 0.485 - parallel to fibers 78.7 8 0.431 - parallel to fibers 78.7 61 0.447

Beef fat 24 to 38 0.19 Butter 15 46 0.197 Cod 83 2.8 0.544 Corn, yellow dent 0.91 8 to 52 0.141

30.2 8 to 52 0.172 Egg, frozen whole -10 to-6 0.97 Egg, white 36 0.577 Egg, yolk 33 0.338 Fish muscle o to 10 0.557 Grapefruit, whole 30 0.45 Honey 12.6 2 0.502

80 2 0.344 14.8 69 0.623 80 69 0.415

Juice, apple 87.4 20 0.559 87.4 80 0.632 36.0 20 0.389 36.0 80 0.436

Lamb - perpendicular to fiber 71.8 5 0.45

61 0.478 - parallel to fiber 71.0 5 0.415

61 0.422 Milk 37 0.530 Milk, condensed 90 24 0.571

78 0.641 50 26 0.329

78 0.364 Milk, skimmed 1.5 0.538

80 0.635 Milk, nonfat dry 4.2 39 0.419 Olive oil 15 0.189

100 0.163 Oranges, combined 30 0.431 Peas, black-eyed 3 to 17 0.312 Pork

- perpendicular to fibers 75.1 6 0.488 60 0.54

- parallel to fibers 75.9 4 0.443 61 0.489

Porkfat 25 0.152 Potato, raw flesh 81.5 1 to 32 0.554 Potato, starch gel 1 to 67 0.04 Poultry, broiler muscle 69.1 to 74.9 4 to 27 0.412 Salmon

- perpendicular to fibers 73 4 0.502 Salt 87 0.247 Sausage mixture 64.72 24 0.407 Soybean oil meal 13.2 7 to 10 0.069 Strawberries -14t025 0.675

APPENDIX 403

TABLE A.10. (Continued)

Moisture Content Temperature Thermal Conductivity Product (ei) (C) (W/mK)

Sugars 29 to 62 0.087 to 0.22 Turkey, breast

- perpendicular to fibers 74 3 0.502 - parallel to fibers 74 3 0.523

Veal - perpendicular to fibers 7f> 6 0.476

62 0.489 - parallel to fibers 7f> 5 0.441

60 0.452 Vegetable & Animal oils 4 to 187 0.169 Wheat flour 8.8 43 0.45

65.5 0.689 1.7 0.542

Whey 80 0.641

Reidy, G.A. 1968. Thermal Properties of Foods and Methods of Their Determination. M.S. Thesis Food Science Dept. Michigan State University, East Lansing, Michigan.

404 FOOD PROCESS ENGINEERING

TABLEA.11. ENTHALPY OF FROZEN FOODsa

Mean Specific

Water Heath Content 4 to 32C

Product %(wt) kJ/kgC Temp.C -40 -30 -20 -18 -16

Fruits and Vegetables

Applesauce 82.8 3.73 Enthalpy kJ Ikg 0 23 51 58 65 % waterunfrozenc 6 9 10 12

Asparagus, peeled 92.6 3.98 Enthalpy kJ/kg 0 19 40 45 50 % water unfrozen

Bilberries 85.1 3.77 Enthalpy kJ/kg 0 21 45 50 57 % water unfrozen 7 8

Carrots 87.5 3.90 Enthalpy kJ/kg 0 21 46 51 57 % water unfrozen 7 8

Cucumbers 95.4 4.02 Enthalpy kJ/kg 0 18 39 43 47 % water unfrozen

Onions 85.5 3.81 Enthalpy kJ/kg 0 23 50 55 62 % water unfrozen 5 8 10 12

Peaches 85.1 3.77 Enthalpy kJ/kg 0 23 50 57 64 without stones % water unfrozen 5 8 9 11

Pears, Barlett 83.8 3.73 Enthalpy kJ/kg 0 23 51 57 64 % water unfrozen 6 9 10 12

Plums without 80.3 3.65 Enthalpy kJ/kg 0 25 57 65 74 stones % water unfrozen 8 14 16 18

