development of radiation hard sensors for very high ... › ~vertex2002 › vprivate ›...

24
Development of Radiation Hard Sensors for Very High Luminosity Colliders - CERN-RD50 project - Michael Moll Michael Moll CERN CERN - Geneva Geneva - Switzerland Switzerland On behalf of CERN RD50 Collaboration On behalf of CERN RD50 Collaboration http://www. http://www. cern cern. ch ch /rd50 /rd50 11 th International Workshop on Vertex Detectors, VERTEX 2002, Hawaii, November 3-8, 2002

Upload: others

Post on 03-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Development of Radiation Hard Sensors for

    Very High Luminosity Colliders- CERN-RD50 project -

    Michael MollMichael MollCERN CERN -- Geneva Geneva -- SwitzerlandSwitzerland

    On behalf of CERN RD50 CollaborationOn behalf of CERN RD50 Collaboration

    http://www.http://www.cerncern..chch/rd50/rd50

    11th International Workshop on Vertex Detectors, VERTEX 2002, Hawaii, November 3-8, 2002

  • Michael Moll – VERTEX 2002,Hawaii, November 3-8, 2002

    • Motivation and Introduction to RD50

    • Radiation Damage

    • Microscopic defects (changes in bulk material)

    • Macroscopic damage (changes in detector properties)

    • RD50 - Approaches to obtain radiation hard sensors

    • Material Engineering

    • Device Engineering

    • RD50 – future work plan

    • Summary

    RD50 – A very young collaboration!

    11/2001 – Workshop on rad-hard devices 02/2002 - R&D Proposal06/2002 - Approved as CERN-RD5010/2002 - 1st RD50 Workshopnow: startup of specialized working groups

    Outline

  • Michael Moll – VERTEX 2002,Hawaii, November 3-8, 2002

    45 European and Asian institutes (34 west, 11 east)Belgium (Louvain), Czech Republic (Prague (2x)),

    Finland (Helsinki (2x), Oulu), Germany (Berlin, Dortmund, Erfurt, Halle, Hamburg, Karlsruhe), Greece (Athens), Italy (Bari,

    Florence, Milano, Modena, Padova, Perugia, Pisa, Trento, Triest), Lithuania (Vilnius), Norway (Oslo (2x)), Poland (Warsaw),

    Romania (Bucharest (2x)), Russia (Moscow (2x), St.Petersburg), Slovenia (Ljubljana), Spain (Barcelona, Valencia), Sweden (Lund)

    Switzerland (CERN, PSI), Ukraine (Kiev), United Kingdom (Exeter, Glasgow, Lancaster, Liverpool, London, Sheffield,

    University of Surrey)

    6 North-American institutesCanada (Montreal), USA (Fermilab, Purdue University, Rutgers

    University, Syracuse University, BNL)

    1 Middle East instituteIsrael (Tel Aviv)

    274 Members from 52 Institutes

    Detailed member list: http://cern.ch/rd50

    RD50 - Development of Radiation Hard Semiconductor Devices for High Luminosity Colliders

  • Michael Moll – VERTEX 2002,Hawaii, November 3-8, 2002

    • LHC upgrade (“Super-LHC” … later than 2010)φ( R=4cm) ~ 3·1015cm-2φ( R=75cm)~ 3·1013cm-2

    a Technology available aHowever, serious radiation damage!

    S-LHC: L = 1035cm-2s-1 φ( R=4cm) ~ 1.6·1016cm-2

    aFocused and coordinated R&D mandatory a develop radiation hard and cost-effective detectors

    • LHC experiments (…starting 2007)Radiation hardness studies also beneficial before a luminosity upgrade. a Radiation hard technologies now adopted have not been completely

    characterized: Oxygen-enriched Si in ATLAS/CMS pixels

    • Linear collider experimentsDeep understanding of radiation damage will be fruitful for linear colliderexperiments where high doses of e, γ will play a significant role.

