distribution system control and automation - emp.lbl.gov · what do we mean by distribution system...

28
January 12, 2018 1 Distribution System Control and Automation NREL and PNNL Distribution Systems and Planning Training for Midwest Public Utility Commissions, Jan. 16-17, 2018, St. Paul, MN Barry Mather and Kevin Schneider

Upload: doandang

Post on 04-May-2018

229 views

Category:

Documents


1 download

TRANSCRIPT

January 12, 2018 1January 12, 2018 1

Distribution System Control and

Automation

NREL and PNNLDistribution Systems and Planning Trainingfor Midwest Public Utility Commissions, Jan. 16-17, 2018, St. Paul, MN

Barry Mather and Kevin Schneider

January 12, 2018 2January 12, 2018 2

What do we mean by distribution system

control and automation?

DA provides benefits to utilities and customers promising:

• Shorter outages

• Improved system resilience during extreme weather

• More effective equipment maintenance

• More efficient use of line crews

• Improved integration of DERs

Distribution Automation (DA): uses sensors and switches with advanced control and

communications technologies to automate feeder switching; voltage and equipment

health monitoring; and outage, voltage and reactive power management.1

1 Distribution Automation: results from the smart grid investment grant program, DOE, Sept. 2016.

January 12, 2018 3January 12, 2018 3

Spectrum of DA – Simple Systems to

Complex System of Systems

Simple – Loop Recloser Automation

• Usually serve a single function

• Equipment controlled is bound locally

• Relative number of potential operating scenarios is limited/reasonable

Complex - Advanced Distribution Management System

• Serves many functions (co-optimization)

• Equipment controlled is vast and varied

• Systems are seamlessly integrated

January 12, 2018 4January 12, 2018 4

DA Example: Loop Recloser Automation

Goal: decrease outage duration/impact

Operation: Two adjacent feeders are upgraded with controllable

reclosers/circuit breakers including an automatic “tie” recloser. Following

a fault the line section containing the fault is identified and the circuit is

reconfigured to provide power to the most customers possible until the

fault can be cleared by line crews

January 12, 2018 5January 12, 2018 5

DA Example: Automatic Reconfiguration

Goal: decrease outage time, balance substation load, manage voltage

profiles, etc.

Operation: Sections of the circuit are connected to adjacent feeders

January 12, 2018 6January 12, 2018 6

DA Example: Conservation Voltage

Reduction (CVR)

Conservation Voltage Reduction (CVR): A voltage reduction scheme that flattens and

lowers the distribution system voltage profile to reduce overall energy consumption.

• Works best with circuits with high

amounts of resistive loads

• Normally performed by flattening the

system voltage using capacitor banks

and/or voltage regulators and lowering

the voltage by controlling a substation

Load Tap Changer

• Also related to central volt/VAR

optimization performed by a

distribution management system (DMS) Figure courtesy of Joe Paladino

January 12, 2018 7January 12, 2018 7

DA Example: Conservation Voltage

Reduction (CVR)

Conservation Voltage Reduction (CVR): A voltage reduction scheme that flattens and

lowers the distribution system voltage profile to reduce overall energy consumption.

• Works best with circuits with high

amounts of resistive loads

• Normally performed by flattening the

system voltage using capacitor banks

and/or voltage regulators and lowering

the voltage by controlling a substation

Load Tap Changer

• Also related to central volt/VAR

optimization performed by a

distribution management system (DMS)

Recloser 1

Recloser 2

Recloser 3

Cap Bank 1

Cap Bank 2

Regulator 1

Regulator 2

Regulator 3

Feeder Head – Breaker/Regulator DMS

PV Inverter

Capacitor Bank

Voltage Regulator

January 12, 2018 8January 12, 2018 8

DA Example of Value: CVR at AEP

• AEP’s Objective: Apply data from end-

of-line sensors to automatically control

line voltage regulators and load tap

changers at substation feeder head.

Also, coordinate capacitors to keep

power factor of the substation

transformer near unity (manage

substation efficiency)

Figure courtesy of Joe Paladino

January 12, 2018 9January 12, 2018 9

DA Example of Value: CVR Business Case

at Dominion Virginia Power

• Dominion VA Power’s Objective: Using

AMI (Smart Meters) as voltage sensors

to enable CVR.

