diffraction theory - university of louisville

74
Diffraction Theory 1

Upload: others

Post on 01-May-2022

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Diffraction Theory - University of Louisville

Diffraction Theory

1

Page 2: Diffraction Theory - University of Louisville

2

Page 3: Diffraction Theory - University of Louisville

3

𝑟𝑟1

𝑟𝑟2

𝐞𝐞 𝑟𝑟, 𝑡𝑡 = 𝐞𝐞1 𝑟𝑟, 𝑡𝑡

𝐞𝐞 𝑟𝑟, 𝑡𝑡

𝐞𝐞 𝑟𝑟, 𝑡𝑡 = 𝐞𝐞0,1𝑟𝑟1𝑒𝑒𝑖𝑖 𝑘𝑘 𝑟𝑟1− 𝜔𝜔 𝑡𝑡 + 𝜀𝜀1 +

𝐞𝐞0,2

𝑟𝑟2𝑒𝑒𝑖𝑖 𝑘𝑘 𝑟𝑟2− 𝜔𝜔 𝑡𝑡 + 𝜀𝜀2

+ 𝐞𝐞2 𝑟𝑟, 𝑡𝑡

𝑟𝑟3

+𝐞𝐞0,3

𝑟𝑟3𝑒𝑒𝑖𝑖 𝑘𝑘 𝑟𝑟3 − 𝜔𝜔 𝑡𝑡 + 𝜀𝜀3

𝑟𝑟4

+ 𝐞𝐞3 𝑟𝑟, 𝑡𝑡 + 𝐞𝐞4 𝑟𝑟, 𝑡𝑡

𝑟𝑟5

+𝐞𝐞0,4

𝑟𝑟4𝑒𝑒𝑖𝑖 𝑘𝑘 𝑟𝑟4 −𝜔𝜔 𝑡𝑡 + 𝜀𝜀4

+ 𝐞𝐞5 𝑟𝑟, 𝑡𝑡

+𝐞𝐞0,5

𝑟𝑟5𝑒𝑒𝑖𝑖 𝑘𝑘 𝑟𝑟5 − 𝜔𝜔 𝑡𝑡 + 𝜀𝜀5

= ᅵ𝑖𝑖

𝐞𝐞𝑖𝑖 𝑟𝑟, 𝑡𝑡

+⋯

+ 


= ᅵ𝑖𝑖

𝐞𝐞0,𝑖𝑖

𝑟𝑟𝑖𝑖𝑒𝑒𝑖𝑖 𝑘𝑘 𝑟𝑟𝑖𝑖 −𝜔𝜔 𝑡𝑡 + 𝜀𝜀𝑖𝑖

Page 4: Diffraction Theory - University of Louisville

4

Huygens-Fresnel Principle

Page 5: Diffraction Theory - University of Louisville

5

𝐞𝐞 𝑌𝑌,𝑍𝑍, 𝑡𝑡 = ᅵ𝑖𝑖

𝐞𝐞0,𝑖𝑖

𝑟𝑟𝑖𝑖𝑒𝑒𝑖𝑖 𝑘𝑘 𝑟𝑟𝑖𝑖 − 𝜔𝜔 𝑡𝑡 + 𝜀𝜀𝑖𝑖

= ᅵ𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝

𝐞𝐞0 𝑊𝑊, 𝑧𝑧𝑟𝑟 𝑊𝑊, 𝑧𝑧

𝑒𝑒𝑖𝑖 𝑘𝑘 𝑟𝑟 𝑊𝑊, 𝑧𝑧 − 𝜔𝜔 𝑡𝑡 + 𝜀𝜀 𝑊𝑊, 𝑧𝑧 𝑑𝑑𝑊𝑊 𝑑𝑑𝑧𝑧

𝑟𝑟 𝑊𝑊, 𝑧𝑧 = 𝑠𝑠2 + 𝑌𝑌 − 𝑊𝑊 2 + 𝑍𝑍 − 𝑧𝑧 2

𝑟𝑟

𝑠𝑠

𝑍𝑍

𝑌𝑌

𝑧𝑧

𝑊𝑊

𝑖𝑖 𝑊𝑊, 𝑧𝑧

ᅵ𝑖𝑖

ᅵ𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝

𝑑𝑑𝑊𝑊 𝑑𝑑𝑧𝑧

Page 6: Diffraction Theory - University of Louisville

6

𝑟𝑟 𝑊𝑊, 𝑧𝑧 ≅ 𝑠𝑠 1 +𝜃𝜃2

2

Fresnel Approximation𝑘𝑘 𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃4

8≪ 𝜋𝜋

= 𝑠𝑠 1 +𝜃𝜃2

2−𝜃𝜃4

8+𝜃𝜃6

16−

5 𝜃𝜃8

128+ ⋯

𝑟𝑟 𝑊𝑊, 𝑧𝑧 = 𝑠𝑠2 + 𝑌𝑌 − 𝑊𝑊 2 + 𝑍𝑍 − 𝑧𝑧 2 = 𝑠𝑠 1 +𝑌𝑌 − 𝑊𝑊 2

𝑠𝑠2+

𝑍𝑍 − 𝑧𝑧 2

𝑠𝑠2 ≡ 𝑠𝑠 1 + 𝜃𝜃2

𝜃𝜃2 ≡𝑌𝑌 − 𝑊𝑊 2

𝑠𝑠2+

𝑍𝑍 − 𝑧𝑧 2

𝑠𝑠2

Fresnel Diffraction

= 𝑠𝑠 +𝑌𝑌2 + 𝑍𝑍2

2 𝑠𝑠−

𝑌𝑌 𝑊𝑊 + 𝑍𝑍 𝑧𝑧𝑠𝑠

+𝑊𝑊2 + 𝑧𝑧2

2 𝑠𝑠

= 𝑠𝑠 1 +𝑌𝑌 − 𝑊𝑊 2

2 𝑠𝑠2+

𝑍𝑍 − 𝑧𝑧 2

2 𝑠𝑠2

Page 7: Diffraction Theory - University of Louisville

7

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 𝑊𝑊2 + 𝑧𝑧2

2 𝑠𝑠≪ 𝜋𝜋

𝑚𝑚𝑚𝑚𝑚𝑚 𝑊𝑊2 + 𝑧𝑧2

𝜆𝜆 𝑠𝑠≪ 1

Fraunhofer Approximation

Fraunhofer Diffractionalso known as Far-Field Diffraction

𝑟𝑟 𝑊𝑊, 𝑧𝑧 ≅ 𝑠𝑠 +𝑌𝑌2 + 𝑍𝑍2

2 𝑠𝑠−

𝑌𝑌 𝑊𝑊 + 𝑍𝑍 𝑧𝑧𝑠𝑠

+𝑊𝑊2 + 𝑧𝑧2

2 𝑠𝑠

Fresnel Approximation𝑘𝑘 𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃4

8≪ 𝜋𝜋

Page 8: Diffraction Theory - University of Louisville

8

𝐞𝐞 𝑌𝑌,𝑍𝑍, 𝑡𝑡 = ᅵ𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝

𝐞𝐞0 𝑊𝑊, 𝑧𝑧𝑟𝑟 𝑊𝑊, 𝑧𝑧

𝑒𝑒𝑖𝑖 𝑘𝑘 𝑟𝑟 𝑊𝑊, 𝑧𝑧 − 𝜔𝜔 𝑡𝑡 + 𝜀𝜀 𝑊𝑊, 𝑧𝑧 𝑑𝑑𝑊𝑊 𝑑𝑑𝑧𝑧

≅ ᅵ𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝

𝐞𝐞0 𝑊𝑊, 𝑧𝑧𝑅𝑅

𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 − 𝑌𝑌 𝑊𝑊 + 𝑍𝑍 𝑧𝑧𝑅𝑅 −𝜔𝜔 𝑡𝑡 + 𝜀𝜀 𝑊𝑊, 𝑧𝑧 𝑑𝑑𝑊𝑊 𝑑𝑑𝑧𝑧

=𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅ᅵ

𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝

𝐞𝐞0 𝑊𝑊, 𝑧𝑧 𝑒𝑒𝑖𝑖 𝜀𝜀 𝑊𝑊,𝑧𝑧 𝑒𝑒− 𝑖𝑖 𝑘𝑘 𝑌𝑌 𝑊𝑊 + 𝑍𝑍 𝑧𝑧𝑅𝑅 𝑑𝑑𝑊𝑊 𝑑𝑑𝑧𝑧

𝑟𝑟 𝑊𝑊, 𝑧𝑧 = 𝑠𝑠2 + 𝑌𝑌 − 𝑊𝑊 2 + 𝑍𝑍 − 𝑧𝑧 2

𝑅𝑅2 ≡ 𝑠𝑠2 + 𝑌𝑌2 + 𝑍𝑍2

= 𝑅𝑅2 − 2 𝑌𝑌 𝑊𝑊 − 2 𝑍𝑍 𝑧𝑧 + 𝑊𝑊2 + 𝑧𝑧2

= 𝑅𝑅 1 +−2 𝑌𝑌 𝑊𝑊 − 2 𝑍𝑍 𝑧𝑧 + 𝑊𝑊2 + 𝑧𝑧2

𝑅𝑅2≅ 𝑅𝑅 −

𝑌𝑌 𝑊𝑊 + 𝑍𝑍 𝑧𝑧𝑅𝑅

Page 9: Diffraction Theory - University of Louisville

9

𝐞𝐞 𝑌𝑌,𝑍𝑍, 𝑡𝑡 =𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅ᅵ

𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝

𝐞𝐞0 𝑊𝑊, 𝑧𝑧 𝑒𝑒𝑖𝑖 𝜀𝜀 𝑊𝑊, 𝑧𝑧 𝑒𝑒− 𝑖𝑖 𝑘𝑘 𝑌𝑌 𝑊𝑊 + 𝑍𝑍 𝑧𝑧𝑅𝑅 𝑑𝑑𝑊𝑊 𝑑𝑑𝑧𝑧

𝑟𝑟

𝑠𝑠

𝑍𝑍

𝑌𝑌

𝑧𝑧

𝑊𝑊

𝑅𝑅

Fraunhofer Diffraction

𝑅𝑅2 ≡ 𝑠𝑠2 + 𝑌𝑌2 + 𝑍𝑍2

Page 10: Diffraction Theory - University of Louisville

10

Illumination at the Aperture:

In the examples to follow, we will consider a flat wavefront at

normal incidence on the aperture

𝐞𝐞0 𝑊𝑊, 𝑧𝑧 𝑒𝑒𝑖𝑖 𝜀𝜀 𝑊𝑊, 𝑧𝑧 =𝐞𝐞0

0

𝐞𝐞 𝑌𝑌,𝑍𝑍, 𝑡𝑡 =𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅ᅵ

𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝

𝑒𝑒− 𝑖𝑖 𝑘𝑘 𝑌𝑌 𝑊𝑊 + 𝑍𝑍 𝑧𝑧𝑅𝑅 𝑑𝑑𝑊𝑊 𝑑𝑑𝑧𝑧

Inside the aperture

Outside the aperture{

Page 11: Diffraction Theory - University of Louisville

11

Apertures considered here:

1. Single Slit

2. Double Slit

3. Rectangular Aperture

4. Circular Aperture

Page 12: Diffraction Theory - University of Louisville

12

1. Single Slit

𝑟𝑟𝑠𝑠

𝑍𝑍

𝑌𝑌

𝑧𝑧

𝑊𝑊

𝑅𝑅

𝑅𝑅 ≡ 𝑌𝑌2 + 𝑠𝑠2

𝑑𝑑

𝐞𝐞 𝑌𝑌,𝑍𝑍, 𝑡𝑡 =𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅ᅵ

− ᅵ𝑑𝑑 2

+ ᅵ𝑑𝑑 2

𝑒𝑒− 𝑖𝑖 𝑘𝑘 𝑌𝑌𝑅𝑅 𝑊𝑊𝑑𝑑𝑊𝑊

𝜃𝜃

𝑠𝑠𝑖𝑖𝑠𝑠 𝜃𝜃 =𝑌𝑌𝑅𝑅

𝑊𝑊

𝑧𝑧

Page 13: Diffraction Theory - University of Louisville

13

𝐞𝐞 𝑌𝑌,𝑍𝑍, 𝑡𝑡 =𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅𝑑𝑑 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠

𝑘𝑘 𝑌𝑌 𝑑𝑑2 𝑅𝑅

1. Single Slit, cont.

𝐌𝐌 ≡ 𝐞𝐞2

𝐌𝐌 𝑌𝑌,𝑍𝑍 = 𝐌𝐌0 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠2𝑘𝑘 𝑌𝑌 𝑑𝑑

2 𝑅𝑅 𝐌𝐌0 ≡𝐞𝐞0 2

2 𝑅𝑅2𝑑𝑑2

𝑑𝑑 = 50 µ𝑚𝑚

𝜆𝜆 = 0.6 µ𝑚𝑚𝑠𝑠 = 1 𝑚𝑚

𝑘𝑘 𝑌𝑌𝑚𝑚 𝑑𝑑2 𝑅𝑅

= 𝑚𝑚 𝜋𝜋

𝑚𝑚 = ±1, ±2, ±3

𝑅𝑅 ≅ 1 𝑚𝑚

𝑌𝑌𝑚𝑚 = 𝑚𝑚𝜆𝜆 𝑅𝑅𝑑𝑑

𝑠𝑠𝑖𝑖𝑠𝑠 𝜃𝜃𝑚𝑚 =𝑌𝑌𝑚𝑚𝑅𝑅

= 𝑚𝑚𝜆𝜆𝑑𝑑

𝑌𝑌(𝑚𝑚𝑚𝑚)

𝑌𝑌1

ᅵ𝐌𝐌 𝐌𝐌0

zeros at geometrical shadow

𝑌𝑌−1

with

𝑌𝑌

𝑍𝑍

Page 14: Diffraction Theory - University of Louisville

14

Mathematica

Page 15: Diffraction Theory - University of Louisville

15

2. Double Slit

𝑑𝑑

𝑑𝑑

𝑚𝑚

𝑊𝑊

ᅵ𝑚𝑚 2 − ᅵ𝑑𝑑 2

ᅵ𝑚𝑚 2 + ᅵ𝑑𝑑 2

ᅵ−𝑚𝑚2 − ᅵ𝑑𝑑 2

ᅵ−𝑚𝑚2 + ᅵ𝑑𝑑 2

𝑧𝑧

Page 16: Diffraction Theory - University of Louisville

16

𝑟𝑟𝑠𝑠

𝑍𝑍

𝑌𝑌

𝑧𝑧

𝑊𝑊

𝑅𝑅

𝑅𝑅 ≡ 𝑌𝑌2 + 𝑠𝑠2

𝐞𝐞 𝑌𝑌,𝑍𝑍, 𝑡𝑡 =𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅ᅵ

ᅵ−𝑎𝑎2− ᅵ𝑑𝑑 2

ᅵ−𝑎𝑎2+ ᅵ𝑑𝑑 2

𝑒𝑒− 𝑖𝑖 𝑘𝑘 𝑌𝑌𝑅𝑅 𝑊𝑊𝑑𝑑𝑊𝑊 + ᅵᅵ𝑎𝑎 2− ᅵ𝑑𝑑 2

ᅵ𝑎𝑎 2+ ᅵ𝑑𝑑 2

𝑒𝑒− 𝑖𝑖 𝑘𝑘 𝑌𝑌𝑅𝑅 𝑊𝑊𝑑𝑑𝑊𝑊

𝜃𝜃

𝑠𝑠𝑖𝑖𝑠𝑠 𝜃𝜃 =𝑌𝑌𝑅𝑅

=𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅𝑑𝑑 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠

𝑘𝑘 𝑌𝑌 𝑑𝑑2 𝑅𝑅

2 𝑠𝑠𝑐𝑐𝑠𝑠𝑘𝑘 𝑍𝑍 𝑚𝑚

2 𝑅𝑅

Page 17: Diffraction Theory - University of Louisville

17

𝐞𝐞 𝑌𝑌,𝑍𝑍, 𝑡𝑡 =𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅𝑑𝑑 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠

𝑘𝑘 𝑌𝑌 𝑑𝑑2 𝑅𝑅

2 𝑠𝑠𝑐𝑐𝑠𝑠𝑘𝑘 𝑌𝑌 𝑚𝑚

2 𝑅𝑅

𝐌𝐌 𝑌𝑌,𝑍𝑍 = 4 𝐌𝐌0 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠2𝑘𝑘 𝑌𝑌 𝑑𝑑

2 𝑅𝑅𝑠𝑠𝑐𝑐𝑠𝑠2

𝑘𝑘 𝑌𝑌 𝑚𝑚2 𝑅𝑅 𝐌𝐌0 ≡

𝐞𝐞0 2

2 𝑅𝑅2𝑑𝑑2

Mathematica

𝑑𝑑

𝑚𝑚

Page 18: Diffraction Theory - University of Louisville

18

3. Rectangular Aperture

𝑚𝑚

𝑏𝑏

𝑊𝑊

𝑧𝑧

Page 19: Diffraction Theory - University of Louisville

19

𝐞𝐞 𝑌𝑌,𝑍𝑍, 𝑡𝑡 =𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅ᅵ

𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝

𝑒𝑒− 𝑖𝑖 𝑘𝑘 𝑌𝑌 𝑊𝑊 + 𝑍𝑍 𝑧𝑧𝑅𝑅 𝑑𝑑𝑊𝑊 𝑑𝑑𝑧𝑧

=𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅ᅵᅵ−𝑏𝑏2

ᅵ𝑏𝑏 2

𝑒𝑒− 𝑖𝑖 𝑘𝑘 𝑌𝑌𝑅𝑅 𝑊𝑊𝑑𝑑𝑊𝑊 ᅵᅵ−𝑎𝑎2

ᅵ𝑎𝑎 2

𝑒𝑒− 𝑖𝑖 𝑘𝑘 𝑍𝑍𝑅𝑅 𝑧𝑧𝑑𝑑𝑧𝑧

=𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅𝑏𝑏 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠

𝑘𝑘 𝑌𝑌 𝑏𝑏2 𝑅𝑅

𝑚𝑚 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑘𝑘 𝑍𝑍 𝑚𝑚

2 𝑅𝑅

Page 20: Diffraction Theory - University of Louisville

20

𝑌𝑌

𝑍𝑍

𝐌𝐌 𝑌𝑌,𝑍𝑍 = 𝐌𝐌0 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠2𝑘𝑘 𝑌𝑌 𝑏𝑏

2 𝑅𝑅𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠2

𝑘𝑘 𝑍𝑍 𝑚𝑚2 𝑅𝑅

𝐌𝐌0 ≡𝐞𝐞0 2

2 𝑅𝑅2𝑚𝑚2 𝑏𝑏2

Page 21: Diffraction Theory - University of Louisville

21

Emission of Semiconductor Laser

Page 22: Diffraction Theory - University of Louisville

22

4. Circular Aperture

𝑚𝑚𝜑𝜑𝑊𝑊 = 𝜌𝜌 𝑠𝑠𝑖𝑖𝑠𝑠 𝜑𝜑𝜌𝜌

𝑧𝑧 = 𝜌𝜌 𝑠𝑠𝑐𝑐𝑠𝑠 𝜑𝜑𝑧𝑧

𝑊𝑊

Page 23: Diffraction Theory - University of Louisville

23

Observation Plane

Ί𝑌𝑌 = 𝑞𝑞 𝑠𝑠𝑖𝑖𝑠𝑠 Ί

𝑞𝑞

𝑍𝑍 = 𝑞𝑞 𝑠𝑠𝑐𝑐𝑠𝑠 Ί𝑍𝑍

𝑌𝑌

Page 24: Diffraction Theory - University of Louisville

24

𝐞𝐞 𝑌𝑌,𝑍𝑍, 𝑡𝑡 =𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅ᅵ

𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝

𝑒𝑒− 𝑖𝑖 𝑘𝑘 𝑌𝑌 𝑊𝑊 + 𝑍𝑍 𝑧𝑧𝑅𝑅 𝑑𝑑𝑊𝑊 𝑑𝑑𝑧𝑧

𝑌𝑌 𝑊𝑊 + 𝑍𝑍 𝑧𝑧 = 𝑞𝑞 𝑠𝑠𝑖𝑖𝑠𝑠 Ί 𝜌𝜌 𝑠𝑠𝑖𝑖𝑠𝑠 𝜑𝜑 + 𝑞𝑞 𝑠𝑠𝑐𝑐𝑠𝑠 Ί 𝜌𝜌 𝑠𝑠𝑐𝑐𝑠𝑠 𝜑𝜑

= 𝜌𝜌 𝑞𝑞 𝑠𝑠𝑐𝑐𝑠𝑠 𝜑𝜑 − Ί

𝑑𝑑𝑊𝑊 𝑑𝑑𝑧𝑧 = 𝜌𝜌 𝑑𝑑𝜑𝜑 𝑑𝑑𝜌𝜌

𝐞𝐞 𝑞𝑞,Ί, 𝑡𝑡 =𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅ᅵ0

𝑎𝑎

𝜌𝜌 𝑑𝑑𝜌𝜌ᅵ0

2𝜋𝜋

𝑑𝑑𝜑𝜑 𝑒𝑒 − 𝑖𝑖 𝑘𝑘 𝜌𝜌 𝑞𝑞 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 −Ί𝑅𝑅

Ί = 0Due to axial symmetry, we can choose:

= 𝑞𝑞 𝜌𝜌 𝑠𝑠𝑐𝑐𝑠𝑠 Ί 𝜌𝜌 𝑠𝑠𝑐𝑐𝑠𝑠 𝜑𝜑 + 𝑠𝑠𝑖𝑖𝑠𝑠 Ί 𝑠𝑠𝑖𝑖𝑠𝑠 𝜑𝜑

Page 25: Diffraction Theory - University of Louisville

25

𝐞𝐞 𝑞𝑞,Ί, 𝑡𝑡 =𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅ᅵ0

𝑎𝑎

𝜌𝜌 𝑑𝑑𝜌𝜌ᅵ0

2𝜋𝜋

𝑑𝑑𝜑𝜑 𝑒𝑒 − 𝑖𝑖 𝑘𝑘 𝜌𝜌 𝑞𝑞 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑𝑅𝑅

A couple of integrals to solve:

Page 26: Diffraction Theory - University of Louisville

26

12 𝜋𝜋

ᅵ0

2𝜋𝜋

𝑑𝑑𝜑𝜑 𝑒𝑒𝑖𝑖 𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 ≡ 𝐜𝐜0 𝑢𝑢 Bessel function of order zero