Raspberries 82.7 3.73 Enthalpy kJ/kg 0 20 47 53 59 % water unfrozen 7 8 9

Spinach 90.2 3.90 Enthalpy kJ/kg 0 19 40 44 49 % water unfrozen

Strawberries 89.3 3.94 Enthalpy kJ/kg 0 20 44 49 54 % water unfrozen 5 6

Sweet cherries 77.0 3.60 Enthalpy kJ/kg 0 26 58 66 76 without stones % water unfrozen 9 15 17 19

Tall peas 75.8 3.56 Enthalpy kJ/kg 0 23 51 56 64 % water unfrozen 6 10 12 14

Tomato pulp 92.9 4.02 Enthalpy kJ/kg 0 20 42 47 52 % water unfrozen 5

Eggs Egg white 86.5 3.81 Enthalpy kJ/kg 0 18 39 43 48

% water unfrozen 10 Egg yolk 40.0 2.85 Enthalpy kJ Ikg 0 19 40 45 50

% water unfrozen 20 22 Whole egg 66:4 3.31 Enthalpy kJ/kg 0 17 36 40 45

with shelld

Fish and Meat Cod 80.3 3.69 Enthalpy kJ/kg 0 19 42 47 53

% water unfrozen 10 10 11 12 12 Haddock 83.6 3.73 Enthalpy kJ Ikg 0 19 42 47 53

% water unfrozen 8 8 9 10 11 Perch 79.1 3.60 Enthalpy kJ/kg 0 19 41 46 52

% water unfrozen 10 10 11 12 12 Beef, lean 74.5 3.52 Enthalpy kJ/kg 0 19 42 47 52 Freshe % water unfrozen 10 10 11 12 13 Beef, lean dried 26.1 2.47 Enthalpy kJ/kg 0 19 42 47 53

% water unfrozen 96 96 97 98 99 Bread

White bread 37.3 2.60 Enthalpy kJ/kg 0 17 35 39 44 Wholewheat 42.4 2.68 Enthalpy kJ/kg 0 17 36 41 48

bread

a Above -40C. b Temperature range limited to 0 to 20C for meats and 20 to 40C for egg yolk. C Total weight of unfrozen water = (total weight offood)(% water content/lOO)(waterunfrozen/l00).

APPENDIX 405

-14 -12 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

73 84 95 102 110 120 132 152 175 210 286 339 343 14 17 19 21 23 27 30 37 44 57 82 100 55 61 69 73 77 83 90 99 108 123 155 243 381 5 6 7 8 10 12 15 17 20 29 58 100

64 73 82 87 94 101 110 125 140 167 218 348 352 9 11 14 Hi 17 18 21 25 30 38 57 100

64 72 81 87 94 102 111 124 139 166 218 357 361 9 11 14 15 17 18 20 24 29 37 53 100

51 57 64 67 70 74 79 85 93 104 125 184 390 5 11 14 20 37 100

71 81 91 97 105 115 125 141 163 196 263 349 353 14 16 18 19 20 2:1 26 31 38 49 71 100 72 82 93 100 108 118 129 146 170 202 274 348 352 13 16 18 20 22 25 28 33 40 51 75 100 73 83 95 101 109 120 132 150 173 207 282 343 347 14 17 19 21 23 26 29 35 43 54 80 100 84 97 111 119 129 142 159 182 214 262 326 329 333 20 23 27 29 33 37 42 50 61 78 100 65 75 85 90 97 105 115 129 148 174 231 340 344 10 13 16 17 18 20 23 27 33 42 61 100 54 60 66 70 74 79 86 94 103 117 145 224 371

6 7 9 11 13 16 19 28 53 100 60 67 76 81 88 95 102 114 127 150 191 318 367

7 9 11 12 14 16 18 20 24 30 43 86 100 87 100 114 123 133 149 166 190 225 276 317 320 324 21 26 29 32 36 40 47 55 67 86 100 73 84 95 102 111 121 133 152 176 212 289 319 323 16 18 21 23 26 28 33 39 48 61 90 100 57 63 71 75 81 87 93 103 114 131 166 266 382