    10 yearsLHC: L = 1034cm-2s-1

    5 years

    Motivation to form a new R&D Collaboration

    × 5

  • Michael Moll – VERTEX 2002,Hawaii, November 3-8, 2002

    Main Objective:

    Three R&D strategies:♦ Material engineering

    - Defect engineering of silicon (oxygenation, dimers, …)- New detector materials (SiC, …)

    ♦ Device engineering- Improvement of present planar detectors

    (3D detectors, thin detectors, cost effective detectors,…)♦ Variation of detector operational conditions

    - Low temperature operation- Forward bias operation

    Further key tasks:♦ Basic studies♦ Defect modeling and device simulation

    To develop radiation hard semiconductor detectors that can operate beyond the limits of present devices. These devices should withstand fast hadron fluences of the order of 1016 cm-2, as expected for example for a recently discussed luminosity upgrade of the LHC to 1035 cm-2s-1.

    RD50 - Scientific objectives and strategies

    } RD50Center of gravity

  • Michael Moll – VERTEX 2002,Hawaii, November 3-8, 2002

    Scientific Organization of RD50RD50 - Development of Radiation Hard Semiconductor Devices for High Luminosity Colliders

    SpokespersonMara Bruzzi

    INFN and University of Florence

    Deputy-SpokespersonClaude Leroy

    University of Montreal

    Defect/MaterialCharacterizationBengt Svensson(Oslo University)

    Defect Engineering

    Eckhart Fretwurst(Hamburg University)

    Pad DetectorCharacterizationStanislav Pospisil

    (Prague University)

    New Structures

    Mahfuzur Rahman(Glasgow University)

    Full DetectorSystems

    Gianluigi Casse(LiverpoolUniversity)

    New Materials

    Juozas V.Vaitkus(Vilnius University)

    •Characterization(pre/post irradiation)SIMS, IR, PL, Hall,TSC, DLTS, EPR,…- V2O, O-dimers,…- clusters, .. •Theory

    Defect formation, defect annealing, energy states,…..

    •Oxygenation•DOFZ•High resistivity CZ•Epitaxial Silicon•Dimerization•Thermal donors•Other impurities

    H, N, Ge, …•Pre-irradiation treatments

    • SiliconCarbide• CdTe• other materials• Irradiation tests

    •Test structurecharacterizationIV, CV, CCE

    • Irradiation tests• NIEL• Device modeling• Operational

    conditions

    •3D detectors•Thin detectors•Cost effectivesolutions

    •Simulations•Irradiation tests

    •LHC-like tests•Links to HEP•Links to R&Dof electronics

    •Device simulations

    •Comparison:pad-mini-fulldetectors

    CERN contact: Michael Moll

    Material Engineering Device Engineering

  • Michael Moll – VERTEX 2002,Hawaii, November 3-8, 2002

    Radiation Damage – Microscopic Effects

    particle SiSVacancy

    + Interstitial

    point defects (V-O, C-O, .. )

    point defects and clusters of defects

    EK>25 eV

    EK > 5 keV

    V

    I

    10 MeV protons 24 GeV/c protons 1 MeV neutrons

    Initial distribution of vacancies in (1µm)3

    after 1014 particles/cm2

    ♦Neutrons (elastic scattering)• En > 185 eV for displacement• En > 35 keV for cluster

    ♦60Co-gammas•Compton Electrons

    with max. Eγ ≈1 MeV(no cluster production)

    ♦Electrons•Ee > 255 keV for displacement•Ee > 8 MeV for cluster

    More point defects More clusters

    [Mika Huhtinen ROSE TN/2001-02]

  • Michael Moll – VERTEX 2002,Hawaii, November 3-8, 2002

    1 10 100 1000 10000

    annealing time at 60oC [min]

    0

    2

    4

    6

    8

    10

    ∆ N

    eff [

    1011

    cm-3

    ]

    NY,∞ = gY Φeq

    NC

    NC0

    gC Φeq

    Na = ga ΦeqNa = ga Φeq

    10-1 100 101 102 103

    Φeq [ 1012 cm-2 ]

    1

    510

    50100

    5001000

    5000U

    dep [

    V]

    (d =

    300

    µm)

    10-1

    100

    101

    102

    103

    | Nef

    f | [

    101

    1 cm

    -3 ]

    ≈ 600 V≈ 600 V

    1014cm-21014cm-2

    "p - type""p - type"

    type inversiontype inversion

    n - typen - type

    [Data from R. Wunstorf 92]

    Radiation Damage – 3 Macroscopic Effects

    1. Change of Vdep (Neff) 2. Increase of leakage currentA

    nnea

    ling

    Irra

    diat

    ion

    (e.g

    . at 6

    0 ºC

    )

    Gamma irradiation: type inversion and increase of leakage current, but: no annealing !

