digital fabrication a new manufacturing concept

14
Manufacturing Printed Electronics Approaches to set up Digital Fabrication Lines Digital Fabrication – State of the Art in Chemnitz Diginova Dissemination Event @ Rapid Pro 2014 Eindhoven, February 26, 2014 Printing Beyond Color © Fraunhofer Prof. Dr. Reinhard R. Baumann © Fraunhofer ENAS 2014 Lines Reinhard R. Baumann Chemnitz University of Technology Chair of Digital Printing Fraunhofer Gesellschaft Institute for Electronic Nanosystems Chemnitz Business Unit Green & Wireless Head of Dpt. Printed Functionalities

Upload: eddy-castro

Post on 09-Mar-2016

220 views

Category:

Documents


2 download

DESCRIPTION

 

TRANSCRIPT

� Manufacturing Printed Electronics

� Approaches to set up Digital Fabrication Lines

Digital Fabrication –

State of the Art in Chemnitz

Diginova Dissemination Event

@ Rapid Pro 2014

Eindhoven, February 26, 2014

Printing Beyond Color

© Fraunhofer Prof. Dr. Reinhard R. Baumann © Fraunhofer ENAS 2014

Lines

Reinhard R. BaumannChemnitz University of Technology

Chair of Digital Printing

Fraunhofer GesellschaftInstitute for Electronic Nanosystems Chemnitz

Business Unit Green & WirelessHead of Dpt. Printed Functionalities

The Vision Printed Smart Objects ���� Internet of Things

MemoryThin film memoriesPrinted memories

Silicon electronicsCommunication protocolMeasurement functionality

Digital logicOrganic FETsElectrolytic transistorsHigh frequency rectifiersPower amplifiers

communication with acomputer system

©2010 Thin Film Electronics AB

© Fraunhofer Prof. Dr. Reinhard R. Baumann © Fraunhofer ENAS 2014

SensorsPressure sensorsKeyboards

DisplayElectrochromicElectrophoretic (e-ink)EL; OLED

Power sourcesBatteries; Solar cells;Fuel cells

Passive components

AntennaeUHF & microwave dipoles

printed keyboard

printed sensor

©2009 UCSD

printed signageelement printed power source

©2011 Fraunhofer ENAS

RFID technologynear field technology

Inkjet

Functionality

Formation

RFID

Printing Competencies in Chemnitz

© Fraunhofer Prof. Dr. Reinhard R. Baumann © Fraunhofer ENAS 2014

Inkjet

Technikum

Supra Balls

Machinery

Devices

µ Fluidics Energy Systems

virtu

al

Data

C A D

Digital Fabrication Process Chain

© Fraunhofer Prof. Dr. Reinhard R. Baumann © Fraunhofer ENAS 2014

ink Pattern

Finishing

Product

physic

al

Substrate

physic

al

Digital PrintingLaser Patterning

TYPICAL DF TECHNOLOGIES

�DIGITAL PRINTING

Digital Fabrication Advantages

DIGITAL FABRICATION

� Efficient product run length ≥1

� Change over time ~0

� Small batch sizes up to industrial production

© Fraunhofer Prof. Dr. Reinhard R. Baumann © Fraunhofer ENAS 2014

�DIGITAL PRINTING�LASER PROCESSING

�THEIR CHAINING�CHAINING WITH ANLAOGUE

TECHNOLOGIES

production

� Just-in-time production

� Smallest variation “on-the-fly”, i.e. for personalization and customization

Printing competence in Chemnitz

Chemnitz Inkjet Technikum ���� Lab2Fab

© Fraunhofer Prof. Dr. Reinhard R. Baumann © Fraunhofer ENAS 2014

Autodrop

Microdrop

1

XYZ

DMP3000

Dimatix

16 / 128

XYZ

XYZ-MDS

(iTi / mBraun / Dimatix)

4 x 256

XYZ

DMP2831

Dimatix

16

XYZ

SX

SE

D

INERT

Dimatix

XAAR

16 / 128

XYZ

Gravure Printing + Rotary Screen Printing +

Printing competence in Chemnitz

Chemnitz Inkjet Technikum ���� Lab2Fab

© Fraunhofer Prof. Dr. Reinhard R. Baumann © Fraunhofer ENAS 2014

gravurMAN

(Xaar printheads)

1001

R2R

microFLEX

3DMicromac

multi-technology

web fed

microFLEX

(Dimatix SCANPAQ)

2 x 2 x 256

R2R

microFLEX:

the Copper Setup

© Fraunhofer Prof. Dr. Reinhard R. Baumann © Fraunhofer ENAS 2014

Coating Module Post Treatment Module

Material Deposition Drying Functionality Formation

Photonic Sintering

microFLEX: Our Copper Setup & Process

Shown @

© Fraunhofer Prof. Dr. Reinhard R. Baumann © Fraunhofer ENAS 2014

Screen/Inkjet Printing IR Drying Conductive Copper Pattern

2012

Digital Functionality Formation

Conventional Pulse Composite Pulse

© Fraunhofer Prof. Dr. Reinhard R. Baumann © Fraunhofer ENAS 2014

Equivalent energy but composite pulse maintains higher surface temperature

� Commercial Application: smart packaging

Printed Wireless Applications Multidirectional 3D Antennas @ 5.8 GHz for the Internet of Things

R. Zichner and R. R. Baumann. “3‐D transponder antennas for future SHF

RFID applications.” Advances in Radio Science, vol. 9, pp. 401‐405, 2011

Printed 3D Antenna manufacturing:

- planar printing (e.g. screen printing on paper substrate)

- folding

� 3D antenna structure

© Fraunhofer Prof. Dr. Reinhard R. Baumann © Fraunhofer ENAS 2014

Folding2 D 3 D

Silver, DS 20 µm

Silver, DS 20 µm

35 µm

Inkjet Printed TFT

© Fraunhofer Prof. Dr. Reinhard R. Baumann © Fraunhofer ENAS 2014

• 5600 devices

• Yield 50 % so far

200µm

Printed Polymeric Microsieves

© Fraunhofer Prof. Dr. Reinhard R. Baumann © Fraunhofer ENAS 2014

Pore forming ink

Polymer solution

100 µm

100 µm

200µm

S. F. Jahn et al.: Inkjet fabricationmethod for polymer microsieves.Langmuir, 2009, 25 (1), 606–610.

… thank you for your attention

Partner of:

Dpt. Printed Functionalities

© Fraunhofer Prof. Dr. Reinhard R. Baumann © Fraunhofer ENAS 2014

Prof. Dr. Reinhard R. Baumann

[email protected]

Institute for Print and Media Technology

Dpt. Digital Printing and

Imaging Technology