device simulations of silicon detectors: a design …vertex2002/vprivate/passeri.pdfnmoslvt reset...

18
Device Device Simulations of Silicon Simulations of Silicon Detectors: a Design Perspective Detectors: a Design Perspective D. Passeri 1,2 , P. Placidi 1,2 , L. Verducci 1,2 , F. Moscatelli 1,2 P. Ciampolini 1,3 , G. Matrella 1,3 , A.Marras 3 , G.M. Bilei 1 (3) (3) Dipartimento Dipartimento di di Ingegneria dell’Informazione Ingegneria dell’Informazione Università di Parma Università di Parma - - Italy Italy (1) (1) Istituto Nazionale Istituto Nazionale di di Fisica Nucleare Fisica Nucleare Sezione Sezione di Perugia di Perugia - - Italy Italy (2) (2) Dipartimento Dipartimento di di Ingegneria Elettronica Ingegneria Elettronica e e dell’Informazione dell’Informazione Università degli Studi di Perugia Università degli Studi di Perugia - - Italy Italy

Upload: vanhanh

Post on 19-Mar-2019

215 views

Category:

Documents


0 download

TRANSCRIPT

DeviceDevice Simulations of Silicon Simulations of Silicon Detectors: a Design PerspectiveDetectors: a Design Perspective

D. Passeri1,2, P. Placidi1,2, L. Verducci1,2, F. Moscatelli1,2

P. Ciampolini1,3, G. Matrella1,3, A.Marras3, G.M. Bilei1

(3)(3) DipartimentoDipartimento didi Ingegneria dell’InformazioneIngegneria dell’InformazioneUniversità di Parma Università di Parma -- ItalyItaly

(1)(1) Istituto NazionaleIstituto Nazionale didi Fisica Nucleare Fisica Nucleare SezioneSezione di Perugia di Perugia -- ItalyItaly

(2)(2) DipartimentoDipartimento didi Ingegneria ElettronicaIngegneria Elettronica ee dell’Informazionedell’InformazioneUniversità degli Studi di Perugia Università degli Studi di Perugia -- ItalyItaly

OutlineOutline

• Introduction.

• Device-Level Simulation:

- Radiation Damage Analysis.- Design of CMOS Pixel Detectors.

• Conclusions.

- Motivations.- Modeling characteristics.

• Applications (Design Issues):

Device Simulations of Silicon Detectors: a Design Perspective

Vertex 2002

DeviceDevice--Level Simulation: MotivationsLevel Simulation: Motivations• Device simulation:

- numerical solution of semiconductor transport equations;- accurate physical modeling;- distributed domain (spatial, temporal).

• Allows for:- fast and inexpensive prediction of device performance;- microscopic behavior insight;- virtual work-benching and optimization;

• Link between microscopic and macroscopic effects.

Device Simulations of Silicon Detectors: a Design Perspective

Vertex 2002

Device Simulation: Physical ModelsDevice Simulation: Physical Models• Drift-diffusion approximation of current densities.• Radiation-induced carrier-generation term.• Radiation-induced deep-level traps.• Contribution of trapped carriers to the charge density.

• Continuity equations for free and trapped charges.

( ) ( )adADs npnpNNq −+−+−=∇−⋅∇ −+ ϕε

nn UJqt

n −=⋅∇−r1

∂∂

nanaa UJ

qtn −=⋅∇−

r1∂

pp UJqt

p −=⋅∇+r1

∂∂

pdpdd UJ

qtp −=⋅∇+

r1∂

Device Simulations of Silicon Detectors: a Design Perspective

Vertex 2002

Radiation Damage AnalysisRadiation Damage Analysis• Deep-level radiation induced traps:

- Nt, Et, σn, σp

• SRH statistics.• Donor removal.• Hierarchical approach:

- complexity/comprehensiveness; - accurate prediction of device behavior;- most parameters physically meaningful; - experimental characterization feasible.

Device Simulations of Silicon Detectors: a Design Perspective

Vertex 2002

Radiation Damage ModelingRadiation Damage Modeling• The model should allow for reproducing the electrical behavior of heavily

irradiated device in terms of:- effective doping concentration depending on fluence;- depletion region profiles;- increase of the leakage current;- charge collection reduction.

• Enhanced, device-level radiation damage modeling scheme featuring:- four “dominant” deep levels (related to V2

(-/0), CiOi, V2O, E(70)).- donor removal mechanism (c*ND = 0.05 cm-1).- direct charge exchange between V2

(-/0) and E(70).• All parameters are physically meaningful and experimentally characterized.

• Suitable for use within general purpose device simulators (i.e. spatial and time-domain analysis feasible).

Device Simulations of Silicon Detectors: a Design Perspective

Vertex 2002

Radiation Damage Modeling (2)Radiation Damage Modeling (2)

0.41•10-15

1•10-14

Ec- 0.45E70

1•10-151•10-161•10-16σn [cm2]

Ev+ 0.36Ec- 0.50Ec- 0.42E [eV]

10.081η [cm-1]

1•10-161•10-152•10-15σp [cm2]

CiOi+/0V2O0/-V2

0/-Parameter

1•10-151•10-161•10-16σn [cm2]

Ev+ 0.36Ec- 0.50Ec- 0.42E [eV]

10.0826η [cm-1]

1•10-161•10-158•10-15σp [cm2]

CiOi+/0V2O0/-V2

0/-Parameter

• Higher computational effort

• Computational limitations for off-range conditions:

- high fluences (> 1014 n/cm2)- low temperature.

Device Simulations of Silicon Detectors: a Design Perspective

Vertex 2002

• Fitted values of V2 parameters to reproduce the “cluster effect”.

•Suitable for high fluences and low temperature analyses.

Four levels Vs. three levels modelingDirect charge exchange

Radiation Damage Modeling ApplicationsRadiation Damage Modeling Applications

Comparison between predictions of ISE-TCAD three-level model (squares) and experimental data (circles) for Neff as a function of neutronfluence.

Experimental data and predictions of ISE-TCAD three-level model for Neff as a function of temperature for an irradiated device (6.2•1013 1MeV n).

Device Simulations of Silicon Detectors: a Design Perspective

Vertex 2002

nMOSlvt

RESET

pMOSstdRESET

pMOSstd

VFTD

• Assessment of CMOS deep submicron technology suitability for fabricationof charged particle detectors.

• Optimization of the sensitive element.

• Innovative active pixel detection scheme: the WIPS idea.

Design of CMOS Pixel DetectorsDesign of CMOS Pixel Detectors

Device Simulations of Silicon Detectors: a Design Perspective

Vertex 2002

nMOSlvt

RESET

pMOSstd

RESET

pMOSstd

VFTD

The WIPS Pixel SensorThe WIPS Pixel Sensor VDD

C3

C2

CUP

OUT_COL

C1

C0CDOWN

OUT_ROW

VDD

VFTD is charged-up through a RESET pulse.

The VFTD voltage is raised up toVFTD = VDD-|VTp|

(with VTn < |VTp|).

If a particle hit occurs, VFTD ↓, pMOS goes ON…

A conductive path allows for the charge of CDOWN.

1

3 2

4

To the COL amplifier...

To the ROW amplifier...

Part

icle

hit

Device Simulations of Silicon Detectors: a Design Perspective

Vertex 2002

• Device/Circuit analysis.

RAPS01 Chip LayoutRAPS01 Chip Layout

Device Simulations of Silicon Detectors: a Design Perspective

Vertex 2002

• 0.18 µm CMOS technology. • 1.8/3.3 V.• A/D VLSI design.• 11 APS matrices.• 8 WIPS matrices.• 8 main test structures.

WIPS WIPS DeviceDevice--Level AnalysisLevel Analysis

A

A’

B

B’

n-well

n-well

n-well n-well

BB’

AA

p-wellp-well

Device Simulations of Silicon Detectors: a Design Perspective

Vertex 2002

123

C’C

CC’

n-well n-well

WIPS DeviceWIPS Device--Level Analysis (2)Level Analysis (2)Current responses of the “sensitive elements” (n-wells) to a particle hitdepending on the particle trajectory (AA’ section).

Track # 1 Track # 2 Track # 3

Time [sec] Time [sec] Time [sec]

Curr

ent

[A]

Curr

ent

[A]

Curr

ent

[A]

Device Simulations of Silicon Detectors: a Design Perspective

Vertex 2002

WIPS DeviceWIPS Device--Level Analysis (3)Level Analysis (3)

Device Simulations of Silicon Detectors: a Design Perspective

Vertex 2002

Voltage drops at the photodiode inner node, as a function of the impact point

AA’ section (n-n-n) BB’ section (p-n-p)

Volt

age

[V]

Volt

age

[V]

Time [sec]Time [sec]

WIPS DeviceWIPS Device--Level Analysis (Level Analysis (44))

Device Simulations of Silicon Detectors: a Design Perspective

Vertex 2002

Voltage drops at the photodiode inner nodes (CC’ section)

Volt

age

[V]

Time [sec]

Volt

age

[V]

Time [sec]

hit pixel

adjacent pixel

no guardring guardring

WIPS WIPS Circuit AnalysisCircuit Analysis

V OU

T_RO

W[V

]

ROW Analog Output

Dark rows

Hit row

∆V = 238 mV

COL Analog Output

Time [s]

V OU

T_CO

L[V

]

Time [s]

∆V = 670 mV

Hit col

Dark cols

Device Simulations of Silicon Detectors: a Design Perspective

Vertex 2002

DIF

F_A

MPL

IFIE

R

COL_EN

NEG_COL_EN

64

64

ANALOG_OUT

X

RO

W_E

N

NEG

_EO

W_E

N6464

DIFF_AMPLIFIER

ENABLE_BUFFER

32CTRL_0

32CTRL_1

32CTRL_2

32CTRL_3

32RESET

RIF_RIGA

POL_SPECCHIO

RIF_COL

RIF_COLUMN

POL_MIRROR

RIF_ROW ……

WPS_32x32G0P0

WIPS WIPS Matrix ArchitectureMatrix Architecture

• Single row scan / serial out: (n + n ) x TCLOCK

• Pixel size 10 x 10 µm2

Device Simulations of Silicon Detectors: a Design Perspective

ConclusionsConclusionsNumerical device-level simulation has been assessed as powerful tool for analysis and design of particle detectors.

A comprehensive, device-level radiation damage modeling scheme, based on a hierarchical approach, has been devised, allowing for a broad range of application issues.Coupled device- and circuit-level analyses have been extensively exploited within a conventional CMOS VLSI design flow for the realization of innovative pixel detectors.

Fast and inexpensive performance prediction, as well as physical and intuitive interpretation of device behavior can be obtained.

Device Simulations of Silicon Detectors: a Design Perspective

Vertex 2002