• Value Determination: Of the multiple

value streams the enablement of CVR

provided the highest overall value

• This project is a good example of the

value stacking capability of DA/DMS

Figure courtesy of Joe Paladino

January 12, 2018 10January 12, 2018 10

• The “Whole Enchilada”

• Consist of a Seamlessly

Integrated “System of systems”

• Typically sharing common

platform

• Data used for management is

used for other analytics and

data from other systems (i.e.

billing) is leveraged for control

and optimization

• Application-wise: you’re

limited only by your

imagination

Advanced Distribution System Management Systems

(ADMS)

January 12, 2018 11January 12, 2018 11

• DERMS provide situational

awareness, control/dispatch and

monitoring of DERs in the

distribution system:

– PV with and without smart inverters

– Energy storage

– Electric vehicles

– May include demand responsive load

Distributed Energy Resource Management

System (DERMS)

January 12, 2018 12January 12, 2018 12

• Tools to model large scale distribution

systems for evaluating ADMS applications

• Integrate distribution system hardware for

power hardware-in-the-loop (PHIL)

experimentation

• Develop advanced visualization capability

ADMS Testbed

OMS

DERMS

A

Actual ADMS Deployment

January 12, 2018 13

ADMS Case Study

January 12, 2018 14January 12, 2018 14

Case Study: Feeder Voltage using Advanced

Inverters and a DMS

Objective:

Understand advanced inverter and distribution management system (DMS) control options for large (1–5 MW) distributed solar photovoltaics (PV) and their impact on distribution system operations for:

Active power only (baseline);

Local autonomous inverter control: power factor (PF) ≠1 and volt/VAR (Q(V)); and

Integrated volt/VAR control (IVVC)

Approaches:

Quasi-steady-state time-series (QSTS)

Statistics-based methods to reduce simulation times

Cost-benefit analysis to compare financial impacts of each control approach.

Energy Systems

Integration

Recloser 1

Recloser 2

Recloser 3

Cap Bank 1

Cap Bank 2

Regulator 1

Regulator 2

Regulator 3

Feeder Head – Breaker/Regulator DMS

Opal-RTReal-time Simulator

Grid Simulator

Grid Simulator

Visualization

PV Inverter

Cap/VR

Palmintier, B., Giraldez, J., Gruchalla, K., Gotseff, P., Nagarajan, A., Harris, T., ... Baggu, M. (2016). Feeder Voltage Regulation With High Penetration PV Using Advanced Inverters and a Distribution Management System: A Duke Energy Case Study (NREL Technical Report No. NREL/TP-5D00-65551). Golden, CO: National Renewable Energy Laboratory.

January 12, 2018 15January 12, 2018 15

The Problem!

January 12, 2018 16January 12, 2018 16

Study System Characteristics

Cap1: A 450-kVAR (150 kVAR per phase) VAR-controlled capacitor with temperature override. Cap2: A three-phase 450-kVAR capacitor (always disconnected unless controlled otherwise by IVVC)

Reg1: A set of three single-phase 167-kVA regulators with a voltage target of 123

Reg2: A set of two single-phase 114-kVA regulators on phase B and phase C with a voltage target of 123 V;

Reg3: A second set of two single-phase 76.2-kVA regulators on phase B and phase C with a voltage target of 124 V;

January 12, 2018 17January 12, 2018 17

PF limit

P generated

P curtailedQ

(k

VA

R)

S (k

VA

)

Q

P

PF = 0 night mode

Operating point

with active power curtailed

Operating point with

oversized inverter

0.97 1.03

Voltage (p.u.)R

eact

ive

Po

wer

(per

cen

t of

kV

A r

ati

ng)

0

0.95 1.051.0

-50%(absorbing)

50%(injecting)

Constant Power Factor Set Point

Volt/VAR Curves

Local Control Modes for the PV Inverter

January 12, 2018 18January 12, 2018 18

Simulation Scenarios Developed to Show

Value of Increasingly Complex ADMS

► Baseline

► Local PV Control (PF = 0.95)