𝐞𝐞 𝑞𝑞,Ί, 𝑡𝑡 =𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅ᅵ0

𝑎𝑎

𝜌𝜌 𝑑𝑑𝜌𝜌ᅵ0

2𝜋𝜋

𝑑𝑑𝜑𝜑 𝑒𝑒 − 𝑖𝑖 𝑘𝑘 𝜌𝜌 𝑞𝑞 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑𝑅𝑅

Page 27: Diffraction Theory - University of Louisville

27

𝐞𝐞 𝑞𝑞,Ί, 𝑡𝑡 =𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅2 𝜋𝜋ᅵ

0

𝑎𝑎

𝜌𝜌 𝑑𝑑𝜌𝜌 𝐜𝐜0 −𝑘𝑘 𝑞𝑞𝑅𝑅

𝜌𝜌

𝑢𝑢 ≡ −𝑘𝑘 𝑞𝑞𝑅𝑅

𝜌𝜌

=𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅2 𝜋𝜋

𝑅𝑅𝑘𝑘 𝑞𝑞

2

ᅵ0

−𝑘𝑘 𝑞𝑞𝑅𝑅 𝑎𝑎

α 𝑑𝑑α 𝐜𝐜0 α

𝛌𝛌 ≡−𝑘𝑘 𝑞𝑞𝑅𝑅

𝜌𝜌 𝜌𝜌 𝑑𝑑𝜌𝜌 =𝑅𝑅𝑘𝑘 𝑞𝑞

2

α 𝑑𝑑α

Page 28: Diffraction Theory - University of Louisville

28

ᅵ0

𝛌𝛌

𝛌𝛌 𝐜𝐜0 𝛌𝛌 𝑑𝑑𝛌𝛌 ≡ 𝛌𝛌 𝐜𝐜1 𝛌𝛌

Page 29: Diffraction Theory - University of Louisville

29

𝐞𝐞 𝑞𝑞,Ί, 𝑡𝑡 =𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅2 𝜋𝜋

𝑅𝑅𝑘𝑘 𝑞𝑞

2

ᅵ0

−𝑘𝑘 𝑞𝑞𝑅𝑅 𝑎𝑎

α 𝑑𝑑α 𝐜𝐜0 α

=𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅2 𝜋𝜋

𝑅𝑅𝑘𝑘 𝑞𝑞

2 −𝑘𝑘 𝑚𝑚 𝑞𝑞𝑅𝑅

𝐜𝐜1−𝑘𝑘 𝑚𝑚 𝑞𝑞𝑅𝑅

=𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅𝜋𝜋 𝑚𝑚2

2 𝐜𝐜1𝑘𝑘 𝑚𝑚 𝑞𝑞𝑅𝑅

𝑘𝑘 𝑚𝑚 𝑞𝑞𝑅𝑅

Page 30: Diffraction Theory - University of Louisville

30

𝐌𝐌 𝑞𝑞,Ί = 𝐌𝐌02 𝐜𝐜1

𝑘𝑘 𝑚𝑚 𝑞𝑞𝑅𝑅

𝑘𝑘 𝑚𝑚 𝑞𝑞𝑅𝑅

2

𝐌𝐌0 ≡𝐞𝐞0 2

2 𝑅𝑅2𝜋𝜋 𝑚𝑚2 2

𝑘𝑘 𝑚𝑚 𝑞𝑞𝑅𝑅

ᅵ𝐌𝐌 𝐌𝐌0

Page 31: Diffraction Theory - University of Louisville

31

zeros at 𝑘𝑘 𝑚𝑚 𝑞𝑞𝑅𝑅

= 3.832, 7.016, 10.173, 


𝑘𝑘 𝑚𝑚 𝑞𝑞1𝑅𝑅

= 3.832

𝑞𝑞1𝑅𝑅

= 𝑠𝑠𝑖𝑖𝑠𝑠 𝜃𝜃1 = 3.832𝜆𝜆

2 𝜋𝜋 𝑚𝑚= 1.22

𝜆𝜆2 𝑚𝑚

first zero at

Light is essentially confined inside the cone: 𝒔𝒔𝒔𝒔𝒔𝒔 𝜃𝜃1 < 𝟏𝟏.𝟐𝟐𝟐𝟐 𝝀𝝀

𝟐𝟐 𝒂𝒂

Page 32: Diffraction Theory - University of Louisville

32

Circular Aperture

𝑧𝑧

𝑊𝑊

𝑠𝑠

𝑊𝑊

𝑌𝑌

𝑍𝑍

𝑌𝑌

𝑠𝑠𝑖𝑖𝑠𝑠 𝜃𝜃1 =𝑞𝑞1𝑅𝑅

= 1.22𝜆𝜆

2 𝑚𝑚

𝑅𝑅2𝑚𝑚

Airy’spattern

𝑚𝑚𝑞𝑞1

𝑞𝑞1𝜃𝜃1

Page 33: Diffraction Theory - University of Louisville

33

𝑧𝑧

𝑊𝑊

2𝑚𝑚

𝑠𝑠

𝑅𝑅

𝜃𝜃1} = 0

Page 34: Diffraction Theory - University of Louisville

34

𝑊𝑊

2𝑚𝑚

𝜃𝜃1𝜃𝜃1

𝑠𝑠𝑖𝑖𝑠𝑠 𝜃𝜃1 = 1.22𝜆𝜆

2 𝑚𝑚

tan 𝜃𝜃1 =𝑞𝑞1𝑓𝑓

𝑞𝑞1

𝑞𝑞1 ≅ 1.22𝜆𝜆 𝑓𝑓2 𝑚𝑚

𝑓𝑓

Smallest spot size:𝑞𝑞1 ≅ 1.22

𝜆𝜆 𝑓𝑓𝐷𝐷𝑙𝑙𝑝𝑝𝑙𝑙𝑐𝑐

𝐷𝐷𝑙𝑙𝑝𝑝𝑙𝑙𝑐𝑐

= 1.22𝜆𝜆𝑐𝑐 𝑓𝑓𝑠𝑠 𝐷𝐷𝑙𝑙𝑝𝑝𝑙𝑙𝑐𝑐

𝑠𝑠

Smallest angular width:𝑞𝑞1𝑓𝑓

= 1.22𝜆𝜆𝑐𝑐

𝑠𝑠 𝐷𝐷𝑙𝑙𝑝𝑝𝑙𝑙𝑐𝑐

Page 35: Diffraction Theory - University of Louisville

35

Diameter of primary mirror 2.4 m

Wavelength 0.55 µm

Angular width 0.28 × 10-6 rad

Page 36: Diffraction Theory - University of Louisville

36

𝑡𝑡𝑚𝑚𝑠𝑠 𝜃𝜃𝑚𝑚𝑎𝑎𝑚𝑚 ≡𝐷𝐷𝑙𝑙𝑝𝑝𝑙𝑙𝑐𝑐2 𝑓𝑓

𝐷𝐷𝑙𝑙𝑝𝑝𝑙𝑙𝑐𝑐

𝜃𝜃𝑚𝑚𝑎𝑎𝑚𝑚

𝑁𝑁𝑁𝑁 ≡ 𝑠𝑠 𝑠𝑠𝑖𝑖𝑠𝑠 𝜃𝜃𝑚𝑚𝑎𝑎𝑚𝑚 ≅𝑠𝑠 𝐷𝐷𝑙𝑙𝑝𝑝𝑙𝑙𝑐𝑐

2 𝑓𝑓

𝑓𝑓

𝑓𝑓#

=𝑓𝑓

𝐷𝐷𝑙𝑙𝑝𝑝𝑙𝑙𝑐𝑐

Page 37: Diffraction Theory - University of Louisville

37

Numerical Aperture

𝑁𝑁𝑁𝑁 ≡ 𝑠𝑠 𝑠𝑠𝑖𝑖𝑠𝑠 𝜃𝜃𝑚𝑚𝑎𝑎𝑚𝑚

Page 38: Diffraction Theory - University of Louisville

38

𝑞𝑞1 = 1.22𝜆𝜆𝑐𝑐

2 𝑁𝑁𝑁𝑁

Smallest spot size from a lens

𝑊𝑊

2𝑚𝑚 = 𝐷𝐷𝑙𝑙𝑝𝑝𝑙𝑙𝑐𝑐

𝜃𝜃1𝜃𝜃1

𝑞𝑞1

𝑓𝑓

𝐷𝐷𝑙𝑙𝑝𝑝𝑙𝑙𝑐𝑐

𝑠𝑠

𝑞𝑞1 = 1.22𝜆𝜆𝑐𝑐 𝑓𝑓𝑠𝑠 𝐷𝐷𝑙𝑙𝑝𝑝𝑙𝑙𝑐𝑐

𝑁𝑁𝑁𝑁 ≡ 𝑠𝑠 𝑠𝑠𝑖𝑖𝑠𝑠 𝜃𝜃𝑚𝑚𝑎𝑎𝑚𝑚 ≅𝑠𝑠 𝐷𝐷𝑙𝑙𝑝𝑝𝑙𝑙𝑐𝑐

2 𝑓𝑓

Page 39: Diffraction Theory - University of Louisville

39

Rayleigh Criteria for Resolution

Barely resolved

Resolved

Not resolved

Page 40: Diffraction Theory - University of Louisville

40

𝑞𝑞1 = 1.22𝜆𝜆𝑐𝑐

2 𝑁𝑁𝑁𝑁

𝜆𝜆𝑐𝑐 = 0.55 𝜇𝜇𝑚𝑚

3.36 𝜇𝜇𝑚𝑚 1.34 𝜇𝜇𝑚𝑚 0.52 𝜇𝜇𝑚𝑚 0.27 𝜇𝜇𝑚𝑚

Examples of Diffraction Limit of Objective Lenses

Page 41: Diffraction Theory - University of Louisville

41

𝐞𝐞 𝑌𝑌,𝑍𝑍, 𝑡𝑡 =𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅ᅵ

𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝

𝐞𝐞0 𝑊𝑊, 𝑧𝑧 𝑒𝑒𝑖𝑖 𝜀𝜀 𝑊𝑊, 𝑧𝑧 𝑒𝑒− 𝑖𝑖 𝑘𝑘 𝑌𝑌 𝑊𝑊 + 𝑍𝑍 𝑧𝑧𝑅𝑅 𝑑𝑑𝑊𝑊 𝑑𝑑𝑧𝑧

𝑟𝑟

𝑠𝑠

𝑍𝑍

𝑌𝑌

𝑧𝑧

𝑊𝑊

𝑅𝑅

𝑅𝑅 ≡ 𝑌𝑌2 + 𝑍𝑍2 + 𝑠𝑠2

Fraunhofer Diffraction

𝑚𝑚𝑚𝑚𝑚𝑚 𝑊𝑊2 + 𝑧𝑧2

𝜆𝜆 𝑠𝑠≪ 1

𝑚𝑚𝑚𝑚𝑚𝑚 𝑌𝑌 − 𝑊𝑊 2 + 𝑍𝑍 − 𝑧𝑧 2

𝜆𝜆 𝑠𝑠≪ 1

Page 42: Diffraction Theory - University of Louisville

42

In summary, far-field diffraction:

1. Single Slit

2. Double Slit

3. Rectangular Aperture

4. Circular Aperture

𝐞𝐞 𝑌𝑌,𝑍𝑍, 𝑡𝑡 =𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅𝑑𝑑 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠

𝑘𝑘 𝑌𝑌 𝑑𝑑2 𝑅𝑅

𝐞𝐞 𝑌𝑌,𝑍𝑍, 𝑡𝑡 =𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅𝑑𝑑 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠

𝑘𝑘 𝑌𝑌 𝑑𝑑2 𝑅𝑅

2 𝑠𝑠𝑐𝑐𝑠𝑠𝑘𝑘 𝑌𝑌 𝑚𝑚

2 𝑅𝑅

𝐞𝐞 𝑌𝑌,𝑍𝑍, 𝑡𝑡 =𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅𝑏𝑏 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠

𝑘𝑘 𝑌𝑌 𝑏𝑏2 𝑅𝑅

𝑚𝑚 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑘𝑘 𝑍𝑍 𝑚𝑚

2 𝑅𝑅

𝐞𝐞 𝑞𝑞,Ί, 𝑡𝑡 =𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅𝜋𝜋 𝑚𝑚2

2 𝐜𝐜1𝑘𝑘 𝑚𝑚 𝑞𝑞𝑅𝑅

𝑘𝑘 𝑚𝑚 𝑞𝑞𝑅𝑅

Page 43: Diffraction Theory - University of Louisville

43

𝐞𝐞 𝑌𝑌,𝑍𝑍, 𝑡𝑡 =𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅ᅵ

𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝

𝐞𝐞0 𝑊𝑊, 𝑧𝑧 𝑒𝑒𝑖𝑖 𝜀𝜀 𝑊𝑊, 𝑧𝑧 𝑒𝑒− 𝑖𝑖 𝑘𝑘 𝑌𝑌 𝑊𝑊 + 𝑍𝑍 𝑧𝑧𝑅𝑅 𝑑𝑑𝑊𝑊 𝑑𝑑𝑧𝑧

𝐞𝐞 𝑌𝑌,𝑍𝑍, 𝑡𝑡 =𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅ᅵ−∞

+∞

𝜓𝜓 𝑊𝑊, 𝑧𝑧 𝑒𝑒− 𝑖𝑖 𝑘𝑘𝑊𝑊 𝑊𝑊 +𝑘𝑘𝑧𝑧 𝑧𝑧 𝑑𝑑𝑊𝑊 𝑑𝑑𝑧𝑧

𝜓𝜓 𝑊𝑊, 𝑧𝑧 ≡𝐞𝐞0 𝑊𝑊, 𝑧𝑧 𝑒𝑒𝑖𝑖 𝜀𝜀 𝑊𝑊, 𝑧𝑧

0

inside apertureopaque obstruction

𝑘𝑘𝑊𝑊 ≡𝑘𝑘 𝑌𝑌𝑅𝑅

Fraunhofer Diffraction as a Fourier Transformation

𝑘𝑘𝑧𝑧 ≡𝑘𝑘 𝑍𝑍𝑅𝑅

{

Page 44: Diffraction Theory - University of Louisville

44

Diffraction Gratings

Page 45: Diffraction Theory - University of Louisville

45

Multiple Slits

𝑏𝑏

𝑚𝑚

𝑊𝑊

𝑚𝑚 −𝑏𝑏2

𝑚𝑚 +𝑏𝑏2

𝑧𝑧

𝑵𝑵 (infinitely long) slits of width 𝒃𝒃 separated by distance 𝒂𝒂

+𝑏𝑏2

−𝑏𝑏2

𝑁𝑁 − 1 𝑚𝑚 −𝑏𝑏2

𝑁𝑁 − 1 𝑚𝑚 +𝑏𝑏2

Page 46: Diffraction Theory - University of Louisville

46

𝑟𝑟𝑠𝑠

𝑍𝑍

𝑌𝑌

𝑧𝑧

𝑊𝑊

𝑅𝑅

𝑅𝑅 ≡ 𝑌𝑌2 + 𝑠𝑠2

𝐞𝐞 𝑌𝑌,𝑍𝑍, 𝑡𝑡

=𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅ᅵ

− 𝑏𝑏2

+ 𝑏𝑏2

+ ᅵ

𝑎𝑎 − 𝑏𝑏2

𝑎𝑎 + 𝑏𝑏2

+ ᅵ

2 𝑎𝑎 − 𝑏𝑏2

2 𝑎𝑎 + 𝑏𝑏2

+ ⋯ + ï¿œ

𝑁𝑁−1 𝑎𝑎 − 𝑏𝑏2

𝑁𝑁−1 𝑎𝑎 + 𝑏𝑏2

𝑒𝑒− 𝑖𝑖 𝑘𝑘 𝑌𝑌𝑅𝑅 𝑊𝑊 𝑑𝑑𝑊𝑊

𝜃𝜃

𝑠𝑠𝑖𝑖𝑠𝑠 𝜃𝜃 =𝑌𝑌𝑅𝑅

Page 47: Diffraction Theory - University of Louisville

47

𝐞𝐞 𝑌𝑌,𝑍𝑍, 𝑡𝑡 =𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅𝑏𝑏 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠

𝑘𝑘 𝑌𝑌 𝑏𝑏2 𝑅𝑅

ᅵ𝑙𝑙= 0

𝑁𝑁−1

𝑒𝑒− 𝑖𝑖 𝑘𝑘 𝑌𝑌 𝑎𝑎𝑅𝑅𝑙𝑙

=𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅𝑏𝑏 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠

𝑘𝑘 𝑌𝑌 𝑏𝑏2 𝑅𝑅

1 − 𝑒𝑒−𝑖𝑖 𝑁𝑁𝑘𝑘 𝑌𝑌 𝑎𝑎𝑅𝑅

1 − 𝑒𝑒−𝑖𝑖𝑘𝑘 𝑌𝑌 𝑎𝑎𝑅𝑅

=𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅𝑏𝑏 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠

𝑘𝑘 𝑌𝑌 𝑏𝑏2 𝑅𝑅

𝑒𝑒−𝑖𝑖 𝑁𝑁𝑘𝑘 𝑌𝑌 𝑎𝑎2 𝑅𝑅

𝑒𝑒−𝑖𝑖𝑘𝑘 𝑌𝑌 𝑎𝑎2 𝑅𝑅

𝑒𝑒+𝑖𝑖 𝑁𝑁𝑘𝑘 𝑌𝑌 𝑎𝑎2 𝑅𝑅 − 𝑒𝑒−𝑖𝑖 𝑁𝑁

𝑘𝑘 𝑌𝑌 𝑎𝑎2 𝑅𝑅

𝑒𝑒+𝑖𝑖𝑘𝑘 𝑌𝑌 𝑎𝑎2 𝑅𝑅 − 𝑒𝑒−𝑖𝑖

𝑘𝑘 𝑌𝑌 𝑎𝑎2 𝑅𝑅

=𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑅𝑅 −𝜔𝜔 𝑡𝑡

𝑅𝑅𝑏𝑏 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠

𝑘𝑘 𝑌𝑌 𝑏𝑏2 𝑅𝑅

𝑒𝑒−𝑖𝑖 𝑁𝑁𝑘𝑘 𝑌𝑌 𝑎𝑎2 𝑅𝑅

𝑒𝑒−𝑖𝑖𝑘𝑘 𝑌𝑌 𝑎𝑎2 𝑅𝑅

sin 𝑁𝑁 𝑘𝑘 𝑌𝑌 𝑚𝑚2 𝑅𝑅

sin 𝑘𝑘 𝑌𝑌 𝑚𝑚2 𝑅𝑅

Page 48: Diffraction Theory - University of Louisville

48

𝐌𝐌 𝑌𝑌,𝑍𝑍 = 𝐌𝐌0 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠2𝑘𝑘 𝑌𝑌 𝑏𝑏

2 𝑅𝑅

𝑠𝑠𝑖𝑖𝑠𝑠2 𝑁𝑁 𝑘𝑘 𝑌𝑌 𝑚𝑚2 𝑅𝑅

𝑠𝑠𝑖𝑖𝑠𝑠2 𝑘𝑘 𝑌𝑌 𝑚𝑚2 𝑅𝑅

𝐌𝐌0 ≡𝐞𝐞0 2

2 𝑅𝑅2𝑏𝑏2

Intensity Pattern

Mathematica

𝑏𝑏 = 1

𝑚𝑚 = 4

𝑘𝑘 = 1

𝑅𝑅 = 1

Page 49: Diffraction Theory - University of Louisville

49

𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠2𝑘𝑘 𝑌𝑌 𝑏𝑏

2 𝑅𝑅≅ 1

𝐌𝐌 𝑌𝑌,𝑍𝑍 ≅ 𝐌𝐌0𝑠𝑠𝑖𝑖𝑠𝑠2 𝑁𝑁 𝑘𝑘 𝑌𝑌 𝑚𝑚2 𝑅𝑅

𝑠𝑠𝑖𝑖𝑠𝑠2 𝑘𝑘 𝑌𝑌 𝑚𝑚2 𝑅𝑅

Small Width Approximation:

𝑏𝑏 = 0.1

𝑚𝑚 = 4

𝑘𝑘 = 1

𝑅𝑅 = 1

Page 50: Diffraction Theory - University of Louisville

50

𝑘𝑘 𝑌𝑌 𝑚𝑚2 𝑅𝑅

= 𝑚𝑚 𝜋𝜋 𝐌𝐌 𝑌𝑌,𝑍𝑍, 𝑡𝑡 = 𝑁𝑁2 𝐌𝐌0

Maxima (intensity peaks)

𝑚𝑚 = 0, ±1, ±2, 


𝑚𝑚 𝑠𝑠𝑖𝑖𝑠𝑠 𝜃𝜃𝑚𝑚 = 𝑚𝑚 𝜆𝜆grating equation

grating order

Page 51: Diffraction Theory - University of Louisville

51

𝑁𝑁𝑘𝑘 𝑌𝑌 𝑚𝑚

2 𝑅𝑅= 𝑟𝑟 𝜋𝜋

𝑟𝑟 = 1, 2, 3, 
 , (𝑁𝑁 − 1)

Minima (zero intensity)

𝑘𝑘 𝑌𝑌 𝑚𝑚2 𝑅𝑅

=𝑟𝑟𝑁𝑁𝜋𝜋

𝑏𝑏 = 0.1

𝑚𝑚 = 4

𝑘𝑘 = 1

𝑅𝑅 = 10 <

𝑘𝑘 𝑌𝑌 𝑚𝑚2 𝑅𝑅

< 𝜋𝜋

𝑚𝑚 = 0 𝑚𝑚 = 1

10−1 𝑚𝑚2−2

𝐌𝐌 𝑌𝑌,𝑍𝑍 ≅ 𝐌𝐌0𝑠𝑠𝑖𝑖𝑠𝑠2 𝑁𝑁 𝑘𝑘 𝑌𝑌 𝑚𝑚2 𝑅𝑅

𝑠𝑠𝑖𝑖𝑠𝑠2 𝑘𝑘 𝑌𝑌 𝑚𝑚2 𝑅𝑅

Page 52: Diffraction Theory - University of Louisville

52

Angular Width

𝑘𝑘 𝑚𝑚 𝑠𝑠𝑖𝑖𝑠𝑠 𝜃𝜃𝑚𝑚 + ∆𝜃𝜃2

2= 𝑚𝑚 𝜋𝜋 +

1𝑁𝑁𝜋𝜋

𝑘𝑘 𝑌𝑌 𝑚𝑚2 𝑅𝑅

=𝑘𝑘 𝑚𝑚 𝑠𝑠𝑖𝑖𝑠𝑠 𝜃𝜃

2

∆𝜃𝜃 =2 𝜆𝜆

𝑁𝑁 𝑚𝑚 𝑠𝑠𝑐𝑐𝑠𝑠 𝜃𝜃𝑚𝑚

𝑘𝑘 𝑚𝑚 𝑠𝑠𝑐𝑐𝑠𝑠 𝜃𝜃𝑚𝑚 𝑠𝑠𝑖𝑖𝑠𝑠 ∆𝜃𝜃2

2≅

1𝑁𝑁𝜋𝜋

𝑚𝑚

Page 53: Diffraction Theory - University of Louisville

53

Spectral Resolution

𝑚𝑚 𝑠𝑠𝑖𝑖𝑠𝑠 𝜃𝜃𝑚𝑚 = 𝑚𝑚 𝜆𝜆

𝑚𝑚 𝑠𝑠𝑐𝑐𝑠𝑠 𝜃𝜃𝑚𝑚 𝑑𝑑𝜃𝜃 = 𝑚𝑚 𝑑𝑑𝜆𝜆

∆𝜆𝜆𝑟𝑟𝑝𝑝𝑐𝑐 =𝜆𝜆

𝑚𝑚 𝑁𝑁

𝑑𝑑𝜃𝜃 ≡∆𝜃𝜃2

=𝜆𝜆

𝑁𝑁 𝑚𝑚 𝑠𝑠𝑐𝑐𝑠𝑠 𝜃𝜃𝑚𝑚𝑑𝑑𝜆𝜆 ≡ ∆𝜆𝜆𝑟𝑟𝑝𝑝𝑐𝑐

Page 54: Diffraction Theory - University of Louisville

54

Free Spectral Range

𝑚𝑚 𝑠𝑠𝑖𝑖𝑠𝑠 𝜃𝜃 = 𝑚𝑚 + 1 𝜆𝜆 = 𝑚𝑚 𝜆𝜆 + ∆𝜆𝜆𝐹𝐹𝐹𝐹𝑅𝑅

∆𝜆𝜆𝐹𝐹𝐹𝐹𝑅𝑅 =𝜆𝜆𝑚𝑚

Page 55: Diffraction Theory - University of Louisville

55

Oblique Incidence

Normal Incidence

𝑚𝑚 𝑠𝑠𝑖𝑖𝑠𝑠 𝜃𝜃 − 𝑚𝑚 𝑠𝑠𝑖𝑖𝑠𝑠 𝜃𝜃𝑖𝑖𝑙𝑙𝑐𝑐 = 𝑚𝑚 𝜆𝜆

𝑚𝑚 𝑠𝑠𝑖𝑖𝑠𝑠 𝜃𝜃𝑚𝑚 − 𝑠𝑠𝑖𝑖𝑠𝑠 𝜃𝜃𝑖𝑖𝑙𝑙𝑐𝑐 = 𝑚𝑚 𝜆𝜆

𝑚𝑚 𝑠𝑠𝑖𝑖𝑠𝑠 𝜃𝜃𝑚𝑚 = 𝑚𝑚 𝜆𝜆

Page 56: Diffraction Theory - University of Louisville

56

Fresnel Diffraction

Going beyond the Fraunhofer (far-field) approximation

or

getting closer to the aperture

Page 57: Diffraction Theory - University of Louisville

57

𝑟𝑟 𝑊𝑊, 𝑧𝑧 = 𝑠𝑠2 + 𝑌𝑌 − 𝑊𝑊 2 + 𝑍𝑍 − 𝑧𝑧 2

𝑟𝑟

𝑠𝑠

𝑍𝑍

𝑌𝑌

𝑧𝑧

𝑊𝑊

𝑟𝑟 𝑊𝑊, 𝑧𝑧 ≅ 𝑠𝑠 +1

2 𝑠𝑠𝑌𝑌 − 𝑊𝑊 2 +

12 𝑠𝑠

𝑍𝑍 − 𝑧𝑧 2

𝐞𝐞 𝑌𝑌,𝑍𝑍, 𝑡𝑡 = ᅵ𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝

𝐞𝐞0 𝑊𝑊, 𝑧𝑧𝑟𝑟 𝑊𝑊, 𝑧𝑧

𝑒𝑒𝑖𝑖 𝑘𝑘 𝑟𝑟 𝑊𝑊, 𝑧𝑧 − 𝜔𝜔 𝑡𝑡 + 𝜀𝜀 𝑊𝑊, 𝑧𝑧 𝑑𝑑𝑊𝑊 𝑑𝑑𝑧𝑧

= 𝑠𝑠 1 +𝑌𝑌 − 𝑊𝑊 2

𝑠𝑠2+

𝑍𝑍 − 𝑧𝑧 2

𝑠𝑠2

𝑘𝑘 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 𝑌𝑌 − 𝑊𝑊 2 + 𝑍𝑍 − 𝑧𝑧 2 2

𝑠𝑠4≪ 𝜋𝜋

Page 58: Diffraction Theory - University of Louisville

58

𝐞𝐞 𝑌𝑌,𝑍𝑍, 𝑡𝑡 =𝑒𝑒𝑖𝑖 𝑘𝑘 𝑐𝑐 − 𝜔𝜔 𝑡𝑡

𝑠𝑠ᅵ

𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝

𝐞𝐞0 𝑊𝑊, 𝑧𝑧 𝑒𝑒𝑖𝑖 𝜀𝜀 𝑊𝑊, 𝑧𝑧 𝑒𝑒𝑖𝑖𝑘𝑘2 𝑐𝑐 𝑌𝑌−𝑊𝑊 2+ 𝑍𝑍−𝑧𝑧 2

𝑑𝑑𝑊𝑊 𝑑𝑑𝑧𝑧

𝐞𝐞 𝑌𝑌,𝑍𝑍, 𝑡𝑡 =𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑐𝑐 − 𝜔𝜔 𝑡𝑡

𝑠𝑠ᅵ

𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝

𝑒𝑒𝑖𝑖𝜋𝜋𝜆𝜆 𝑐𝑐 𝑌𝑌−𝑊𝑊 2+ 𝑍𝑍−𝑧𝑧 2

𝑑𝑑𝑊𝑊 𝑑𝑑𝑧𝑧

𝐞𝐞0 𝑊𝑊, 𝑧𝑧 𝑒𝑒𝑖𝑖 𝜀𝜀 𝑊𝑊, 𝑧𝑧 =𝐞𝐞0

0

Inside the aperture

Outside the aperture{

Flat Wavefront Illumination

Page 59: Diffraction Theory - University of Louisville

59

𝛟𝛟 ≡2𝜆𝜆 𝑠𝑠

𝑌𝑌 − 𝑊𝑊

𝑑𝑑𝑊𝑊 = −𝜆𝜆 𝑠𝑠2

𝑑𝑑𝛟𝛟

𝛿𝛿 ≡2𝜆𝜆 𝑠𝑠

𝑍𝑍 − 𝑧𝑧

𝑑𝑑𝑧𝑧 = −𝜆𝜆 𝑠𝑠2

𝑑𝑑𝛿𝛿

𝐞𝐞 𝑌𝑌,𝑍𝑍, 𝑡𝑡 =𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑐𝑐 − 𝜔𝜔 𝑡𝑡

𝑠𝑠ᅵ

𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝

𝑒𝑒𝑖𝑖𝜋𝜋𝜆𝜆 𝑐𝑐 𝑌𝑌−𝑊𝑊 2+ 𝑍𝑍−𝑧𝑧 2

𝑑𝑑𝑊𝑊 𝑑𝑑𝑧𝑧

=𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑐𝑐 − 𝜔𝜔 𝑡𝑡

𝑠𝑠𝜆𝜆 𝑠𝑠2

ᅵ𝑎𝑎𝑝𝑝𝑝𝑝𝑟𝑟𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝

𝑒𝑒𝑖𝑖𝜋𝜋2 𝛟𝛟2+ 𝛿𝛿2 𝑑𝑑𝛟𝛟 𝑑𝑑𝛿𝛿

=𝜆𝜆 𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑐𝑐 − 𝜔𝜔 𝑡𝑡

2ᅵ𝛟𝛟1

𝛟𝛟2

𝑒𝑒𝑖𝑖𝜋𝜋2 𝛟𝛟

2𝑑𝑑𝛟𝛟 ï¿œ

𝛿𝛿1

𝛿𝛿2

𝑒𝑒𝑖𝑖𝜋𝜋2 𝛿𝛿

2𝑑𝑑𝛿𝛿

Page 60: Diffraction Theory - University of Louisville

60

ᅵ𝛟𝛟1

𝛟𝛟2

𝑒𝑒𝑖𝑖𝜋𝜋2 𝛟𝛟

2𝑑𝑑𝛟𝛟 = ï¿œ

𝛟𝛟1

𝛟𝛟2

cos𝜋𝜋2𝛟𝛟2 𝑑𝑑𝛟𝛟 + 𝑖𝑖 ï¿œ

𝛟𝛟1

𝛟𝛟2

sin𝜋𝜋2𝛟𝛟2 𝑑𝑑𝛟𝛟

= 𝒞𝒞 𝛟𝛟2 − 𝒞𝒞 𝛟𝛟1 + 𝑖𝑖 𝒮𝒮 𝛟𝛟2 − 𝒮𝒮 𝛟𝛟1

ᅵ𝛿𝛿1

𝛿𝛿2

𝑒𝑒𝑖𝑖𝜋𝜋2 𝛿𝛿

2𝑑𝑑𝛿𝛿 = ï¿œ

𝛿𝛿1

𝛿𝛿2

cos𝜋𝜋2𝛿𝛿2 𝑑𝑑𝛿𝛿 + 𝑖𝑖 ï¿œ

𝛿𝛿1

𝛿𝛿2

sin𝜋𝜋2𝛿𝛿2 𝑑𝑑𝛿𝛿

= 𝒞𝒞 𝛿𝛿2 − 𝒞𝒞 𝛿𝛿1 + 𝑖𝑖 𝒮𝒮 𝛿𝛿2 − 𝒮𝒮 𝛿𝛿1

𝒞𝒞 𝑚𝑚 ≡ ï¿œ0

𝑚𝑚

cos𝜋𝜋2𝑚𝑚2 𝑑𝑑𝑚𝑚 𝒮𝒮 𝑚𝑚 ≡ ï¿œ

0

𝑚𝑚

sin𝜋𝜋2𝑚𝑚2 𝑑𝑑𝑚𝑚

Page 61: Diffraction Theory - University of Louisville

61

× 𝒞𝒞 𝛟𝛟2 − 𝒞𝒞 𝛟𝛟1 + 𝑖𝑖 𝒮𝒮 𝛟𝛟2 − 𝒮𝒮 𝛟𝛟1

× 𝒞𝒞 𝛿𝛿2 − 𝒞𝒞 𝛿𝛿1 + 𝑖𝑖 𝒮𝒮 𝛿𝛿2 − 𝒮𝒮 𝛿𝛿1

𝐞𝐞 𝑌𝑌,𝑍𝑍, 𝑡𝑡 =𝜆𝜆 𝐞𝐞0 𝑒𝑒𝑖𝑖 𝑘𝑘 𝑐𝑐 − 𝜔𝜔 𝑡𝑡

2

𝐌𝐌 𝑌𝑌,𝑍𝑍 =𝐌𝐌04 × 𝒞𝒞 𝛟𝛟2 − 𝒞𝒞 𝛟𝛟1 2 + 𝒮𝒮 𝛟𝛟2 − 𝒮𝒮 𝛟𝛟1 2

× 𝒞𝒞 𝛿𝛿2 − 𝒞𝒞 𝛿𝛿1 2 + 𝒮𝒮 𝛿𝛿2 − 𝒮𝒮 𝛿𝛿1 2

Page 62: Diffraction Theory - University of Louisville

62

𝒞𝒞 𝑚𝑚 ≡ ï¿œ0

𝑚𝑚

cos𝜋𝜋2𝑚𝑚′2 𝑑𝑑𝑚𝑚𝑥

𝒮𝒮 𝑚𝑚 ≡ ï¿œ0

𝑚𝑚

sin𝜋𝜋2𝑚𝑚𝑥2 𝑑𝑑𝑚𝑚𝑥

𝒞𝒞 𝑚𝑚

𝒮𝒮 𝑚𝑚

𝑚𝑚

𝑚𝑚

𝑚𝑚

𝒞𝒞 𝑚𝑚𝒮𝒮 𝑚𝑚

Page 63: Diffraction Theory - University of Louisville

63

𝒞𝒞 𝑚𝑚 ≡ ï¿œ0

𝑚𝑚

cos𝜋𝜋2𝑚𝑚2 𝑑𝑑𝑚𝑚

𝒮𝒮 𝑚𝑚 ≡ ï¿œ0

𝑚𝑚

sin𝜋𝜋2𝑚𝑚2 𝑑𝑑𝑚𝑚

𝑑𝑑𝒞𝒞 𝑚𝑚 = cos𝜋𝜋2𝑚𝑚2 𝑑𝑑𝑚𝑚

𝑑𝑑𝒮𝒮 𝑚𝑚 = sin𝜋𝜋2𝑚𝑚2 𝑑𝑑𝑚𝑚

𝒮𝒮 𝑚𝑚

𝒞𝒞 𝑚𝑚

𝑑𝑑𝒞𝒞 2 + 𝑑𝑑𝒮𝒮 2 = 𝑑𝑑𝑚𝑚 2

𝑑𝑑𝒞𝒞𝑑𝑑𝒮𝒮𝑑𝑑𝑚𝑚

Page 64: Diffraction Theory - University of Louisville

64

Applications of Fresnel Diffraction1.No obstruction

2.Straight edge

3. Single slit

4. Rectangular aperture

5. Opaque circular disk

Page 65: Diffraction Theory - University of Louisville

65

𝐌𝐌 𝑌𝑌,𝑍𝑍 =𝐌𝐌04 × 𝒞𝒞 𝛟𝛟2 − 𝒞𝒞 𝛟𝛟1 2 + 𝒮𝒮 𝛟𝛟2 − 𝒮𝒮 𝛟𝛟1 2

× 𝒞𝒞 𝛿𝛿2 − 𝒞𝒞 𝛿𝛿1 2 + 𝒮𝒮 𝛿𝛿2 − 𝒮𝒮 𝛿𝛿1 2

1. No Obstruction

𝛟𝛟 ≡2𝜆𝜆 𝑠𝑠

𝑌𝑌 − 𝑊𝑊

𝛿𝛿 ≡2𝜆𝜆 𝑠𝑠

𝑍𝑍 − 𝑧𝑧

𝑊𝑊

𝑧𝑧

𝛟𝛟2 = −∞

𝛟𝛟1 = +∞𝛿𝛿2 = −∞ 𝛿𝛿1 = +∞

=𝐌𝐌04

× −0.5 − 0.5 2 + −0.5 − 0.5 2 × −0.5 − 0.5 2 + −0.5 − 0.5 2

= 𝐌𝐌0 No surprises here, just the obvious result !!

Page 66: Diffraction Theory - University of Louisville

66

𝐌𝐌 𝑌𝑌,𝑍𝑍 =𝐌𝐌04

× 𝒞𝒞 𝛟𝛟2 − 𝒞𝒞 𝛟𝛟1 2 + 𝒮𝒮 𝛟𝛟2 − 𝒮𝒮 𝛟𝛟1 2

× 𝒞𝒞 𝛿𝛿2 − 𝒞𝒞 𝛿𝛿1 2 + 𝒮𝒮 𝛿𝛿2 − 𝒮𝒮 𝛿𝛿1 2

𝛟𝛟 ≡2𝜆𝜆 𝑠𝑠

𝑌𝑌 − 𝑊𝑊

𝛿𝛿 ≡2𝜆𝜆 𝑠𝑠

𝑍𝑍 − 𝑧𝑧

𝑊𝑊

𝑧𝑧𝛟𝛟2 = 2

𝜆𝜆 𝑐𝑐𝑌𝑌

𝛟𝛟1 = +∞𝛿𝛿2 = −∞ 𝛿𝛿1 = +∞

=𝐌𝐌04

× 𝒞𝒞2𝜆𝜆 𝑠𝑠

𝑌𝑌 − 0.5

2

+ 𝒮𝒮2𝜆𝜆 𝑠𝑠

𝑌𝑌 − 0.5

2

× 2

2. Straight Edge

Page 67: Diffraction Theory - University of Louisville

67

𝒮𝒮 𝑚𝑚

𝒞𝒞 𝑚𝑚𝑌𝑌 = 0

𝑌𝑌 > 0

𝑌𝑌 < 0 𝐌𝐌 𝑌𝑌,𝑍𝑍, 𝑡𝑡 /𝐌𝐌0

𝑌𝑌

𝜆𝜆 𝑠𝑠 = 2

𝐌𝐌 𝑌𝑌,𝑍𝑍 =𝐌𝐌02

× 𝒞𝒞2𝜆𝜆 𝑠𝑠

𝑌𝑌 − 0.5

2

+ 𝒮𝒮2𝜆𝜆 𝑠𝑠

𝑌𝑌 − 0.5

2

Page 68: Diffraction Theory - University of Louisville

68

Page 69: Diffraction Theory - University of Louisville

69

𝐌𝐌 𝑌𝑌,𝑍𝑍 =𝐌𝐌04

× 𝒞𝒞 𝛟𝛟2 − 𝒞𝒞 𝛟𝛟1 2 + 𝒮𝒮 𝛟𝛟2 − 𝒮𝒮 𝛟𝛟1 2

× 𝒞𝒞 𝛿𝛿2 − 𝒞𝒞 𝛿𝛿1 2 + 𝒮𝒮 𝛿𝛿2 − 𝒮𝒮 𝛿𝛿1 2

𝛟𝛟 ≡2𝜆𝜆 𝑠𝑠

𝑌𝑌 − 𝑊𝑊

𝛿𝛿 ≡2𝜆𝜆 𝑠𝑠

𝑍𝑍 − 𝑧𝑧

𝑊𝑊

𝑧𝑧𝛟𝛟2 =

2𝜆𝜆 𝑠𝑠

𝑌𝑌 − 𝑑𝑑2

𝛟𝛟1 =2𝜆𝜆 𝑠𝑠

𝑌𝑌 + 𝑑𝑑2𝛿𝛿2 = −∞ 𝛿𝛿1 = +∞

=𝐌𝐌04

× 𝒞𝒞2𝜆𝜆 𝑠𝑠

𝑌𝑌 − 𝑑𝑑2 − 𝒞𝒞

2𝜆𝜆 𝑠𝑠

𝑌𝑌 + 𝑑𝑑2

2

+ 𝒮𝒮2𝜆𝜆 𝑠𝑠

𝑌𝑌 − 𝑑𝑑2 − 𝒮𝒮

2𝜆𝜆 𝑠𝑠

𝑌𝑌 + 𝑑𝑑2

2

× 2

3. Single Slit

𝑑𝑑

Page 70: Diffraction Theory - University of Louisville

70

𝒮𝒮 𝑚𝑚

𝒞𝒞 𝑚𝑚𝑌𝑌 = 0

𝑌𝑌 > 0

𝑌𝑌 < 0

𝐌𝐌 𝑌𝑌,𝑍𝑍 =𝐌𝐌02

× 𝒞𝒞2𝜆𝜆 𝑠𝑠

𝑌𝑌 − 𝑑𝑑2 − 𝒞𝒞

2𝜆𝜆 𝑠𝑠

𝑌𝑌 + 𝑑𝑑2

2

+ 𝒮𝒮2𝜆𝜆 𝑠𝑠

𝑌𝑌 − 𝑑𝑑2 − 𝒮𝒮

2𝜆𝜆 𝑠𝑠

𝑌𝑌 + 𝑑𝑑2

2

𝛟𝛟1 − 𝛟𝛟2 =2𝜆𝜆 𝑠𝑠

𝑑𝑑

𝛟𝛟1 + 𝛟𝛟22

=2𝜆𝜆 𝑠𝑠

𝑌𝑌

Page 71: Diffraction Theory - University of Louisville

71

𝑑𝑑 = 10 𝜆𝜆

𝑑𝑑

𝑁𝑁𝐹𝐹 ≡𝑑𝑑2

4 𝜆𝜆 𝑠𝑠

𝑁𝑁𝐹𝐹 = 10

𝑁𝑁𝐹𝐹 = 1

𝑁𝑁𝐹𝐹 = 0.5

𝑁𝑁𝐹𝐹 = 0.1

𝜆𝜆 = 1

𝑠𝑠 = 2.5 𝜆𝜆

𝑠𝑠 = 25 𝜆𝜆

𝑠𝑠 = 50 𝜆𝜆

𝑠𝑠 = 250 𝜆𝜆

Near field

Far field

Fresnel number

Page 72: Diffraction Theory - University of Louisville

72

Mathematica

Page 73: Diffraction Theory - University of Louisville

73

4. Rectangular Aperture

Page 74: Diffraction Theory - University of Louisville

74

5. Circular Objects

Poisson (Arago) spot