6 7 il 10 12 14 16 18 24 33 65 100

53 58 65 68 72 75 81 87 96 109 134 210 352 13 18 20 23 28 40 82 100

56 62 68 72 76 80 85 92 99 109 128 182 191 24 27 28 29 31 33 35 38 45 58 94 100 50 55 61 64 67 71 75 81 88 98 117 175 281

59 66 74 79 84 89 96 105 118 137 177 298 323 13 14 16 17 18 19 21 23 27 34 48 92 100 59 66 73 77 82 88 95 104 116 136 177 307 337 11 12 13 14 15 16 18 20 24 31 44 90 100 58 65 72 76 81 86 93 101 112 129 165 284 318 13 14 15 16 17 18 20 22 26 32 44 87 100 58 65 72 76 81 88 95 105 113 138 180 285 304 14 15 16 17 18 20 22 24 31 40 55 95 100 62 66 70 74 79 84 89 93

100

49 56 67 75 83 93 104 117 124 128 131 134 137 56 66 78 86 95 106 119 135 150 154 157 160 163

d Calculated for a weight composition of 58% white (86.5% water) and 32% yolk (50% water). e Data for chicken, veal, and venison very nearly matched the data for beef of the same water content."

From Dickerson (1981)

406 FOOD PROCESS ENGINEERING

TABLE A.12. INITIAL FREEZING TEMPERATURE OF FRUITS, VEGETABLES AND JUICES

Product

Apple juice Apple juice concentrate Applesauce Asparagus Bilberries Bil berry juice Carrots Cherry juice Grape juice Onions Orange juice Peaches Pears Plums Raspberries Raspberry juice Spinach Strawberries Strawberry juice Sweet cherries Tall peas Tomato pulp

Water content

(% by weight)

87.2 49.8 82.8 92.6 85.1 89.5 87.5 86.7 84.7 85.5 89.0 85.1 83.8 80.3 82.7 88.5 90.2 89.3 91.7 77.0 75.8 92.9

TABLE A.13. HEAT TRANSFER COEFFICIENTS

Condition

Naturally circulating Air blast Plate contact freezer Slowly circulating brine Rapidly circulating brine

Liquid nitrogen low side of horizontal plate where gas

blanket forms upper side of horizontal plate

Boiling water

Initial freezing

temperature (C)

-1.44 -11.33

-1.67 -0.67 -1.11 -1.11 -1.11 -1.44 -1.78 -1.44 -1.17 -1.56 -1.61 -2.28 -1.22 -1.22 -0.56 -0.89 -0.89 -2.61 -1.83 -0.72

Heat Transfer Coefficient (W/m2K)

5 22 56 56 85

170 425 568

APPENDIX 407

TABLE A.14. VARIOUS FORMS OF GAS CONSTANT

0.0821 1.987 1.987 8.314

1546 10.n

18,510 0.7302

848,000 8,314.34

62,36:3.32

atmliter/g-mole K cal/g-mole oK BTU/lb-mole R joules/g-mole K ft Ibs/lb-mole R Ob,/in'l ft' /Ib-mole R Ob,/in'lin'/lb-mole R atm ft'/Ib-mole R (Kg/m'lcml/lb-mole K m'Pa/kg mole K cm'mm Hg/mole K

TABLE A.1S. FREQUENTLY USED CONVERSION FACTORS FOR ENGLISH TO STANDARD INTERNATIONAL UNITS

Area 1 ft' = 0.0929 m'

Density Ilbm/ft'l = 16.0185 kg/m'

Diffusivity 1 ft'/hr = 2.581 X 10-' m'/s

Energy 1 BTU = 1055 J = 1.055 kJ 1 kcal = 4.184 kJ

Enthalpy 1 BTU/Ibm = 2.3258kJ/kg

Force lib, = 4.4482N 1 N = 1 kgm/s'

Heat flux 1 BTU/hr = 0.29307 W 1 BTU/min = 17.58 W 1 kJ/hr = 2.778 X 1O- 4kW 1,]/s=IW