► Local PV Control (Volt/VAR)

► Legacy IVVC* (Exclude PV)

► IVVC with PV @ PF 0.95

► IVVC (Central PV Control)

-5000

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

100 200 300 400 500 600 700P

V g

enera

tio

n (

kW

)

Time (Minutes)

31 August, 2014 (cloudy day)5 July, 2014 (clear day)

*IVVC = Integrated volt/var control, i.e. VVO

January 12, 2018 19January 12, 2018 19

Baseline Results

−4000

−2000

0

2000

4000

06AM 08AM 10AM 12PM 02PM 04PM 06PM 08PM

Saturday, April 5 − Baseline

Fe

ede

r K

W

Fe

ed

er

KV

AR

KV

AR

−500

0

500

1000

1500

2000

2500

Feeder KWFeeder KVAR

Feeder

0

1000

2000

3000

4000

5000

PV

KW

PV

KV

AR

KV

AR

−2000

−1000

0

1000

2000

KW GenerationKVAR

Solar PV Farm

0

1

0

1

2

3

4Cap1Cap2Total Cap Changes

Capacitor Status

Ca

p S

tatu

s

To

tal C

ap

Ch

ang

es

−15

−10

−5

0

5

10

15

Total Tap ChangesABC Tap Position

0

1

2

3

4

5Substation LTC

Ta

p P

ositio

n

To

tal Tap C

han

ge

s

−15

−10

−5

0

5

10

15

Total Tap ChangesReg1 AReg1 BReg1 CReg2 BReg2 CReg3 BReg3 C

0

5

10

15

Regulator Status

Ta

p P

ositio

n

Tota

l Tap

Cha

ng

es

−1.0

−0.5

0.0

0.5

1.0Over voltageUnder voltageTotal Violations

−1.0

−0.5

0.0

0.5

1.0

06AM 08AM 10AM 12PM 02PM 04PM 06PM 08PM

Volta

ge

Vio

lation

s

To

tal V

olta

ge V

iola

tion

s

−4000

−2000

0

2000

4000

06AM 08AM 10AM 12PM 02PM 04PM 06PM 08PM

Friday, August 15 − Baseline

Fe

ede

r K

W

Fe

ed

er

KV

AR

KV

AR

−2000

−1000

0

1000

2000Feeder KWFeeder KVAR

Feeder

0

1000

2000

3000

4000

5000

PV

KW

PV

KV

AR

KV

AR

−2000

−1000

0

1000

2000KW GenerationKVAR

Solar PV Farm

0

1

0

2

4

6

8

10

12Cap1Cap2Total Cap Changes

Capacitor Status

Ca

p S

tatu

s

To

tal C

ap

Ch

ang

es

−15

−10

−5

0

5

10

15

Total Tap ChangesABC Tap Position

0

5

10

15Substation LTC

Ta

p P

ositio

n

To

tal Ta

p C

ha

nge

s

−15

−10

−5

0

5

10

15

Total Tap ChangesReg1 AReg1 BReg1 CReg2 BReg2 CReg3 BReg3 C

0

20

40

60

Regulator Status

Ta

p P

ositio

n

Tota

l Ta

p C

ha

ng

es

0

50

100

150Over voltageUnder voltageTotal Violations

0

200

400

600

800

1000

06AM 08AM 10AM 12PM 02PM 04PM 06PM 08PM

Volta

ge

Vio

lation

s

To

tal V

olta

ge V

iola

tion

s

January 12, 2018 20January 12, 2018 20

Autonomous Local Control

−4000

−2000

0

2000

4000

06AM 08AM 10AM 12PM 02PM 04PM 06PM 08PM

Saturday, April 5 − Local PV Control (PF=0.95)

Fee

de

r K

W

Fe

ed

er

KV

AR

KV

AR

−500

0

500

1000

1500

2000

2500

Feeder KWFeeder KVARKW BaselineKVAR BaselineKW Delta from BaselineKVAR Delta from Baseline