    1 10 100 1000 10000annealing time at 60oC [minutes]

    0

    1

    2

    3

    4

    5

    6

    α(t)

    [10-

    17 A

    /cm

    ]

    1

    2

    3

    4

    5

    6

    oxygen enriched silicon [O] = 2.1017 cm-3

    parameterisation for standard silicon [M.Moll PhD Thesis]

    1011 1012 1013 1014 1015Φeq [cm-2]

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    ∆I /

    V

    [A/c

    m3 ]

    n-type FZ - 7 to 25 KΩcmn-type FZ - 7 KΩcmn-type FZ - 4 KΩcmn-type FZ - 3 KΩcm

    n-type FZ - 780 Ωcmn-type FZ - 410 Ωcmn-type FZ - 130 Ωcmn-type FZ - 110 Ωcmn-type CZ - 140 Ωcm

    p-type EPI - 2 and 4 KΩcm

    p-type EPI - 380 Ωcm

    [M.Moll PhD Thesis][M.Moll PhD Thesis]

  • Michael Moll – VERTEX 2002,Hawaii, November 3-8, 2002

    3. Deterioration of the charge collection efficiency

    ATLAS microstrip + RO electronics

    More details in later talk:“Charge collection in silicon”Gianluigi Casse, Liverpool

    ♦ Two mechanisms reduce collectable charge:• Trapping (electrons and holes)• Underdepletion (detector design and geometry)

    Data: Gianluigi Casse; 1st Workshop on Radiation Hard Semiconductor Devices for High Luminosity Colliders; CERN; 28-30 November 2002

    ♦ Oxygenation has no influenceon trapping.

    ♦ After 5·1014 p/cm2 (24GeV/c)- 80% of charge collected (25ns)- overdepletion needed !

    0 1 2 3 4 5 6Φp [1014 cm-2]

    020406080

    100

    Q/Q

    0 [%

    ]

    standardoxygenated

    Max collected charge (overdepletion) / Q0

    Data: [G.Casse, Liverpool]

  • Michael Moll – VERTEX 2002,Hawaii, November 3-8, 2002

    ♦ Influence the defect kinetics by incorporation of impurities

    ♦ Best example: OxygenIdea: Incorporate Oxygen to getter radiation-induced vacancies

    ⇒ prevent formation of Di-vacancy (V2) related deep acceptor levels

    Observation: Higher oxygen content ⇒ less negative space charge(less charged acceptors)

    ♦ One possible mechanism: V2O is a deep acceptor

    O VO (not harmful at room temperature)V

    VO V2O (negative space charge)

    • Experimental evidence for V2O? Yes!

    - Acceptor at Ec- 0.545 eV [I.Pintilie: 1st RD50 Workshop, APL 81(2002)165]

    - Double-acceptor at Ec- 0.43eV(-/0) and Ec- 0.23eV (--/-)[E.Monakhov 1st RD50 Workshop, PRB 65(2002)233207]

    Defect Engineering of Silicon

    V2O(?)

    Ec

    EV

    VO

    V2 in clusters

  • Michael Moll – VERTEX 2002,Hawaii, November 3-8, 2002

    Oxygen enriched silicon• DOFZ (Diffusion Oxygenated Float Zone Silicon)

    §1982 First oxygen diffusion tests on FZ [Brotherton et al. J.Appl.Phys.,Vol.53, No.8.,5720]§1995 First tests on detector grade silicon [Z.Li et al. IEEE TNS Vol.42,No.4,219]§1999 Introduced to the HEP community by RD48 (ROSE)

    0 1 2 3 4 5Φ24 GeV/c proton [1014 cm-2]

    0

    2

    4

    6

    8

    10

    |Nef

    f| [1

    012 c

    m-3

    ]

    100

    200

    300

    400

    500

    600

    Vde

    p [V

    ] (30

    0 µm

    )

    Carbon-enriched (P503)Standard (P51)O-diffusion 24 hours (P52)O-diffusion 48 hours (P54)O-diffusion 72 hours (P56)

    Carbonated

    Standard

    Oxygenated

    [RD48-NIMA 465(2001) 60]

    http://cern.ch/rd48

    ROSERD48

    First tests show clear advantage of oxygenation

    Later systematic tests reveal strong variations with no clear dependence on oxygen content

    0 2 4 6 8 10Φ 24 G eV / c p ro to n [10

    1 4 cm -2]

    0123456789

    10

    |Nef

    f| [1

    012 c

    m-3

    ]

    10 0

    20 0

    30 0

    40 0

    50 0

    60 0

    70 0

    Vde

    p [V

    ] (30

    0 µm

    )

    15 K Ω cm - ox yge nated

    15 K Ω c m - stan dar d

    [M .M oll]

  • Michael Moll – VERTEX 2002,Hawaii, November 3-8, 2002

    0 50 100 150 200 250depth [µm]

    1015

    51016

    51017

    51018

    O-c

    once

    ntra

    tion

    [cm

    -3]

    Cz as grown

    DOFZ 72h/1150oCDOFZ 48h/1150oCDOFZ 24h/1150oC

    [G.Lindstroem et al.]

    900 1000 1100 1200

    0

    1

    2

    3

    900 1000 1100 1200

    0

    1

    2

    3

    L1-1 L6a-1 L8a-2

    T=300KSi :O

    Abs

    . coe

    ff. (

    cm-1)

    Wavenumber (cm -1)

    Characterization of Oxygen concentration in DOFZ

    • Average: [O]IR/[O]SIMS = 1.1 ± 10%⇒ Oxygen in DOFZ is mono-atomic (no clustering)

    SIMS – [O] depth profile IR-absorption: average [O]

    1.4e171.0e176.8e168.5e17IR [O/cm3]

    1.2e179.9e165.7e168.1e17SIMS [O/cm3]

    DOFZ 72h/1150CDOFZ 48h/1150CDOFZ 24h/1150CCZSample

    Details: [G.Lindstroem et al. 1st RD50-Workshop]

  • Michael Moll – VERTEX 2002,Hawaii, November 3-8, 2002

    1 10 100 1000 10000

    annealing time at 60oC [min]

    0

    2

    4

    6

    8

    10

    ∆ N

    eff [

    1011

    cm-3

    ]

    NY,∞ = gY Φeq

    NC

    NC0

    gC Φeq

    Na = ga ΦeqNa = ga Φeq

    Annealing after 24 GeV/c proton irradiation

    0 1 2 3 4 5 6 7Φeq [1014 cm-2]

    0

    0.5

    1

    1.5

    2

    2.5

    NY [

    1013

    cm

    -3]

    oxygenated FZoxygenated FZ

    24 GeV/c proton irradiation24 GeV/c proton irradiation

    standard FZstandard FZ

    0 1 2 3 4 5 6 7Φeq [10

    14 cm-2]

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    NC [

    1013

    cm

    -3]

    oxygenated FZoxygenated FZ

    standard FZstandard FZ

    24 GeV/c proton irradiation24 GeV/c proton irradiation

    gc=5.61 10-3cm-1gc=5.61 10-3cm-1

    gc=1.93 10-2cm-1gc=1.93 10-2cm-1

    100 5 101 5 102 5 103 5 104annealing time at 80oC [min]

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    NY/N

    Y∞

    oxygenated FZoxygenated FZ

    standard FZstandard FZ

    24 GeV/c proton irradiation24 GeV/c proton irradiationnormalised reverse annealingnormalised reverse annealing

    τY = 50 minτY = 50 min

    τY = 220 minτY = 220 min

    Saturation ofreverse

    annealing

    delayedreverse

    annealing

    ∆Νeff(Φeq,t) = Na(Φeq,t) + NC(Φeq,t) + NY(Φeq,t)= beneficial annealing + stable damage + reverse annealing