Heat Transfer Coefficient 1 BTU/hr ft'F = 5.6783 W /m'K

Length 1 ft = 0.3048 m 1 micron = 10-6 m

Mass 1 Ibm = 0.4536 kg

Mass Transfer Coefficient 1 Ib mole/hr ft' mole fraction

= 1.3562 X 10-:< kg mole/s m'mole fraction

Pressure 1 psia = 6.895 kPa 1 psia = 6.895 X lO:J N/m'

Specific Heat 1 BTU/lbmF = 4.1865 J/gK

Temperature rF = 1.8'C

Thermal Conductivity 1 BTU/hrft F = 1.731 W /mK

Viscosity Ilbm/ft h = 0.4134 cp Ilbmft s = 1488.16 cp lcp=10-'Pas llbrs/ft' = 4.7879 X 10' cp 1 Ns/m' = 1 Pas 1 kg/ms = 1 Pas

Volume 1 W = 0.02832 m' 1 gal = 3.785 X 10-3 m3

408 FOOD PROCESS ENGINEERING

BIBLIOGRAPHY

CHARM, S.E. 1978. The Fundamentals of Food Engineering, 3rd Edition. The A VI Publishing Co., Westport, Conn.

CLARY, B.L., G.L. NELSON, and R.E. SMITH. 1971. The application of the geometry analysis technique in determining the heat transfer rates from biological materials. ASAE Trans. 14(3)386.

CRANK, J. and G. PARK. 1968. Diffusion in Polymers, Academic Press, New York, NY.

DICKERSON, R.W., Jr. 1981. Enthalpy of frozen foods. In Handbook and Product Directory Fundamentals. American Society of Heating, Refrigeration and Air Conditioning Engineers. New York.

DICKERSON, R.W., Jr. 1969. Thermal properties of foods. In The Freezing Preservation of Foods, 4th Ed., Vo!' 2. D.K. Tressler, W.B. Van Arsdel and M.J. Copley. The AVI Publishing Co., Westport, Conn.

HARPER, J.C. 1960. Viscometric behavior in relation to evaporation of fruit purees. Food Techno!. 14:557.

HARPER, J.C. and A.F. EL SAHRIGI. 1965. Viscometric behavior of tomato concentrates. J. Food Sci. 30:470.

HARPER, J.C. and KW. LEBERMANN. 1964. Rheological behavior of pear purees. Proc. 1st Intern. Congr. Food Sci. & Techno!. 719-728.

KEENAN, J.H., F.G. KEYES, P.G. HILL, and J.G. MOORE. 1969. Steam Tables - Metric Units. John Wiley & Sons, Inc., New York, NY.

MOHSENIN, N.N. 1978. Physical Properties of Plant and Animal Materials. Vol. I, Part II. Gordon and Breach Science Publishers. New York, NY.

RAZNJEVIC, K. 1978. Handbook of Thermodynamic Tables and Charts. McGraw-Hill Book Co., New York.

REIDY, G.A. 1968. Thermal Properties of Foods and Methods of their Deter­mination. M.S. Thesis. Food Science Dept., Michigan State University. E. Lansing, MI.

SARAVACOS, G.D. 1968. Tube viscometry of fruit purees and juices. Food Techno!. 22(12)1585-1588.

WATSON, E.L. 1968. Rheological behavior of apricot purees and concentrates. Can. Agri. Engr. 10(1)8-12.

Answers to Selected Problems

Chapter 1

1.1. 105.6 kj/kg 1.3. 0.288 mg/l

Chapter 2

2.1. m = 2.236 kPa; n = 0.295 2.3. m = 1.8676 X 10-3 kPa;

n = 0.399 2.5. f = L::.PR/ pu2 L 2.7. L::.P = 17.7 kPa (water)

L::.P = 468.9 kPa (puree) 2.9. L::.P = 1.53 (L::.P for water) 2.11. D = 2.93 em

Chapter 3

3.1. 23 em 3.3. 6.18 W /m2C 3.5. 1 - exp(UA/Wep )

