digital control - lecture 1homes.et.aau.dk/yang/de5/dc/mm1.pdf · qtiquestions • how to represent...

28
Outline Digital Control Lecture 1 Lecture 1 Digital Control

Upload: duongxuyen

Post on 19-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Outline

Digital ControlLecture 1

Lecture 1 Digital Control

Q tiQuestions

• How to represent digital signals & systems?

• How to obtain an equivalent digital representation of a analog system?representation of a analog system?

• How to analyze digital signal/system features?

• How to develop a digital controller? 

• What needs to be concerned when implementing a digital controller?implementing a digital controller?

Outline

Outline

1 Discrete Transfer Functions

2 Discretization

Lecture 1 Digital Control

Discrete Transfer FunctionsDiscretization

Exercises

z-TransformTransfer Function

Outline

1 Discrete Transfer Functionsz-TransformTransfer Function

2 DiscretizationIntroducing Zero Order HoldNumerical IntegrationZero-Pole MatchingStability

Lecture 1 Digital Control

Discrete Transfer FunctionsDiscretization

Exercises

z-TransformTransfer Function

Definition of z-transform

For a discrete signal e[k] with values e0, e1, . . . , ek , . . . thez-transform is given by:

z-Transform

E (z)=̂Z{e[k]}

=̂∞∑

k=−∞

ekz−k

Discrete signal can be obtained by sampling a continuous signalwith a sample time T

Lecture 1 Digital Control

Discrete Transfer FunctionsDiscretization

Exercises

z-TransformTransfer Function

Description of a structured signal

Given a structural relationship between sequences a z-domainequivalent can be obtained:

Sequences

∞∑

k=−∞

ekz−k = 1 + a1

∞∑

k=−∞

ek−1z−k

z-domain

E (z) =1

1 − a1z−1

Lecture 1 Digital Control

Discrete Transfer FunctionsDiscretization

Exercises

z-TransformTransfer Function

Discrete transfer functions

Given input signal E (z) and output signal U(z) a transfer functiondescribing their relationship can be given as:

Transfer function

H(z) =U(z)

E (z)

Lecture 1 Digital Control

Discrete Transfer FunctionsDiscretization

Exercises

z-TransformTransfer Function

Discrete transfer functions - continued

Transfer function expressions

H(z) =b0 + b1z

−1 + · · · + bmz−m

1 + a1z−1 + a2z−2 + · · · + anz−n

=b0z

n + b1zn−1 + · · · + bmzn−m

zn + a1zn−1 + a2zn−2 + · · · + an

n ≥ m

=b(z)

a(z)

Matlab

sys=tf(num,den,Ts)

Lecture 1 Digital Control

Discrete Transfer FunctionsDiscretization

Exercises

z-TransformTransfer Function

Discrete System Models

Zeros and poles - General formula

H(z) =U(z)

E (z)= K

∏mk=1

(z − zk)∏ni=1

(z − pi )

Matlab

sys=zpk(z,p,k,Ts)

Lecture 1 Digital Control

Discrete Transfer FunctionsDiscretization

Exercises

Introducing Zero Order HoldNumerical IntegrationZero-Pole MatchingStability

Outline

1 Discrete Transfer Functionsz-TransformTransfer Function

2 DiscretizationIntroducing Zero Order HoldNumerical IntegrationZero-Pole MatchingStability

Lecture 1 Digital Control

Discrete Transfer FunctionsDiscretization

Exercises

Introducing Zero Order HoldNumerical IntegrationZero-Pole MatchingStability

Basic Digital Control System

Ref. +

−Feedforward D/A Act. Plant

Disturbances

Output

SensorA/DFeedback

Clock

Lecture 1 Digital Control

Discrete Transfer FunctionsDiscretization

Exercises

Introducing Zero Order HoldNumerical IntegrationZero-Pole MatchingStability

Zero Order Hold effect on continuous system

Basic property of ZOH

Input to ZOH

Unit pulse, δ(kT )

Output from ZOH

Square pulse, 1(kT ) − 1(kT − T )

Effect on continuous system G (s) after ZOH

Y (s) =1

sG (s) − e−Ts 1

sG (s)