    Stable damage reduced by a

    factor of 3

    http://cern.ch/rd48

    ROSERD48

  • Michael Moll – VERTEX 2002,Hawaii, November 3-8, 2002

    How much [O] is enough?♦ Reverse annealing amplitude NY

    after proton and neutron irradiation

    ♦ Saturation of reverse annealing for protons and neutrons♦ Higher beneficial effect for protons♦ No big difference between 24h and 72h oxidation at 1150ºC

    0 2.1014 4.1014 6.1014 8.1014 1015Φp [p/cm2]

    0.0

    0.5

    1.0

    1.5

    2.0

    NY [1

    013 /

    cm3 ]

    200

    400

    600

    800

    1000

    ∆Vde

    p [V

    ] (2

    80 µ

    m)standard standard

    DOFZ 24h/1150oCDOFZ 24h/1150oC

    DOFZ 72h/1150oCDOFZ 72h/1150oC

    20 GeV/c proton irradiation

    [G.Lindstroem et al.] 0 1.5.1014 3.1014 4.5.1014 6.1014

    Φn [n/cm2]

    0.0

    0.5

    1.0

    1.5

    2.0

    NY [1

    013 /

    cm3 ]

    200

    400

    600

    800

    1000

    ∆Vde

    p [V

    ] (28

    0 µm

    )

    standardstandard

    DOFZ 24h/1150oCDOFZ 24h/1150oC

    neutron-irradiation

    [G.Lindstroem et al.]

    Details: [G.Lindstroem et al. 1st RD50-Workshop]

    1 10 100 1000 10000annealing time at 60oC [min]

    0

    2

    4

    6

    8

    10

    ∆ N

    eff [

    1011

    cm-3

    ]

    NC

    NC0gC Φeq

    NA NA NY

    [M.Moll]

  • Michael Moll – VERTEX 2002,Hawaii, November 3-8, 2002

    Updated Damage Projection - ATLAS Pixel B-layer

    ♦ Radiation level: nn ΦΦeqeq(year) = 3.5 (year) = 3.5 ×× 10101414 cmcm--2 2 (full luminosity)(full luminosity)>> 85% charged hadrons85% charged hadrons

    ♦ LHC-scenario: nn 1 year = 1 year = 100 days beam (100 days beam (--77°°C)C)30 days maintenance (2030 days maintenance (20°°C)C)

    235 days no beam (235 days no beam (--77°°C)C)

    0 1 2 3 4 5 6 7 8 9 10time [years]

    10

    20

    30

    40

    Nef

    f (10

    12) [

    cm-3

    ]

    500

    1000

    1500

    Vde

    p (20

    0µm

    ) [V

    ]

    RD48 standard

    RD48 standard

    RD48 oxygenated (DOFZ)

    RD48 oxygenated

    CiS standard

    CiS standard

    CiS oxygenated (DOFZ)

    CiS oxygenated

    Aug. 2002 - simulation : M.Moll, CERNAug. 2002 - simulation : M.Moll, CERN - parameters : G.Lindstroem, Hamburg

    ♦ New:•• Std. Silicon:Std. Silicon:

    rad.harder than predicted by RD48

    •• DOFZ:DOFZ:reverse annealing delayed and saturating with high fluences

  • Michael Moll – VERTEX 2002,Hawaii, November 3-8, 2002

    DOFZ : Spectacular Improvement of γ-irradiation tolerance

    ♦ No type inversion for oxygen enriched silicon!♦ Slight increase of positive space charge

    (due to Thermal Donor generation?)

    Z.Li et al. [1st RD50 Workshop] See also:- Z.Li et al. [NIMA461(2001)126]- E.Fretwurst et al.[1st RD50 Workshop]

    0 200 400 600 800 1000 1200 1400 1600 1800

    0

    100

    200

    300

    400

    500

    Vfd

    Vfd (

    Vol

    t)

    Si stand., 1940-18-6 Si oxyg., 2015-11-6 -"- 2015-11-5

    Dose [Mrad]

    Vde

    p[V

    ]

  • Michael Moll – VERTEX 2002,Hawaii, November 3-8, 2002

    Material Engineering: Czochralski silicon (CZ)♦ Very high Oxygen content 1017-1018cm-3 (Grown in quartz (SiO2)crucible)♦ High resistivity (>1KΩcm) available only recently (Magnetic CZ technology)♦ CZ wafers cheaper than FZ (RF-IC industry got interested)

    ♦Irradiation of test-structures:

    • Only small change in Vdepup to 1•1015 π/cm2

    • No type inversion

    • Leakage current and charge trapping as for FZ silicon

    • Very high oxygen content:Beware of thermal donors !

    ♦ First full size detectors produced: MCZ, 900 Ωcm, 32.5 cm2, strip 10µm, pitch 50µm• Electrical performance: 3µA@900V• Test beam: Signal/Noise ≈ 10 ; Efficiency ≥ 95% ; Resolution of 10µm• Radiation tests: under way

    Details: [E.Tuominen, 1st RD50 Workshop]

    Details: [G.Lindstroem, 1st RD50 Workshop][Z.Li, 1st RD50 Workshop]0 2.1014 4.1014 6.1014 8.1014 1015

    Φπ [cm-2]

    0

    200

    400

    600

    Vde

    p [V

    ] (30

    0 µm

    )

    0

    2

    4

    6

    8

    10

    Nef

    f [10

    12cm

    -3]

    standard FZ (CiS)DOFZ 24 h/1150oC (CiS)

    Cz-TD generatedCz-TD killed

    190 MeV pions"CERN scenario"

    [G.Lindstroem et al.]

  • Michael Moll – VERTEX 2002,Hawaii, November 3-8, 2002

    ♦ Idea: Transform Oxygen into Oxygen dimers (O2)

    Standard Si : V+OVO; V+VO V2ODimered Si : V+O2VO2; V+VO2 V2O2

    ♦ How to produce silicon containing dimers ?• Co60-γ or electron irradiation at 350ºC

    V+OVO; VO+O VO2; I+VO2 O2♦ Does it work ?

    Defect Engineering: Oxygen Dimers in Silicon

    Simulations: deep acceptor(but shallower than V2O) neutral in SCR ?

    deep acceptor (neg. charged)

    • 2001 – L.Lindstroem et al.: IR measurements show dimer line after 350ºC electron – irrad.of CZ silicon. [ Lindstr.om et al. PhysicaB 308 (2001) 284]

    • 2002 – S.Watts et al.: First test on FZ detectors performed. No clear evidence for dimers.

    [Watts et al NIMA485 (2002) 153]

    • 2003 - Systematic tests under way (RD50 - Dimer Task Force)

  • Michael Moll – VERTEX 2002,Hawaii, November 3-8, 2002

    Property Diamond 4H SiC Si Eg [eV] 5.5 3.3 1.12 Ebreakdown [V/cm] 10

    7 4·106 3·105 µe [cm

    2/Vs] 1800 800 1450 µh [cm

    2/Vs] 1200 115 450 vsat [cm/s] 2.2·10

    7 2·107 0.8·107 Z 6 14/6 14 εr 5.7 9.7 11.9 e-h energy [eV] 13 8.4 3.6 τh [s] 10

    -9 5·10-7 2.5·10-3 Wigner En.[eV] 43 25 13-20

    Epitaxial SiC“A material between Silicon and Diamond”

    ♦ Wide bandgap (3.3eV) ⇒ lower leakage current

    than silicon

    ♦ Signal:Diamond 36 e/µmSiC 51 e/µmSi 89 e/µm

    ⇒ more charge than diamond

    ♦ Higher displacement threshold than silicon

    ⇒ radiation harder than silicon (?)

    About Diamond:See later talk“Diamond”

    by Mara Bruzzi

  • Michael Moll – VERTEX 2002,Hawaii, November 3-8, 2002

    Schottky contact Au 2mm

    Ohmic contact Ti/Au

    n+ 4H-SiC, 300µm, substrate

    n ~ 5·1014cm-3, 30-70µm, epitaxial

    Schottky Barrier Epitaxial SiC

    Semi-insulating 4H-SiCwith Ohmic Contacts

    90Sr-source

    low defect density in epi layer→ negligible polarization effects

    ρ ~1011Ωcm

    polarization effects due to deep traps/micropipes → CCE deterioration

    Nucl.Phys.B Proc. Suppl.78 (1999), 516

    Present status: e.g. CREE (USA)

    • 20-50 µm epitaxial 4H-SiC

    • ≈ 9.000$ - 2”wafer

  • Michael Moll – VERTEX 2002,Hawaii, November 3-8, 2002

    ♦ Electrodes:• narrow columns along detector thickness-“3D”• diameter: 10µm distance: 50 - 100µm

    ♦ Lateral depletion: • lower depletion voltage needed• thicker detectors possible• fast signal

    Device Engineering: 3D detectors

    n

    n

    pp

    n

    n n

    n

    Present size up to ~1cm2

    [P. Roy, Glasgow, 1st RD50 Workshop]

    ♦ Hole processing :• Dry etching• Laser drilling• Photo Electro Chemical

    ♦ Electrode material• Doped Polysilicon (Si)• Schottky (GaAs)

    ♦ Irradiation tests• 1·1015 p/cm2 (55 MeV, 23GeV )• 2·1014 π/cm2 (190 MeV)

    More details on Friday:“Molecular Biology”

    Sherwood Parker, Hawaii

  • Michael Moll – VERTEX 2002,Hawaii, November 3-8, 2002

    Thinning Si by chemical attack (IRST – Trento)

    Benefits: - better tracking precision and momentum resolution- low operating voltage- more precise timing - improved radiation tolerance:50µm thick, 50Ωcm Si detector (Vdep = 200V): type inversion after 1015 cm-2

    Drawbacks:- mip signal ~ 3500e-h pairs- relatively broad Landau distribution at higher values

    Technical Approach:- Epitaxial Si device- Thinning with chemical attacks and micro-machining

    Device Engineering: thin detectors

    thinned Si

  • Michael Moll – VERTEX 2002,Hawaii, November 3-8, 2002

    RD50 – Work plan – What is happening right now?All RD50 institutes:

    § Inter-calibration of microscopic/macroscopic measurement equipment/procedures

    § Exchange of already produced samples and on-stock material

    § Design of common masks for test structures

    § Evaluation of irradiation facilities, common irradiation runs

    RD50 subgroups already working on:§DOFZ (influence of process, particle dependence of damage)

    §Epitaxial silicon, Hydrogen and Thermal donors in silicon

    §High resisitivity CZ detector characterization/production

    §VxOx defect identification and simulation, Oxygen dimer production

    §Irradiation of samples up to very high fluences > 5·1015 cm-2, CV – CCE comparison

    §Evaluation of semiconductors other than silicon, production of 4H-SiC wafers

    § 3D and thin detectors – optimal processing technique?

    §Cross check of detector simulation tools within RD50

    §… much more

  • Michael Moll – VERTEX 2002,Hawaii, November 3-8, 2002

    Summary

    Further information: http://cern.ch/rd50/e.g.: Proposal and all transparencies of 1st RD50 Workshop (CERN, 2-4 Oct 2002)

    ♦ Future detectors for - LHC upgrade will face fluences up to 1.6·1016cm-2- Linear Collider will face high flux of e-m-radiation

    ♦ Newly formed CERN-RD50 collaboration following three strategies:• Material Engineering

    Silicon: Oxygenation, CZ, dimers, other impurities, …New Materials: SiC and others

    • Device EngineeringGeometries with short carrier drift length: 3D and thin detectorsDevice modeling, cost effective solutions, n-in-p, n-in-n, …

    • Modification of Operational ConditionsForward Bias operation, charge injection, …

    ♦ Different particles cause different displacement damage • Increase of leakage current• Change of Vdep : Increase of negative space charge (not for CZ silicon)• Charge loss: Trapping and loss of active volume

    ⇒ To obtain ultra radiation hard sensors a combination of the above mentioned approaches depending on radiation environment, applicationand available readout electronics will be best solution.