3.7. 30.6 C 3.9. 60.5 C 3.11. 0.79 hr 3.13. 109.7 C

Chapter 4

4.1. 86.5%

APPENDIX 409

4.3. 350 kj/kg; 88.5% 4.5. tF = 3.49 min 4.7. tF = 6.02 hr; d = 23.87 m

Chapter 5

5.1. 2689 W /m2K 5.3. F = 58.878 kg/hr

Chapter 6

6.2. 0.1166 kgH20/kg dry solids 6.4. 82.5 mieron 6.6. 9.1% MC

Chapter 7

7.1. 55.56 kg/min 7.3. 8.1 min 7.5. 2 stages

Chapter 8

8.1. 36 hr 8.3. 10.03 em

Index

Absolute humidity, 264 Activation energy, 10 Adia ba tic calorimeter, 173 Agitated container, 144 Air-blast freezing, 198 Angle of internal friction, 70 Angle of repose, 71 Angle of slide, 70 Anomalous objects, 137

heat transfer, 137 Answers, problems, 410 Apparent specific hea( 193 Arching, 71 Arrhenius equation, 14

plot, 14 Atomizers, 287

centrifugal pressure, 287 droplet size, 292 energy requirement, 291 fan spray, 288 rotary, 289

BET equation, 275 Belt dryer, 283 Biot number, 124 Boiling point elevation, 218 Boundary layer, 18, 49 Brownian motion, 10 Bulk density, 66

Cabinet dryer, 279 Calandria evaporator, 231 Capillary tube rheometer, 32

Centrifugal separation, 377 basic equations, 377 liquid-liquid, 379 particle-gas, 381 rate, 378 system design, 377

Characteristic dimension, 93 Chemical potential, 6, 159 Chemical reaction, 10 Clausius-Clapeyron equation, 7, 218,

221 Coaxial cylinder rheometer, 37 Concentrated product properties, 58 Cone and plate rheometer, 41 Consistency coefficient, 28 Conveyor dryer, 282 Cooling processes, 87

agitated container, 144 radiation, 99 steady-state, 108 unsteady-state, 124

Count mean diameter, 292

Dehydration, 261 air-suspended, 283 constant-rate, 266, 269 diffusion controlled, 271 drum, 310 falling-rate, 268, 269, 272 fixed-tray, 279

cabinet, 279 tunnel, 279

freeze, 315 fluidized bed, 310 moving bed, 281

411

412 FOOD PROCESS ENGINEERING

belt, 283 conveyor, 282

pneumatic, 308 spray, 284

Diffusion coefficients, 16 mass diffusivity, 17 molecular, 333

Diffusivity, 193 Drag coefficient, 298 Droplet evaporation, 296

drag coefficient, 298 heat and mass transfer, 298 time, 303

Drying curve, 265 rate of, 265

Duhring's rule, 221

Effective molecular weight, 163 Elasticity, 26 Enthalpy, 4 Enthalpy balance, 238

evapora tion, 241 Entropy, 5 Equilibrium curve, 334, 336, 337 Equilibrium moisture content, 274

BET equation, 275 isotherms, 276 Langmuir equation, 275

Equilibrium processes, 332 Evaporation, 216

boiling point elevation, 218 Duhring's rule, 221 heat transfer, 223 low-temperature, 254 mechanical recompression, 252 multiple effect systems, 240

backward feed, 246 forward feed, 246 parallel feed, 246

retention time, 233 single-effect systems, 237 steam economy, 238 system design, 231

agitated film, 232 Calandria, 231 forced circulation, 232 long-tube vertical, 232 plate, 233 rising-falling film, 233

thermal-recompression, 248 suction pressure, 249

Evaporative cooling, 265 Extraction, 339

leaching, 339, 343

rate, 340 right-triangle system, 347

Fick's first law, 16 second law, 16

Filtration, 365 constant-pressure, 368 constant-rate, 366 mechanisms, 370 operating equation, 365 system design, 370

Flow, 44 liquids, 44 powder, 65, 70 slurries, 61

Flow behavior index, 28 Flow number, 293 Fluidized-bed drying, 310 Fluidized-bed freezing, 200 Food engineering, 1 Forced circulation evaporator, 232 Fourier equation, 89 Fourier modulus, 125 Free energy, 5, 159 Freezing, 158

air blast, 198 curves, 162 effective molecular weight, 163 equipment design, 198 fluidized bed, 200 immersion, 204 IQF,200 plate, 201