=(1 − e−Ts

) G (s)

s

Lecture 1 Digital Control

Discrete Transfer FunctionsDiscretization

Exercises

Introducing Zero Order HoldNumerical IntegrationZero-Pole MatchingStability

Compensating for ZOH effect in z-transform

Incorporating ZOH in z-transform

G (z) = Z {Y (kT )}

= Z

{(1 − e−Ts

) G (s)

s

}

Converting to z-domain

G (z) =(1 − z−1

)Z

{G (s)

s

}

Lecture 1 Digital Control

Discrete Transfer FunctionsDiscretization

Exercises

Introducing Zero Order HoldNumerical IntegrationZero-Pole MatchingStability

ZOH discretization example

Continuous system

G (s) =a

s + a

ZOH equivalent

G (z) =1 − e−aT

z − e−aT

Lecture 1 Digital Control

Discrete Transfer FunctionsDiscretization

Exercises

Introducing Zero Order HoldNumerical IntegrationZero-Pole MatchingStability

Numerical integration of differential equations

Continuous system

G (s) =U(s)

E (s)=

a

s + a

u̇(t) + au(t) = ae(t)

Solving differential equation

u(t) = u(kT − T ) +

∫ kT

kT−T

−au(τ) + ae(τ)dτ

Lecture 1 Digital Control

Discrete Transfer FunctionsDiscretization

Exercises

Introducing Zero Order HoldNumerical IntegrationZero-Pole MatchingStability

Approximations of s for different rules

Forward rectangular rule

s ≈z − 1

T

Backward rectangular rule

s ≈z − 1

Tz

Trapezoidal rule

s ≈2

T

z − 1

z + 1

Lecture 1 Digital Control

Discrete Transfer FunctionsDiscretization

Exercises

Introducing Zero Order HoldNumerical IntegrationZero-Pole MatchingStability

Direct mapping of zeros/poles

Pole mapping

sp = −a + jb ⇒zp = e−aT∠bT

Zero mapping (finite)

sz = −a + jb ⇒zz = e−aT∠bT

Lecture 1 Digital Control

Discrete Transfer FunctionsDiscretization

Exercises

Introducing Zero Order HoldNumerical IntegrationZero-Pole MatchingStability

Direct mapping of zeros/poles - continued

Zero mapping (infinite, no delay)

sz = ∞ ⇒zz = −1

Zero mapping (infinite, with n sample delay)

sz = ∞ ⇒zz = ∞ (n zeros)

sz = ∞ ⇒zz = −1 (remaining zeros)

Lecture 1 Digital Control

Discrete Transfer FunctionsDiscretization

Exercises

Introducing Zero Order HoldNumerical IntegrationZero-Pole MatchingStability

The Discrete z-plane

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.9

0.80.70.60.50.40.3

0.2

0.1

π/T

0.9π/T

0.8π/T

0.7π/T

0.6π/T0.5π/T

0.4π/T

0.3π/T

0.2π/T

0.1π/T

π/T

0.9π/T

0.8π/T

0.7π/T

0.6π/T0.5π/T

0.4π/T

0.3π/T

0.2π/T

0.1π/T

Lecture 1 Digital Control

Discrete Transfer FunctionsDiscretization

Exercises

Introducing Zero Order HoldNumerical IntegrationZero-Pole MatchingStability

Direct mapping of zeros/poles - continued

Gain matching

H(s)|s=ω0= H(z)|z=eTω0

ω0 is usually 0 in order to match steady-state gains

Lecture 1 Digital Control

Discrete Transfer FunctionsDiscretization

Exercises

Introducing Zero Order HoldNumerical IntegrationZero-Pole MatchingStability

Discretization in Matlab

Matlab

sysd=c2d(sys,Ts,method)

method:

’zoh’: Zero order hold

’foh’: First order hold (academic)

’tustin’: Bilinear approximation (trapezoidal)

’prewarp’: Tustin with a specific frequency used for prewarp

’matched’: Matching continuous poles with discrete

Lecture 1 Digital Control

Discrete Transfer FunctionsDiscretization

Exercises

Introducing Zero Order HoldNumerical IntegrationZero-Pole MatchingStability

Stability - Impulse Response

Continuous systems

The system is BIBO stable if and only if the impulse response h(t)is absolutely integrable

Discrete systems

The system is BIBO stable if and only if the impulse response h[n]is absolutely summable

Lecture 1 Digital Control

Discrete Transfer FunctionsDiscretization

Exercises

Introducing Zero Order HoldNumerical IntegrationZero-Pole MatchingStability

Stability - Characteristic Roots

Asymptotic internal stability

Continuous systems

All poles of the system are strictly in the LHP of the s-plane

Discrete systems

All poles of the system are strictly inside the unit circle of thez-plane

Lecture 1 Digital Control

Discrete Transfer FunctionsDiscretization

Exercises

Book: Digital Control

Problem 6.3 a.i-a.vi+b (use Matlab when possible)

Problem 6.4 a.i-a.vi+b (use Matlab when possible)

Lecture 1 Digital Control