Feeder

0

1000

2000

3000

4000

5000

PV

KW

PV

KV

AR

KV

AR

−2000

−1000

0

1000

2000

PV

KV

AR

KW GenerationKVARKVAR BaselineDelta from Baseline

Solar PV Farm

0

1

0

1

2

3

4Cap1Cap2Total Cap ChangesCap Changes BaselineDelta from Baseline

Capacitor Status

Ca

p S

tatu

s

To

tal C

ap C

ha

ng

es

−15

−10

−5

0

5

10

15

Total Tap ChangesTotal Tap Changes BaselineDelta from BaselineABC Tap Position

0

1

2

3

4

5Substation LTC

Ta

p P

ositio

n

To

tal Tap C

han

ge

s

−15

−10

−5

0

5

10

15

Total Tap ChangesTotal Tap Changes BaselineDelta from BaselineReg1 AReg1 BReg1 CReg2 BReg2 CReg3 BReg3 C

0

5

10

15

Regulator Status

Ta

p P

ositio

n

Tota

l Tap

Chan

ges

−1.0

−0.5

0.0

0.5

1.0Over voltageUnder voltageTotal ViolationsTotal Violations BaselineDelta from Baseline

−1.0

−0.5

0.0

0.5

1.0

06AM 08AM 10AM 12PM 02PM 04PM 06PM 08PM

Volta

ge

Vio

lation

s

To

tal V

olta

ge V

iola

tion

s

−4000

−2000

0

2000

4000

06AM 08AM 10AM 12PM 02PM 04PM 06PM 08PM

Friday, August 15 − Local PV Control (PF=0.95)

Fe

ede

r K

W

Fe

ed

er

KV

AR

KV

AR

−2000

−1000

0

1000

2000Feeder KWFeeder KVARKW BaselineKVAR BaselineKW Delta from BaselineKVAR Delta from Baseline

Feeder

0

1000

2000

3000

4000

5000

PV

KW

PV

KV

AR

KV

AR

−2000

−1000

0

1000

2000

PV

KV

AR

KW GenerationKVARKVAR BaselineDelta from Baseline

Solar PV Farm

0

1

0

2

4

6

8

10

12Cap1Cap2Total Cap ChangesCap Changes BaselineDelta from Baseline

Capacitor Status

Ca

p S

tatu

s

To

tal C

ap

Ch

ang

es

−15

−10

−5

0

5

10

15

Total Tap ChangesTotal Tap Changes BaselineDelta from BaselineABC Tap Position

0

5

10

15Substation LTC

Ta

p P

ositio

n

To

tal Ta

p C

ha

nge

s

−15

−10

−5

0

5

10

15

Total Tap ChangesTotal Tap Changes BaselineDelta from BaselineReg1 AReg1 BReg1 CReg2 BReg2 CReg3 BReg3 C

0

20

40

60

Regulator Status

Ta

p P

ositio

n

Tota

l Ta

p C

ha

ng

es

0

50

100

150Over voltageUnder voltageTotal ViolationsTotal Violations BaselineDelta from Baseline

0

200

400

600

800

1000

06AM 08AM 10AM 12PM 02PM 04PM 06PM 08PM

Volta

ge

Vio

lation

s

To

tal V

olta

ge V

iola

tion

s

January 12, 2018 21January 12, 2018 21

−4000

−2000

0

2000

4000

06AM 08AM 10AM 12PM 02PM 04PM 06PM 08PM

Saturday, April 5 − Local PV Control (Volt−Var)

Fee

de

r K

W

Fe

ed

er

KV

AR

KV

AR

−500

0

500

1000

1500

2000

2500

Feeder KWFeeder KVARKW BaselineKVAR BaselineKW Delta from BaselineKVAR Delta from Baseline

Feeder

0

1000

2000

3000

4000

5000

PV

KW

PV

KV

AR

KV

AR

−2000

−1000

0

1000

2000

PV

KV

AR

KW GenerationKVARKVAR BaselineDelta from Baseline

Solar PV Farm

0

1

0

1

2

3

4Cap1Cap2Total Cap ChangesCap Changes BaselineDelta from Baseline

Capacitor Status

Ca

p S

tatu

s

To

tal C

ap C

ha

ng

es

−15

−10

−5

0

5

10

15

Total Tap ChangesTotal Tap Changes BaselineDelta from BaselineABC Tap Position

0

1

2

3

4

5Substation LTC

Ta

p P

ositio

n

To

tal Tap C

han

ge

s

−15

−10

−5

0

5

10

15

Total Tap ChangesTotal Tap Changes BaselineDelta from BaselineReg1 AReg1 BReg1 CReg2 BReg2 CReg3 BReg3 C

0

5

10

15

Regulator Status

Ta

p P

ositio

n

Tota

l Tap

Chan

ges

−1.0

−0.5

0.0

0.5

1.0Over voltageUnder voltageTotal ViolationsTotal Violations BaselineDelta from Baseline

−1.0

−0.5

0.0

0.5

1.0

06AM 08AM 10AM 12PM 02PM 04PM 06PM 08PM

Volta

ge

Vio

lation

s

To

tal V

olta

ge V

iola

tion

s

−4000

−2000

0

2000

4000

06AM 08AM 10AM 12PM 02PM 04PM 06PM 08PM

Friday, August 15 − Local PV Control (Volt−Var)

Fee

de

r K

W

Fe

ed

er

KV

AR

KV

AR

−2000

−1000

0

1000

2000Feeder KWFeeder KVARKW BaselineKVAR BaselineKW Delta from BaselineKVAR Delta from Baseline

Feeder

0

1000

2000

3000

4000

5000

PV

KW

PV

KV

AR

KV

AR

−2000

−1000

0

1000

2000

PV

KV

AR

KW GenerationKVARKVAR BaselineDelta from Baseline

Solar PV Farm

0

1

0

2

4

6

8

10

12Cap1Cap2Total Cap ChangesCap Changes BaselineDelta from Baseline

Capacitor Status

Ca

p S

tatu

s

To

tal C

ap C

ha

ng

es

−15

−10

−5

0

5

10

15

Total Tap ChangesTotal Tap Changes BaselineDelta from BaselineABC Tap Position

0

5

10

15Substation LTC

Ta

p P

ositio

n

To

tal Tap C

han

ge

s

−15

−10

−5

0

5

10

15

Total Tap ChangesTotal Tap Changes BaselineDelta from BaselineReg1 AReg1 BReg1 CReg2 BReg2 CReg3 BReg3 C

0

20

40

60

Regulator Status

Ta

p P

ositio

n

Tota

l Tap

Chan

ges

0

50

100

150Over voltageUnder voltageTotal ViolationsTotal Violations BaselineDelta from Baseline

0

200

400

600

800

1000

06AM 08AM 10AM 12PM 02PM 04PM 06PM 08PM

Volta

ge

Vio

lation

s

To

tal V

olta

ge V

iola

tion

s

Local Volt/VAR Control

January 12, 2018 22January 12, 2018 22

−4000

−2000

0

2000

4000

06AM 08AM 10AM 12PM 02PM 04PM 06PM 08PM

Saturday, April 5 − Legacy IVVC (exclude PV)

Fee

de

r K

W

Fe

ed

er

KV

AR

KV

AR

−500

0

500

1000

1500

2000

2500

Feeder KWFeeder KVARKW BaselineKVAR BaselineKW Delta from BaselineKVAR Delta from Baseline

Feeder

0

1000

2000

3000

4000

5000

PV

KW

PV

KV

AR

KV

AR

−2000

−1000

0

1000

2000

PV

KV

AR

KW GenerationKVARKVAR BaselineDelta from Baseline

Solar PV Farm

0

1

0

1

2

3

4Cap1Cap2Total Cap ChangesCap Changes BaselineDelta from Baseline

Capacitor Status

Ca

p S

tatu

s

To

tal C

ap C

ha

ng

es

−15

−10

−5

0

5

10

15

Total Tap ChangesTotal Tap Changes BaselineDelta from BaselineABC Tap Position

0

1

2

3

4

5Substation LTC

Ta

p P

ositio

n

To

tal Tap C

han

ge

s

−15

−10

−5

0

5

10

15

Total Tap ChangesTotal Tap Changes BaselineDelta from BaselineReg1 AReg1 BReg1 CReg2 BReg2 CReg3 BReg3 C

0

5

10

15

Regulator Status

Ta

p P

ositio

n

Tota

l Tap

Chan

ges

−1.0

−0.5

0.0

0.5

1.0Over voltageUnder voltageTotal ViolationsTotal Violations BaselineDelta from Baseline

−1.0

−0.5

0.0

0.5

1.0

06AM 08AM 10AM 12PM 02PM 04PM 06PM 08PM

Volta

ge

Vio

lation

s

To

tal V

olta

ge V

iola

tion

s

−4000

−2000

0

2000

4000

06AM 08AM 10AM 12PM 02PM 04PM 06PM 08PM

Friday, August 15 − Legacy IVVC (exclude PV)

Fe

ede

r K

W

Fe

ed

er

KV

AR

KV

AR

−2000

−1000

0

1000

2000Feeder KWFeeder KVARKW BaselineKVAR BaselineKW Delta from BaselineKVAR Delta from Baseline

Feeder

0

1000

2000

3000

4000

5000

PV

KW

PV

KV

AR

KV

AR

−2000

−1000

0

1000

2000

PV

KV

AR

KW GenerationKVARKVAR BaselineDelta from Baseline

Solar PV Farm

0

1

0

2

4

6

8

10

12Cap1Cap2Total Cap ChangesCap Changes BaselineDelta from Baseline

Capacitor Status

Ca

p S

tatu

s

To

tal C

ap C

ha

ng

es

−15

−10

−5

0

5

10

15

Total Tap ChangesTotal Tap Changes BaselineDelta from BaselineABC Tap Position

0

5

10

15Substation LTC

Ta

p P

ositio

n

To

tal Ta

p C

ha

nge

s

−15

−10

−5

0

5

10

15

Total Tap ChangesTotal Tap Changes BaselineDelta from BaselineReg1 AReg1 BReg1 CReg2 BReg2 CReg3 BReg3 C

0

20

40

60

Regulator Status

Ta

p P

ositio

n

Tota

l Tap

Cha

ng

es

0

50

100

150Over voltageUnder voltageTotal ViolationsTotal Violations BaselineDelta from Baseline

0

200

400

600

800

1000

06AM 08AM 10AM 12PM 02PM 04PM 06PM 08PM

Volta

ge

Vio

lation

s

To

tal V

olta

ge V

iola

tion

s

Legacy DMS Integrated Volt/VAR Control

with LTC, VR and Caps Only

January 12, 2018 23January 12, 2018 23

−4000

−2000

0

2000

4000

06AM 08AM 10AM 12PM 02PM 04PM 06PM 08PM

Saturday, April 5 − IVVC (central PV control)

Fee

de

r K

W

Fe

ed

er

KV

AR

KV

AR

−500

0

500

1000

1500

2000

2500

Feeder KWFeeder KVARKW BaselineKVAR BaselineKW Delta from BaselineKVAR Delta from Baseline

Feeder

0

1000

2000

3000

4000

5000

PV

KW

PV

KV

AR

KV

AR

−2000

−1000

0

1000

2000

PV

KV

AR

KW GenerationKVARKVAR BaselineDelta from Baseline

Solar PV Farm

0

1

0

1

2

3

4Cap1Cap2Total Cap ChangesCap Changes BaselineDelta from Baseline

Capacitor Status

Ca

p S

tatu

s

To

tal C

ap C

ha

ng

es

−15

−10

−5

0

5

10

15

Total Tap ChangesTotal Tap Changes BaselineDelta from BaselineABC Tap Position

0

1

2

3

4

5Substation LTC

Ta

p P

ositio

n

To

tal Tap C

han

ge

s−15

−10

−5

0

5

10

15

Total Tap ChangesTotal Tap Changes BaselineDelta from BaselineReg1 AReg1 BReg1 CReg2 BReg2 CReg3 BReg3 C

0

5

10

15

Regulator Status

Ta

p P

ositio

n

Tota

l Tap

Chan

ges

−1.0

−0.5

0.0

0.5

1.0Over voltageUnder voltageTotal ViolationsTotal Violations BaselineDelta from Baseline

−1.0

−0.5

0.0

0.5

1.0

06AM 08AM 10AM 12PM 02PM 04PM 06PM 08PM

Volta

ge

Vio

lation

s

To

tal V

olta

ge V

iola

tion

s

−4000

−2000

0

2000

4000

06AM 08AM 10AM 12PM 02PM 04PM 06PM 08PM

Friday, August 15 − IVVC (central PV control)

Fe

ede

r K

W

Fe

ed

er

KV

AR

KV

AR

−2000

−1000

0

1000

2000Feeder KWFeeder KVARKW BaselineKVAR BaselineKW Delta from BaselineKVAR Delta from Baseline

Feeder

0

1000

2000

3000

4000

5000

PV

KW

PV

KV

AR

KV

AR

−2000

−1000

0

1000

2000

PV

KV

AR

KW GenerationKVARKVAR BaselineDelta from Baseline

Solar PV Farm

0

1

0

2

4

6

8

10

12Cap1Cap2Total Cap ChangesCap Changes BaselineDelta from Baseline

Capacitor Status

Ca

p S

tatu

s

To

tal C

ap

Ch

ang

es

−15

−10

−5

0

5

10

15

Total Tap ChangesTotal Tap Changes BaselineDelta from BaselineABC Tap Position

0

5

10

15Substation LTC

Ta

p P

ositio

n

To

tal Ta

p C

ha

nge

s

−15

−10

−5

0

5

10

15

Total Tap ChangesTotal Tap Changes BaselineDelta from BaselineReg1 AReg1 BReg1 CReg2 BReg2 CReg3 BReg3 C

0

20

40

60

Regulator Status

Ta

p P

ositio

n

Tota

l Ta

p C

ha

ng

es

0

50

100

150Over voltageUnder voltageTotal ViolationsTotal Violations BaselineDelta from Baseline

0

200

400

600

800

1000

06AM 08AM 10AM 12PM 02PM 04PM 06PM 08PM

Volta

ge

Vio

lation

s

To

tal V

olta

ge V

iola

tion

s

Integrating Advanced Inverters into IVVC

January 12, 2018 24January 12, 2018 24

Feeder 40-day results of number of

operations of voltage regulation equipment

January 12, 2018 25January 12, 2018 25

Feeder 40-day results of number of load-

voltage violations

January 12, 2018 26January 12, 2018 26

Summary Comparison of Annualized

Scenarios

Scenario

BaselineLocalPVControl

(PF=0.95)

LocalPVControl(Volt/VAR)LegacyIVVC(ExcludePV)

IVVCwithPV(PF=0.95)

IVVC(CentralPVControl)

PVMode LTC

Regulators

Cap

acitors

PV LTC Regulators Capacitors Total Over Under

Default - - - - 5,043 19,160 125 24,328 1.47% 0.00%

PF=0.95 - - - - 5,063 19,943 505 25,511 1.48% 0.00%

Q(V) - - - - 5,087 19,857 541 25,485 1.44% 0.00%

Default Y Y Y - 2,869 2,943 1,863 7,675 0.02% 0.00%

PF=0.95 Y Y Y - 2,498 1,888 1,409 5,795 0.01% 0.00%

IVVCforreactivepower

Y Y Y Y 2,312 2,698 1,151 6,161 0.05% 0.02%

IVVCControl AnnualizedEquipmentOperations VoltageChallenges

January 12, 2018 27January 12, 2018 27

Case Study: Conclusion

► This work Illustrates the potential for coordinated control of voltage management equipment,

such as the central DMS-controlled IVVC by:

◼ Providing substantial improvement in distribution operations with large-scale PV systems

◼ Reducing regulator operations

◼ Decreasing the number of voltage challenges

► The preliminary cost-benefit analysis (not detailed in this presentation) showed operational

cost savings for the IVVC scenarios that were:

◼ Partially driven by reduced wear and tear on utility regulating equipment,

◼ Dominated by the use of CVR/Demand reduction objective

► Work needed in the area of integrating advanced inverters as controllable resources into

IVVC optimization strategies

◼ Event triggered operation of DMS IVVC

◼ Power factor set point in place of reactive power set point

January 12, 2018 28

Thank you

Questions?