Freeze drying, 315 atmospheric, 322 drying times, 317 heat and mass transfer, 315 system design, 318

Freezing rates, 176 factors which influence, 178 finite element analysis, 195 freezing point depression, 159 Mott procedure, 190 Neumann problem, 185 numerical solution, 191 Plank's equation, 178 refrigeration requirement, 166, 171,

175 slowest cooling location, 177 Tao solution, 187 thermal arrest time, 177 thermal center, 177 Tien solution, 188

Frequency factor, 14

Friction, 44 contractions, 55 entrance regions, 54 equivalent lengths, 56 expansions, 55 factor, 44, 51, 53 laminar flow, 46 non-Newtonian flow, 52 pneumatic conveying, 64 suspensions, 61 turbulent flow, 48

Frozen foods, 159 apparent specific heat, 193 enthalpy change, 165 unfrozen water fraction, 170

Frozen storage, 205 changes during, 205 crystallization, 205 desiccation, 205 temperature fluctuation, 206 time-temperature-tolerance, 206

Generalized Reynold's number, 47 Geometric index, 137 Graetz-number, 95 Granular food properties, 65 Grashof number, 95, 98

Heat exchangers, 115 direct contact, 122 plate, 118 scraped-surface, 121 steam infusion, 122 stream injection, 122 triple-tube, 117 tubular, 117

Heat of respiration, 91 Heat generation, 91 Heat transfer, 87

conduction, 88 convection, forced, 93 convection, free, 98 finite objects, 136 radiation, 99

absorptivity, 99 emissivity, 99 Stefan-Boltzmann, 99

Heat transfer coefficient, 228 convective, 92 evaporation, 228

in freezing, 196 overall, 99

Heating processes, 87 agitated container, 144 non-Newtonian flow, 108 radiation, 99 steady-state, 108 unsteady-state, 124

Heating-rate constant, fh' 131 Heat-sensitivity, 87

INDEX 413

Heat transfer in laminar flow, 95, 108 circular tube, 95 external flow, 96 fully-developed parabolic velocity

flow, 110 fully-developed velocity profile for

power law fluid, 111 internal flow, 95 non -circular ducts, 96 piston flow, 109

Heat transfer in transition region, 96 Heat transfer in turbulent flow, 96,

115 circular tubes, 96 noncircular ducts, 96

Hooke's law, 26 HTU, 338

Ice crystals, 163 growth, 163, 164 nucleation, 163

Ideal solution, 9 gas, 9

Immersion freezing, 204 Individual quick freezing, 200 Initial freezing point, 195 Insulation, 90

Kelvin model, 75 Kinetic energy, 44, 48

theory, 10 Kinetics, 10 Kopelman equations, 103

Lag factor, j, 131 Laplace equation, 89 Langmuir equation, 275

414 FOOD PROCESS ENGINEERING

Latent heat, 7, 160 fusion, 161 vaporization, 7, 218

Leaching, 339, 343 multi-stage, 347

Lewis number, 268 Log mean temperature difference, 95 Log-normal distribution, 69

geometrie standard deviation, 69 log geometric mean, 68

Mass flow rate equation, 52 Mass mean diameter, 292 Mass transfer, 16, 333

coefficients, 18, 268, 316 overall coefficients, 341 two-film theory, 333

Material balance 334 contact equilibrium, 334 evaporation, 237, 241 extraction, 343

Maxwell equation, 102 Maxwell model, 72 Mechanical energy balance, 52 Mechanical recompression, 252 Mechanical separation, 364 Molality, 161 Mole fraction, 160 Mott procedure, 190 Multiple-effect evaporator, 240

backward feed, 246 forward feed, 246 parallel feed, 246

Neumann problem, 317 Newtonian flow, 26 Non-Newtonian flow, 27 NTU, 338 Nucleation, 164

homogenous, 164 Heterogenous, 164

Nucleation boiling, 226 Numerical methods, 142 Nusselt number, 93

Operating line, 337 Order of reaction, 10

first-order, 10 second-order, 11

Othmer plot, 8

Peclet number, 118 Phase change, 6, 218, 164

diagram, 6 Plank's equation, 178 Plasticity, 25 Plate freezing, 201 Plate evaporator, 233 Plate heat exchanger, 118 Pneumatic drying, 308 Porosity, 66 Powder properties, 65

angle of internal friction, 70 angle of repose, 71 angle of slide, 70 arching, 71 bridging, 71 bulk density, 66 particle density, 66 porosity, 66 Sauter diameter, 67 size, 66 size distribution, 66 void,66

Power law equation, 28 Prandtl number, 93 Pressure, 264

partial, 264 saturation vapor, 265

Pseudoplastics, 28 Psychrometries, 264

absolute humidity, 264 relative humidity, 264

Pump design, 52 power requirement, 52

Pressure-composition diagram, 9

R-value,90 Raoult's law, 9, 159, 333 Rate constant, 10 Recrystallization, 205 Relative humidity, 264 Reynolds number, 19, 93

generalized, 47 Rheological properties, 27

consistency coefficients, 27

flow behavior index, 28 Rheology, 25 Rheometers, 32

capillary tube, 32 coaxial cylinder, 36 cone and plate, 41 rotational, 36

Rising-falling film evaporator, 233 Rotational rheometer, 36

Sauter mean diameter, 292 Schmidt number, 19 Scraped-surface heat exchanger, 121 Sedimentation, 373

high concentration, 375 low concentration, 373

Sherwood number, 18 Single-effect evaporator, 237 Slurry properties, 59 Solid food properties, 65 Specific heat, 4, 100 Spray dryers, 284

co-current, 285 counter current, 285 mixed flow, 286 parallel flow, 287

Steam economy, 238 Steam infusion, 122 Steam jacket, 144 Stefan-Boltzmann's constant, 99 Stoke's law, 375 Storage, 20, 205

prediction of food quality, 20 Supercooling, 162 Survivor curve, 12

spores, 12 thiamine, 14

Suspension properties, 58

Tao solution, 187 Temperature distribution, 124

anomalous objects, 137 finite objects, 135 finite surface and internal resistance,

127

INDEX 415

negligible internal resistance, 125 negligible surface resistance, 126 numerical method, 142 tube flow, laminar, 108

Terminal velocity, 374 Texture, 76

parameters, 77 Texture profile analysis, 77 Thermal arrest time, 177 Thermal conductivity, 103

anisotropic system, 103 fibrous system, 103 isotropic system, 103 parallel to fibers, 105 perpendicular to fibers, 105 powdered food in a packed bed, 107 variable in freezing, 181

Thermal properties, 100 apparent specific heat, 193 diffusivity, 193 specific heat, 100 thermal conductivity, 93, 102

Thermodynamics, 4 potential, 5

Thermal-recompression, 248 Tien solution, 188 Triple-tube heat exchanger, 117 Tubular heat exchanger, 117 Tunnel dryer, 279

Unfrozen water fraction, 170 Uniformly retreating ice front, 317 Unsteady-state heat transfer, 124

agitated containers, 144 finite surface and internal resistance,

127 negligible internal resistance, 125 negligible surface resistance, 126

Viscoelastic, 75 parameter measurement, 76

Viscosity, 26 apparent, 43 concentrates, 59 suspensions, 59

Other A VI Books

AGRICUL TURAL ENERGETICS Fluck and Baird

DRYING CEREAL GRAINS Brooker, Bakker-Arkema, Hall

ENCYCLOPEDIA OF FOOD ENGINEERING Hall, Fa rrall, Rippen

ENCYCLOPEDIA OF FOOD TECHNOLOGY Vol. 2 Johnson and Peterson

FOOD DEHYDRATION Vol. 1 and 2 2nd Edition Van Arsdel, Copley, Morgan

FOOD ENGINEERING SYSTEMS Vol. 1 and 2 Farrall

FOOD PROCESSING WASTE MANAGEMENT Green and Kramer

FUNDAMENTALS OF ELECTRICITY FOR AGRICULTURE Gustafson

FUNDAMENT ALS OF FOOD ENGINEERING 3rd Edition Charm

GRAIN STORAGE: PART OF A SYSTEM Sinha and Muir

HANDLING, TRANSPORTATION AND STORAGE OF FRUITS AND VEGETABLES

Vol. 1 2nd Edition Ryall and Lipton Vol. 2 Ryall and Pentzer

AN INTRODUCTION TO AGRICULTURAL ENGINEERING Roth, Crow, Mahoney

NUTRITIONAL EVALUATION OF FOOD PROCESSING 2nd Edition Harris and Karmas

POSTHARVEST BIOLOGY AND HANDLING OF FRUITS AND VEGETABLES

Haard and Salunkhe POTATOES: PRODUCTION, STORING, PROCESSING

2nd Edition Smith PRINCIPLES OF FARM MACHINERY

3rd Edition Kepner, Bainer, Barger PROCESSING EQUIPMENT FOR AGRICULTURAL PRODUCTS

2nd Edition Hall and Davis SOYBEANS: CHEMISTRY AND TECHNOLOGY

Vol. 1 Revised Edition Smith and Circle THE TECHNOLOGY OF FOOD PRESERVATION

4th Edition Desrosier and Desrosier

aMlta 330 340

PSYCHROMETRIC CHART HIGH TEMPERATURES

SI METRIC UNITS

Barometric Pressure 101.325 kPa

SEA LEVEl

340 350 360 370 380 390 400 " .,' " .,:" .,:"

~ 8~ 90 ~100 ~ 120

rt' 1\ f"-- 1\ I'--- 1\ I I" 0.10

I'--- J f"--~ L l"- i ~" f1

t-

~~ '\ llr I'--- II ..

I'--- U 1'---t:,.11 I" ~I'--- II -

.~ i~ II o ' l\ f"-J::'-- I" I:::::, ~~

- ~

1'-1 1 I t- t11 \ ll. ~ li it--~ III II\~ 1I1 "- j I"~

-~

0.09

1\ liN IIi "i' I I lM I r

lj : ! N!\ " I

~~ 1 J . ....c _ ! 'J',. _,

J Ni i '" i !~ .,:'. 1 If-- lj" . IJ

t \ V~ 'I';~ , : 1/.;. . 'J:J. 'Il .--~ : - 1 ~" r C' I ' . il' , M ' I, ~:::ft'j +-t ~ t--i---tl-

~~ '~ , . r---I-- ~.' '!101 t-ii, ii' I '''.

~\/' ' • I : l:cJ -'- '

J ti ~: ILl 00 1 1

1 , -,-"rN 1 N7 J-i~ Ifi 111 ",I I 11 i 0 i .

! f-jJ'I\ IJ. 1 ' I N~ I '1 't---' ! \ r--.... -

~' .tL .l -t

~ J Jtl:::::,ll 1 111'--- 1 t-

"" , II 111'--- ~\ "- :.-\1 b

0.08

0.07

1/ N III I'--- f'... ~ ~ 11'--11 .1 1" u: 0.06

" lL l"- \ 1f"--/':.,

\ 7"- II I'--~ II 1'-1:::::,

1"", L 't!-T J '- I'--- II'

(~ r1' l"-- I'---lLl1 J If J'-.. Nt--, II li

II/~ , i 'II L\ 1"- Jj,

N tJ II

~ f" J f1 "I'--

.11"'1 J II v f"JL

/1"- j..J. \ J

I'--I" ri.

11/ l"C'-,

I'lL 1"-

l"--fL I"-~I\ ''I

C(

~ c

'" ~ 0.05 'i

i

60 Dry Bulb T.

FIG. A.5. PSYCHROMETRIC CHART

0.05

0.04

-b1h+-+-~t"4++-+ 0.03

0.02

+-rl'*.,.+:;+,.+:;:.h.lf..;:+.,.+,+-rffiM..,..+.:;+-,:4....:M..,...j..;::>I-...+-,.-I+h-I~,.lh+O.OO 70 80 90

lulb Temperature 'c 100 110 120

Copyright ©Carrier Corporation 1975 Cat. No. 794·005 Printed in U.S.A.

~ ~

" $ " co

<.l

I!! " 1;; '0 :;: