detailed design report - sjpnl · detailed design report hydraulic design & network modelling...

335
1 Project Hydraulic Design & Network modelling for Shimla Water Supply Client Shimla Municipal Council Work Order No. MCS/EE-Prod/-World Bank/24x7/1441, Dt: 11/08/2017 Designed By DAHASAHASRA WATERNET SOLUTIONS, 911, C-WING, URVI PARK, OPPO. OSWAL PARK, Pokhran Road No. 2, Thane (W) 400607 Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution Mains (Excluding Demo Area)

Upload: others

Post on 18-Aug-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

1

Project Hydraulic Design & Network modelling for Shimla Water Supply Client Shimla Municipal Council

Work Order No. MCS/EE-Prod/-World Bank/24x7/1441, Dt: 11/08/2017

Designed By DAHASAHASRA WATERNET SOLUTIONS,

911, C-WING, URVI PARK, OPPO. OSWAL PARK,

Pokhran Road No. 2, Thane (W) 400607

Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply,

World Bank Program Volume I: Design Report for Distribution Mains

(Excluding Demo Area)

Page 2: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

2

Preface Shimla is a historic hill top city and capital of the Himachal Pradesh. It has an average altitude of 2,206 metres above mean sea level. There are no water bodies near the main city and the closest river, the Sutlej, is about 21 km away. Due to water scarcity, people faced hardship in getting drinking water, thus there is a water crisis in the city. Despite acute water scarcity, water infrastructure is too old. Most of the distribution pipelines are laid during British era, as a result the Non-revenue water (NRW) level is high and there is no consumer satisfaction. With an aim of increasing drinking water availability to the city and improving service level, Shimla Municipal Corporation (SMC) has a planned comprehensive water supply project. Government of Himachal Pradesh (GoHP) has incorporated this scheme in AMRUT program aided by the World Bank. Design of distribution system of the entire Shimla Planning Area (SPA) has been carried out along with the transmission system. Design report of the Demo Areas has already been submitted earlier, hence, quantities of the water supply project excluding Demo Area is presented in this report. Since, the work is of very importance, it is important to plan meticulously and accurately using the latest advanced technologies of GIS. Drone technology has been used to obtain the ortho image. With other forms of survey smaller roads were not discernible due to dark vegetation cover. Drone’s very high-resolution images enabled to detect all the smaller roads Apart from GIS another advanced pipe network software (WaterGEMS) has been used to create comprehensive GIS based Hydraulic Model of the entire SPA. The project is expected to bring significant improvement in service delivery (as per the Service Level Benchmarks indicators), reduction of coping costs for citizens, financial sustainability for SMC and most importantly public health improvement.

Page 3: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

3

CONTENTS Executive Summary .............................................................................................................. 9

Background ..................................................................................................................... 10

Summary ......................................................................................................................... 11

Proposed Project .............................................................................................................. 11

Chapter 1 ............................................................................................................................ 36

Introduction ........................................................................................................................ 36

1.1 INTRODUCTION ..................................................................................................... 36

1.2 Background ............................................................................................................... 37

1.3 Demographics ............................................................................................................ 37

1.4 Geography ................................................................................................................. 37

1.5 Local administration .................................................................................................. 37

1.6 Climate ...................................................................................................................... 38

1.7 Service Levels ........................................................................................................... 38

1.8 Problems of the Existing Water Supply ...................................................................... 39

1.10 Objectives of the Consultancy .................................................................................. 42

1.11 Strategy to Reduce NRW ......................................................................................... 42

Chapter 2 ............................................................................................................................ 44

Criteria for System Planning ............................................................................................... 44

2.1 General ...................................................................................................................... 44

2.2 Systems of Water Supply ........................................................................................... 44

2.3 Design Period ............................................................................................................ 46

2.4 Population ................................................................................................................. 46

2.5 Water Demand ........................................................................................................... 46

2.6 Water Distribution Network .................................................................................. 46

2.7 Road Map to 24/7 System .......................................................................................... 47

2.8 Software Used ........................................................................................................... 48

Chapter-3 ............................................................................................................................ 49

Existing Water Supply of Shimla ........................................................................................ 49

3.1 HISTORY ................................................................................................................. 49

3.2 SOURCEs ................................................................................................................. 49

3.3 Existing TANKS........................................................................................................ 52

3.4 Existing NETWORK ................................................................................................. 54

Page 4: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

4

Chapter-4 ............................................................................................................................ 56

Population Forecast and Demand Estimation ....................................................................... 56

4.1 Shimla Planning Area ................................................................................................ 56

4.1.1 Validation of Geographic Areas of SPA .............................................................. 56

Area Under Consideration ............................................................................................ 59

4.2 Population Forecast.................................................................................................... 60

4.3 Demand Projection .................................................................................................... 62

4.2.1 Losses ................................................................................................................. 62

Chapter-5 ............................................................................................................................ 64

Hydraulic Model of Shimla ................................................................................................. 64

5.1 Simulation Model ...................................................................................................... 64

5.2 Modeling Process ...................................................................................................... 64

5.2.1 Maps and Records ............................................................................................... 64

5.3 System Simulation ..................................................................................................... 64

5.3.1 Simulation of 24/7 Continuous Water Supply System .......................................... 65

Chapter-6 ............................................................................................................................ 79

Formation of Areas ............................................................................................................. 79

6.1 Shimla AREAS .......................................................................................................... 79

6.2 B_Post Sanjauli 450 DI AREA .................................................................................. 81

6.3 C_RIDGE .................................................................................................................. 82

6.3 D_PostRidge_400CI .................................................................................................. 83

6.4 E_Mains Field ........................................................................................................... 85

6.5 F_Dhingodevi ............................................................................................................ 87

6.6 G_Mashobra .............................................................................................................. 90

6.7 H_Craignaino ............................................................................................................ 92

6.8 I_Dhalli ..................................................................................................................... 95

6.9 J_Kusumpti................................................................................................................ 97

6.10 K_Jaku .................................................................................................................. 100

6.11 J_North_Oak_1 ...................................................................................................... 101

6.12 K_Shoghi ............................................................................................................... 102

Chapter-7 .......................................................................................................................... 105

Design of Distribution System........................................................................................... 105

7.1 Number of Connections ........................................................................................... 105

Page 5: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

5

7.2 District Metering Area (DMA)s ............................................................................... 107

7.3 PRESSURE MANAGEMENT ................................................................................ 108

7.4 FORMATION OF PRESSURE ZONES .................................................................. 109

7.5 ADEQUACY OF THE EXISTING TANKS ............................................................ 110

7.5.1 Determining Optimum Boundary of an Operational Zone .................................. 111

7.6 HYDRAULIC MODEL ........................................................................................... 115

7.7 SELECTION OF PIPE MATERIAL ........................................................................ 115

7.8 PRESSURES IN PIPES ........................................................................................... 116

7.8.1 Thickness of MS pipes ...................................................................................... 116

7.9 STEADY STATE DESIGN ..................................................................................... 116

7.10 OTHER VALVES .............................................................................................. 139

7.10.1 Isolation Valves ............................................................................................... 139

7.10.2 Flow Controlling Valves.................................................................................. 140

7.10.3 Bulk Meters ..................................................................................................... 143

7.10.4 Scour Valves ................................................................................................... 147

Chapter-8 .......................................................................................................................... 150

Design of Transmission Mains .......................................................................................... 150

8.1 NETWORK IN SHIMLA AREA ............................................................................. 150

8.2 PROJECTION OF DEMANDS ............................................................................... 152

8.3 DESIGN OF TRANSMISSION/ FEEDER MAINS ............................................. 153

8.3.1 A_Demo_Area ...................................................................................................... 155

8.3.2 B_PostSanjauli_450DI .......................................................................................... 155

8.3.3 C_Ridge ................................................................................................................ 156

8.3.4 D_PostRidge ......................................................................................................... 157

8.3.5 E_Mains_Field...................................................................................................... 158

8.3.6 F_Dhingodevi and Dalli ........................................................................................ 161

8.3.7 G_Mashobra znd Craignaino ................................................................................. 162

8.3.8 H_Kusumpti ......................................................................................................... 163

8.3.9 I_Jakhu ................................................................................................................. 164

8.3.10 J_North_Oak_1 ................................................................................................... 165

8.3.11 PIPE MATERIAL ............................................................................................... 166

8.4 NEW PIPES AND VALVES ................................................................................... 166

Chapter-9 .......................................................................................................................... 172

Page 6: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

6

Design of Pumping Main .................................................................................................. 172

9.1 Pumping Mains IN POSTSANJAULI_450DI .......................................................... 172

9.1.1 Design of Rising Main .......................................................................................... 173

9.1.2 Design of Pumps ............................................................................................... 174

9.2 Pumping Mains IN E_MainsField ............................................................................ 176

LSection..................................................................................................................... 178

9.3 Pumping Mains IN F_Dhigodevi_Dalli .................................................................... 179

LSection..................................................................................................................... 182

9.4 Pumping Mains IN H_Kusumpti .............................................................................. 184

9.5 Pumping Mains IN I_Jakhu...................................................................................... 186

9.6 Pumping Mains IN J_PostSanjauli_North_Oak_1 .................................................... 189

Appendix-A ...................................................................................................................... 192

Mass Curve Spread Sheets of Post-Sanjauli 450 DI Area .......................................... 192

Appendix-B ...................................................................................................................... 205

Mass Curve Spread Sheets of PostSanjauli_450CI ..................................................... 205

Appendix-C ...................................................................................................................... 206

Mass Curve Spread Sheets of PostRidge_400CI ........................................................ 206

Appendix-D ...................................................................................................................... 211

Mass Curve Spread Sheets of Mains_Field ................................................................. 211

Appendix-E ....................................................................................................................... 223

Mass Curve Spread Sheets of Dhingo dev .................................................................. 223

Appendix-F ....................................................................................................................... 228

Mass Curve Spread Sheets of Mashobra and Craignaino ............................................ 228

Appendix-G ...................................................................................................................... 230

Mass Curve Spread Sheets of Dhalli........................................................................... 230

Appendix-H ...................................................................................................................... 232

Mass Curve Spread Sheets of Kusumpti ..................................................................... 232

Appendix-I ........................................................................................................................ 244

Mass Curve Spread Sheets of Jakhu Area ................................................................... 244

Appendix-J........................................................................................................................ 246

Mass Curve Spread Sheets of North_Oak_1 and Z9_Shoghi Area .............................. 246

Appendix-K ...................................................................................................................... 248

Details of Isolation Valves ......................................................................................... 248

Page 7: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

7

Appendix-L ....................................................................................................................... 268

Segments ....................................................................................................................... 268

Appendix-M ...................................................................................................................... 324

Details of Scour Valves .............................................................................................. 324

Appendix-N ...................................................................................................................... 329

Economic Diameters of Pumping Mains of Dingodevi ............................................... 329

Disclaimer

This document has been prepared based on the information provided by SMC. Hydraulic model has been prepared by us based on the ground levels given to us. Whilst every effort has been made to ensure accuracy in the preparation of this document, no responsibility can be accepted for errors and/or omissions (for example, ground elevations), which may have caused by incorrect or inadequate information supplied to us.

Page 8: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

8

ABBREVIATIONS AND UNITS OF MEASURE

Abbreviations

AC Asbestos Cement SMC Shimla Municipal Corporation CI Cast iron DI Ductile iron DMA District metering area DPR Detailed project report ESR Elevated service reservoir GIS Geographic Information system GoHP Government of Himachal Pradesh GoI Government of India HGL Hydraulic grade line MBR Master balancing reservoir MS Mild steel NRW Non-revenue water PVC Polyvinyl Chloride WTP Water treatment plant GSR Ground service reservoir SPA Shimla Planning Area

Units of Measure

Km Kilo meter LPCD Liters per capita per day m Meter m2 Square meter m3 Cubic meters MLD Million liters per day

Page 9: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

9

EXECUTIVE SUMMARY

The purpose of this document is to create a detailed design report with advance techniques of GIS and simulation Hydraulic Model for the entire Shimla city and recommend a strategy, which would help Shimla Municipal Corporation (SMC) to design the distribution pipe network of the city. Ultimate objective is to allow SMC to achieve continuous (24/7) pressurized water supply to all its customers including the poor. The project shall be designed to cover a projected population of 4,13,675 of the year 2050 having diverse socio-economic and demographic structure. With an aim of increasing drinking water availability to the city and improving service level, SMC has a planned comprehensive water supply project. The project focuses on- (i) Reducing non-revenue water by leakage management and commercial losses through identification and regularization of illegal connections, metering and improvement in billing and collection systems; (ii) Refurbishment and expansion of transmission, new distribution network and enablement of water management for efficiency improvement and (iii) organizational strengthening and capacity building. To achieve these objectives, SMC has planned this project. The project is expected to bring significant improvement in service delivery (as per the SLB indicators), reduction of coping costs for citizens, financial sustainability for SMC and most importantly public health improvement. The Shimla Project Area (SMA) is located in the State of the Himachal Pradesh (Figure A) in India. The population of the SPA in the year 2011 was 1,74,789.

Figure A: Location of Shimla town

Page 10: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

10

Though the present population of the city is about 1.75 Lakhs, it is is largely still trying to survive on the water network setup for a population of 30,000 people in the year 1875.

BACKGROUND

Present water supply situation in the SPA is challenging. Presently a number of ESR/GSR are supplying water to the distribution system. Due to lack of investment and disarrayed distribution system, the current practice is to maintain water supply on intermittent mode. The Non-Revenue Water is shown as 24% but it is apprehended that it is about 50%. The time of supply is recorded as 1.5 hours but new paper cuttings indicate that the city is getting drinking water for 45 minutes that too once in 2 days. The crisis is due to old water pipelines that leak water during distribution. These pipelines were laid down during the British era and never upgraded later. Cities in urban India are facing the similar situations, as a result, the coverage is less, per capita share is on lower side, the level of NRW is quite high and there is no consumer satisfaction. To overcome this and ameliorate the present status, Government of Himachal Pradesh (GoHP) has incorporated this scheme in AMRUT program aided by the World Bank. To begin with, a 24x7 water supply scheme has been suggested in three Demo areas of Sanjauli1, Sanjauli2 and Totu as shown in Figure B. But the design of entire distribution system and transmission mains have been carried out in this report

Figure B: Demo areas of Sanjauli1, Sanjauli2 and Totu

Sanjauli1

Sanjauli2 Totu

Page 11: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

11

SUMMARY

Presently water is pumped from various reservoirs. After treatment, it is pumped to the existing 53 tanks and then supplied to the respective water zones of the distribution systems. Existing system is not in a state to supply water on 24/7 system. The design of the operational zone is not proper as there is no pressure management. Besides this, there is unequal distribution of water too. Advanced and powerful techniques of GIS mapping and the hydraulic modeling have been used in the present study. Using these techniques, a GIS based hydraulic model simulating the water supply system, right from the source to the consumers in distribution system has been prepared.

PROPOSED PROJECT

Population forecast of the city is carried out which is shown in Table A. Table A: Population forecast Year 2020 2035 2050 Population 243250 318468 413675

There are 25 wards in the city, the data of ward wise population and area is available. The projected population of the city is distributed in all the wards and ward wise population densities are computed. Since, latest City Development Plan (CDP) is not available, old CDP is used which has given land use areas for the year 2004 and has also predicted the same for the year of 2021. In this work, land use areas for the current year are interpolated and the equivalent ward wise areas are computed. The wards wise equivalent area is then used to distribute the population for the next 15 and 30 years, thus ward wise population densities for the years 2020, 2030 and 2050 are computed which are joined to the GIS layer of the wards. Using this GIS layer and Load Builder utility of the WaterGEMS, the demand is given to all the nodes of the distribution system of the entire SPA. A daily value of 135 liters per capita per day (LPCD) is used to compute water demand for domestic use. A water loss of 15% (CPHEEO, 1999) has been considered in computation of demand. Thus, demands of water in the water zones have been computed for immediate stage of the year 2035 as well as for the ultimate stage of the year 2050 and the pipe network of the distribution system has been designed for ultimate stage of year 2050 considering a peak factor of 3. The demand allocation to the nodes has been made using advanced feature of the Theissen polygon method. Due to hilly area and very steep slopes the existing small roads are not discernible, even the old satellite image given by the department could not distinguish such roads. Hence, the department has rightly carried out a Drone survey which gave very accurate GIS ortho image of the roads and building foot prints. Besides this, Drone survey produced accurate GIS contours.

Page 12: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

12

A GIS based hydraulic model is created using Bentley’s WaterGEMS software. The levels are given to all the nodes using GIS contours. The base scenario, simulating water supply of the entire city, is proposed to be prepared as a first step. Child scenarios of the system for the entire SPA and the operational zones of various tanks in it are created. The zoning is made considering the capacity and serviceability of the existing ESRs. Using the model, the sizes of the pipes are worked out. (1) Formation of Effective Areas in Shimla Principle of Formation: There are common outlets supplying water to various operational zones of the tanks. The groups of such zones are clubbed together in the area. Such areas in the distribution area of Shimla are shown in Figure C and Table B.

Figure C: Shimla areas

Page 13: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

13

Table B: Shimla areas

SN Shimla Area Zones in the Area 1 Demo_Area North_Oak_2, New_Housing_Board,

Bangala_Colony, Corner_House, Engine_Ghar, Old_Housing_Board1, Old_Housing_Board2, Totu

2 PostSanjauli_450DI Kelestone1, Kelestone2/Bharari, Fingask_1, Fingask_2, Tutikandi_1, Tutikandi_2, Z7_Tutikandi_3, Advance_Study_Steel_Tank, IIAS_Summer Hill, Z6_Baluganj_Harinagar, Chakkar/Sandal, Kamnadevi_Temple, Ridge_direct_from Sanjauli

3 PostSanjauli_450CI Ridge 4 PostRidge_400CI Tara_Hall, Phagali, Summerhill Bazar,

HP_University, Z4_New1 5 Mains_Field_Area Mains_Field1, Mains_Field2, Shivpuri,

Khalini_Forest_Steel_Tank, Z3_Knolls_Wood, SDA_Complex, Knolls_Wood, Taramata_Temple_Sector1, New_Shimla_Sector2, New_Shimla_Sector3A, New_Shimla_Sector4, New_Shimla_Sector3

6 Dhingodevi_Area Z8_Dhingo5, Z5_Dhingodevi4, Dhingodevi1, Dhingodevi2, Z1_Dhingodevi3

7 Mashobra Mashobra 8 Craignaino Craignaino 10 Dhalli_Area Dhalli_WTP1_Sump, Dhalli_WTP2_Sump 11 Kusumpti_Area Sackrala, Z10_Tibti_Panthaghati, Basant_Vihar,

Phase_2_New_Shimla_Sector_6, Phase_2_New_Shimla, Vikasnagar, Z11_Sargeen_Chowk, IAS_Colony1, IAS_Colony2, IAS_Colony3, Kusumpti, HP_PWD_Near_Kusumpti

12 Jakhu_Area Jakhu, Z2_Jakhu2 13 PostSanjauli_North_Oak_1 North_Oak_1 14 Shoghi_Area Z9_Shoghi

Page 14: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

14

(2) Existing Tanks There are 53 existing and 11 newly proposed tanks in the distribution system as shown in Figures D.

Figure D: Location of existing and proposed tanks

51 of these tanks belong to Shimla MC and 11 tanks are newly proposed. Assessment of existing tanks has been made which is shown in Table C. It is observed that out of 23 existing tanks are enough and diameters of the rest 30 tanks need to be increased.

Page 15: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

15

Table C: Status of existing tanks

R_id

Area Owner

Tank_Name Diameter

(m) Capacity (m3)

Modified

Diamter (m)

Remarks

1 demo_zone MC North_Oak_2 6 50 Tank is enough

2 demo_zone MC New_Housing_Board 8 100 Tank is enough

3 demo_zone MC Bangala_Colony 10 100 Tank is enough

4 demo_zone MC Corner_House 10 400 13 Tank is not enough, diameter to raise to 13 m

5 demo_zone MC Engine_Ghar 10 300 Tank can serve demand of 1.16 MLD upto year 2025

6 demo_zone MC Old_Housing_Board1 6.5 50 10 Tank is enough

7 demo_zone MC Old_Housing_Board2 5 50 Tank is enough

8 demo_zone MC Totu 17.53 1600 25 Tank is not enough, raise diameter to 25 m

9 PostSanjauli_450DI MC Kelestone1 11 300 16 Tank is not enough, raise diameter to 16 m

10 PostSanjauli_450DI MC Kelestone2/Bharari 16 1200 Tank is enough

11 PostSanjauli_450DI MC Fingask_1 8 100 Tank can serve demand of 0.69 MLD upto year 2034. Later on diameter shall be increased to take a demand of 0.915 MLD

12 PostSanjauli_450DI MC Fingask_2 8 60 15 Tank is not enough, raise diameter to 15 m

13 PostSanjauli_450DI MC Tutikandi_1 13 900 Tank is enough

14 PostSanjauli_450DI MC Tutikandi_2 7 100 18 Tank is not enough, raise diameter to 18 m

15 PostSanjauli_450DI New Z7_Tutikandi_3 12.0 565 New Tank

16 PostSanjauli_450DI MC Advance_Study_Steel_Tank 8.4 225 15 Tank is not enough, raise diameter to 15 m

17 PostSanjauli_450DI MC IIAS_Summer Hill 12 900 Tank is enough

18 PostSanjauli_450DI New Z6_Baluganj_Harinagar 16 1005 New Tank

19 PostSanjauli_450DI MC Chakkar/Sandal 12 900 16 Tank is not enough, raise diameter to 16 m

20 PostSanjauli_450DI MC Kamnadevi_Temple 10 350 17 Tank is not enough, raise diameter to 17 m

21 PostSanjauli_450DI MC Ridge_direct_from Sanjauli 33.9 8700 Sanjauli Tank is enough

22 C_Ridge MC Ridge 33.9 4600 Tank is enough

23 PostRidge_400CI MC Tara_Hall 8 100 17 Tank is not enough, raise diameter to 17 m

Page 16: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

16

R_id

Area Owner

Tank_Name Diameter

(m) Capacity (m3)

Modified

Diamter (m)

Remarks

24 PostRidge_400CI MC Phagali 9 70 16 Tank is not enough, raise diameter to 16 m

25 PostRidge_400CI MC Summerhill Bazar 7 100 12 Tank is enough

26 PostRidge_400CI HPU HP_University 15 300 Tank is enough

27 PostRidge_400CI New Z4_New1 14 393 New Tank

28 Mains_Field MC Mains_Field1 14 1800 18 Tank is not enough, raise diameter to 18 m

29 Mains_Field MC Mains_Field2 14 1800 Note: In 2035 this tank is not enough at that time increase diameter to 18m to cater demand of 2.59 MLD. However, till year 2034, present tank can serve.

30 Mains_Field MC Shivpuri 5 50 13 Tank is not enough, raise diameter to 13 m

31 Mains_Field Forest

Khalini_Forest_Steel_Tank 6 35 16 Note: Existing diameter is 6m. Increase it to 16 m. Also increase height by 2m so that Elevation(max) becomes 1999.5m.

32 PostMainsField_150CI

New Z3_Knolls_Wood 18 1272 Z3_Knolls_Wood)_New (take from Mainfield)

33 PostMainsField_150CI

MC SDA_Complex 8 100 11 Tank is not enough, raise diameter to 11 m

34 PostMainsField_150DI

MC Knolls_Wood 14 900 Tank is enough

35 PostMainsField_150DI

MC Taramata_Temple_Sector1 10 600 Tank is enough

36 PostMainsField_150DI

MC New_Shimla_Sector2 8 125 Tank is enough

37 PostMainsField_150DI

MC New_Shimla_Sector3A 6 80 9 Tank is enough till 2035

38 PostMainsField_150DI

MC New_Shimla_Sector4 10 400 13 Tank is not enough, raise diameter to 13 m

39 PostMainsField_150DI

MC New_Shimla_Sector3 10 600 Tank is enough

40 Dhingodevi New Z8_Dhingo5 18.0 1272 New Tank

Page 17: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

17

R_id

Area Owner

Tank_Name Diameter

(m) Capacity (m3)

Modified

Diamter (m)

Remarks

41 Dhingodevi New Z5_Dhingodevi4 15.0 884 New Tank

42 Dingodevi_RM MC Dhingodevi1 10 300 18 Note: In 2035 this tank is not enough at that time increase diameter from 10m to 18m to cater demand of 0.998 MLD. However, till year 2034, present tank can serve.

43 Dingodevi_RM MC Dhingodevi2 8 100 10 Note: In 2035 this tank is not enough at that time increase diameter from 8m to 10m to cater demand of 0.908 MLD. However, till year 2034, present tank can serve.

44 Dingodevi_RM New Z1_Dhingodevi3 11.3 501 New Tank

45 MC Mashobra 31 3019 Increase height by 2m

46 MC Craignaino 29 2642 Tank is enough

47 Dhalli MC Dhalli_WTP1_Sump 3 10 11 Note: Tank is not enough, present diameter is 3 m. Increase it to 11m.

48 Dhalli MC Dhalli_WTP2_Sump 3 10 14 Note: Tank is not enough, present diameter is 10 m. Increase it to 14m.

49 Kusumpti MC Sackrala 5 50 13 Tank is not enough, present diameter is 5 m. Increase it to 13m.

50 Kusumpti New Z10_Tibti_Panthaghati 12 565 New Tank

51 Kusumpti MC Basant_Vihar 7 120 14 Tank is not enough, raise diameter to 14 m

52 Kusumpti MC Phase_2_New_Shimla_Sector_6

8 200 Tank is enough

53 Kusumpti MC Phase_2_New_Shimla 8 120 Tank is enough

54 Kusumpti MC Vikasnagar 5 40 13 Tank is not enough, raise diameter to 9 m and water height to 5

55 Kusumpti MC Z11_Sargeen_Chowk 7 10 Constrct new by demolishing existing

56 Kusumpti MC IAS_Colony1 4 25 Tank is enough

57 Kusumpti MC IAS_Colony2 4 25 9 Note: Tank is not enough, present diameter is 12 m. Increase it to 16m.

58 Kusumpti MC IAS_Colony3 6 50 Tank is enough

Page 18: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

18

R_id

Area Owner

Tank_Name Diameter

(m) Capacity (m3)

Modified

Diamter (m)

Remarks

59 Kusumpti MC Kusumpti 25 2000 Tank is enough

60 Kusumpti PWD HP_PWD_Near_Kusumpti 8 227 17 Note: Tank is not enough, present diameter is 8 m. Increase it to 17m.

61 PostSanjauli_Jaku MC Jakhu 10 300 20 Tank is not enough, present diameter is 10 m. Increase it to 20m.

62 PostSanjauli_Jaku New Z2_Jakhu2 22 1901 New Tank

63 PostSanjauli_North_Oak_1

MC North_Oak_1 7 100 11 Note: Tank is not enough, present diameter is 7 m. Increase it to 11m.

64 Shoghi_Area New Z9_Shoghi 12 565 New Tank

Page 19: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

19

(3) New Tanks: Existing tanks are not enough and hence; their diameters are proposed to increase as shown in the Table C. It is proposed to construct additional tanks with diameters in such a way that the equivalent diameters are same. The existing and the new proposed tanks shall be joined by a bigger pipe so that both the tanks behave as one tank. (3) Existing Network Existing pipes in Shimla are very old, most of them are laid in pre-independence era. The pipes are laid in the hilly area and have many leaks. These pipes are also more prone to fail because of their age. Moreover, most of the pipes are less than 100 mm and no data are available as to where they are laid. As Government of India’s CPHEEO (1999) manual directs to use minimum size

of 100 mm, hence, these existing pipes are not considered. Thus, all the pipes in the distribution system are proposed to be replaced by new pipes. This point was discussed with the Shimla Municipal Corporation (SMC) authority and for distribution system it was directed to design new pipes only. However, existing pipes with diameters more than 100 mm are used for transmission main. Most of them are considered in the design of transmission mains. (4) Selection of Pipe Material Pipe materials for the new pipes having diameters of 80 mm and 100 mm are proposed as follows:

• Diameter = 80, 100 or 150 mm; Material = GI Heavy (C-Class) • Diameter = 200 or more; Material = MS

Pressures in Pipes Pressures (m) in pipes in all the areas are shown in Volume 2 and 4. Thickness of MS pipes Thickness of MS pipes are computed and shown in Volume 3 and 5. District Metering Area (DMA)s Formation of District Metered Areas (DMAs) makes it possible to divide a water distribution network into small, isolated, and independent water distribution networks. A DMA is a specific area, usually defined by the closure of valves, in which the quantities of water entering and leaving the area are metered. A permanently monitored DMA is the most effective tool to help reduce the duration of unreported leakage. Monitoring night flows facilitates the rapid identification of unreported breaks, and provides data required to make the most cost-effective use of leak-locating resources.

Page 20: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

20

As per international practice, the size of District Metering Area (DMA) should be such that the water connections are in the range of 500 to 3000. All the operational zones in all the three demo areas have number of connections less than 3000. Some of the distribution zones have large spread of the area. At such places, the zones, are split into two DMAs as its geographical area is more. Pressure Management Usually, hilly areas contain the following landscape features: (1) they are far away from the water source and urban areas, (2) they contain more dispersed water distribution networks, and (3) the terrain elevations in the house group vary greatly. In hilly areas, it is more difficult to divide the

water supply system reasonably than it is in flat areas. Many factors, such as the boundaries of administrative divisions, the high and low areas of the terrain, and the water demands of distribution, must be considered. A pressure management is necessary in the water supply systems of the hilly areas. Distribution system is designed to provide water to consumers at some agreed level of service which is often defined as a minimum level of pressure at the critical point which is the point of lowest pressure in the system. This minimum pressure in case of Shimla has been decided as 20m water head. In Shimla water pressures are huge, about 32 kg/cm2 at tail ends. Hence, there is need to manage the pressures by reducing them. Pressures are reduced by the techniques of “Fixed outlet pressure control.” It involves the use of pressure reducing valve (PRV). This is possibly the simplest and most straightforward form of pressure management as it involves the use of a PRV with no additional equipment. Unfortunately, in most of the parts of the distribution system of the Shimla city, layouts of the house properties are vertical. Hence, a large number of PRVs are used to reduce the residual nodal pressures from 280 m to about 60m. Abstract of PRVs is shown in Table D.

Page 21: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

21

Table D: Abstract of PRVs

Shimla Area Diameter (mm) Grand

Total 80 100 150 200 250 300 400

B_PostSanjauli_450DI 77 25 39 23 2 4 170

C_Ridge 10 11 12 5 1 39

D_PostRidge_400CI 24 14 18 3 59

E_Mains_Field 28 13 19 7 3 70

F_Dhingodevi 45 5 12 4 1 67

G_Mashobra 1 1 1 3

I_Dhalli 5 2 7

J_Kusumpti 63 22 20 3 108

K_Jakhu 9 3 15 6 4 2 3 42

L_North_Oak_1 3 2 5

M_Shoghi 2 5 5 12

Grand Total 266 103 141 51 12 6 3 582

The pressure surface in all the areas without PRV is shown in Figure F and with PRV in Figure G.

Figure F: Without PRV: Pressures in Shimla area

Figure G: With PRV: Pressures in Shimla area

Page 22: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

22

From Figures F and G, it is observed that if PRVs are not installed then there is huge nodal pressure of 374 m, however, when PRVs are considered the nodal pressure is maintained in the range of 20 to 98 m. Thus, PRVs play very important role in pressure management of the Shimla areas. However, it is required to further reduce the pressures up to 20m. Direct acting PRVS: Direct acting PRVS are used to reduce pressures to 20m. It is recommended that every connection shall have one direct acting PRV. These valves are used in high rise buildings to control pressure fluctuations between floors. These valves are also used in Municipal water systems at service connections in a high-pressure distribution zone. A typical direct acting PRV is shown in Figure H.

Figure H: Direct acting PRV Hydraulic Model A GIS based hydraulic model of the entire Shimla areas is prepared in WaterGEMS software. The ortho image of all the zones photographed by the Drone is used. Digitized maps of the road edges, buildings are created and are used as background drawings in the model. The pipelines are added using the layout tool. Initially, a base scenario is created for all the areas and then child scenarios of all the zones are created. GIS contours with 1m interval are generated using Drone technology. Using the shape file of the contours, levels to all the nodes are given using TREX feature of the WaterGEMS. Demand is given by the method of land use population density method. Though the consumer survey is carried out for the demo zones, it was not completed for the entire city. Hence, demands are not given using the consumer survey. The population density of the years 2020, 2035 and 2050 are computed and its GIS layer has been created which is joined with the ward layer in GIS. Using the Load Builder of WaterGEMS, the demands to each node are given. The model is then run for design of the distribution system. Various Components of the Distribution System are shown below: (a)New Pipes: Summary of the new pipes is shown in Table E.

Page 23: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

23

Table E: Length of new pipes in the distribution system

Shimla Area Zone

GI Heavy Duty (As per IS 1239, Part 1) MS (As per IS 3589:2001)

Grand Total

80 mm (t=4.8 mm)

100 mm (t=5.4 mm)

150 mm (t=5.4 mm)

Total

ID=206.5 mm

(t=6.3 mm)

ID=260.4 (t=6.3 mm)

ID=309.7 (t=7.1 mm)

ID=339.6 mm (t=8

mm)

ID=388.8 mm (t=8.8

mm) Total

B_PostSanjauli 450DI

Advance_Study_Steel_Tank 2191 488 798 3476 782 146 927 4403

Chakkar/Sandal 7018 1163 952 9133 913 460 1373 10506

Fingask_1 3521 538 297 4355 4355

Fingask_2 5898 231 1265 7394 961 170 1130 8524

IIAS_Summer Hill 2147 309 555 3011 375 375 3386

Kamnadevi_Temple 9355 202 1774 11332 763 221 984 12316

Kolestone1 3887 557 1199 5643 689 661 1350 6993

Kolestone2/Bharari 4042 293 975 5309 1376 71 430 1877 7186

Ridge_direct_from Sanjauli 4153 992 738 5883 51 369 420 6303

Tutikandi_1 421 165 367 953 319 319 1272

Tutikandi_2 1974 380 1768 4121 388 826 1214 5335

Z6_Baluganj_Harinagar 1929 686 222 2836 135 135 2971

Z7_Tutikandi_3 1196 223 514 1934 71 647 718 2652

Total 47731 6226 11423 65380 6434 1566 2823 10823 76203

C_Ridge C_Ridge 9531 1502 2176 13209 1374 75 207 110 1766 14975

Total 9531 1502 2176 13209 1374 75 207 110 1766 14975

D_PostRidge 400CI

HP_University 2833 741 332 3906 45 45 3951

Phagali 4624 762 617 6003 391 205 596 6600

Summerhill 787 211 998 998

Taramata_Hall 4446 593 1769 6807 731 191 922 7729

Z4_New1 2153 760 958 3871 670 122 792 4663

Total 14843 2856 3887 21586 1837 518 2355 23942

E_Mains Field

Khalini_Forest_Steel_Tank 3551 70 1191 4813 874 130 1004 5816

Knolls_Wood 2622 97 1424 4144 133 97 230 4374

Mains_Field1 7375 390 1150 8915 115 648 373 1136 10051

Mains_Field2 4811 502 451 5763 1050 175 1225 6988

New_Shimla_Sector2 2241 122 195 2558 2558

New_Shimla_Sector3 1081 190 309 1580 40 40 1620

New_Shimla_Sector4 4449 1793 1693 7935 384 145 78 607 8541

NewShimla_Sector3A 1566 420 1986 1986

SDA_Complex 3990 19 1101 5111 423 423 5534

Shivpuri 1752 388 824 2964 282 282 3246

Taramata_Temple_Sector1 921 156 1077 1077

Z3_Knolls_Wood 2581 918 668 4167 231 112 396 739 4906

Page 24: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

24

Shimla Area Zone

GI Heavy Duty (As per IS 1239, Part 1) MS (As per IS 3589:2001)

Grand Total

80 mm (t=4.8 mm)

100 mm (t=5.4 mm)

150 mm (t=5.4 mm)

Total

ID=206.5 mm

(t=6.3 mm)

ID=260.4 (t=6.3 mm)

ID=309.7 (t=7.1 mm)

ID=339.6 mm (t=8

mm)

ID=388.8 mm (t=8.8

mm) Total

Total 36940 4490 9583 51012 3533 1002 1151 5685 56697

F_Dhingodevi

Dhingodevi1 5231 2026 742 7999 133 133 8132

Dhingodevi2 2715 383 497 3595 473 196 670 4265

Z1_Dhingodevi3 2641 219 234 3093 467 467 3560

Z5_Dhingodevi4 6264 158 769 7191 112 34 56 202 7393

Z8_Dhingo5 9328 2285 11613 873 81 141 1095 12708

Total 26179 2786 4527 33492 2058 114 394 2566 36059

G_Mashobra 1418 555 650 2623 655 485 356 1497 4120

Total 1418 555 650 2623 655 485 356 1497 4120

I_Dhalli

Dhalli1 457 839 4 1299 1299

Dhalli2 2946 917 359 4221 207 312 518 4740

Total 3403 1756 362 5521 207 312 518 6039

J_Kusumpti

Basant_Vihar 8144 2520 1181 11845 476 49 526 12371

HP_PWD_Near_Kusumpti 1384 473 802 2659 264 359 623 3281

IAS_Colony1 680 5 145 830 830

IAS_Colony2 4098 938 471 5506 5506

IAS_Colony3 1620 179 1799 1799

Kusumpti 2366 275 1378 4019 207 207 4226

Phase_2_New_Shimla 3371 332 176 3880 3880

Phase_2_New_Shimla_Sector_6 1918 218 200 2337 2337

Scrala 7431 593 982 9006 398 123 522 9528

Vikasnagar 5937 1701 1065 8703 424 44 467 9170

Z10_Tibti_Panthaghati 2445 225 405 3076 163 163 3239

Z11_Sargeen_Chowk 5279 849 6128 6128

Total 44674 7280 7833 59787 1932 173 403 2507 62294

K_Jakhu

Jakhu 5976 768 2598 9342 1183 510 302 1996 11338

Z2_Jakhu2 6444 167 2834 9446 683 1538 458 53 2732 12177

Total 12420 935 5433 18788 1866 2048 458 53 302 4728 23516

L_North Oak_1

L_North_Oak_1 2716 378 1388 4482 417 417 4899

Total 2716 378 1388 4482 417 417 4899

M_Shoghi M_Shoghi 3844 2306 2685 8835 939 939 9774

Total 3844 2306 2685 8835 939 939 9774

Grand Total 204369 31083 50121 285573 21412 5463 6620 163 302 33961 319535

Page 25: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

25

(b)Air Valves: Double Acting Air valves are provided to expel air as well as admit inside pipeline to break vacuum. In distribution system generally, air valves are not required. However, during meeting with Shimla authorities on 14 Sep 2018 at Thane, it was decided to install the air valves just near to the outlet pipe of tanks. Details of air valves is shown in Table F. Table F: Abstract of Air valves

Shimla Area

Diameter (Air Inflow/ outflow Orifice) (mm) Grand

Total 25 50 80

A_Demo_Area 1 6 1 8

B_PostSanjauli_450DI 12 12

C_Ridge 1 1

D_PostRidge_400CI 5 5

E_Mains_Field 12 12

F_Dhingodevi 5 5

G_Mashobra 2 2

H_Craignaino 1 1

I_Dhalli 1 1 2

J_Kusumpti 12 12

I_Jakhu 1 1 2

J_North_Oak_1 1 1

K_Shoghi 1 1

Grand Total 2 60 2 64

Pressure Gauges

Pressure gauges at critical points are required to measure the pressures in each of pressure zone cum DMA. It is suggested to install 10 pressure gauges per zone. So, 640 pressures gauges are required.

Isolation Valves Isolation valves are operated for the two reasons- (i) repairs during O&M and (ii) closing and opening during the ‘Step Test.’ Formation of segments are essential for both of these two reasons. Isolation valves (sluice/ Butter fly) are used in the distribution system to make the segments. Abstract of the isolation valves (sluice/ Butter fly) used in the distribution system to make the segments is shown in Table G.

Page 26: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

26

Table G: Abstract of isolation valves

Shimla Area Diameter (mm)

Grand Total

80 100 150 200 250 300 400

B_PostSanjauli_450DI 84 27 70 31 2 14 228

C_Ridge 19 17 28 6 1 2 73

D_PostRidge_400CI 33 23 25 7 8 96

E_Mains_Field 62 10 71 19 2 8 172

F_Dhingodevi 60 12 35 8 3 118

G_Mashobra 1 4 4 1 1 11

H_Craignaino 2 3 5

I_Dhalli 6 6 5 1 1 19

J_Kusumpti 69 31 65 14 3 182

K_Jakhu 11 1 27 7 3 1 1 51

L_North_Oak_1 5 3 11 4 23

M_Shoghi 7 4 3 14

Grand Total 352 141 348 101 8 41 1 992

Flow Controlling Valves

Flow controlling valves (FCV) are required to regulate the flow in different pressure zones. The flow at the entry point of each pressure zone/ DMA should be equal to the demand in the zone. Thus, FCVs enable equitable flow in the distribution system. They are shown in Table H. FCVs should have “condor” having capacity to transmit signals to the SCADA system. Table H: Details of FCV

Area Diameter (mm)

100 150 200 250 300 350 400 Grand Total

B_PostSanjauli_450DI 1 3 9 3 8 24

C_Ridge 1 1 1 3

D_PostRidge_400CI 2 3 4 9

E_Mains_Field 5 4 2 6 17

F_Dhingodevi 1 4 3 8

G_Mashobra 1 1 2

H_Craignaino 1 1

I_Dhalli 1 1 2

J_Kusumpti 8 3 2 2 15

K_Jakhu 2 1 1 4

L_North_Oak_1 3 3

M_Shoghi 1 1 2

Grand Total 2 21 29 10 25 2 1 90

Bulk Meters

Bulk meters required at the outlets of the tanks to measure the flow into the system and are shown in Table I.

Page 27: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

27

Table I: Number of bulk meters

Area

Diameter (mm) Grand Total 100 150 200 250 300 350 400

B_PostSanjauli_450DI 1 3 10 3 8 25

C_Ridge 1 1 1 3

D_PostRidge_400CI 2 3 4 9

E_Mains_Field 5 4 2 6 17

F_Dhingodevi 1 4 3 8

G_Mashobra 1 1 2

H_Craignaino 1 1

I_Dhalli 1 1 2

J_Kusumpti 8 3 2 2 15

K_Jakhu 2 1 1 4

L_North_Oak_1 3 3

M_Shoghi 1 1 2

Grand Total 2 21 30 10 25 2 1 91

Scour Valves

Scour valves are proposed at the lowest elevations. Abstract of scour valves is shown in Table J.

Table J: Details of scour valves

Shimla Area Diameter (mm) Grand

Total 80 100 150 200

B_PostSanjauli_450DI 51 2 3 56

C_Ridge 11 1 12

D_PostRidge_400CI 30 2 1 33

E_Mains_Field 32 2 2 36

F_Dhingodevi 38 1 39

G_Mashobra 4 4

H_Craignaino 1 1

I_Dhalli 7 7

J_Kusumpti 33 33

K_Jakhu 14 1 15

L_North_Oak_1 10 10

M_Shoghi 3 3

Grand Total 234 8 6 1 249

Design of Transmission Mains There are number of outlets emanating from the Sanjauli, Ridge and Kusumpti tanks supplying water to various operational zones. The groups of such zones are clubbed together in the area. Such areas in the distribution area of Shimla are shown in Figure I.

Page 28: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

28

Figure I: Flow diagram of water supply of Shimla

0.2

0.8

2.341

8.035

14.513

45.936

1.453

3.153

Craignaino

7 ML

Mashobra

6.547 .547

12.193

Sanjauli Tank

Kusumpti Tank

B_PostSanjauli_450DI

D_PostRidge_400CI

C_Ridge

E_Mains_Field

F_Dhingodevi

G_Mashobra

H_Craignaino

I_Dhalli

J_Kusumpti

L_North_Oak_1

K_Jaku

M_Shoghi

A_Demo_Area

Gumma

Ridge Tank

Giri

Ashwin Khad

Proposed Kol Dam

Existing Source

Shimla Area

MBR

Legend

Jagroti

23.743

1.08

4.137

60.449

8.53

18.975

4.5

7.693

1.341

10.739

8

7.666

4.5

21

14

Dalli

2.403

13 17.394

16.825

1023 mm dia

820 mm dia

470 mm dia

Page 29: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

29

Demands for the year 2020, 2035 and 2050 of various areas are computed and the model of Transmission main is created. After running thr model, transmission pipe network has been designed. BPT: There are huge pressures in transmission mains. For breaking them Break Pressure Tanks (BPT) are incorporated, which are shown in Table K. Table K: Details of BPTs

J_Area BPT J_Zone Elevation

(m) Demand (ML/day)

Volume for 30

minute storage

(m3)

Depth Area (m2)

Diameter (m)

E_MainsField 1 Inlet of BPT1 2,261.30 32.002 666.7083 5 133.3 13

E_MainsField 2 Inlet of BPT2 2,239.90 32.002 666.7083 5 133.3 13

E_MainsField 3 Inlet1 of BPT3 2,191.70 20.638 429.9583 5 86.0 11

E_MainsField 3 Inlet2 of BPT3 2,192.00 4.8 100 5 20.0 5

E_MainsField 4 Inlet of BPT4 2,123.80 15.58 324.5833 5 64.9 10

E_MainsField 5 Inlet1 of BPT5 2,113.90 3.532 73.58333 5 14.7 5

E_MainsField 6 Inlet1 of BPT6 2,015.00 4.238 88.29167 5 17.7 5

E_MainsField 7 Inlet of BPT7 2,150.00 4.89 101.875 5 20.4 5

E_MainsField 8 Inlet of BPT8 2,041.70 4.89 101.875 5 20.4 5

B_PostSanjauli_450DI 9 Inlet of BPT9 2,170.00 23.863 497.1458 5 99.4 12

D_PostRidge 10 Inlet of BPT_Shoghi 1,990.50 2.341 48.77083 5 9.8 5

Tanks: For giving tapping to the habitations which are enroute to Shogi and to the sump at Digodevi sump, following tanks are desined which are shown in Table L. Table L: Details of Tanks

J_Area Elevation

(m) Demand (ML/day)

Volume for 30

minute storage

(m3)

Depth Area (m2)

Diameter (m)

D_PostRidge EnRoute1 1,870.60 0.8 16.66667 4 4.2 3

D_PostRidge EnRoute2 1,755.00 0.2 4.166667 4 1.0 2

F_Dhigodevi_Dalli Inlet of Sump_Dingodevi_Rest 2,237.60 9.2 191.6667 4 47.9 8

B_PostSanjauli_450DI Inlet of PH_Kamnadevi_Temple 2,078.30 3.428 71.41667 4 17.9 5

New Pipes and Valves in Transmission Mains

(a) New Pipes

Length (m) of the new MS pipes is shown in Table M.

Page 30: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

30

Table M: New pipes

Shimla Area

GI Heavy Duty (As per IS 1239, Part 1)

MS (As per IS 3589:2001)

Grand Total 100 (t=5.4mm

)

150 (t=5.4mm

) Total

ID=260.4 mm (t=6.3 mm)

ID= 309.7 mm (t=7.1

mm)

ID= 339.6 mm (t=8

mm)

ID= 388.8 mm (t=8.8

mm)

ID= 437 mm (t=10

mm)

ID= 486 mm (t=11

mm)

ID= 585 mm (t=12.5

mm)

585

Total

B_PostSanjauli_450DI 1151 53 1204 1089 1182 1149 3420 4624

D_PostRidge 33 8942 8975 1559 11 1570 10545

E_Mains_Field 412 928 1339 2295 11 256 2499 506 3011 26 8604 9943

F_Dhigodevi_Dalli 23 23 301 142 794 57 1294 1317

G_Mashobra_Craignaino 23 3826 59 56 3964 3964

H_Kusumpti 0 655 656 277 277 933

I_Jakhu 72 10 1102 1184 1184

J_PostSanjauli_North_Oak_1

6 6 6

Grand Total 1602 10600 12203 5220 1589 5394 3293 506 1161 3068 83 2031

2 32515

Page 31: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

31

(b)Isolation Valves: Isolation valves (sluice/ Butter fly) are required in the feeder mains to isolate the valves. The isolation valves are shown in Table N. Table N: Number of isolation valves

Diameter

(mm)

B_PostSanjauli_450D

I

C_Ridge

D_PostRidge

E_MainsField

F_Dhigodevi_

Dalli

G_Mashobra_Craigna

ino

H_Kusumpti

I_Jakhu

J_PostSanjauli_North_Oak_1

Grand Total

80 1 1 2

100 2 3 1 1 7

150 7 4 6 3 8 28

200 4 2 2 8 1 2 2 21

250 2 1 1 4

300 2 1 9 3 2 17

400 1 2 3 6

450 3 2 2 3 10

500 4 1 1 6

600 3 3

800

1000

Grand Total

18 4 10 35 13 8 12 3 1 104

(c) Flow Controlling Valves Flow controlling valves (FCV) are required to regulate the flow in the tanks. Besides this the FCVs shall act as water level controller. When the water level touches the FSL in a tank, the FCV should close and when the water level goes down to minimum supply level, FCV should open. FCVs should have “RTU/ Condor” having capacity to transmit signals to the SCADA system. Details of FCVs required are shown in Table O.

Page 32: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

32

Table O: Details of FCV

Area

Diameter (mm) Grand Total 80 100 150 200 250 300 400 450 500 600

B_PostSanjauli_450DI 7 4 1 1 2 15

D_PostRidge 1 2 3 2 1 9

E_MainsField 3 6 5 4 1 2 1 22

F_Dhigodevi_Dalli 4 1 1 2 8

G_Mashobra_Craignaino 1 1 2 4

H_Kusumpti 1 1 8 1 11

I_Jakhu 2 2

J_PostSanjauli_North_Oak_1 1 1

Grand Total 2 7 29 14 2 8 3 4 2 1 72

Though all the FCVs are shown fully open, they shall be set to actual required flow as per the flow values. (d) Pressure Reducing Valves (PRV)s Pressure Reducing Valves (PRV)s are required to control/ reduce excessive nodal pressures. PRVs should have “RTU/ Condor” having capacity to transmit signals to the SCADA system. Details of PRVs required are shown in Table P. Table P: Details of PRVs

Area Diameter (mm)

Grand Total 80 100 150 200 250 260 300 400 450 500 600

B_PostSanjauli_450DI 2 6 3 1 2 2 16

D_PostRidge 1 2 3 2 3 11

E_MainsField 4 5 5 6 1 2 1 24

F_Dhigodevi_Dalli 2 2 1 1 2 8

G_Mashobra_Craignaino 1 1 2 4

H_Kusumpti 1 1 10 4 16

I_Jakhu 2 2

Grand Total 2 12 26 16 1 1 13 3 4 2 1 81

(e) Bulk Meters Bulk meters required just before the tanks to measure the flow into the tank and are shown in Table Q.

Page 33: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

33

Table Q: Number of bulk meters

Area Diameter (mm)

Grand Total 80 100 150 200 250 300 400 450 500

B_PostSanjauli_450DI 5 5 3 2 1 16

D_PostRidge 1 2 4 2 1 1 11

E_MainsField 2 4 10 11 4 3 34

F_Dhigodevi_Dalli 2 1 2 2 1 8

G_Mashobra_Craignaino 1 1 4 2 8

H_Kusumpti 1 1 8 4 2 16

I_Jakhu 2 1 3

J_PostSanjauli_North_Oak_1 2 2

Grand Total 2 7 23 22 8 17 9 6 4 98

(f) Scour Valves

Scour valves are proposed at the lowest elevations. Abstract of scour valves is shown in Table R.

Table R: Abstract Scour valves

Area Diameter (mm)

Grand Total 80 100 150 200 250 300 400 450 500

B_PostSanjauli_450DI 3 4 2 2 7 18

D_PostRidge 1 3 10 1 3 18

E_MainsField 1 9 4 1 8 1 1 3 28

F_Dhigodevi_Dalli 1 2 3

G_Mashobra_Craignaino 2 2 2 6

H_Kusumpti 3 5 1 9

Grand Total 2 4 27 14 4 15 1 12 3 82

(g) Air Valves

Air valves are proposed at about 400m interval as the fall in elevation is continuous. Abstract of scour valves is shown in Table S.

Table S: Abstract Scour valves

Area Diameter (Air Inflow and outflow Orifice) (mm) Grand Total

Row Labels 25 50 80 100 150

B_PostSanjauli_450DI 4 12 8 1 25

D_PostRidge 17 6 23

E_MainsField 8 16 3 27

F_Dhigodevi_Dalli 1 1 8 10

G_Mashobra_Craignaino 5 5 2 12

H_Kusumpti 6 11 17

I_Jakhu 3 3

Grand Total 41 51 10 14 1 117

Page 34: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

34

Design of Pumping Main As per discussions with Authority, it was informed that following pumping mains are already designed and hence these pumping mains are not designed in this work. (a)Head work at Kol dam to Ridge and Sanjauli tanks (b)Gumma to Craignaino (c)Giri source to Mashobra (d)Ashwin-khad to Kusumti tank New Pumps Proposed pnew pumps are shown in Table T. Table T: Summary of the pumps

PMP_Area Label

2035 2050

Flow (ML/day)

Pump Head (m)

Flow (ML/day)

Pump Head (m)

F_Dhigodevi_Dalli PMP_DingodeviPH (Temple side) 2.146 90 2.891 95

F_Dhigodevi_Dalli PMP-DhingodeviRest (down side)

3.901 70 6.308 75

B_PostSanjauli_450DI PMP_Kamnadevi 2.544 105 3.428 112

I_Jakhu PMP-Jakhu 7.597 245 10.236 255

J_PostSanjauli_North_Oak_1 PMP-North_Oak_1 0.962 30 1.296 35

E_MainsField PMP-E_MainsField 16.899 40 22.77 50

H_Kusumpti PMP-HP_PWD_Near_Kusumpti 2.146 90 2.891 10

Water Hammer Device:

Proper water hammer devices should be installed on all the pumping mains.

SCADA

The project includes establishment of bulk meters, flow control valves and pressure reducing valves and measuring instruments like pressure gauges at various components like intake, water treatment plants and pumping stations etc of the water supply system. The data received shall be processed and analyzed in real time by a Supervisory Control and Data Acquisition (SCADA). The SCADA shall also be used to help water audit and monitoring the water quality in the distribution system.

In each pressure zone cum DMA, the values of the flow meter readings as well as pressures shall be measured and transmitted at control centre. The success of the project lies with the effective pressure management within each of the pressure zone cum DMA. Hence, SCADA must be installed for the project.

Page 35: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

35

Suggestions for 24x7 Water Supply (1) Zero pressure test shall be conducted to ensure that the pressure zones cum DMAs are perfectly hydraulically discrete.

(2) Water audit is a continuous process and hence shall be conducted time to time to compute the values of non-revenue water (NRW) of all the pressure zones cum DMAs.

(3) Since the pipeline shall be new, NRW values shall be small. However, during O&M phase of the project, knowing the NRW values, a vigorous leak detection program shall be undertaken and leaks shall be repaired to decrease the NRW values.

(4) House service connection, potential leakage points, will be suitably replaced with GI pipes as MDPE pipe fail with due to extreme cold conditions.

(5) SMC is proposed to rationalize tariff structure for promoting water conservation through demand management. Strengthening billing and collection system is equally important for financial sustainability.

(6) SMC should undertake strategy communication and Information Education and Communication (IEC) campaigns for ensuring support and collaboration of stakeholders.

7) Customer satisfaction is primordial for sustainability of continuous water supply project. SMC shall introduce customer facilitation centers and a robust grievance redressal system.

The approach in this study shall help city administration to transform its current intermittent supply to 24/7 continuous water system.

***

Page 36: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

36

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Shimla is a historic city (Figure 1.1), and is situated 88 km northeast of Kalka, 116 km northeast of Chandigarh, 247 km south of Manali and 350 km northeast of Delhi. .

Figure 1.1: Location of SPA

Shimla

Page 37: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

37

1.2 BACKGROUND

Shimla is the capital and the largest city of the northern Indian state of Himachal Pradesh. It is the principal commercial, cultural and educational center of the hilly regions of the state.

1.3 DEMOGRAPHICS

As of 2011, the city had 171,640 permanent residents and that in SPA were 2,05,260 residents. The city is one of the least populous capital cities in India.

1.4 GEOGRAPHY

Shimla lies in the south-western ranges of the Himalayas at 31.61°N 77.10°E. It has an average altitude of 2,206 metres above mean sea level and extends along a ridge with seven spurs. The city stretches nearly 9.2 kms from east to west. Shimla was built on top of a total of seven different hills namely: Inverarm Hill, Observatory Hill, Prospect Hill, Summer Hill, Bantony Hill, Elysium Hill and Jakhoo Hill. The highest point in Shimla is the Jakhoo hill, which is at a height of 2,454 metres. There are no water bodies near the main city and the closest river, the Sutlej, is about 21 km away. Other rivers that flow through the Shimla district, although further from the city, are the Giri, and Pabbar (both tributaries of Yamuna).

1.5 LOCAL ADMINISTRATION

Shimla Municipal Council (SMC) is the local civil body. It is administratively divided into 25 wards as shown in Figure 1.2.

Page 38: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

38

Figure 1.2: Administrative wards of Shimla

1.6 CLIMATE

The climate in Shimla is predominantly cool during winters and moderately warm during summer. Temperatures typically range from −4 °C (25 °F) to 31 °C (88 °F) over the course of a

year. The average temperature during summer is between 19 and 28 °C, and between −1 and 10

°C in winter. The average total annual precipitation is 1,575 millimeters. The maximum snowfall received in recent times was 38.6 centimeters.

1.7 SERVICE LEVELS

The GoI standard performance indicators of water supply, benchmarks achieved so far and the expected goal of benchmarks are summarized in Table 1.1.

Page 39: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

39

Table 1.1: GoI performance indicators and achievement

SN Performance Indicators Standard Benchmark

India Shimla (2015)

1 Coverage of water supply connections (%) 100 49 97.8 2 Per capita supply of water (LPCD) 150 132 113 3 Extent of metering of water connections (%) 100 Negligible 58.8 4 Extent of Non-Revenue Water (%) 20 50 24 5 Continuity of water supply (Hours) 24 3 1.5 6 Quality of water supplied (%) 100 NA 100

7 Efficiency in addressing customer complaints (%)

80 NA 85

9 Cost recovery in water supply services (%) 100 40-45 97.9

9 Efficiency in collection of water supply related charges (%)

90 NA 82.6

Source: http://moud.gov.in/upload/uploadfiles/files/Indicators_ColourCoding.pdf

1.8 PROBLEMS OF THE EXISTING WATER SUPPLY

Need for Project Though the present population of the city is about 1.75 Lakhs, it is largely still trying to survive on the water network setup for a population of 30,000 people in the year 1875. Present water supply situation in the SPA is challenging. Due to lack of investment and disarrayed distribution system, the current practice is to maintain water supply on intermittent mode. Therefore, the city administration, including the water supply department, faces a very difficult task of supply of drinking water supply. Important problems of the water supply system are enumerated as below: Uneven Terrain: The city terrain has a number of undulating surfaces. The terrain has a level difference of 1055 m, highest contour is 2460 m and lowest contour is 1405 m. The system is lacking a pressure management, as a result there are uneven pressures in the different parts of the city. Supply Not Enough: The city residents frequently do not get regular water supply as the supply is not enough. Many times, it is irregular due to voltage problems in pumping stations which are located in remote areas.

Page 40: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

40

Figure 1.3: Supply not enough

High NRW: The crisis is due to old water pipelines that leak water during distribution. These pipelines were laid down during the British era and never upgraded later. One of the news paper cutting is shown in Figure 1.3. The Non-Revenue Water is shown as 24 to 30% but it is apprehended that it is about 50%.

Figure 1.4: Newspaper cutting is shown in

Page 41: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

41

Contamination due to Intermittent Supply: One of the important drawback of the current intermittent water supply is that the water is contaminated in non-supply hours due to the outside contaminants, which find entry in pipeline due to vacuum in pipeline and through the leaking joints. Supply Hours: Main problem of the city’s water supply is that the residents get water supply

for just 1.5 hours daily but new paper cuttings indicate that the city is getting drinking water for 45 minutes that too once in 2 days. The crisis is due to old water pipelines that leak water during distribution. These pipelines were laid down during the British era and never upgraded later. In addition to this, the supply hours are not regular. People have to remain awake in night hours as well as in the early hours as the timing of the supply are erratic and not regular. Due to this hardship, some of the taps of the household connections and public taps are kept open resulting into the loss of precious water resource. Improper Operation Zones: Serving area/ zone served by each tank do not supply equitable water with equal pressure. Illegal Connections: There are many illegal connections. Newpaper cutting is shown in Figure 1.4.

Figure 1.4: Newspaper cutting

Page 42: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

42

Bypassing Tanks: At many places the tanks are bypassed (Figure 1.4).

Figure 1.4: Newspaper cutting

Huge Coping Costs: Coping costs is a money which is required to cope up with the poor service. Shimla residents have to expend Rs 5640 per annum to buy the plastic overhead tanks, booster pumps, tankers and small purification devices. The city needs reduction of non-revenue water by leakage management and commercial losses through identification and regularization of illegal connections, metering and improvement in billing and collection systems. For strengthening the performance of the distribution, refurbishment and expansion of transmission and distribution network is needed. Hence, the project is required.

1.10 OBJECTIVES OF THE CONSULTANCY

The objective of the present consultancy work is to create the GIS based hydraulic model of the entire Shmla city as well as SPA which shall simulate the system's behavior. The study shall present the measures to be taken up by the Shimla water utility to reduce the NRW and finally convert its existing intermittent water supply to 24/7 continuous water system and then make it sustainable. It shall also provide the measures for making infrastructure to tackle present as well as future requirements of the city. A detailed design of the distribution system for converting present water supply into 24/7 system is the outcome of this study. The study will not only solve the problem of inequitable flow and pressures but also suggest a road map to 24/7 continuous water supply.

1.11 STRATEGY TO REDUCE NRW

A strategy is proposed for computation and reduction of NRW. Necessary steps shall be taken as follows. i. Setting up correct zones for each ESR/ GSR: Operational zones are demarcated with respect to ESR/ GSR’s capacity and serviceability

Page 43: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

43

ii. Setting up Pressure Zone cum District Metering Areas (DMA): As there is elevation difference of 1055m, the terrain must be divided into a number of pressure zone cum DMAs. DMAs are set up for each correct operational zone for the number of customers between 500 to 3000. These DMAs must be made hydraulically discrete (isolated) by carrying out zero pressure tests, iii. In distribution pipe network, old pipes which have outlived their life will have to be replaced, so after replacement, NRW can be brought down considerably as the pipes will be new with good joint system iv. House service connections: All house service connections shall be made by using GI pipes as the MDPE pipes are susceptible to breakage during very cold conditions. v. Bulk and consumer metering: Bulk meters shall be installed with a provision of creating a graph of minimum net night flow Vs. hours by sending SMS to the control room. vi. Leak identification: Identify the leakage areas by conducting step tests and gathering data from the data loggers. Exact location of leak spots shall be then fixed using leakage identification instruments such as injection of helium gas, sounding rods, noise co-relator etc. vii. NRW reduction: Once the commercial and physical losses are known, measures shall be taken up to bring them in accepted limit, ix. Water Balance: Components of water balance such as- authorized billed meter consumption, authorized billed unmetered consumption, unauthorized consumption due to thefts, metering inaccuracies, leakage in transmission mains, distribution house service connection shall be computed and water audit shall be carried out, x. NRW reduction: Once the commercial and physical losses are known, measures shall be taken up to bring them in accepted limit.

**

Page 44: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

44

CHAPTER 2

CRITERIA FOR SYSTEM PLANNING

2.1 GENERAL

This Chapter describes consideration of the design parameters that are used in the design of distribution system and steps to be adopted for conversion of the existing system into 24/7 continuous water supply system.

2.2 SYSTEMS OF WATER SUPPLY

The water may be supplied to the consumers by either- (1) continuous system or (2) intermittent system. In the continuous system, the water will be available to the consumers for all 24 hours a day. Whereas, the intermittent system will supply water only during peak water demand period which is fixed hours in the morning and evening. The exact period of supply of water to the consumers will depend on the availability of water from the source/ water treatment plant, pumping rate, available storage of water, availability of electric power supply during the day, water demand, seasons etc. The intermittent system creates problems like contamination of water in the pipes during non-supply hours, unhygienic as well as in sanitation problems. Besides, at majority of places, the intermittent supplies may not provide much savings of water because of the following reasons:

• In intermittent supply system, water is generally stored by the consumers in tanks, drums, and utensils etc. for use during non-supply hours. They, if unutilized, as soon as the fresh supply is restored, usually throw this stored water away. This increases the wastage and losses of water considerably.

• The consumers have a general tendency to keep the water taps open during non-supply hours so that they come to know startup of the supply. However, in majority of cases, water goes on flowing to waste, unattended even after the supply is restored, thus resulting into wastage of precious treated and potable water.

Besides, this intermittent supply system causes great inconvenience to consumers, keeping them on their toes for receiving and collecting water as soon as the supply is restored. Further, in this system, when the supply of water stops and the water from the pipe is withdrawn off, a partial vacuum is created in the pipeline. This induces suction through leaky joints. Dirt

Page 45: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

45

in the form of sewage and other waste waters on the ground surrounding the pipes can get entries into the pipes. This contaminates the existing water available in pipes as well as incoming water in the pipelines, when the supply is restored. Number of sluice valves and control valves are required to be installed in the network of water distribution system. All these valves are operated many times daily, while starting or closing supply. This requires additional operating staff along with high operating and maintenance cost. Intermittent system should not be continued on long term policy due to the following disadvantages-

1. The consumers have to store water for use during non-supply hours; which is likely to be contaminated. Some consumers may not have sufficient storage facilities; which may lead to insanitary conditions ultimately.

2. It has been observed that the consumers leave their water taps open every time; which causes much wastage of water.

3. If more storage of water is kept for the use during non-supply hours, it is thrown away, causing wastage of water.

4. If any incidents of fire-fighting occur during non-supply hours, no water is available; which may subsequently cause huge damages before the supply could be turned on.

In spite of all these limitations / disadvantages, the intermittent supply system is being mostly adopted in our towns and cities. For improving the pressures in intermittent system, the entire city area is divided into number of zones and different zones are supplied water during different hours of the day. Most of network of pipe distribution system of water supply of towns and cities are usually designed as continuous supply system", but after implementation they are operated as an “intermittent" one. In view of above, the water is to be supplied through continuous system. This is the best system and the water is supplied for all the 24 hours a day. In this system, ample water is always available for firefighting, or any break-down or emergencies, even by closing the supply of certain localities. Besides, due to continuous circulation, water always remains fresh, in the pipelines. Considering these, continuous supply of water around 24 hours a day is proposed for the project area under this DPR.

Page 46: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

46

2.3 DESIGN PERIOD

Design period for this work has been adopted as shown below: (i) Immediate stage 2020 (ii) Intermediate stage 2035 (iii) Ultimate stage 2050

2.4 POPULATION

Population forecast is made using the standard methods specified CPHEEO manual.

2.5 WATER DEMAND

Water demand projections are worked out with 135 liters per capita per day (LPCD) at consumer end. The losses are computed upward for gross demand projections as per CPHEEO manual. Water demand to the nodes of the distribution system is computed using the ward data provided by the SMC.

2.6 WATER DISTRIBUTION NETWORK

The water distribution system for public water supply is a network of pipes within the network of streets and roads of the project area. The purpose of the water distribution network is to convey wholesome (treated) drinking water to the consumers at an adequate residual pressure in sufficient quantity at convenient points. Water distribution system usually accounts for 40 to 70% of the capital cost of the water supply system, depending upon the lengths of streets and roads to be covered in the project area. As such, proper design and layout of the network is of great importance. The street plan, topography and location of service reservoirs etc. govern the type of distribution network. Proper layout of the pipelines, correct locations of various types of valves and specials are necessary for proper and efficient operation and maintenance of the system. Sufficient residual pressure at peak demand period is the prime hydraulic consideration of the distribution system. (a) Service Storage: Storage in the service reservoirs is provided considering balancing of inflows and outflows and emergency including water for firefighting. The service storage in the immediate stage year 2035 is computed presuming 20-hour pumping. With inflow rate of 20 hours and the outflow rate (supply hours) of 24 hours, the capacity of ESRs have been checked as per the methodology mentioned in CPHEEO manual.

Page 47: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

47

(b) Hazen-Williams C-Value: C-values of various materials of pipes are shown in Table 2.2. Table 2.2: Hazen William C -Values for pipes. Material HWC-Value Mild steel (mortar lined) 140 GI 100

(c) Residual Pressures: CPHEEO "Manual on water supply and treatment" - third edition (1999) has been adopted in fixing residual pressure. Presently the houses in the Shimla Municipal Council area are about 3 to 4 storied. Therefore, sizes of pipelines and tank storages of the system are checked for minimum residual pressure of 20 m at nodal points. Multi- storied buildings needing higher pressure, will be providing their individual underground storage tanks; from where, the water will be pumped to elevated storage tanks on such buildings for supply of water to their consumers. (d) Minimum Diameter of Pipes: CPHEEO Manual suggests 100 mm as the minimum diameter of pipes. However, Simla is a terrain having very steep slope. Hence, minimum size of 80 mm is considered in the analysis. (e) Leading Mains: The inlet mains to service reservoirs and trunk mains will carry water for 20 hours. (f) Peak Factor: A peak factor of 3 is adopted for distribution system in the Hydraulic modeling.

2.7 ROAD MAP TO 24/7 SYSTEM

(a) Bulk Flow Meters: After a careful study of the system’s requirements, bulk flow meters shall be proposed at key strategic points in the system such as water treatment plants, service reservoirs and pumping stations to monitor the quantum of water being handled at these places. (b) Pressure Gauges: For calibration of the hydraulic model and monitoring of the water supply system pressures at key locations will have to be monitored. In every zone/DMA about 5 points are anticipated. (c) Flow Controlling Valves: For operation and maintenance of any intermittent supply system a minimum number of valves are necessary. In a continuous supply system every DMA should have isolation valve to make it hydraulically discrete. (d) Pressure reducing valves are used to limit excessive pressures.

Page 48: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

48

2.8 SOFTWARE USED

For GIS maps, ESRI's ARC-VIEW software has been used. The analysis of the leading mains and the distribution system is made using Bentley WaterGEMS software, Connect Edition.

**

Page 49: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

49

CHAPTER-3

EXISTING WATER SUPPLY OF SHIMLA

3.1 HISTORY

Shimla Planning Area (SPA) has its water supply system 130 years back, water from nearby springs was pumped to the city area. A brief history of water supply of Shimla is shown in Figure 3.1.

Figure 3.1: History of water supply

3.2 SOURCES

Main sources of the SPA are as below: 1. Cherot and Jagroti 2. Gumma 3. Ashwani Khed to Kasumpti 4. River Giri

Out of seven sources of the city Source Gumma supplies water to the Sanjauli and then to the Totu tanks.

Source Gumma

Gumma Pumping Station (PH) gets water from two sources, namely, (i) Gumma source and (ii) Nauti Khad intake. These sources are shown in Figure 3.2.

1875 1884 1992

No systematic potable water supply till..

PRESENTLY CITY GETS

54.5 MLD WATER

1st reservoir of 9 ML capacity was constructed at Sanjauli

Last augmentation scheme 29.5 MLD

Page 50: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

50

Figure 3.2: Two sources of Gumma

From Gumma pumping station (Figure 3.3), total water pumped is 21 MLD. Water is pumped to the intermediate pumping station at Drabla (shown in blue) and again it is pumped to the Carignano reservoir. There is another pipeline (shown in yellow) which directly pumps water from Gumma PS to Carignano reservoir.

Figure 3.3: Gumma PS to Carignano reservoir

Page 51: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

51

Carignano reservoir supplies water to the Sanjuli reservoir by gravity as shown by the blue line in Figure 3.4.

Figure 3.4: Carignano reservoir to Sanjauli Tank Sanjauli reservoir supplies water by gravity to the Ridge reservoir and then to the last tank of Totu tank as shown in Figure 3.5.

Figure 3.5: Carignano reservoir to Sanjauli Tank

Page 52: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

52

Sources of water and capacity are shown in Table 3.1. Demo areas gets water as shown in Table 3.1. Table 3.1: Sources of water and capacity

SN Source

Capacity (MLD)

Present supply (MLD) Name WTP/ Tank Type Mode of supply

1 Churat Nallah Dalli filter 4.5 4.5

2 Gumma Carignano Surface Gravity 21.43 21

3 Ashwani Khad Kasumpti Surface Pumping 7.6 3.4

4 River Giri Dhalli Surface Pumping upto WTP and then by gravity 19 19

Total 52.53 47.9

3.3 EXISTING TANKS

There are 53 existing tanks in Shimla which are shown in Figure 3.6 and Table 3.2.

Page 53: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

53

Figure 3.6: Existing tanks in Shimla Table 3.2: Existing tanks

SN R_id

Area Own

er Tank_Name

Elevation

(Minimum) (m)

Elevation

(Maximum) (m)

Diameter (m)

Capacity (m3)

Elevation (m)

1 1 demo_zone MC North_Oak_2 2266 2270.5 6 50 2250 2 2 demo_zone MC New_Housing_Board 2170.5 2174.1 8 100 2170 3 3 demo_zone MC Bangala_Colony 2265.5 2268.5 10 100 2265 4 4 demo_zone MC Corner_House 2341 2345.5 10 400 2340.5

5 5 demo_zone MC Engine_Ghar 2239 2241.8 10 300 2238.5

6 6 demo_zone MC Old_Housing_Board1 2093.5 2096.5 6.5 50 2093 7 7 demo_zone MC Old_Housing_Board2 2106.5 2111 5 50 2106 8 8 demo_zone MC Totu 2045.5 2052.7 17.53 1600 2045 9 9 PostSanjauli_450DI MC Kelestone1 2199.5 2204.3 11 300 2199 10 10 PostSanjauli_450DI MC Kelestone2/Bharari 2212.5 2219 16 1200 2212

11 11 PostSanjauli_450DI MC Fingask_1 2182.5 2188.9 8 100 2182

12 12 PostSanjauli_450DI MC Fingask_2 2182.5 2186.5 8 60 2182 13 13 PostSanjauli_450DI MC Tutikandi_1 2067.5 2075 13 900 2067 14 14 PostSanjauli_450DI MC Tutikandi_2 2066.5 2069.8 7 100 2066

15 16 PostSanjauli_450DI MC Advance_Study_Steel_Tank 2130.5 2134.1 8.4 225 2130

16 17 PostSanjauli_450DI MC IIAS_Summer Hill 2108.5 2112.5 12 900 2108 17 19 PostSanjauli_450DI MC Chakkar/Sandal 2056.5 2064.9 12 900 2056 18 20 PostSanjauli_450DI MC Kamnadevi_Temple 2166.5 2171.3 10 350 2166

19 21 PostSanjauli_450DI MC Ridge_direct_from Sanjauli

2250.5 2250 33.9 8700 2250

20 22 PostSanjauli_450CI MC Ridge 2198.5 2205 33.9 4600 2198 21 23 PostRidge_400CI MC Tara_Hall 2092.5 2098.9 8 100 2092 22 24 PostRidge_400CI MC Phagali 2002.5 2005.5 9 70 2002 23 25 PostRidge_400CI MC Summerhill Bazar 2061.5 2065.1 7 100 2061 24 26 PostRidge_400CI HPU HP_University 2057.5 2061.1 15 300 2057 25 28 Mains_Field MC Mains_Field1 2186.5 2192.5 14 1800 2186 26 29 Mains_Field MC Mains_Field2 2185.5 2191.5 14 1800 2185 27 30 Mains_Field MC Shivpuri 2018.5 2021.7 5 50 2018

28 31 Mains_Field Forest

Khalini_Forest_Steel_Tank 1995.5 1997.4 6 35 1995

29 33 PostMainsField_150

CI MC SDA_Complex 2032.5 2039 8 100 2032

30 34 PostMainsField_150DI

MC Knolls_Wood 2094.5 2100.5 14 900 2094

31 35 PostMainsField_150DI MC Taramata_Temple_Secto

r1 1961.5 1970 10 600 1961

32 36 PostMainsField_150DI MC New_Shimla_Sector2 1949.5 1952.5 8 125 1949

33 37 PostMainsField_150

DI MC New_Shimla_Sector3A 1904.5 1908.5 6 80 1904

34 38 PostMainsField_150DI

MC New_Shimla_Sector4 1901 1906.5 10 400 1900.5

35 39 PostMainsField_150DI MC New_Shimla_Sector3 1861.5 1870 10 600 1861

36 42 Dingodevi_RM MC Dhingodevi1 2307.5 2313.5 10 300 2307 37 43 Dingodevi_RM MC Dhingodevi2 2307.5 2311.5 8 100 2307 38 45 MC Mashobra 2315.5 2317 31 3019 2315 39 46 MC Craignaino 2315.5 2319 29 2642 2315 40 47 Dhalli MC Dhalli_WTP1_Sump 2270.5 2273 3 10 2270 41 48 Dhalli MC Dhalli_WTP2_Sump 2275.5 2278 3 10 2275 42 49 Kusumpti MC Sackrala 2050.5 2054.1 5 50 2050 43 51 Kusumpti MC Basant_Vihar 2031.5 2035.5 7 120 2031

44 52 Kusumpti MC Phase_2_New_Shimla_Sector_6

1966 1972 8 200 1965.5

Page 54: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

54

SN R_id

Area Own

er Tank_Name

Elevation

(Minimum) (m)

Elevation

(Maximum) (m)

Diameter (m)

Capacity (m3)

Elevation (m)

45 53 Kusumpti MC Phase_2_New_Shimla 1894.5 1897.5 8 120 1894 46 54 Kusumpti MC Vikasnagar 1969.5 1972.5 5 40 1969 47 56 Kusumpti MC IAS_Colony1 1971.5 1974 4 25 1971 48 57 Kusumpti MC IAS_Colony2 1971.5 1974 4 25 1971 49 58 Kusumpti MC IAS_Colony3 1971.5 1973.9 6 50 1971 50 59 Kusumpti MC Kusumpti 2060.5 2065 25 2000 2060

51 60 Kusumpti PWD

HP_PWD_Near_Kusumpti 2060.5 2065.3 8 227 2060

52 61 PostSanjauli_Jaku MC Jakhu 2430.5 2439 10 300 2430

53 63 PostSanjauli_North_

Oak_1 MC North_Oak_1 2266 2270 7 100 2250

Total 37383

3.4 EXISTING NETWORK

Existing pipes in Shimla are shown in Figure 3.7 and Table 3.3.

Figure 3.7: Existing Pipes

Page 55: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

55

Table 3.3: Existing Pipes

Diameter (mm)

CI DI GI MS Grand Total

19 77 77

25 2110 2110

32 1754 1754

38 8900 8900

40 1516 1516

50 20177 20177

63 5341 5341

65 684 2121 2806

80 14968 10587 29055 54611

100 3014 5618 2194 3 10829

125 4773 1382 135 6290

150 2000 8676 370 204 11250

180 634 634

200 2268 3565 22 5855

225 1111 1111

250 94 3834 3928

300 541 516 1057

350 969 969

400 568 568

450 533 533

Grand Total

28825 37510 73617 364 140317

These pipes are very old, most of them are laid in pre-independence era. There is a basic reason why hilly area have more leaks. Getting water uphill requires more pressure. Water is pumped to move it uphill to reservoirs that rely on gravity for downward pressure. That force places greater stress on pipes and can lead to breaks. Pipes in older neighborhoods such as the Shimla are also more prone to fail because of their age.

Moreover, pipes with no data available have length of 84.5 kms. Pipes with diameter less than 100 mm are shown in Figure 6.5. These pipes are old and as Government of India’s CPHEEO

(1999) manual directs to use minimum size of 100 mm, hence, these pipes are not considered. This point was discussed with the Shimla Municipal Corporation (SMC) authority and for distribution system it was directed to design new pipes only.

Existing pipes with diameters more than 100 mm are shown in Table 3.2. These pipes are used for transmission main. Most of them shall be considered in the design of transmission mains.

***

Page 56: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

56

CHAPTER-4

POPULATION FORECAST AND DEMAND ESTIMATION

4.1 SHIMLA PLANNING AREA

Government of Himachal Pradesh (GoHP) constituted Shimla Planning (SPA) Area through notification in November 1977, which comprises as below: (1) Shimla Municipal Corporation (SMC) (2) Recently merged Special Areas of Dhalli, New Shimla, and Tutu (3) Special Areas of Kufri, Shoghi and Ghanahatti

4.1.1 Validation of Geographic Areas of SPA

The map of Shimla Planning Area is collected from Town and Planning Department, Shimla which is shown in Figure 4.1. This map is non- spatial (non- GIS).

Figure 4.1: Non-Spatial map of Shimla Planning Area

Page 57: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

57

KMZ file of the map of Shimla MC is collected from Town and Planning Department, Shimla. This map is georeferenced and is as shown in the Figure 4.2

Figure 4.2: GIS map of Shimla MC

The non-spatial map shown in Figure 4.1 is then made geo referenced with the map shown in Figure 4.2 and the resulting map (which is now georeferenced) is shown in Figure 4.3.

Figure 4.3: GIS map of Shimla Planning Area

Page 58: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

58

On GIS map of Shimla Planning Area (Figure 4.3), Special Areas of Kufri, Shoghi and Ghanahatti are digitized and the resulting map is shown in Figure 4.4. Additional areas are also digitized and the resulting GIS map of entire Shimla Planning Area along with special areas and additional areas is shown in Figure 4.5.

Figure 4.4: GIS map of Shimla Planning Area along with Special Areas of Kufri, Shoghi and

Ghanahatti

Figure 4.5: GIS map of entire Shimla Planning Area

Page 59: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

59

The areas on the drawing (Figure 4.1) given by Town and Planning Department Comparison of areas is shown in the Column 3 of the Table 4.1. The areas of the drawing 4.5 area also measured and are shown in Column 4 of the Table 4.1. Comparison of areas is shown in Table 4.1. Table 4.1: Comparison of areas

Figure 4.1)

Zone/area

Area (Ha) Drawing* of Town and Planning Department

GIS map** of this work

Difference (%)

1 2 3 4 5 1 Shimla MC 2207 2753 2 Ghanahatti Special Area 1647 1596 -3.2 3 Kufri Special Area 3173 3494 9.2 4 Shoghi Special Area 2923 3356 12.9

5 Additional Shinla Palnning Area

12500 13419 6.8

Total 22450 24618 8.8 * Drawing as shown in Figure 4.1 ** Drawing as shown in Figure 4.5 Areas of various zones as measured by the GIS map of this work (Col. 4) as shown in Table 4.1 are used in this work.

Area Under Consideration

Area Under Consideration, i.e., A GIS map of the Shimla Planning Area is shown in Figure 4.6.

Figure 4.6: Shimla Planning Area

Page 60: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

60

Areas as shown in Figure 4.6 are shown in Table 4.2. Table 4.2: Comparison of areas

SN Zone/area

Area (Ha) Town and Planning Department

GIS map of this work

1 Shimla MC 2207 2753

2 Ghanahatti Special Area 1647 1596

3 Kufri Special Area 3173 3494 4 Shoghi Special Area 2923 3356 Total 9950 11199

The number of households and population of SPA of the year 2001 and 2011 is shown in Table 4.3. Table 4.3: Households and population of SPA

Part 2001 2011

House Holds Population House Holds Population

M.C. Shimla 37756 142555 1,69,578

Ghanahatti Special Area 2651 10185 2450 10715

Kufri Special Area 2426 10720 2956 12550

Shoghi Special Area 2330 11329 2758 12417

Total 45163 174789 2,05,260

Source: Census data 2011

4.2 POPULATION FORECAST

Population of the SPA as per 2011 census is 2,05,260. The decadal population growth of the SPA is shown in Table 4.4. The projected population made by various methods is shown in Table 4.5. Table 4.4: Decadal population growth* of the SPA

Sr. No. Year Population Increase in Decade (X)

Incremental increase (Y)

Rate of growth per decade

Decadal growthin %

1 1971 72870 2 1981 95851 22981 0.315 31.54 3 1991 129827 33976 10995 0.354 35.45 4 2001 174789 44962 10986 0.346 34.63 5 2011 2,05,260 30471 -14491 0.174 17.43 Total 132390 7490 Average 26478 33098 2497 0.287

*Source: Census data

Page 61: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

61

Table 4.5: The projected population of the SPA

S N Year n Arithmetic method

Incremental increase method

Geometric progression method

Average of Incremental increase method and Geometric progression method.

Graphical Method

Average of Arithmetic, Incremental increase and Geometric progression method*

1 2020 0.9 235048 237183 257520 247351 23500 243250

2 2035 2.4 284695 294882 375827 335354 280000 318468

3 2050 3.9 334342 358198 548486 453342 340000 413675

*Finally adopted Graphical Method: Population forecast made by the Graphical method is shown in Figure 4.7.

Figure 4.7: Graphical method

Population forecast, made by the average of three methods- Arithmetic method, Incremental increase method and Geometric progression method, seems to be rational. Hence, the forecast, as made by the average of Arithmetic method, Incremental increase method and Geometric progression method, is adopted which is shown in Table 4.6. Table 4.6: Final projection of population

S. No Year Population

1. 2020 243250

2. 2035 318468

3. 2050 413675

0

50000

100000

150000

200000

250000

300000

350000

400000

1970 1980 1990 2000 2010 2020 2030 2040 2050

Po

pu

lati

on

Year

Page 62: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

62

Floating Population: The floating population of SPA is adopted from the Satluj (Kol) dam project report which are shown in Table 4.7.

4.3 DEMAND PROJECTION

4.2.1 Losses

CPHEEO manual restricted total losses to 15% (Ref p11 of CPHEEO manual). Hence, it is assumed that there will be 10% losses (Figure 4.9) in distribution system, 3% in treatment plant and 2% (1% in raw water transmission and 1% in pure water transmission) in the transmission system. Rate of supply is considered as 135 LPCD as the SMC has plan of sewerage scheme.

Figure 4.9: Demand of en-route connections and losses in WTP Corrected demands as mentioned in the DPR of Satluj (Kol) Dam seems rational, hence the figures as shown in Table 4.7 are considered in this report. The pipe sizes in distribution system are designed for the demand of 103.9 say 104 MLD.

WTP Distribution Head Work

Losses in WTP (3%)

1% Losses

1% Losses

10% Losses

Page 63: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

63

Table: 4.7: Projection of demand of the SPA (adopted from Satluj (Kol) dam project report

SN Demand type Source Low Growth Moderate Growth High Growth 2017 2020 2035 2050 2017 2020 2035 2050 2017 2020 2035 2050

A Population Census of India 2001-2011 225119 235048 284694 334340 226317 237182 294880 358196 230068 243250 318467 413674 Total Domestic Demand

135lpcd 30.39 31.73 38.43 45.14 30.55 32.02 39.81 48.36 31.06 32.84 42.99 55.85

B

Floating population demand

45 lpcd 44000 45333 52630 61102 44000 45333 52630 61102 44000 45333 52630 61102

Over night tripers 180 lpcd per overnight stay 22000 22667 26315 30551 22000 22667 26315 30551 22000 23347 31421 42289 Total Floating population demand 5.94 6.12 7.11 8.25 5.94 6.12 7.11 8.25 5.94 6.24 8.02 10.36

Institutional: (a) Schools

Statistic Abstract, Government of Himachal Pradesh 2015-2016

103548 107639 130651 158582 103548 108278 135373 169248 103548 109886 147893 199044

45 lpcd per school enrollment 4.66 4.84 5.88 7.14 4.66 4.87 6.09 7.62 4.66 4.94 6.66 8.96

(b) Offices Stastical and Economical Survey 2016-2017

45547 47347 57468 69754 45547 47628 59545 74446 45547 48335 65052 87552

45 lpcd per office employee 2.05 2.13 2.59 3.14 2.05 2.14 2.68 3.35 2.05 2.18 2.93 3.94

(c) Hospitals(<100)

Directory obn Medical and Public Health Institutions in Himachal

631 656 796 966 631 660 825 1031 631 670 901 1213

340 lpcd per hospital bed 0.21 0.22 0.27 0.33 0.21 0.22 0.28 0.35 0.21 0.23 0.31 0.41

(d) Hospitals(>100)

Directory obn Medical and Public Health Institutions in Himachal

1125 1169 1419 1723 1125 1176 1471 1839 1125 1194 1607 2163

450 lpcd per hospital bed 0.51 0.53 0.64 0.78 0.51 0.53 0.66 0.83 0.51 0.54 0.72 0.97 Institutional Total (a)+(b)+(c )+(d) 7.43 7.72 9.37 11.38 7.43 7.77 9.71 12.14 7.43 7.89 10.61 14.28

D Other Industrial Demand data from SMC website

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

E Cantonment Demand data from SMC website

0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54

F Additional Shimla Planning Area Population

Data from TCP Office,Shimla 33928 35530 43542 51553 33928 35714 45347 56154 33928 36537 52916 76638

135 lpcd 4.6 4.8 5.9 7 4.6 4.8 6.1 7.6 4.6 4.93 7.14 10.35

G Fire demand (MLD)

(100(P/1000)^0.5)/1000 1.50 1.53 1.69 1.83 1.50 1.54 1.72 1.89 1.52 1.56 1.78 2.03

Grand Total (A)+(B)+(C)+(D)+(E)+(F)+(G) 49 51 61.4 72.4 49.1 51.4 63.4 77 49.7 52.5 69.4 93.51

Demand of Distribution

Demand with 10% losses in Distribution System 103.9

Demand of WTP

Demand with 1% losses in PW RM at outlet of WTP 104.9 Demand with 3% losses in WTP at inlet of WTP 108.2

Demand at Head Works

Add 1% for losses in RW transmission system 109.3

**

Page 64: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

64

CHAPTER-5

HYDRAULIC MODEL OF SHIMLA

5.1 SIMULATION MODEL

Modeling of the water supply system is a critical part of designing and operating water networks for 24/7 continuous supply. It helps the distribution system to serve community reliably, safely and efficiently in daily operations. Hydraulic models give commanding knowledge of the water infrastructure, and help to take informed decisions. Modeling (Haested Methods, 2003) is defined as a mathematical description of a real-world system.

5.2 MODELING PROCESS

Main objective of any water utility is to deliver safe and potable water to its customers uninterruptedly. The first step in preparation of the model for water supply project is a creation of maps and records.

5.2.1 Maps and Records

System Maps: System maps of the SPA in the form of the GIS format have been collected from the engineer of the Shimla Municipal Council (SMC). These maps helped to make understanding of the water distribution networks of the city. The maps illustrate wide range of system characteristics of the SPA such as pipeline alignment, elevations of nodes, location of tanks and reservoirs and valves etc. The drawings are obtained from the SMC, which are used to prepare the hydraulic model in WaterGEMS. Water transmission pipelines are shown and the positions of water treatment plants, wards and the elevated service reservoirs in the city were marked. The shape files of roads and the buildings are used as a backdrop of the WaterGEMS software.

5.3 SYSTEM SIMULATION

While making hydraulic model for 24/7 continuous water supply system, various components of the network such as reservoir, tanks, pipelines and valves etc. are required to be simulated. The term simulation (Haested Methods, 2003) refers to the process of imitating the behavior of one system through functions of another. In the present approach, the term simulation represents behavior of real system (model) mathematically. Network simulation is a tool used when it is not possible to make experimentation to the actual system or to predict the behavior of the system before it is actually built. The objectives of the simulation are as follows-

• Replicate the dynamics of an existing and the proposed water supply system, • Performed when it is not practical for the real system to be directly subjected to

experimentation, • Evaluating a system before it is actually built.

Page 65: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

65

5.3.1 Simulation of 24/7 Continuous Water Supply System

The road map to 24/7 continuous water supply for the Shimla has been shown in Figure 5.1.

Figure 5.1: Road map of 24/7 continuous water supply

All the parameters, as shown in Figure 5.1, are equally important and are inextricably linked. If anyone of them is not achieved, then it is not possible to convert the existing intermittent supply into 24/7 continuous water supply. For example, if technical parameters such as creation of hydraulic model, using DMA methodology and metering activities are carried out, but if proper tariff is not adopted, then there will be rise in the consumption rather than expected decrease in the supply rate and there will be shortage of water. Implementation Steps of 24/7 Water Supply: Detailed implementation steps are shown in Figure 5.2. Basic principle: The basic principle is to save water by plugging of leaks in distribution pipe network. And the saved water is then used to increase the supply hours to 24 hours daily. This process must be a continuous one to constantly reduce NRW.

Intermi-ttent

System

Technical

Hyd. ModelRehabilitation of

network

DMA

Pressure Management

Leakage Management

Metering Bulk + Consumer

OrganizationO&M to Sustain

24x7

Commercial Pricing

Policy

Budget

24x7 System

Page 66: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

66

Figure 5.2: Implementation stages of 24/7 continuous water supply

5.3.2 Model Scenario

Scenario represents a set of models that describe traits of hydraulic networks of different water works. A typical model scenario requires analysis of a number of alternatives. Analysis of each alternative requires separate set of input data. In the situation of large number of model runs, it is not possible to edit input data accurately. Working either with many data files or editing frequently with single data file (Haested Methods, 2003) is confusing, inefficient and susceptible to the errors. Hence, to solve this problem alternative data sets are kept with single model data file. The alternatives can be assigned to the scenario and then the batch run of the particular scenario is performed to evaluate the results.

Intermittent Supply System

Base Drawing

Prepare Hydraulic Model

Scenario of zones and DMAs

Install meters and PRVs

Water Audit

Tackle leakiest DMA

Leak repair, Rehabilitate pipes

N

24x7 Continuous Supply System

All DMAs tackled? Tackle all DMAs

Page 67: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

67

Alternatives: Basically, three types of alternatives are used in this study. They are namely- (a) active topology, (b) demand and (c) operational.

(a) Active Topology: System drawings of the proposed water networks showing locations of tanks, intermediate nodes, demand nodes and pipeline alignment of the SPA are prepared and plotted. In GIS maps the co-ordinate system of WGS-1984 UTM 43 N has been used. All elements of model are then suitably named and the corresponding data is fed to the computer software. The base scenario is then separated into various child scenario by making inactive elements of other zones and making active elements of the zones that is considered as a separate child scenario as shown in Figure 5.3. Thus, all child scenario of active topology are prepared. (b) Demand: Demand for all the nodes for the years 2020, 2035 and 2050 are allocated. (c) Operational: Valve operations are important in the model of pipe network. Flow control valves are used to regulate the flow into each zone. PRVs are used to manage the excessive pressures. 5.3.3 Base Scenario Base scenario of pipe network of entire city is the first task in preparation of the hydraulic model. Back Drop Drawing Ortho raster image of the SPA is created by the Drone survey which has been used in this study. This image is limited to the extent of the Demo areas. This raster ortho image was digitized and the shape files of the features such as road edge boundaries, buildings, water bodies are created. The ortho image and the shape files are geo-referenced (spatial). Attaching Alternatives Alternatives of active topology, demand and the operational are created in WaterGEMS and are attached to the base scenario as shown in Figure 5.3.

Page 68: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

68

Figure 5.3: Alternative attached to the base scenario 5.3.4 Active Topology The shape files of the roads and buildings are exported to WaterGEMS and are used as the background layers. Various components of the pipe network such as reservoir, pipe, junctions, valves and tanks etc. are drawn on the background layer. 5.4 Water Demand Wards of the Shimla MC and SPA including Special Areas of Ghanahatti, Kufri and Shoghi are shown in Figure 5.4. Demand of the water districts is computed by using the land pattern data given by the City Development Plan (CDP) of Town and Country Planning Department.

Figure 5.4: Wards of the SPA

Base scenario of Shimla city

Active topologyAttributes of pipe material, length, diameter,

C-value are given to the pipe feature.

Demand Demand values are given

OperationalValve settings, open, partial open and close

are given

Page 69: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

69

Population of entire Shimla Planning Area (SPA) including 25 wards of the Shimla MC and Special Areas of Ghanahatti, Kufri and Shoghi, its area and population density with respect to the year 2011 is shown in Table 5.1. A GIS layer with population densities as attribute table has been created. Table 5.1: Population of the wards of the Shimla Planning Area (SPA)

Ward Number

Ward Name Area (Ha) Population (2011)

Population Density (P/Ha) (2011)

1 Bharari 102.82 4,113 40 2 Ruldhu Bhatta 113.05 6,839 60 3 Kaithu 73.31 4,298 59 4 Annadale 246.48 4,962 20 5 Summer Hill 237.88 5,391 23 6 Totu 112.96 9,208 82 7 Boileauganj 209.15 8,205 39 8 Tutikandi-Badai 206.44 5,361 26 9 Nabha 56.16 4,665 83 10 Phagli 48.92 4,518 92 11 Krishna Nagar 44.56 7,190 161 12 Ram Bazar, Ganj 22.07 3,734 169 13 Lower Bazar 22.26 3,936 177 14 Jakhu 49.81 3,505 70 15 Benmore 142.95 3,988 28 16 Engine Ghar 16.28 5,196 319 17 Sanjauli Chowk 111.79 6,526 58 18 Dhalli 214.26 7,327 34 19 Chamyana 54.73 9,627 176 20 Maliyana 138.02 9,884 72 21 Kasumpti 87.82 9,185 105 22 Chhota Shimla 77.12 15,399 200 23 Pateog 145.53 12,029 83 24 Khalini 98.87 8,456 86 25 Kanlog 119.95 6,036 50 26 Ghanahatti 1596.33 10715 7 27 Kufri 3493.68 12550 4 28 Shoghi 3355.72 12417 4 Total 11199 2,05,260 18

Land Use City Development Plan (CDP) of Town and Country Planning Department has recorded Land use areas of the city for the year of 2004 and predicted land use areas for the year 2021 as shown in Tables 5.2 and 5.3 respectively.

Page 70: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

70

Table 5.2: Land use areas for the year of 2004

SN Land Use Area (in Hectare) % of urban area

% of Planning Area

1 Residential 903.13 61.19 9.07 2 Commercial 25.22 1.71 0.25 3 Industrial 9 0.62 0.09 4 Tourism 21.7 1.47 0.22 5 Public & semi- public 138.78 9.4 1.39 6 Parks & open spaces 6 0.41 0.06 7 Traffic and Transportation 371.93 25.2 3.75 Total 1475.76 100 8 Agriculture, 2174.75 21.85 9 Forest 6080.15 61.12 10 Water bodies and undevelopable land 219.34 2.2

Total 8474.24 85.17 Grand Total 9950 100

Table 5.3: Land use areas for the year of 2021

SN Land use Area in Hectare % of Urban Area

% of Planning area

1 Residential 2124 68 21.35 2 Commercial 51.2 2 0.51 3 Industry 17 1 0.17 4 Tourism 98 3 0.98 5 Public & Semi Public 274.28 9 2.76 6 Parks & Open Spaces 32 1 0.33 7 Traffic & Transportation 484.93 16 4.87 Total 3081.41 100 8 Agriculture 620.63 6.24 9 Forest 6028.62 60.59 10 Water bodies & Undevelopable slopes 219.34 2.2 Total 6868.59 Grand Total 9950 100

From the Tables 5.2 and 5.3, it is to be noted that the land use areas in the year 2021 have been increased by reducing the Agriculture area. So, the total planning area of 1475.76 Ha which was considered in the year 2004 has been increased to 3081.41 Ha for the prospective year of 2021. Land use areas as suggested by the Town and Country Planning Department for the year 2021 are considered as the base year is 2020. As shown in Table 4.2, measured area of SPA is 11,199 Ha rather than earlier reported 9950 Ha. Hence, land use percentages are computed for the year 2021 for the measured areas and are shown in Column 5 of the Table 5.4.

Page 71: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

71

Table 5.4: Land use areas

sn Land Use

Area in Hectare % of Urban Area

% of Planning area 2001 2021

Measured Area (2021)

1 2 3 4 5 6 7 1 Residential 903.13 2124 2391 68.93 21.35 2 Commercial 25.22 51.2 58 1.66 0.51 3 Industrial 9 17 19 0.55 0.17 4 Tourism 21.7 98 110 3.18 0.98 5 Public & semi- public 138.78 274.28 309 8.90 2.76 6 Parks & open spaces 6 32 36 1.04 0.32 7 Traffic and Transportation 371.93 484.93 546 15.74 4.87 Total 1475.76 3081.41 3468 100 30.97 8 Agriculture, 2174.75 620.63 699 6.24 9 Forest 6080.15 6028.62 6785 60.59 10 Water bodies and undevelopable land 219.34 219.34 247 2.20 Total 8474.24 6868.59 7731 69.03 Grand Total 9950 9950 11199 100.00

Using percentage of Urban Area (Column 6) from Table 5.4, land use areas of the SPA are computed and are shown in Table 5.5. Since, population of each ward with respect to the land use is to be found out, it is required to find out equivalent area of each ward. While determining equivalent area, the factors- such as 100% for residential; 25% for public and Public & Semi Public and 10% for industries and Tourism has been used which is practiced in Maharashtra Jeevan Pradhikaran (MJP). Computation of equivalent area is shown in Table 5.5.

Page 72: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

72

Table 5.5: Land use areas

Ward No.

Ward Name Population (2011)

Area_Ha Residential Area (Ha)

Commercial Area (Ha)

Industry Area (Ha)

Tourism Area (Ha)

Public & Semi Public Area (Ha)

Parks & Open Spaces Area (Ha)

Traffic & Transportation Area (Ha)

Equivalent Area (Ha)

Density as of 2011 (P/Ha)

Density as of 2011

Probable density expected in year 2050

27 Kufri 12550 3493.68 2408.18 58.05 19.27 111.11 310.98 36.28 549.81 2513.47 5 Low Medium 28 Shoghi 12417 3355.72 2313.08 55.76 18.51 106.72 298.70 34.85 528.10 2414.22 5 Low 26 Ghanahatti 10715 1596.33 1100.34 26.52 8.81 50.77 142.09 16.58 251.22 1148.45 9 Low

4 Annadale 4962 246.48 169.90 4.10 1.36 7.84 21.94 2.56 38.79 177.33 28 Low 5 Summer Hill 5391 237.88 163.97 3.95 1.31 7.57 21.17 2.47 37.44 171.14 32 Low 8 Tutikandi-Badai 5361 206.44 142.30 3.43 1.14 6.57 18.38 2.14 32.49 148.52 36 Low 15 Benmore 3988 142.95 98.54 2.38 0.79 4.55 12.72 1.48 22.50 102.84 39 Low 18 Dhalli 7327 214.26 147.69 3.56 1.18 6.81 19.07 2.23 33.72 154.15 48 Low 7 Boileauganj 8205 209.15 144.16 3.48 1.15 6.65 18.62 2.17 32.91 150.47 55 Medium

1 Bharari 4113 102.82 70.87 1.71 0.57 3.27 9.15 1.07 16.18 73.97 56 Medium 25 Kanlog 6036 119.95 82.68 1.99 0.66 3.81 10.68 1.25 18.88 86.29 70 Medium 17 Sanjauli Chowk 6526 111.79 77.06 1.86 0.62 3.56 9.95 1.16 17.59 80.43 81 Medium 3 Kaithu 4298 73.31 50.53 1.22 0.40 2.33 6.53 0.76 11.54 52.74 81 Medium 2 Ruldhu Bhatta 6839 113.05 77.93 1.88 0.62 3.60 10.06 1.17 17.79 81.33 84 Medium 14 Jakhu 3505 49.81 34.33 0.83 0.27 1.58 4.43 0.52 7.84 35.84 98 Medium

20 Maliyana 9884 138.02 95.14 2.29 0.76 4.39 12.29 1.43 21.72 99.29 100 Medium 6 Totu 9208 112.96 77.86 1.88 0.62 3.59 10.05 1.17 17.78 81.27 113 Medium 23 Pateog 12029 145.53 100.31 2.42 0.80 4.63 12.95 1.51 22.90 104.70 115 Medium 9 Nabha 4665 56.16 38.71 0.93 0.31 1.79 5.00 0.58 8.84 40.40 115 Medium 24 Khalini 8456 98.87 68.15 1.64 0.55 3.14 8.80 1.03 15.56 71.13 119 Medium 10 Phagli 4518 48.92 33.72 0.81 0.27 1.56 4.35 0.51 7.70 35.19 128 Medium

21 Kasumpti 9185 87.82 60.54 1.46 0.48 2.79 7.82 0.91 13.82 63.18 145 Medium 11 Krishna Nagar 7190 44.56 30.71 0.74 0.25 1.42 3.97 0.46 7.01 32.06 224 High 12 Ram Bazar, Ganj 3734 22.07 15.21 0.37 0.12 0.70 1.96 0.23 3.47 15.88 235 High 19 Chamyana 9627 54.73 37.73 0.91 0.30 1.74 4.87 0.57 8.61 39.38 244 High 13 Lower Bazar 3936 22.26 15.35 0.37 0.12 0.71 1.98 0.23 3.50 16.02 246 High 22 Chhota Shimla 15399 77.12 53.16 1.28 0.43 2.45 6.86 0.80 12.14 55.49 278 High

16 Engine Ghar 5196 16.28 11.22 0.27 0.09 0.52 1.45 0.17 2.56 11.71 444 Very High

Page 73: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

73

5.4.1 Observations on Demand Projection Generally, any Development Plan recommends the growth of population according to the ward density pattern. Ward density is a ratio of population of each water district to its spread area. Based on the population pattern, the wards are categorized as low dense, medium dense, high dense, very high dense and saturated as shown in Table 5.6. Population projection factors are considered in accordance with the growth rate of the city as shown in table 5.7. Table 5.6: Population density pattern

SN WATER DISTRICT: DENSITY PATTERN

DENSITY AS OF 2011

(PERSONS/HA)

NO. OF WATER

DISTRICTS

1 LOW 0 - 50 8

2 MEDIUM 50- 200 14

3 HIGH 200-400 5

4 VERY HIGH 400-600 1

5 SATURATED >600 0

TOTAL 28

Table 5.7: Population density pattern

SN Density

as of year 2011

Probable density

expected in year 2050

Projection Factor(PF)*

Remarks

1 Low Low 1.05 Though growth will be less, the future growth is not expected. Hence, PF is the least

2 Low High 2.1 Here growth will be high and the future growth will be much more

3 Low Very High 2.75 Here future growth will be maximum. Hence, PF is the maximum

4 Medium Medium 1.2 Future growth will be medium but slightly above low.

5 Medium High 1.2 Future growth will be medium but slightly above low.

6 Medium Very High 1.8 Here future growth will be very high and comparatively PF is more than 1.2

7 High Very High 1.8 Here future growth will be very high and comparatively PF is more than 1.2

8 Very High

Very High 1.2 Future growth will be medium but slightly above low.

*These projection factors are decided in consultation with the MC’s engineers

Page 74: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

74

Distribution of population density in various wards for the years 2020, 2035 and 2050 is shown respectively in Figures 5.5, 5.6 and 5.7 respectively. A comparison of increase in population density is shown in Figure 5.8. Values of population density are also shown in Table 5.8. Using load builder of WaterGEMS, the demand is given as per the population density.

Figure 5.5: Density of wards of the city for year 2020

Figure 5.6: Density of wards of the city for year 2035

Page 75: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

75

Figure 5.7: Density of wards of the city for year 2050

Figure 5.8: Comparison of densities

0

100

200

300

400

500

600

700

Kufr

i

Sho

ghi

Gh

anah

atti

Ben

mo

re

Ann

adal

e

Sum

mer

Hill

Bh

arar

i

San

jau

li C

ho

wk

Kai

thu

Bo

ileau

gan

j

Tuti

kan

di-

Bad

ai

Jakh

u

Kan

log

Dh

alli

Ru

ldh

u B

hatt

a

Phag

li

Mal

iyan

a

Totu

Pate

og

Khal

ini

Nab

ha

Kasu

mpt

i

Kris

hn

a N

agar

Ram

Baz

ar, G

anj

Ch

amya

na

Low

er

Baz

ar

Ch

ho

ta S

him

la

Engi

ne

Gh

ar

Per

son

/Ha

Ward

pd2020 pd2035 pd2050

Page 76: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

76

Table 5.8: Distribution of population density in various wards

Ward Number

Ward Name Population (2011)

Area (Ha) Eq. Area (Ha)

Population Density (P/Ha)

Density as of 2011

Probable density expected in 2050

Projection Factor for probable density

Population (2020)

Population (2035)

Population (2050)

Population density (p/Ha) (2020)

Population density (p/Ha) (2035)

Population density (p/Ha) (2050)

27 Kufri 12550 3493.68 2513.47 4.99 Low High 2.1 17514 23909 29438 7 10 12

28 Shoghi 12417 3355.72 2414.22 5 Low High 2.1 17323 23660 29131 7 10 12

26 Ghanahatti 10715 1596.33 1148.45 9 Low High 2.1 14706 20624 25393 13 18 22

4 Annadale 4962 246.48 177.33 28 Low High 2.1 5622 9325 11481 32 53 65

5 Summer Hill 5391 237.88 171.14 32 Low High 2.1 7238 10150 12497 42 59 73

8 Tutikandi-Badai 5361 206.44 148.52 36 Low Very High 2.75 9577 13193 16244 64 89 109

15 Benmore 3988 142.95 102.84 39 Low Low 1.05 4015 4030 4187 39 39 41

18 Dhalli 7327 214.26 154.15 48 Low Very High 2.75 10772 18031 22201 70 117 144

7 Boileauganj 8205 209.15 150.47 55 Medium Very High 1.8 10095 13216 16273 67 88 108

1 Bharari 4113 102.82 73.97 56 Medium High 1.2 4423 4923 5438 60 67 74

25 Kanlog 6036 119.95 86.29 70 Medium Very High 1.8 6426 9723 11971 74 113 139

17 Sanjauli Chowk 6526 111.79 80.43 81 Medium High 1.2 6834 7217 7831 85 90 97

3 Kaithu 4298 73.31 52.74 81 Medium High 1.2 5098 5200 5683 97 99 108

2 Ruldhu Bhatta 6839 113.05 81.33 84 Medium Very High 1.8 7514 11016 13564 92 135 167

14 Jakhu 3505 49.81 35.84 98 Medium Medium 1.2 3703 4114 4634 103 115 129

20 Maliyana 9884 138.02 99.29 100 Medium Very High 1.8 11161 15921 19603 112 160 197

6 Totu 9208 112.96 81.27 113 Medium Very High 1.8 10114 14832 18262 124 183 225

23 Pateog 12029 145.53 104.70 115 Medium Very High 1.8 13800 19376 23857 132 185 228

9 Nabha 4665 56.16 40.40 115 Medium Very High 1.8 5739 7514 9252 142 186 229

24 Khalini 8456 98.87 71.13 119 Medium Very High 1.8 8856 13133 16271 125 185 229

10 Phagli 4518 48.92 35.19 128 Medium High 1.2 5118 5600 6274 145 159 178

21 Kasumpti 9185 87.82 63.18 145 Medium Very High 1.8 9523 13387 18216 151 212 288

11 Krishna Nagar 7190 44.56 32.06 224 High Very High 1.8 8090 8350 14260 252 260 445

12 Ram Bazar, Ganj 3734 22.07 15.88 235 High Very High 1.8 4234 4333 7406 267 273 466

19 Chamyana 9627 54.73 39.38 244 High Very High 1.8 9823 10056 19093 249 255 485

13 Lower Bazar 3936 22.26 16.02 246 High Very High 1.8 4436 4568 7806 277 285 487

22 Chhota Shimla 15399 77.12 55.49 278 High Very High 1.8 15899 17270 30540 287 311 550

16 Engine Ghar 5196 16.28 11.71 444 Very High Very High 1.2 5596 5798 6870 478 495 587

Page 77: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

77

5.5 Elevations to Nodes Drone Survey Since the terrain is undulating, a drone survey is carried out by the Shimla MC. This survey enabled to draw ortho image of the entire Demo areas and the accurate contours. A typical drone with high resolution camera (Figure 5.9) was brought to the site (Figure 5.10).

Figure 5.9: Drone with high resolution camera Figure 5.10: Operating Drone at site

The flight path over the command area is set on Tab as shown in Figure 5.11. Actual such path is shown in Figure 5.12.

Figure 5.11: Flight path set at controller Figure 5.12: Actual flight path at Demo areas

While flying along the pre-set path, the images with overlap (Figure 5.13) are taken by the Drone camera. With overlap, accurate contours are generated by the PIX4D software. These levels are validated using Total Stations (Figure 5.14).

Page 78: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

78

Figure 5.13: Overlap images Figure 5.14: Validating levels by Total

Station With the Drone survey, an Ortho image of the command area of the Demo areas is created which is used to create operational zones and pressure zones/ DMA. Generation of Contours GIS based contours are generated by the PIX4D software which are then used to impart the elevations to each node. Base Scenario Base scenario of the SPA has been prepared with the alternatives: (i) active topology, demand and the operational as shown in Figure 5.6. Figure 5.6: Base scenario with alternatives of active topology, demand and operational Thus, the basic hydraulic model of the distribution system has been created for further analysis and design of the entire project.

***

Base Scenario of Talegaon- Dabhade Distribution System

Alternative: Active Topology

Alternative: Deamnd

Alternative: Operational

Page 79: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

79

CHAPTER-6

FORMATION OF AREAS

6.1 SHIMLA AREAS

Principle of Formation: There are common outlets supplying water to various operational zones. The groups of such zones are clubbed together in the area. Such areas in the distribution area of Shimla are shown in Figure 6.1 and Table 6.1.

Figure 6.1: Shimla areas

Page 80: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

80

Table 6.1: Shimla areas

SN Shimla Area Zones in the Area 1 A_Demo_Area North_Oak_2, New_Housing_Board,

Bangala_Colony, Corner_House, Engine_Ghar, Old_Housing_Board1, Old_Housing_Board2, Totu

2 B_PostSanjauli_450DI Kelestone1, Kelestone2/Bharari, Fingask_1, Fingask_2, Tutikandi_1, Tutikandi_2, Z7_Tutikandi_3, Advance_Study_Steel_Tank, IIAS_Summer Hill, Z6_Baluganj_Harinagar, Chakkar/Sandal, Kamnadevi_Temple, Ridge_direct_from Sanjauli

3 C_Ridge Ridge 4 D_PostRidge_400CI Tara_Hall, Phagali, Summerhill Bazar,

HP_University, Z4_New1 5 E_Mains_Field Mains_Field1, Mains_Field2, Shivpuri,

Khalini_Forest_Steel_Tank, Z3_Knolls_Wood, SDA_Complex, Knolls_Wood, Taramata_Temple_Sector1, New_Shimla_Sector2, New_Shimla_Sector3A, New_Shimla_Sector4, New_Shimla_Sector3

6 F_Dhingodevi Z8_Dhingo5, Z5_Dhingodevi4, Dhingodevi1, Dhingodevi2, Z1_Dhingodevi3

7 G_Mashobra Mashobra 8 H_Craignaino Craignaino 10 I_Dhalli Dhalli_WTP1_Sump, Dhalli_WTP2_Sump 11 J_Kusumpti Sackrala, Z10_Tibti_Panthaghati, Basant_Vihar,

Phase_2_New_Shimla_Sector_6, Phase_2_New_Shimla, Vikasnagar, Z11_Sargeen_Chowk, IAS_Colony1, IAS_Colony2, IAS_Colony3, Kusumpti, HP_PWD_Near_Kusumpti

12 I_Jakhu Jakhu, Z2_Jakhu2 13 J_North_Oak_1 North_Oak_1 14 K_Shoghi Z9_Shoghi

Page 81: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

81

6.2 B_POST SANJAULI 450 DI AREA

Locations of the existing tanks in Post Sanjauli 450 DI area are shown in Figure 6.2.

Figure 6.2: Location of existing tanks in Post-Sanjauli 450 DI Area

Details of existing serving tanks is shown in Table 6.2. Table 6.2: Details of existing serving tanks

SN R_id Owner Tank_Name Elevation

(Minimum) (m)

Elevation (Maximum)

(m)

Diameter (m)

Capacity (m3)

Elevation (m)

Modified Diameter

(m)

Modi. capacity (MLD)

1 9 MC Kelestone1 2199.5 2204.3 11 300 2199 16 965

2 10 MC Kelestone2/Bharari 2212.5 2219 16 1200 2212

3 11 MC Fingask_1 2182.5 2188.9 8 100 2182

4 12 MC Fingask_2 2182.5 2186.5 8 60 2182 15 707

5 13 MC Tutikandi_1 2067.5 2075 13 900 2067

6 14 MC Tutikandi_2 2066.5 2069.8 7 100 2066 18 840

7 15 New Z7_Tutikandi_3 2071.5 2076.5 12 565 2071

8 16 MC Advance_Study_Steel_Tank 2130.5 2134.1 8.4 225 2130 15 636

9 17 MC IIAS_Summer Hill 2108.5 2112.5 12 900 2108

10 18 New Z6_Baluganj_Harinagar 2115.5 2120.5 16 1005 2115

11 19 MC Chakkar/Sandal 2056.5 2064.9 12 900 2056 16 1689

12 20 MC Kamnadevi_Temple 2166.5 2171.3 10 350 2166 17 1090

13 21 MC Ridge_direct_from Sanjauli 2250.5 2250 33.9 8700 2250

Total 15306

*Note: Elevation values are taken from Drone survey

6.2.1 Proposed New Network

Operational zones and network in Post Sanjauli 450 DI area is drawn on WaterGEMS which is shown in Figure 6.3.

Page 82: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

82

Figure 6.3: Pipe network of Post Sanjauli 450DI area

All the pipes are newly proposed to increase coverage to 100%. Since large pressures are involved, selection of pipe material is of paramount importance. It is noted that even though the Ductile Iron (DI) pipes are strong in strength, their joints are not stabilized owing to very high pressures. Hence, Mild Steel (MS) pipes are suggested as their joints are welded.

6.3 C_RIDGE

There is only one tank, i.e., Ridge in this area. Locations of this existing tank in C_Ridge area is shown in Figure 6.7.

Figure 6.7: Location of existing tank (Ridge) in C_Ridge

Details of existing serving tank is shown in Table 6.6.

Page 83: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

83

Table 6.6: Details of existing serving tanks

R_id Tank_Name Owner Elevation

(Minimum) (m)

Elevation (Maximum)

(m)

Diameter (m)

Capacity (m3)

Elevation* (m)

22 Ridge MC 2198.5 2205 33.9 4600 2198 *Note: Elevation values are taken from Drone survey

6.3.1 Proposed New Network

Operational zones and network in Post Sanjauli 450 CI area is drawn on WaterGEMS which is shown in Figure 6.8.

Figure 6.8: Pipe network of Post Sanjauli 450DI area

All the pipes are newly proposed to increase coverage to 100%. Since large pressures are involved, selection of pipe material is of paramount importance. It is noted that even though the Ductile Iron (DI) pipes are strong in strength, their joints are not stabilized owing to very high pressures. Hence, Mild Steel (MS) pipes are suggested as their joints are welded.

6.3 D_POSTRIDGE_400CI

Locations of the existing tanks in Post Sanjauli 450 CI area are shown in Figure 6.9.

Page 84: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

84

Figure 6.9: Location of existing tanks in Post-Sanjauli 450 CI Area

Details of existing serving tanks is shown in Table 6.7. Table 6.7: Details of existing serving tanks

SN R_id Owner Tank_Name Elevation

(Minimum) (m)

Elevation (Maximum)

(m)

Diameter (m)

Capacity (m3)

Elevation* (m)

Modified Diamter

(m)

Modi. capacity (MLD)

1 23 MC Tara_Hall 2092.5 2098.9 8 100.0 2092.0 17 1453 2 24 MC Phagali 2002.5 2005.5 9 70.0 2002.0 16 603

3 25 MC Summerhill

Bazar 2061.5

2065.1 7 100.0 2061.0 12 407 4 26 HPU HP_University 2057.5 2061.1 15 300.0 2057.0 5 27 New Z4_New1 2,133 2,138 14 393.0 2132.0 Total 963.0

*Note: Elevation values are taken from Drone survey

6.2.1 Proposed New Network

Operational zones and network in Post Sanjauli 450 CI area is drawn on WaterGEMS which is shown in Figure 6.10.

Figure 6.10: Pipe network of Post Sanjauli 450CI area

Page 85: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

85

All the pipes are newly proposed to increase coverage to 100%. Since large pressures are involved, selection of pipe material is of paramount importance. It is noted that even though the Ductile Iron (DI) pipes are strong in strength, their joints are not stabilized owing to very high pressures. Hence, Mild Steel (MS) pipes are suggested as their joints are welded.

6.4 E_MAINS FIELD

Locations of the existing tanks in Mains Field area are shown in Figure 6.11. Transmission main from Sanjauli tank to the MainsField is shown in Figure 6.12.

Figure 6.11: Location of existing tanks in Mains Field Area

Page 86: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

86

Figure 6.12: Pipeline from Sanjauli to Mains Field tanks

Details of existing serving tanks is shown in Table 6.8.

Table 6.8: Details of existing serving tanks

SN R_id Owner Tank_Name Elevation

(Minimum) (m)

Elevation (Maximum)

(m)

Diameter (m)

Capacity (m3)

Elevation* (m)

Modified Diamter

(m)

Modi. capacity (MLD)

1 28 MC Mains_Field1 2186.5 2192.5 14 1800 2186 18 1527

2 29 MC Mains_Field2 2185.5 2191.5 14 1800 2185

3 30 MC Shivpuri 2018.5 2021.7 5 50 2018 13 425

4 31 Forest Khalini_Forest_Steel_Tank 1995.5 1997.4 6 35 1995 16 382

1 32 New Z3_Knolls_Wood 2085.5 2090.5 18 1272.348 2085

2 33 MC SDA_Complex 2032.5 2039 8 100 2032 11 618

1 34 MC Knolls_Wood 2094.5 2100.5 14 900 2094

2 35 MC Taramata_Temple_Sector1 1961.5 1970 10 600 1961

3 36 MC New_Shimla_Sector2 1949.5 1952.5 8 125 1949

4 37 MC New_Shimla_Sector3A 1904.5 1908.5 6 80 1904 9 254

5 38 MC New_Shimla_Sector4 1901 1906.5 10 400 1900.5 13 730

6 39 MC New_Shimla_Sector3 1861.5 1870 10 600 1861

Total 7762.348

*Note: Elevation values are taken from Drone survey

6.2.1 Proposed New Network

Operational zones and network in Mains Field area is drawn on WaterGEMS which is shown in Figure 6.13.

Page 87: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

87

Figure 6.13: Pipe network of Mains Field area

All the pipes are newly proposed to increase coverage to 100%. Since large pressures are involved, selection of pipe material is of paramount importance. It is noted that even though the Ductile Iron (DI) pipes are strong in strength, their joints are not stabilized owing to very high pressures. Hence, Mild Steel (MS) pipes are suggested as their joints are welded.

6.5 F_DHINGODEVI

Locations of the existing tanks in Dhingodevi area are shown in Figure 6.14. Transmission main from Craignaino tank to the Dingodevi Sump is shown in Figure 6.15.

Page 88: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

88

Figure 6.14: Location of existing tanks in Dhingodevi Area

Page 89: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

89

Figure 6.15: Pipeline from Craignaino to Dingodevi sump

Details of existing serving tanks is shown in Table 6.9.

Table 6.9: Details of existing serving tanks

SN R_id Owner Tank_Name Elevation

(Minimum) (m)

Elevation (Maximum)

(m)

Diameter (m)

Capacity (m3)

Elevation* (m)

Modified Diamter

(m)

Modi. capacity (MLD)

1 40 New Z8_Dhingo5 2275.5 2280 18 1272 2275.000 2 41 New Z5_Dhingodevi4 2290.5 2295.5 15 884 2290.000 1 42 MC Dhingodevi1 2307.5 2313.5 10 300 2307.000 18 1527 2 43 MC Dhingodevi2 2307.5 2311.5 8 100 2307.000 10 314 3 44 New Z1_Dhingodevi3 2305.5 2310.5 11 501 2305.000 Total 3057

*Note: Elevation values are taken from Drone survey

6.2.1 Proposed New Network

Operational zones and network in Mains Field area is drawn on WaterGEMS which is shown in Figure 6.16.

Page 90: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

90

Figure 6.16: Pipe network of Mains Field area

All the pipes are newly proposed to increase coverage to 100%. Since large pressures are involved, selection of pipe material is of paramount importance. It is noted that even though the Ductile Iron (DI) pipes are strong in strength, their joints are not stabilized owing to very high pressures. Hence, Mild Steel (MS) pipes are suggested as their joints are welded.

6.6 G_MASHOBRA

Locations of the existing Mashobra tank is shown in Figure 6.17. Pipeline from the Giri Pump House (PS) to Mashobra is shown in Figure 6.18.

Page 91: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

91

Figure 6.17: Location of existing Mashobra tank

Figure 6.18: Pipeline from Giri PS to Mashobra

Details of existing serving tanks is shown in Table 6.10. Table 6.10: Details of existing Mashobra tank

SN R_id Owner Tank_Name Elevation

(Minimum) (m)

Elevation (Maximum)

(m)

Diameter (m)

Capacity (m3) Elevation*(m)

1 45 MC Mashobra 2316 2317 31.000 3019.078 2315.000

*Note: Elevation values are taken from Drone survey

Page 92: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

92

6.2.1 Proposed New Network

Operational zone and network of the Mashobra is drawn on WaterGEMS which is shown in Figure 6.19.

Figure 6.19: Pipe network of Mashobra area

All the pipes are newly proposed to increase coverage to 100%. Since large pressures are involved, selection of pipe material is of paramount importance. It is noted that even though the Ductile Iron (DI) pipes are strong in strength, their joints are not stabilized owing to very high pressures. Hence, Mild Steel (MS) pipes are suggested as their joints are welded.

6.7 H_CRAIGNAINO

Locations of the existing Craignaino tank is shown in Figure 6.20. Pipeline from the Gumma Pump House (PS) to Craignaino is shown in Figure 6.21.

Page 93: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

93

Figure 6.20: Existing tank at Craignaino

Figure 6.21: Pipeline from Gumma PS to Craignaino

Details of existing serving tanks is shown in Table 6.11. Table 6.11: Details of existing Craignaino tank

Page 94: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

94

R_id Tank_Name Owner Elevation

(Minimum) (m)

Elevation (Maximum)

(m)

Diameter (m)

Capacity (m3)

Elevation (m)

46 Craignaino MC 2315.5 2319 29 2642.086 2315

*Note: Elevation values are taken from Drone survey

6.2.1 Proposed New Network

Operational zone and network of the Craignaino is drawn on WaterGEMS which is shown in Figure 6.21.

Figure 6.21: Pipe network of Craignaino area

All the pipes are newly proposed to increase coverage to 100%. Since large pressures are involved, selection of pipe material is of paramount importance. It is noted that even though the Ductile Iron (DI) pipes are strong in strength, their joints are not stabilized owing to very high pressures. Hence, Mild Steel (MS) pipes are suggested as their joints are welded.

Page 95: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

95

6.8 I_DHALLI

Locations of the existing tanks in Dhalli area are shown in Figure 6.22. Raw water transmission main from source to the Dhalli tanks is shown in Figure 6.23.

Figure 6.22: Location of existing tanks in Dhalli Area

Figure 6.23: Raw water transmission main from source to the Dhalli tanks

Details of existing serving tanks is shown in Table 6.12.

Page 96: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

96

Table 6.12: Details of existing serving tanks

SN R_id Owner Tank_Name Elevation

(Minimum) (m)

Elevation (Maximum)

(m)

Diameter (m)

Capacity (m3)

Elevation (m)

Modified Diamter

(m)

Modi. capacity (MLD)

1 47 MC Dhalli_WTP1_Sump 2270.5 2273 3 10 2270 11 238

2 48 MC Dhalli_WTP2_Sump 2275.5 2278 3 10 2275 14 385

*Note: Elevation values are taken from Drone survey

6.2.1 Proposed New Network

Operational zones and network in Dhalli area is drawn on WaterGEMS which is shown in Figure 6.24.

Figure 6.24: Pipe network of Dhalli area

All the pipes are newly proposed to increase coverage to 100%. Since large pressures are involved, selection of pipe material is of paramount importance. It is noted that even though the Ductile Iron (DI) pipes are strong in strength, their joints are not stabilized owing to very high pressures. Hence, Mild Steel (MS) pipes are suggested as their joints are welded.

Page 97: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

97

6.9 J_KUSUMPTI

Locations of the existing tanks in Kusumpti area are shown in Figure 6.25. Raw water transmission main from source to the Kusumpti tank is shown in Figure 6.26.

Figure 6.25: Location of existing tanks in Kusumpti Area

Page 98: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

98

Figure 6.26: Transmission mains to the Kusumpti tank

Details of existing serving tanks is shown in Table 6.13.

Table 6.13: Details of existing serving tanks

SN R_id Owner Tank_Name Elevation

(Minimum) (m)

Elevation (Maximum)

(m)

Diameter (m)

Capacity (m3)

Elevation* (m)

Modified Diamter

(m)

Modi. capacity (MLD)

1 49 MC Sackrala 2050.5 2054.1 5 50 2050 13 478

2 50 New Z10_Tibti_Panthaghati 1977.5 1983 12 565 1977

3 51 MC Basant_Vihar 2031.5 2035.5 7 120 2031 14 616

4 52 MC Phase_2_New_Shimla_Sector_6 1966 1972 8 200 1965.5

5 53 MC Phase_2_New_Shimla 1894.5 1897.5 8 120 1894

6 54 MC Vikasnagar 1969.5 1972.5 5 40 1969 13 398

7 55 MC Z11_Sargeen_Chowk 1947.5 1950 7 10 1947

8 56 MC IAS_Colony1 1971.5 1974 4 25 1971

9 57 MC IAS_Colony2 1971.5 1974 4 25 1971 9 159

10 58 MC IAS_Colony3 1971.5 1973.9 6 50 1971

11 59 MC Kusumpti 2060.5 2065 25 2000 2060

12 60 PWD HP_PWD_Near_Kusumpti 2060.5 2065.3 8 227 2060 17 1090

*Note: Elevation values are taken from Drone survey

Page 99: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

99

6.9.1 Proposed New Network

Operational zones and network in Kusumpti area is drawn on WaterGEMS which is shown in Figure 6.27.

Figure 6.27: Location of existing tanks in the Kusumpti Area

All the pipes are newly proposed to increase coverage to 100%. Since large pressures are involved, selection of pipe material is of paramount importance. It is noted that even though the Ductile Iron (DI) pipes are strong in strength, their joints are not stabilized owing to very high pressures. Hence, Mild Steel (MS) pipes are suggested as their joints are welded.

Page 100: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

100

6.10 K_JAKU

Locations of the existing tanks in PostSanjauli_Jaku area are shown in Figure 6.28.

Figure 6.28: Location of existing tanks in K_Jaku Area

Details of existing serving tanks is shown in Table 6.14. Table 6.14: Details of existing serving tanks

SN R_id Owner Tank_Name Elevation

(Minimum) (m)

Elevation (Maximum)

(m)

Diameter (m)

Capacity (m3) Elevation*

(m)

Modified Diamter

(m)

Modi. capacity (MLD)

1 61 MC Jakhu 2430.5 2439 10 300.000 2430.000 20 2670.36

2 62 New Z2_Jakhu2 2392.5 2398 22 1900.668 2392.000

*Note: Elevation values are taken from Drone survey

6.9.1 Proposed New Network

Operational zones and network in PostSanjauli_Jaku area is drawn on WaterGEMS which is shown in Figure 6.29.

Page 101: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

101

Figure 6.29: Location of existing tanks in the K_Jaku

All the pipes are newly proposed to increase coverage to 100%. Since large pressures are involved, selection of pipe material is of paramount importance. It is noted that even though the Ductile Iron (DI) pipes are strong in strength, their joints are not stabilized owing to very high pressures. Hence, Mild Steel (MS) pipes are suggested as their joints are welded.

6.11 J_NORTH_OAK_1

Locations of the existing tank is shown in Figure 6.30.

Page 102: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

102

Figure 6.30: Existing North Oak1 tank Details of existing serving tanks is shown in Table 6.15.

Table 6.15: Details of existing North Oak1 tank

SN R_id Owner Tank_Name Elevation

(Minimum) (m)

Elevation (Maximum)

(m)

Diameter (m)

Capacity (m3)

Elevation* (m)

Modified Diamter (m)

Modi. capacity (MLD)

1 63 MC North_Oak_1 2266 2270 7 100 2250 11 380

*Note: Elevation values are taken from Drone survey

6.2.1 Proposed New Network

Operational zone and network of the Craignaino is drawn on WaterGEMS which is shown in Figure 6.21.

Figure 6.31: Pipe network of Craignaino area

All the pipes are newly proposed to increase coverage to 100%. Since large pressures are involved, selection of pipe material is of paramount importance. It is noted that even though the Ductile Iron (DI) pipes are strong in strength, their joints are not stabilized owing to very high pressures. Hence, Mild Steel (MS) pipes are suggested as their joints are welded.

6.12 K_SHOGHI

Locations of the existing tank is shown in Figure 6.32.

Page 103: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

103

Figure 6.32: Existing K_Shoghi

Details of existing serving tanks is shown in Table 6.15.

Table 6.16: Details of existing Shoghi_Area tank

SN R_id Owner Tank_Name Elevation

(Minimum) (m)

Elevation (Maximum)

(m)

Diameter (m)

Capacity (m3)

Elevation (m)

2 64 New Z9_Shoghi 1882.5 1887.5 12 565 1882

*Note: Elevation values are taken from Drone survey

6.2.1 Proposed New Network

Operational zone and network of the Craignaino is drawn on WaterGEMS which is shown in Figure 6.33.

Figure 6.33: Pipe network of Craignaino area

Page 104: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

104

All the pipes are newly proposed to increase coverage to 100%. Since large pressures are involved, selection of pipe material is of paramount importance. It is noted that even though the Ductile Iron (DI) pipes are strong in strength, their joints are not stabilized owing to very high pressures. Hence, Mild Steel (MS) pipes are suggested as their joints are welded.

***

Page 105: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

105

CHAPTER-7

DESIGN OF DISTRIBUTION SYSTEM

7.1 NUMBER OF CONNECTIONS

Work of consumer survey is just completed. The no. of connections in the entire area are computed using GIS. Zone boundaries and the connections in it for the entire areas is shown in Figure 7.1.

Figure 7.1: Zonal boundaries and the connections

Using GIS, no. of properties, population and families/ connections in each operational zone are computed and are shown in Table 7.1.

Page 106: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

106

Table 7.1: Properties and population in Demo areas

R_ID

Shimla Area Zone Name No. of

Properties

No. of connecti

ons

Population

No. of DMAs propos

ed

1 demo North_Oak2 73 129 526 1

2 demo New_Housing_Board 70 111 375 2

3 demo Bangala_Colony 55 76 337 1

4 demo Corner_House 420 856 3794 2

5 demo Engine_Ghar 103 369 1166 1

6 demo Old_Housing_Board1 85 248 748 1

7 demo Old_Housing_Board2 44 57 233 1

8 demo Totu 766 1242 7738 2

9 PostSanjauli_450DI Kelestone1 400 2114 6007 2

10 PostSanjauli_450DI Kelestone2/Bharari 346 1363 4527 2

11 PostSanjauli_450DI Fingask_1 119 469 1597 1

12 PostSanjauli_450DI Fingask_2 307 1152 4212 2

13 PostSanjauli_450DI Tutikandi_1 55 201 832 1

14 PostSanjauli_450DI Tutikandi_2 335 1203 4539 2

15 PostSanjauli_450DI Z7_Tutikandi_3 162 381 2018 1

16 PostSanjauli_450DI Advance_Study_Steel_Tank

119 383 1278 2

17 PostSanjauli_450DI IIAS_Summer Hill 158 570 2091 1

18 PostSanjauli_450DI Z6_Baluganj_Harinagar 125 369 1325 2

19 PostSanjauli_450DI Chakkar/Sandal 286 681 2671 2

20 PostSanjauli_450DI Kamnadevi_Temple 710 3324 10663 2

21 PostSanjauli_450DI Ridge_direct_from Sanjauli

181 360 1442 3

22 C_Ridge Ridge 580 1171 5444 3

23 PostRidge_400CI Tara_Hall 437 1422 5568 2

24 PostRidge_400CI Phagali 338 1217 4602 2

25 PostRidge_400CI Summerhill Bazar 28 110 404 1

26 PostRidge_400CI HP_University 167 632 4900 2

27 PostRidge_400CI Z4_New1 225 1715 6499 2

28 Mains_Field Mains_Field1 441 1861 7767 1

29 Mains_Field Mains_Field2 372 1553 6156 2

30 Mains_Field Shivpuri 151 623 2332 1

31 Mains_Field Khalini_Forest_Steel_Tank

644 2640 9305 2

32 Mains_Field Z3_Knolls_Wood 234 1216 3792 1

33 Mains_Field SDA_Complex 196 888 2649 2

34 Mains_Field Knolls_Wood 263 1537 4355 1

35 Mains_Field Taramata_Temple_Sector1

76 312 918 1

36 Mains_Field New_Shimla_Sector2 189 860 2361 1

37 Mains_Field New_Shimla_Sector3A 175 649 2125 1

Page 107: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

107

R_ID

Shimla Area Zone Name No. of

Properties

No. of connecti

ons

Population

No. of DMAs propos

ed

38 Mains_Field New_Shimla_Sector4 320 1460 4711 2

39 Mains_Field New_Shimla_Sector3 140 584 1801 1

40 Dhingodevi Z8_Dhingo5 312 851 3303 2

41 Dhingodevi Z5_Dhingodevi4 429 1244 4088 2

42 Dhingodevi Dhingodevi1 436 1433 4707 2

43 Dhingodevi Dhingodevi2 75 393 1094 1

44 Dhingodevi Z1_Dhingodevi3 137 568 1793 1

45 Mashobra Mashobra 471 471 4710 1

46 Craignaino Craignaino 37 37 370 1

47 Dhalli Dhalli_WTP1_Sump 10 48 149 1

48 Dhalli Dhalli_WTP2_Sump 162 837 2448 1

49 Kusumpti Sackrala 140 540 1701 2

50 Kusumpti Z10_Tibti_Panthaghati 79 217 827 1

51 Kusumpti Basant_Vihar 379 986 3697 2

52 Kusumpti Phase_2_New_Shimla_Sector_6

94 582 1460 1

53 Kusumpti Phase_2_New_Shimla 159 701 2121 1

54 Kusumpti Vikasnagar 589 2959 9680 2

55 Kusumpti Z11_Sargeen_Chowk 132 329 1150 1

56 Kusumpti IAS_Colony1 10 29 104 1

57 Kusumpti IAS_Colony2 76 153 3643 1

58 Kusumpti IAS_Colony3 23 32 127 1

59 Kusumpti Kusumpti 235 1010 3274 1

60 Kusumpti HP_PWD_Near_Kusumpti

179 858 2733 1

61 PostSanjauli_Jaku Jakhu 394 1531 4912 2

62 PostSanjauli_Jaku Z2_Jakhu2 654 2730 10448 2

63 PostSanjauli_North_Oak_1

North_Oak_1 227 843 3156 2

64 Shoghi_Area Z9_Shoghi 273 900 2853

Total 15607 56390 208356

7.2 DISTRICT METERING AREA (DMA)S

Formation of district metered areas (DMAs) makes it possible to divide a water distribution network into small, isolated, and independent water distribution networks. A DMA is a specific area, usually defined by the closure of valves, in which the quantities of water entering and leaving the area are metered. A permanently monitored DMA is the most effective tool to help reduce the duration of unreported leakage. Monitoring night flows facilitates the rapid identification of unreported breaks, and provides data required to make the most cost-effective use of leak-locating resources.

Page 108: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

108

As per international practice, the size of District Metering Area (DMA) should be such that the water connections are in the range of 500 to 3000. From Table 7.1, all the operational zones have no. of connections less than 3000. Hence, ok. However, operational zones of some of the zones are too big in areas which can pose difficulties in day to day maintenance hence, they are proposed to have two DMAs as shown in Table 7.1.

7.3 PRESSURE MANAGEMENT

Usually, hilly areas contain the following landscape features: (1) they are far away from the water source and urban areas, (2) they contain more dispersed water distribution networks, and (3) the terrain elevations in the house group vary greatly. Consequently, the water supply system has many disadvantages, such as the high cost of pipe network construction, imbalance in water pressure distribution and greater difficulty in operation and management in relation to

water loss and pipe bursting. In hilly areas, it is more difficult to divide the water supply system

reasonably than it is in flat areas. Many factors, such as the boundaries of administrative divisions, the high and low areas of the terrain, and the water demands of distribution, must be considered. A pressure management is necessary in the water supply systems of the hilly areas. Principle of pressure management is described in the paper- “Implementation of Pressure

Management in Municipal Water Supply Systems,” by R S McKenzie & W. Wegelin. This paper is available on Internet.

Concepts of Pressure Management

Distribution system is designed to provide water to consumers at some agreed level of service which is often defined as a minimum level of pressure at the critical point which is the point of lowest pressure in the system. This minimum pressure in case of Shimla has been decided as 20m water head. This pressure and flow requirements during the period of peak demand is designed. In Shimla water pressures are huge, about 28 to 30 kg/cm2 at tail ends. Hence, there is need to manage the pressures by reducing them. Pressures can be reduced by following techniques:

1. Fixed outlet pressure control 2. Time-modulated pressure control 3. Flow modulated pressure control

Fixed outlet pressure control involves the use of a device, normally a pressure reducing valve (PRV) which is used to control the maximum pressure entering a zone as can be seen in Figure 7.2. This is possibly the simplest and most straightforward form of pressure management as it involves the use of a PRV with no additional equipment. The advantages of this form of pressure control are:

• It is relatively simple to install as it requires only a PRV

• Cost is relatively low as it involves no electronic equipment;

• Maintenance and operation are relatively simple

Page 109: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

109

Figure 7.2: Pressure management by PRV As can be seen from Figure 7.2, there are three pressure zones, first one is at highest elevation, second is at elevation lower than first and the third pressure zone is at the lowest elevation. If PRVs are not installed, or if the system is un intervened, there would be enormous pressures at pressure zones 2 and 3 (Table 7.3). However, on installing PRV, the HGL is managed and the pressures are maintained at 20m. Table 7.3: Pressures in different pressure zones

SN Zone (with reference to Figure 7.1)

Un intervened pressure (Without PRV)

Intervened pressure (With PRV)

1 Pressure Zone 1 100 20 2 Pressure Zone 2 190 20 3 Pressure Zone 3 270 20

7.4 FORMATION OF PRESSURE ZONES

Principle as shown in Figure 7.2 has a limitation. It requires layout of the house properties horizontally so that the pressure zone as shown in Figure 7.2 can be formed. Unfortunately, in most of the parts of the distribution system of the Shimla city, layouts of the house properties are vertical as shown in Figure 7.3 and Figures 7.4. Hence, principle as shown in Figure 7.2 cannot be adopted to the distribution system of Shimla. However, it can be applied to the

Just upstream of PRV

100

Just downstream of PRV

20 90

20 PRV 80

Un managed HGL

Managed HGL

Pressure Zone 1 PRV 20

Pressure Zone 2

20 = Pressure in m Pressure Zone 3

Page 110: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

110

transmission system which will be discussed later on. Nodal pressures in the distribution system shall be controlled by Pressure Reducing Valves (PRV)s only.

Figure 7.3: Vertical layout of the houses in Operational zone of North_Oak_2

Figure 7.4: Vertical layout of the houses in Operational zone of Old_Housing_Board1

7.5 ADEQUACY OF THE EXISTING TANKS

Existing tanks are shown respectively in Figure 3.6 and Table 3.2. Maximum demands to be served by these tanks are computed and shown in Table 7.2.

Page 111: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

111

7.5.1 Determining Optimum Boundary of an Operational Zone

In any 24x7 project, success of the project depends on the optimal zonal boundary. To do so, the maximum demand that the existing tanks can serve is computed as shown in Figure 7.5.

Figure 7.5: Algorithm of computing maximum demand a tank can serve Based on the algorithm as shown in Figure 7.5, mass curves in excel sheets are designed. Mass curves of the tanks are shown in Appendices-A to J. (3) New Tanks: Some of the existing tanks (Table 7.4) are enough to cater the demands of the year 2050. Capacity of many tanks is not enough and hence; their diameters are proposed to increase as shown in the Table 7.4. It is proposed to construct additional tanks with diameters in such a way that the equivalent diameters are same. The existing and the new proposed tanks shall be joined by a bigger pipe so that both the tanks behave as one tank. The new tanks are shown in Table 7.5.

Using this demand compute tank capacity using mass curve method

Is tank getting empty?

Modify boundary of the zone

Find the demand of nodes which fall within this boundary

Tentatively fix boundary of zone for ESR

Modified boundary is correct

Is tank getting overflow?

Lower demand or pumping hours

Increase demand or modify pumping hours

No

Yes

Yes

No

Page 112: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

112

Table 7.4: Assessment of existing tanks

SN R_id Area Owner Tank_Name Elevation

(Minimum) (m)

Elevation (Maximum)

(m)

Diameter (m)

Capacity (m3)

Elevation (m)

Modified Diamter

(m)

Demand (2050) in

model (MLD)

Demand (2035) (MLD)

Demand (2020) (MLD)

Max capacity (MLD)

Remarks

1 1 demo_zone MC North_Oak_2 2266 2270.5 6 50 2250 0.348 0.258 0.195 Tank is enough

2 2 demo_zone MC New_Housing_Board 2170.5 2174.1 8 100 2170 0.502 0.373 0.282 Tank is enough

3 3 demo_zone MC Bangala_Colony 2265.5 2268.5 10 100 2265 0.436 0.324 0.245 Tank is enough

4 4 demo_zone MC Corner_House 2341 2345.5 10 400 2340.5 13 1.479 1.098 0.830 1.000 Tank is not enough, diameter to

raise to 13 m

5 5 demo_zone MC Engine_Ghar 2239 2241.8 10 300 2238.5 1.238 0.919 0.695 1.000 Tank can serve demand of 1.16 MLD upto year 2025

6 6 demo_zone MC Old_Housing_Board1 2093.5 2096.5 6.5 50 2093 10 0.354 0.263 0.199 Tank is enough

7 7 demo_zone MC Old_Housing_Board2 2106.5 2111 5 50 2106 0.265 0.197 0.149 Tank is enough

8 8 demo_zone MC Totu 2045.5 2052.7 17.53 1600 2045 25 6.117 4.540 3.435 3.200 Tank is not enough, raise diameter to 25 m

9 9 PostSanjauli_450DI MC Kelestone1 2199.5 2204.3 11 300 2199 16 2.515 1.866 1.412 1.200 Tank is not enough, raise diameter

to 16 m

10 10 PostSanjauli_450DI MC Kelestone2/Bharari 2212.5 2219 16 1200 2212 2.702 2.005 1.517 Tank is enough

11 11 PostSanjauli_450DI MC Fingask_1 2182.5 2188.9 8 100 2182 0.915 0.679 0.514 0.670

Tank can serve demand of 0.69 MLD upto year 2034. Later on

diameter shall be increased to take a demand of 0.915 MLD

12 12 PostSanjauli_450DI MC Fingask_2 2182.5 2186.5 8 60 2182 15 2.210 1.641 1.241 0.650 Tank is not enough, raise diameter

to 15 m

13 13 PostSanjauli_450DI MC Tutikandi_1 2067.5 2075 13 900 2067 0.690 0.512 0.388 Tank is enough

14 14 PostSanjauli_450DI MC Tutikandi_2 2066.5 2069.8 7 100 2066 18 3.111 2.309 1.747 0.500 Tank is not enough, raise diameter to 18 m

15 16 PostSanjauli_450DI MC Advance_Study_Steel_Tank 2130.5 2134.1 8.4 225 2130 15 1.909 1.417 1.072 0.700 Tank is not enough, raise diameter

to 15 m

16 17 PostSanjauli_450DI MC IIAS_Summer Hill 2108.5 2112.5 12 900 2108 1.184 0.879 0.665 Tank is enough

17 19 PostSanjauli_450DI MC Chakkar/Sandal 2056.5 2064.9 12 900 2056 16 2.431 1.805 1.365 1.500 Tank is not enough, raise diameter

to 16 m

18 20 PostSanjauli_450DI MC Kamnadevi_Temple 2166.5 2171.3 10 350 2166 17 2.857 2.120 1.604 1.000 Tank is not enough, raise diameter to 17 m

19 21 PostSanjauli_450DI MC Ridge_direct_from Sanjauli 2250.5 2250 33.9 8700 2250 1.632 1.211 0.916 Sanjauli Tank is enough

20 22 PostSanjauli_450CI MC Ridge 2198.5 2205 33.9 4600 2198 4.137 3.070 2.323 Tank is enough

21 23 PostRidge_400CI MC Tara_Hall 2092.5 2098.9 8 100 2092 17 2.702 2.005 1.517 0.650 Tank is not enough, raise diameter to 17 m

22 24 PostRidge_400CI MC Phagali 2002.5 2005.5 9 70 2002 16 2.580 1.915 1.449 0.800 Tank is not enough, raise diameter

to 16 m

23 25 PostRidge_400CI MC Summerhill Bazar 2061.5 2065.1 7 100 2061 12 0.177 0.132 0.100 0.500 Tank is enough

24 26 PostRidge_400CI HPU HP_University 2057.5 2061.1 15 300 2057 0.563 0.417 0.316 Tank is enough

25 28 Mains_Field MC Mains_Field1 2186.5 2192.5 14 1800 2186 18 2.879 2.137 1.617 2.000 Tank is not enough, raise diameter to 18 m

26 29 Mains_Field MC Mains_Field2 2185.5 2191.5 14 1800 2185 2.591 1.923 1.454 2.000

Note: In 2035 this tank is not enough at that time increase

diameter to 18m to cater demand of 2.59 MLD. However, till year 2034,

present tank can serve.

27 30 Mains_Field MC Shivpuri 2018.5 2021.7 5 50 2018 13 1.456 1.081 0.818 0.200 Tank is not enough, raise diameter

to 13 m

Page 113: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

113

SN R_id Area Owner Tank_Name Elevation

(Minimum) (m)

Elevation (Maximum)

(m)

Diameter (m)

Capacity (m3)

Elevation (m)

Modified Diamter

(m)

Demand (2050) in

model (MLD)

Demand (2035) (MLD)

Demand (2020) (MLD)

Max capacity (MLD)

Remarks

28 31 Mains_Field Forest Khalini_Forest_Steel_Tank 1995.5 1997.4 6 35 1995 16 2.619 1.944 1.470 0.300

Note: Existing diameter is 6m. Increase it to 16 m. Also increase

height by 2m so that Elevation(max) becomes 1999.5m.

29 33 PostMainsField_150CI MC SDA_Complex 2032.5 2039 8 100 2032 11 1.189 0.883 0.668 0.600 Tank is not enough, raise diameter

to 11 m

30 34 PostMainsField_150DI MC Knolls_Wood 2094.5 2100.5 14 900 2094 1.608 1.194 0.903 Tank is enough

31 35 PostMainsField_150DI MC Taramata_Temple_Sector1 1961.5 1970 10 600 1961 0.326 0.242 0.183 Tank is enough

32 36 PostMainsField_150DI MC New_Shimla_Sector2 1949.5 1952.5 8 125 1949 0.312 0.232 0.175 Tank is enough

33 37 PostMainsField_150DI MC New_Shimla_Sector3A 1904.5 1908.5 6 80 1904 9 0.421 0.313 0.236 0.370 Tank is enough till 2035

34 38 PostMainsField_150DI MC New_Shimla_Sector4 1901 1906.5 10 400 1900.5 13 1.749 1.298 0.982 1.000 Tank is not enough, raise diameter

to 13 m

35 39 PostMainsField_150DI MC New_Shimla_Sector3 1861.5 1870 10 600 1861 0.724 0.538 0.407 Tank is enough

36 42 Dingodevi_RM MC Dhingodevi1 2307.5 2313.5 10 300 2307 18 0.998 0.741 0.560 1.040

Note: In 2035 this tank is not enough at that time increase

diameter from 10m to 18m to cater demand of 0.998 MLD. However, till year 2034, present tank can serve.

37 43 Dingodevi_RM MC Dhingodevi2 2307.5 2311.5 8 100 2307 10 0.908 0.674 0.510 0.670

Note: In 2035 this tank is not enough at that time increase

diameter from 8m to 10m to cater demand of 0.908 MLD. However, till year 2034, present tank can serve.

38 45 MC Mashobra 2315.5 2317 31 3019 2315 3.153 2.340 1.770 Increase height by 2m

39 46 MC Craignaino 2315.5 2319 29 2642 2315 1.453 1.079 0.816 Tank is enough

40 47 Dhalli MC Dhalli_WTP1_Sump 2270.5 2273 3 10 2270 11 0.915 0.679 0.514 0.080 Note: Tank is not enough, present diameter is 3 m. Increase it to 11m.

41 48 Dhalli MC Dhalli_WTP2_Sump 2275.5 2278 3 10 2275 14 1.488 1.105 0.836 0.050 Note: Tank is not enough, present

diameter is 10 m. Increase it to 14m.

42 49 Kusumpti MC Sackrala 2050.5 2054.1 5 50 2050 13 1.665 1.236 0.935 0.200 Tank is not enough, present diameter is 5 m. Increase it to 13m.

43 51 Kusumpti MC Basant_Vihar 2031.5 2035.5 7 120 2031 14 1.933 1.434 1.085 0.500 Tank is not enough, raise diameter to 14 m

44 52 Kusumpti MC Phase_2_New_Shimla_Sector_6 1966 1972 8 200 1965.5 0.506 0.376 0.284 Tank is enough

45 53 Kusumpti MC Phase_2_New_Shimla 1894.5 1897.5 8 120 1894 0.513 0.380 0.288 Tank is enough

46 54 Kusumpti MC Vikasnagar 1969.5 1972.5 5 40 1969 13 1.642 1.219 0.922 0.200 Tank is not enough, raise diameter

to 9 m and water height to 5

47 56 Kusumpti MC IAS_Colony1 1971.5 1974 4 25 1971 0.109 0.081 0.061 Tank is enough

48 57 Kusumpti MC IAS_Colony2 1971.5 1974 4 25 1971 9 0.640 0.475 0.359 0.100 Note: Tank is not enough, present

diameter is 12 m. Increase it to 16m.

49 58 Kusumpti MC IAS_Colony3 1971.5 1973.9 6 50 1971 0.123 0.091 0.069 Tank is enough

50 59 Kusumpti MC Kusumpti 2060.5 2065 25 2000 2060 1.143 0.848 0.642 Tank is enough

51 60 Kusumpti PWD HP_PWD_Near_Kusumpti 2060.5 2065.3 8 227 2060 17 2.269 1.684 1.274 0.650 Note: Tank is not enough, present diameter is 8 m. Increase it to 17m.

52 61 PostSanjauli_Jaku MC Jakhu 2430.5 2439 10 300 2430 20 3.998 2.967 2.245 1.000 Tank is not enough, present

diameter is 10 m. Increase it to 20m.

Page 114: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

114

SN R_id Area Owner Tank_Name Elevation

(Minimum) (m)

Elevation (Maximum)

(m)

Diameter (m)

Capacity (m3)

Elevation (m)

Modified Diamter

(m)

Demand (2050) in

model (MLD)

Demand (2035) (MLD)

Demand (2020) (MLD)

Max capacity (MLD)

Remarks

53 63 PostSanjauli_North_Oak_1 MC North_Oak_1 2266 2270 7 100 2250 11 1.080 0.802 0.607 0.500 Note: Tank is not enough, present diameter is 7 m. Increase it to 11m.

Page 115: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

115

Table 7.5: New tanks

SN R_id Area Tank_Name

Elevation

(Minimum) (m)

Elevation

(Maximum) (m)

Diameter (m)

Capacity

(m3)

Elevation (m)

Demand

(2050) in

model (MLD

)

Demand

(2035)

(MLD)

Demand

(2020)

(MLD)

1 44 Dingodevi_RM

Z1_Dhingodevi3

2305.5 2310.5 11.3 501 2305 0.504 0.374 0.283

2 62 PostSanjauli_Jaku

Z2_Jakhu2 2392.

5 2397.5 22 1901 2392 4.532 3.364 2.544

3 32 PostMainsField_150CI

Z3_Knolls_Wood

2085.5

2090.5 18 1272 2085 3.101 2.301 1.741

4 27 PostRidge_400CI Z4_New1

2132.5 2,137.5 14 393 2,132 2.013 1.494 1.130

5 41 Dhingodevi Z5_Dhingodevi4

2290.5

2295.5 15.0 884 2290 2.088 1.550 1.172

6 18 PostSanjauli_450DI

Z6_Baluganj_Harinagar

2115.5

2120.5 16 1005 2115 1.050 0.779 0.590

7 15 PostSanjauli_450DI

Z7_Tutikandi_3

2071.5 2076.5 12.0 565 2071 0.537 0.398 0.301

8 40 Dhingodevi Z8_Dhingo5 2275.

5 2280 18.0 1272 2275 3.169 2.352 1.779

9 64 Shoghi_Area Z9_Shoghi 1882.5

1887.5 12 565 1882 1.341 0.996 0.753

10 50 Kusumpti Z10_Tibti_Panthaghati

1977.5 1982.5 12 565 1977 1.172 0.870 0.658

11 55 Kusumpti Z11_Sargeen_Chowk

1947.5

1950 7 10 1947 0.478 0.355 0.268

7.6 HYDRAULIC MODEL

GIS based hydraulic model of the entire Shimla is prepared in WaterGEMS software. The ortho image of the city has been photographed by flying the Drones at 100m above the ground. On this image, the digitized maps of the road edges, buildings are created and are used as background drawings in the model. The pipelines are added using the layout tool. Initially a base scenario is created for the entire city and then child scenarios for all the areas are created. Levels: The Contours with 1m interval are generated using Drone technology. Using the shape file of the contours, levels to all the nodes are given using TREX feature of the WaterGEMS. Demand: The population density of the years 2020, 2035 and 2050 are computed as shown in Table 7.2. This table is joined with the ward layer in GIS. Using the Load Builder of WaterGEMS, the demands to each node are given. The model is now ready for making analysis and design.

7.7 SELECTION OF PIPE MATERIAL

Pipe material for the diameters of 80 mm and 100 mm is proposed as follows: • Diameter = 80, 100 or 150 mm; Material is GI Heavy Duty (As per IS 1239, Part 1) • Diameter = 200 or more; Material is MS (As per IS 3589:2001)

Page 116: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

116

7.8 PRESSURES IN PIPES

Pressures (m) in pipes in all the zones in various areas are shown in the drawings submitted as Volume 6.

7.8.1 Thickness of MS pipes

As terrain is hilly, huge pressures are encountered. Pipe thickness shall be strong enough to withstand pressure at worst condition. Such condition shall be when the pipes are subjected to the demand of the year 2020 and the PRv are malfunctioning which has been simulated by keeping PRVs inactive (fully open). Hence, the thickness of pipes has been computed for this condition and are shown in Tables 2 to 13 in Volume 3.

7.9 STEADY STATE DESIGN

Design of the sizes of pipes in distribution system has been carried out by the steady state method on WaterGEMS software. Residual pressures of at least 20m are maintained for all the nodes which is a mandatary condition. Demand Adjustment: Demand projection of Shimla Planning Area (SPA) is shown in Table 4.7. The pipes are designed for the demand of year 2050 and a peak factor of 3. Since, demand to all the nodes is given for the year 2050, for running the model, the demand is adjusted by a factor of 3. The model is run in steady-state and the results are shown in Volume 2. Various Components of the Distribution System (a)New Pipes: Summary of the new pipes is shown in Table 7.6.

Page 117: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

117

Table 7.6: Length of new pipes in the distribution system

Shimla Area Zone

GI Heavy Duty (As per IS 1239, Part 1) MS (As per IS 3589:2001)

Grand Total

80 mm (t=4.8 mm)

100 mm (t=5.4 mm)

150 mm (t=5.4 mm)

Total

ID=206.5 mm

(t=6.3 mm)

ID=260.4 (t=6.3 mm)

ID=309.7 (t=7.1 mm)

ID=339.6 mm (t=8

mm)

ID=388.8 mm (t=8.8

mm) Total

B_PostSanjauli 450DI

Advance_Study_Steel_Tank 2191 488 798 3476 782 146 927 4403

Chakkar/Sandal 7018 1163 952 9133 913 460 1373 10506

Fingask_1 3521 538 297 4355 4355

Fingask_2 5898 231 1265 7394 961 170 1130 8524

IIAS_Summer Hill 2147 309 555 3011 375 375 3386

Kamnadevi_Temple 9355 202 1774 11332 763 221 984 12316

Kolestone1 3887 557 1199 5643 689 661 1350 6993

Kolestone2/Bharari 4042 293 975 5309 1376 71 430 1877 7186

Ridge_direct_from Sanjauli 4153 992 738 5883 51 369 420 6303

Tutikandi_1 421 165 367 953 319 319 1272

Tutikandi_2 1974 380 1768 4121 388 826 1214 5335

Z6_Baluganj_Harinagar 1929 686 222 2836 135 135 2971

Z7_Tutikandi_3 1196 223 514 1934 71 647 718 2652

Total 47731 6226 11423 65380 6434 1566 2823 10823 76203

C_Ridge C_Ridge 9531 1502 2176 13209 1374 75 207 110 1766 14975

Total 9531 1502 2176 13209 1374 75 207 110 1766 14975

D_PostRidge 400CI

HP_University 2833 741 332 3906 45 45 3951

Phagali 4624 762 617 6003 391 205 596 6600

Summerhill 787 211 998 998

Taramata_Hall 4446 593 1769 6807 731 191 922 7729

Z4_New1 2153 760 958 3871 670 122 792 4663

Total 14843 2856 3887 21586 1837 518 2355 23942

E_Mains Field

Khalini_Forest_Steel_Tank 3551 70 1191 4813 874 130 1004 5816

Knolls_Wood 2622 97 1424 4144 133 97 230 4374

Mains_Field1 7375 390 1150 8915 115 648 373 1136 10051

Mains_Field2 4811 502 451 5763 1050 175 1225 6988

New_Shimla_Sector2 2241 122 195 2558 2558

New_Shimla_Sector3 1081 190 309 1580 40 40 1620

New_Shimla_Sector4 4449 1793 1693 7935 384 145 78 607 8541

NewShimla_Sector3A 1566 420 1986 1986

SDA_Complex 3990 19 1101 5111 423 423 5534

Shivpuri 1752 388 824 2964 282 282 3246

Taramata_Temple_Sector1 921 156 1077 1077

Z3_Knolls_Wood 2581 918 668 4167 231 112 396 739 4906

Page 118: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

118

Shimla Area Zone

GI Heavy Duty (As per IS 1239, Part 1) MS (As per IS 3589:2001)

Grand Total

80 mm (t=4.8 mm)

100 mm (t=5.4 mm)

150 mm (t=5.4 mm)

Total

ID=206.5 mm

(t=6.3 mm)

ID=260.4 (t=6.3 mm)

ID=309.7 (t=7.1 mm)

ID=339.6 mm (t=8

mm)

ID=388.8 mm (t=8.8

mm) Total

Total 36940 4490 9583 51012 3533 1002 1151 5685 56697

F_Dhingodevi

Dhingodevi1 5231 2026 742 7999 133 133 8132

Dhingodevi2 2715 383 497 3595 473 196 670 4265

Z1_Dhingodevi3 2641 219 234 3093 467 467 3560

Z5_Dhingodevi4 6264 158 769 7191 112 34 56 202 7393

Z8_Dhingo5 9328 2285 11613 873 81 141 1095 12708

Total 26179 2786 4527 33492 2058 114 394 2566 36059

G_Mashobra 1418 555 650 2623 655 485 356 1497 4120

Total 1418 555 650 2623 655 485 356 1497 4120

I_Dhalli

Dhalli1 457 839 4 1299 1299

Dhalli2 2946 917 359 4221 207 312 518 4740

Total 3403 1756 362 5521 207 312 518 6039

J_Kusumpti

Basant_Vihar 8144 2520 1181 11845 476 49 526 12371

HP_PWD_Near_Kusumpti 1384 473 802 2659 264 359 623 3281

IAS_Colony1 680 5 145 830 830

IAS_Colony2 4098 938 471 5506 5506

IAS_Colony3 1620 179 1799 1799

Kusumpti 2366 275 1378 4019 207 207 4226

Phase_2_New_Shimla 3371 332 176 3880 3880

Phase_2_New_Shimla_Sector_6 1918 218 200 2337 2337

Scrala 7431 593 982 9006 398 123 522 9528

Vikasnagar 5937 1701 1065 8703 424 44 467 9170

Z10_Tibti_Panthaghati 2445 225 405 3076 163 163 3239

Z11_Sargeen_Chowk 5279 849 6128 6128

Total 44674 7280 7833 59787 1932 173 403 2507 62294

K_Jakhu

Jakhu 5976 768 2598 9342 1183 510 302 1996 11338

Z2_Jakhu2 6444 167 2834 9446 683 1538 458 53 2732 12177

Total 12420 935 5433 18788 1866 2048 458 53 302 4728 23516

L_North Oak_1

L_North_Oak_1 2716 378 1388 4482 417 417 4899

Total 2716 378 1388 4482 417 417 4899

M_Shoghi M_Shoghi 3844 2306 2685 8835 939 939 9774

Total 3844 2306 2685 8835 939 939 9774

Grand Total 204369 31083 50121 285573 21412 5463 6620 163 302 33961 319535

Page 119: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

119

(b)Air Valves: Double Acting Air valves are provided to expel air as well as admitit inside pipeline to break vacuum. In distribution system, generally, air valves are not required. However, during meeting with Shimla authorities on 14 Sep 2018 at Thane, it was decided to install at least one air valve just near to the outlet pipe of each tank. Details of air valves is shown in Table 7.7 and its abstract is shown in Table 7.8. Table 7.7: Details Abstract of Air valves

SN AV_Zone Label Elevation

(m) Air Valve Type

Diameter (Air Inflow

Orifice) (mm)

Diameter (Air

Outflow Orifice) (mm)

Pressure Head (m)

1 Corner_House CHAV-1 2,335.10 Double Acting 50 50 5.72

2 Old_Housing_Board2 OHB2AV-1 2,098.50 Double Acting 25 25 7.6

3 Old_Housing_Board1 OHBAV-1 2,090.20 Double Acting 50 50 3.2

4 Bangla_Colony BCAV-1 2,262.40 Double Acting 50 50 3.1

5 Engine_Ghar EG_AV-1 2,238.00 Double Acting 50 50 1.0

6 New_Housing_Board NHBAV-1 2,163.30 Double Acting 50 50 7.1

7 North_Oak_2 NO2AV-1 2,250.00 Double Acting 50 50 16.0

8 Totu TAV-1 2,038.20 Double Acting 80 80 7.3

9 Kolestone1 BAV-1 2,199.10 Double Acting 50 50 0.4

10 Kolestone2/Bharari BAV-2 2,212.30 Double Acting 50 50 0.2

11 Fingask_1 BAV-3 2,180.60 Double Acting 50 50 1.6

12 Fingask_2 BAV-4 2,177.80 Double Acting 50 50 4.7

13 Advance_Study_Steel_Tank BAV-5 2,130.00 Double Acting 50 50 0.5

14 Tutikandi_2 BAV-6 2,062.00 Double Acting 50 50 4.4

15 Tutikandi_1 BAV-7 2,066.40 Double Acting 50 50 1.0

16 Z7_Tutikandi_1_PH BAV-8 2,073.30 Double Acting 50 50 86.2

17 Z6_Baluganj_Harinagar BAV-9 2,115.40 Double Acting 50 50 0.1

18 Kamnadevi_Temple BAV-10 2,165.00 Double Acting 50 50 1.5

19 Chakkar/Sandal BAV-11 2,055.00 Double Acting 50 50 1.4

20 IIAS_Summerhill BAV-12 2,106.30 Double Acting 50 50 2.1

21 Ridge CAV-1 2,198.10 Double Acting 50 50 0.3

22 Taramata_Hall DAV-1 2,090.50 Double Acting 50 50 2.0

23 Phagali DAV-2 2,001.30 Double Acting 50 50 1.2

24 Summerhill DAV-3 2,060.20 Double Acting 50 50 1.3

25 HP_University DAV-4 2,056.90 Double Acting 50 50 0.6

26 Z4_New1 DAV-5 2,131.30 Double Acting 50 50 1.1

27 Mains_Field2 EAV-1 2,183.40 Double Acting 50 50 2.0

28 Mains_Field1 EAV-2 2,183.80 Double Acting 50 50 2.6

29 Knolls_Wood EAV-3 2,092.70 Double Acting 50 50 1.8

30 Z3_Knolls_Wood EAV-4 2,083.50 Double Acting 50 50 2.0

31 Taramata_Temple_Sector1 EAV-5 1,959.20 Double Acting 50 50 2.2

32 New_Shimla_Sector2 EAV-6 1,948.90 Double Acting 50 50 0.6

33 New_Shimla_Sector3A EAV-7 1,904.20 Double Acting 50 50 0.2

34 New_Shimla_Sector3 EAV-8 1,859.20 Double Acting 50 50 2.3

35 New_Shimla_Sector4 EAV-9 1,900.20 Double Acting 50 50 0.8

Page 120: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

120

SN AV_Zone Label Elevation

(m) Air Valve Type

Diameter (Air Inflow

Orifice) (mm)

Diameter (Air

Outflow Orifice) (mm)

Pressure Head (m)

36 Khalini_Forest_Steel_Tank EAV-10 1,995.40 Double Acting 50 50 0.0

37 Shivpuri EAV-11 2,018.20 Double Acting 50 50 0.2

38 SDA_Complex EAV-12 2,027.90 Double Acting 50 50 4.6

39 Dhingodevi1 FAV-1 2,306.90 Double Acting 50 50 0.6

40 Dhingodevi2 FAV-2 2,307.00 Double Acting 50 50 0.5

41 Z1_Dhingodevi3 FAV-3 2,303.20 Double Acting 50 50 35.3

42 Z5_Dhingodevi4 FAV-4 2,290.00 Double Acting 50 50 0.5

43 Z8_Dhingo5 FAV-5 2,275.00 Double Acting 50 50 0.5

44 G_Mashobra GAV-1 2,315.00 Double Acting 50 50 74.5

45 G_Mashobra GAV-2 2,315.00 Double Acting 50 50 0.4

46 H_Craignaino HAV-1 2,315.00 Double Acting 50 50 0.5

47 Dhalli1 IAV-1 2,268.60 Double Acting 25 25 1.8

48 Dhalli2 IAV-2 2,275.00 Double Acting 50 50 0.5

49 IAS_Colony3 JAV-1 1,970.00 Double Acting 50 50 1.5

50 IAS_Colony2 JAV-2 1,970.00 Double Acting 50 50 1.4

51 IAS_Colony1 JAV-3 1,970.00 Double Acting 50 50 1.5

52 Z11_Sargeen_Chowk_New JAV-4 1,946.50 Double Acting 50 50 1.0

53 Z10_Tibti_Panthaghati JAV-5 1,976.30 Double Acting 50 50 1.2

54 Scrala JAV-6 2,049.00 Double Acting 50 50 1.5

55 Basant_Vihar JAV-7 2,030.60 Double Acting 50 50 0.8

56 Kusumpti JAV-8 2,060.00 Double Acting 50 50 0.5

57 HP_PWD_Near_Kusumpti JAV-9 2,060.00 Double Acting 50 50 0.5

58 Vikasnagar JAV-10 1,967.80 Double Acting 50 50 1.7

59 Phase_2_New_Shimla JAV-11 1,891.50 Double Acting 50 50 2.9

60 Phase_2_New_Shimla_Sector_6 JAV-12 1,965.10 Double Acting 50 50 0.8

61 Jakhu KAV-1 2,418.70 Double Acting 80 80 11.8

62 Z2_Jakhu2 KAV-2 2,392.00 Double Acting 50 50 0.9

63 North_Oak_1 LAV-1 2,250.00 Double Acting 50 50 16.0

64 K_Shoghi_Area MAV-1 1,875.40 Double Acting 50 50 7.0

Page 121: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

121

Table 7.8: Abstract of Air valves

Shimla Area

Diameter (Air Inflow/ outflow Orifice) (mm) Grand

Total 25 50 80

A_Demo_Area 1 6 1 8

B_PostSanjauli_450DI 12 12

C_Ridge 1 1

D_PostRidge_400CI 5 5

E_Mains_Field 12 12

F_Dhingodevi 5 5

G_Mashobra 2 2

H_Craignaino 1 1

I_Dhalli 1 1 2

J_Kusumpti 12 12

I_Jakhu 1 1 2

J_North_Oak_1 1 1

K_Shoghi 1 1

Grand Total 2 60 2 64

(c)Pressure Reducing Valves (PRV)s: PRVs are the most important part of the pressure management system. The elevation difference is huge. This means huge pressure of 28 to 32 Kg/cm2 would be developed at the lowest portion of the distribution system. It was decided to limit this pressure between 20m to 100 m water head, minimum being 20m head. And then, to further reduce pressure from 100m to 20 m, Direct Acting PRVs are suggested to bring down the pressure from 100m to 20m. Details of PRVs (other than direct acting) are shown in Table 7.9.

Page 122: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

122

Table 7.9: PRVs in various areas

SN PRV_Area Label Elevation (m) Diameter (Valve)

(mm) Status (Initial)

Pressure Setting (Initial) (m H2O)

Flow (ML/day) Pressure (From)

(m H2O) Pressure (To) (m

H2O) Headloss (m)

1 B_PostSanjauli_450DI BPRV-1 2,032.80 80 Active 10 0.6866 44.7 10 34.79

2 B_PostSanjauli_450DI BPRV-2 1,949.50 80 Active 5 0.265 35.3 5 30.35

3 B_PostSanjauli_450DI BPRV-3 2,063.90 150 Active 5 0.7811 50.3 5 45.34

4 B_PostSanjauli_450DI BPRV-4 2,068.40 100 Active 15 0.9236 32.7 15 17.69

5 B_PostSanjauli_450DI BPRV-5 1,980.30 80 Active 5 0.3297 55.8 5 50.9

6 B_PostSanjauli_450DI BPRV-6 2,074.00 80 Active 5 0.0214 40.4 5 35.51

7 B_PostSanjauli_450DI BPRV-7 2,006.00 250 Active 10 6.7563 47.6 10 37.68

8 B_PostSanjauli_450DI BPRV-8 1,812.10 80 Active 5 0.1269 70.8 5 65.91

9 B_PostSanjauli_450DI BPRV-9 1,784.70 100 Active 5 0.6959 34.6 5 29.69

10 B_PostSanjauli_450DI BPRV-10 1,756.10 80 Active 5 0.2897 16.7 5 11.72

11 B_PostSanjauli_450DI BPRV-11 1,832.70 80 Active 10 0.398 44.5 10 34.59

12 B_PostSanjauli_450DI BPRV-12 1,919.90 100 Active 5 1.0771 71.2 5 66.37

13 B_PostSanjauli_450DI BPRV-13 1,789.30 80 Active 5 0.0267 51.4 5 46.45

14 B_PostSanjauli_450DI BPRV-14 1,906.40 150 Active 5 1.3999 51 5 46.09

15 B_PostSanjauli_450DI BPRV-15 1,875.10 80 Active 5 0.1617 25.7 5 20.73

16 B_PostSanjauli_450DI BPRV-16 1,980.50 150 Active 15 1.3635 34.1 15 19.16

17 B_PostSanjauli_450DI BPRV-17 1,937.20 80 Active 20 0.1019 57.4 20 37.44

18 B_PostSanjauli_450DI BPRV-18 1,864.60 150 Active 5 1.2503 46.1 5 41.14

19 B_PostSanjauli_450DI BPRV-19 1,911.00 80 Active 5 0.0758 46.1 5 41.22

20 B_PostSanjauli_450DI BPRV-20 1,768.70 80 Active 5 0.2918 69.8 5 64.93

21 B_PostSanjauli_450DI BPRV-21 1,782.70 80 Active 5 0.0479 56.8 5 51.95

22 B_PostSanjauli_450DI BPRV-22 1,879.10 100 Active 5 0.6321 42.5 5 37.53

23 B_PostSanjauli_450DI BPRV-23 1,780.80 80 Active 5 0.0622 36.1 5 31.15

24 B_PostSanjauli_450DI BPRV-24 1,804.90 100 Active 20 0.8346 49.9 20 29.93

25 B_PostSanjauli_450DI BPRV-25 1,746.40 80 Active 5 0.2679 39 5 34.04

26 B_PostSanjauli_450DI BPRV-26 1,875.00 200 Active 30 3.0496 24.2 24.2 0

27 B_PostSanjauli_450DI BPRV-27 1,872.50 80 Active 15 0.2595 26.2 15 11.26

28 B_PostSanjauli_450DI BPRV-28 1,856.00 80 Active 5 0.5081 37.3 5 32.34

29 B_PostSanjauli_450DI BPRV-29 1,754.30 80 Active 10 0.0087 39.9 10 30

30 B_PostSanjauli_450DI BPRV-30 1,876.20 80 Active 25 0.2077 45.5 25 20.5

31 B_PostSanjauli_450DI BPRV-31 2,125.10 100 Active 10 1.1474 50.7 10 40.8

32 B_PostSanjauli_450DI BPRV-32 2,147.40 150 Active 20 1.134 33 20 13.05

33 B_PostSanjauli_450DI BPRV-33 2,127.30 80 Active 20 0.2581 37.7 20 17.73

34 B_PostSanjauli_450DI BPRV-34 2,109.00 80 Active 20 0.1504 37.5 20 17.53

35 B_PostSanjauli_450DI BPRV-35 2,093.10 80 Active 20 0.0556 35.6 20 15.6

36 B_PostSanjauli_450DI BPRV-36 2,120.60 100 Active 20 0.6963 44.9 20 24.97

Page 123: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

123

SN PRV_Area Label Elevation (m) Diameter (Valve)

(mm) Status (Initial)

Pressure Setting (Initial) (m H2O)

Flow (ML/day) Pressure (From)

(m H2O) Pressure (To) (m

H2O) Headloss (m)

37 B_PostSanjauli_450DI BPRV-37 2,089.70 100 Active 20 0.5594 47.8 20 27.88

38 B_PostSanjauli_450DI BPRV-38 2,067.60 100 Active 20 0.1714 41.1 20 21.11

39 B_PostSanjauli_450DI BPRV-39 2,137.20 200 Active 20 0.4694 45 20 25.09

40 B_PostSanjauli_450DI BPRV-40 2,077.90 200 Active 25 0.3897 79.1 25 54.18

41 B_PostSanjauli_450DI BPRV-41 2,049.10 80 Active 20 0.0505 44.5 20 24.51

42 B_PostSanjauli_450DI BPRV-42 2,047.10 100 Active 15 0.2869 55.5 15 40.55

43 B_PostSanjauli_450DI BPRV-43 2,131.00 80 Active 20 0.046 48.1 20 28.19

44 B_PostSanjauli_450DI BPRV-44 2,077.80 80 Active 20 0.2342 46.4 20 26.41

45 B_PostSanjauli_450DI BPRV-45 2,054.20 80 Active 20 0.1978 43.2 20 23.2

46 B_PostSanjauli_450DI BPRV-46 2,105.00 200 Active 20 4.0491 71.9 20 52

47 B_PostSanjauli_450DI BPRV-47 2,066.70 150 Active 20 0.6501 34.1 20 14.1

48 B_PostSanjauli_450DI BPRV-48 2,036.90 150 Active 15 0.5388 49.2 15 34.3

49 B_PostSanjauli_450DI BPRV-49 2,015.00 150 Active 20 0.2839 36.7 20 16.7

50 B_PostSanjauli_450DI BPRV-50 2,029.30 150 Active 20 0.4805 33.4 20 13.46

51 B_PostSanjauli_450DI BPRV-51 2,081.10 150 Active 20 2.1676 34 20 14.02

52 B_PostSanjauli_450DI BPRV-52 2,119.20 100 Active 20 0.8436 60.2 20 40.28

53 B_PostSanjauli_450DI BPRV-53 2,088.00 100 Active 20 0.7835 49.5 20 29.57

54 B_PostSanjauli_450DI BPRV-54 2,058.90 80 Active 20 0.0648 46.3 20 26.3

55 B_PostSanjauli_450DI BPRV-55 2,061.50 80 Active 20 0.6013 40.4 20 20.47

56 B_PostSanjauli_450DI BPRV-56 2,038.20 80 Active 20 0.5635 41 20 21.03

57 B_PostSanjauli_450DI BPRV-57 2,141.00 80 Active 20 0.2547 38.1 20 18.09

58 B_PostSanjauli_450DI BPRV-58 2,073.60 100 Active 20 0.0797 29.3 20 9.3

59 B_PostSanjauli_450DI BPRV-59 2,154.00 80 Active 20 0.0331 28.3 20 8.29

60 B_PostSanjauli_450DI BPRV-60 2,063.70 150 Active 20 1.2509 34.9 20 14.95

61 B_PostSanjauli_450DI BPRV-61 2,042.80 150 Active 20 1.1063 40.4 20 20.46

62 B_PostSanjauli_450DI BPRV-62 2,053.90 150 Active 30 1.8065 26.4 26.4 0

63 B_PostSanjauli_450DI BPRV-63 2,051.60 150 Active 30 2.0356 34.8 30 4.84

64 B_PostSanjauli_450DI BPRV-64 2,045.90 80 Active 20 0.0858 45 20 24.99

65 B_PostSanjauli_450DI BPRV-65 2,017.50 80 Active 20 0.0315 48.3 20 28.32

66 B_PostSanjauli_450DI BPRV-66 2,049.00 80 Active 20 0.0412 44.2 20 24.25

67 B_PostSanjauli_450DI BPRV-67 2,037.00 80 Active 20 0.2162 58.8 20 38.91

68 B_PostSanjauli_450DI BPRV-68 2,015.00 80 Active 20 0.0429 41.6 20 21.68

69 B_PostSanjauli_450DI BPRV-69 1,931.80 150 Active 30 1.04 69.6 30 39.69

70 B_PostSanjauli_450DI BPRV-70 1,844.10 80 Active 20 0.345 62 20 42.08

71 B_PostSanjauli_450DI BPRV-71 1,825.00 80 Active 20 0.0899 35.6 20 15.67

72 B_PostSanjauli_450DI BPRV-72 1,799.60 80 Active 20 0.056 45.2 20 25.24

73 B_PostSanjauli_450DI BPRV-73 1,910.20 80 Active 20 0.5251 49.2 20 29.23

74 B_PostSanjauli_450DI BPRV-74 1,897.80 80 Active 20 0.0675 62.7 20 42.76

75 B_PostSanjauli_450DI BPRV-75 1,928.60 80 Active 20 0.112 73.3 20 53.37

Page 124: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

124

SN PRV_Area Label Elevation (m) Diameter (Valve)

(mm) Status (Initial)

Pressure Setting (Initial) (m H2O)

Flow (ML/day) Pressure (From)

(m H2O) Pressure (To) (m

H2O) Headloss (m)

76 B_PostSanjauli_450DI BPRV-76 1,928.60 80 Active 20 0.2864 21.6 20 1.61

77 B_PostSanjauli_450DI BPRV-77 1,904.30 80 Active 20 0.2592 43.1 20 23.16

78 B_PostSanjauli_450DI BPRV-78 1,931.30 150 Active 20 1.2318 81.5 20 61.65

79 B_PostSanjauli_450DI BPRV-79 2,116.70 300 Active 20 7.4708 49 20 29.06

80 B_PostSanjauli_450DI BPRV-80 2,050.60 200 Active 20 0.0239 37.7 20 17.72

81 B_PostSanjauli_450DI BPRV-81 2,032.80 200 Active 20 2.8894 63 20 43.08

82 B_PostSanjauli_450DI BPRV-82 1,982.40 200 Active 20 1.3049 70.1 20 50.23

83 B_PostSanjauli_450DI BPRV-83 1,935.40 80 Active 20 0.1161 66.7 20 46.77

84 B_PostSanjauli_450DI BPRV-84 1,912.90 80 Active 20 0.0282 35.7 20 15.7

85 B_PostSanjauli_450DI BPRV-85 1,908.30 80 Active 20 0.0478 52.6 20 32.64

86 B_PostSanjauli_450DI BPRV-86 1,863.60 80 Active 20 0.0502 54.1 20 34.16

87 B_PostSanjauli_450DI BPRV-87 2,068.30 200 Active 20 0.0465 68 20 48.07

88 B_PostSanjauli_450DI BPRV-88 1,995.60 150 Active 20 1.5164 55.8 20 35.83

89 B_PostSanjauli_450DI BPRV-89 1,888.70 80 Active 20 0.5139 40.3 20 20.32

90 B_PostSanjauli_450DI BPRV-90 1,861.00 80 Active 20 0.1525 45.8 20 25.85

91 B_PostSanjauli_450DI BPRV-91 2,076.50 200 Active 20 3.2115 59.6 20 39.69

92 B_PostSanjauli_450DI BPRV-92 1,993.00 80 Active 20 0.0627 63.2 20 43.32

93 B_PostSanjauli_450DI BPRV-93 1,892.60 100 Active 20 0.7855 52.5 20 32.58

94 B_PostSanjauli_450DI BPRV-94 1,877.20 80 Active 20 0.4596 31.2 20 11.22

95 B_PostSanjauli_450DI BPRV-95 1,894.20 80 Active 20 0.1486 29.8 20 9.8

96 B_PostSanjauli_450DI BPRV-96 1,974.70 150 Active 20 2.139 57.7 20 37.81

97 B_PostSanjauli_450DI BPRV-97 1,943.80 80 Active 20 0.2486 49.2 20 29.24

98 B_PostSanjauli_450DI BPRV-98 1,938.10 150 Active 20 1.675 52.7 20 32.71

99 B_PostSanjauli_450DI BPRV-99 1,900.10 150 Active 20 1.5891 56.3 20 36.37

100 B_PostSanjauli_450DI BPRV-100 1,873.50 150 Active 20 1.5059 45.8 20 25.89

101 B_PostSanjauli_450DI BPRV-101 1,958.30 150 Active 20 1.5957 75.3 20 55.45

102 B_PostSanjauli_450DI BPRV-102 1,920.40 80 Active 20 0.193 56.4 20 36.44

103 B_PostSanjauli_450DI BPRV-103 2,075.80 200 Active 20 1.3838 64.1 20 44.23

104 B_PostSanjauli_450DI BPRV-104 2,087.70 150 Active 20 0.1444 52.4 20 32.41

105 B_PostSanjauli_450DI BPRV-105 2,063.80 80 Active 20 0.0929 43.7 20 23.77

106 B_PostSanjauli_450DI BPRV-106 2,049.10 80 Active 20 0.2264 45 20 25.06

107 B_PostSanjauli_450DI BPRV-107 1,990.80 200 Active 20 1.5244 85.1 20 65.24

108 B_PostSanjauli_450DI BPRV-108 1,962.60 80 Active 20 0.4754 35.4 20 15.47

109 B_PostSanjauli_450DI BPRV-109 2,144.50 80 Active 20 0.5601 52.7 20 32.79

110 B_PostSanjauli_450DI BPRV-110 2,167.20 200 Active 20 3.0027 37.2 20 17.25

111 B_PostSanjauli_450DI BPRV-111 2,125.20 150 Active 20 1.0751 60.4 20 40.47

112 B_PostSanjauli_450DI BPRV-112 2,165.20 150 Active 30 1.557 20.2 20.2 0

113 B_PostSanjauli_450DI BPRV-113 2,099.70 150 Active 30 1.1316 81.9 30 52.01

114 B_PostSanjauli_450DI BPRV-114 2,131.00 100 Active 20 1.0973 34.6 20 14.59

Page 125: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

125

SN PRV_Area Label Elevation (m) Diameter (Valve)

(mm) Status (Initial)

Pressure Setting (Initial) (m H2O)

Flow (ML/day) Pressure (From)

(m H2O) Pressure (To) (m

H2O) Headloss (m)

115 B_PostSanjauli_450DI BPRV-115 2,107.80 100 Active 25 0.0505 62.7 25 37.77

116 B_PostSanjauli_450DI BPRV-116 2,210.60 100 Active 20 0.0361 21.1 20 1.12

117 B_PostSanjauli_450DI BPRV-117 2,190.40 150 Active 20 0.0464 41.3 20 21.3

118 B_PostSanjauli_450DI BPRV-118 2,203.70 80 Active 20 0.072 28.5 20 8.51

119 B_PostSanjauli_450DI BPRV-119 2,211.70 200 Active 20 0.297 26.4 20 6.45

120 B_PostSanjauli_450DI BPRV-120 2,212.20 150 Active 20 1.5699 20.2 20 0.15

121 B_PostSanjauli_450DI BPRV-121 2,188.10 150 Active 20 1.5363 43.2 20 23.25

122 B_PostSanjauli_450DI BPRV-122 2,010.50 300 Active 20 8.8018 53.4 20 33.48

123 B_PostSanjauli_450DI BPRV-123 2,120.60 300 Active 20 6.5641 75.7 20 55.77

124 B_PostSanjauli_450DI BPRV-124 2,058.90 200 Active 20 4.6386 78.7 20 58.78

125 B_PostSanjauli_450DI BPRV-125 1,995.90 150 Active 20 1.5856 68.4 20 48.45

126 B_PostSanjauli_450DI BPRV-126 1,907.60 150 Active 20 1.5856 66.4 20 46.49

127 B_PostSanjauli_450DI BPRV-127 1,966.10 300 Active 20 8.1493 62.3 20 42.36

128 B_PostSanjauli_450DI BPRV-128 1,903.50 80 Active 20 0.0356 80.1 20 60.21

129 B_PostSanjauli_450DI BPRV-129 1,804.90 150 Active 20 2.7342 89.4 20 69.51

130 B_PostSanjauli_450DI BPRV-130 2,045.00 80 Active 20 0.1024 61.3 20 41.4

131 B_PostSanjauli_450DI BPRV-131 2,167.70 80 Active 20 0.0473 55.9 20 35.99

132 B_PostSanjauli_450DI BPRV-132 2,162.70 80 Active 20 0.0895 68.2 20 48.32

133 B_PostSanjauli_450DI BPRV-133 2,171.90 100 Active 20 0.2635 64.4 20 44.43

134 B_PostSanjauli_450DI BPRV-134 1,859.90 100 Active 20 1.0472 59.8 20 39.87

135 B_PostSanjauli_450DI BPRV-135 1,777.50 80 Active 20 0.5073 90.4 20 70.51

136 B_PostSanjauli_450DI BPRV-136 2,076.70 100 Active 20 0.6024 52.5 20 32.58

137 B_PostSanjauli_450DI BPRV-137 2,035.80 80 Active 20 0.369 56.8 20 36.9

138 B_PostSanjauli_450DI BPRV-138 2,069.40 80 Active 20 0.016 64.2 20 44.31

139 B_PostSanjauli_450DI BPRV-139 2,064.80 80 Active 20 0.0106 69.3 20 49.39

140 B_PostSanjauli_450DI BPRV-140 2,135.70 100 Active 20 0.0222 74.5 20 54.61

141 B_PostSanjauli_450DI BPRV-141 2,149.00 150 Active 20 1.4466 58.7 20 38.8

142 B_PostSanjauli_450DI BPRV-142 2,150.60 100 Active 20 0.0708 57.2 20 37.24

143 B_PostSanjauli_450DI BPRV-143 2,073.80 80 Active 20 0.0498 51 20 31.09

144 B_PostSanjauli_450DI BPRV-144 2,078.30 150 Active 20 0.5132 46.4 20 26.42

145 B_PostSanjauli_450DI BPRV-145 2,043.70 150 Active 20 1.7871 78.9 20 58.96

146 B_PostSanjauli_450DI BPRV-146 2,183.20 80 Active 20 0.4815 46 20 26.06

147 B_PostSanjauli_450DI BPRV-147 1,946.70 80 Active 20 0.1805 54.4 20 34.5

148 B_PostSanjauli_450DI BPRV-148 2,088.00 80 Active 20 0.1436 54.2 20 34.27

149 B_PostSanjauli_450DI BPRV-149 1,988.70 80 Active 20 0.019 46.3 20 26.34

150 B_PostSanjauli_450DI BPRV-150 2,073.30 200 Active 20 2.8206 59.6 20 39.7

151 B_PostSanjauli_450DI BPRV-151 2,032.50 80 Active 20 0.1878 55.4 20 35.43

152 B_PostSanjauli_450DI BPRV-152 2,015.10 200 Active 20 4.1659 61.1 20 41.16

153 B_PostSanjauli_450DI BPRV-153 2,175.80 100 Active 20 0.023 54.7 20 34.77

Page 126: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

126

SN PRV_Area Label Elevation (m) Diameter (Valve)

(mm) Status (Initial)

Pressure Setting (Initial) (m H2O)

Flow (ML/day) Pressure (From)

(m H2O) Pressure (To) (m

H2O) Headloss (m)

154 B_PostSanjauli_450DI BPRV-154 2,013.60 200 Active 30 2.873 93.6 30 63.71

155 B_PostSanjauli_450DI BPRV-155 1,967.90 200 Active 30 2.7593 74.3 30 44.4

156 B_PostSanjauli_450DI BPRV-156 1,928.10 80 Active 20 0.0885 68 20 48.1

157 B_PostSanjauli_450DI BPRV-157 1,926.40 150 Active 20 1.2512 64.5 20 44.61

158 B_PostSanjauli_450DI BPRV-158 1,855.70 100 Active 20 0.8356 80.6 20 60.68

159 B_PostSanjauli_450DI BPRV-159 1,894.90 80 Active 20 0.0737 51.4 20 31.41

160 B_PostSanjauli_450DI BPRV-160 1,935.30 80 Active 20 0.4088 52.3 20 32.37

161 B_PostSanjauli_450DI BPRV-161 2,129.30 200 Active 20 1.5244 79.6 20 59.67

162 B_PostSanjauli_450DI BPRV-162 2,056.30 200 Active 20 1.5244 56.5 20 36.6

163 B_PostSanjauli_450DI BPRV-163 1,940.20 200 Active 20 3.0496 72.8 20 52.86

164 B_PostSanjauli_450DI BPRV-164 1,881.90 200 Active 20 3.0496 77.4 20 57.47

165 B_PostSanjauli_450DI BPRV-165 1,955.20 150 Active 20 1.5856 59.6 20 39.65

166 B_PostSanjauli_450DI BPRV-166 2,093.10 200 Active 20 1.5244 56 20 36.02

167 B_PostSanjauli_450DI BPRV-167 1,938.00 150 Active 20 1.3999 75.2 20 55.28

168 B_PostSanjauli_450DI BPRV-168 1,860.80 100 Active 20 0.8561 57.1 20 37.15

169 B_PostSanjauli_450DI BPRV-169 1,857.20 150 Active 20 1.5368 118 20 98.15

170 B_PostSanjauli_450DI BPRV-170 1,905.30 250 Active 20 5.1883 78.2 20 58.34

171 C_Ridge CPRV-1 2,123.50 200 Active 20 3.3522 71.6 20 51.73

172 C_Ridge CPRV-2 2,086.60 150 Active 20 0.9575 35.7 20 15.73

173 C_Ridge CPRV-3 2,093.20 100 Active 20 0.0899 50.1 20 30.13

174 C_Ridge CPRV-4 2,093.10 80 Active 20 0.377 49.7 20 29.73

175 C_Ridge CPRV-5 2,109.00 100 Active 20 0.1193 50.1 20 30.14

176 C_Ridge CPRV-6 2,072.30 80 Active 20 0.2441 39.8 20 19.81

177 C_Ridge CPRV-7 2,071.70 100 Active 20 0.0271 41.4 20 21.43

178 C_Ridge CPRV-8 2,074.20 150 Active 20 2.6664 66.4 20 46.51

179 C_Ridge CPRV-9 2,060.90 100 Active 20 0.0294 45.3 20 25.3

180 C_Ridge CPRV-10 2,035.30 150 Active 20 1.9308 54 20 34.1

181 C_Ridge CPRV-11 2,014.00 80 Active 20 0.1308 52.9 20 32.99

182 C_Ridge CPRV-12 2,054.00 100 Active 20 0.2025 29.5 20 9.54

183 C_Ridge CPRV-13 2,031.60 80 Active 20 0.104 42.1 20 22.17

184 C_Ridge CPRV-14 2,087.30 150 Active 20 0.2971 18.3 18.3 0

185 C_Ridge CPRV-15 2,063.50 100 Active 20 0.234 41.8 20 21.79

186 C_Ridge CPRV-16 2,081.20 80 Active 20 0.0237 24.4 20 4.37

187 C_Ridge CPRV-17 2,063.80 80 Active 20 0.0152 42.6 20 22.64

188 C_Ridge CPRV-18 2,064.60 80 Active 20 0.0534 41.8 20 21.85

189 C_Ridge CPRV-19 2,062.50 80 Active 20 0.0151 43.9 20 23.92

190 C_Ridge CPRV-20 2,054.90 150 Active 20 0.4475 56.3 20 36.37

191 C_Ridge CPRV-21 2,078.40 100 Active 20 0.2785 35.4 20 15.42

192 C_Ridge CPRV-22 2,052.10 100 Active 20 0.2164 46 20 26.02

Page 127: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

127

SN PRV_Area Label Elevation (m) Diameter (Valve)

(mm) Status (Initial)

Pressure Setting (Initial) (m H2O)

Flow (ML/day) Pressure (From)

(m H2O) Pressure (To) (m

H2O) Headloss (m)

193 C_Ridge CPRV-23 2,137.00 150 Active 20 0.0596 58.8 20 38.87

194 C_Ridge CPRV-24 2,149.50 100 Active 20 0.1683 46.2 20 26.2

195 C_Ridge CPRV-25 2,047.60 150 Active 20 0.3737 58.5 20 38.54

196 C_Ridge CPRV-26 2,013.90 100 Active 20 0.102 53.6 20 33.65

197 C_Ridge CPRV-27 2,006.30 150 Active 20 1.5812 47.6 20 27.69

198 C_Ridge CPRV-28 1,964.50 150 Active 25 1.3352 60.8 25 35.86

199 C_Ridge CPRV-29 2,044.40 200 Active 20 3.2716 65.9 20 45.99

200 C_Ridge CPRV-30 2,000.90 200 Active 20 3.0439 62.2 20 42.29

201 C_Ridge CPRV-31 2,103.40 150 Active 20 0.1254 41.6 20 21.61

202 C_Ridge CPRV-32 2,085.60 200 Active 20 0.4953 59.5 20 39.6

203 C_Ridge CPRV-33 2,102.60 150 Active 20 1.0578 42.5 20 22.51

204 C_Ridge CPRV-34 2,052.50 80 Active 20 0.0186 53.6 20 33.68

205 C_Ridge CPRV-35 2,141.10 80 Active 20 0.028 54.8 20 34.86

206 C_Ridge CPRV-36 2,092.60 200 Active 20 3.8759 48.2 20 28.27

207 C_Ridge CPRV-37 2,094.10 150 Active 20 0.4008 46.8 20 26.83

208 C_Ridge CPRV-38 2,139.30 100 Active 20 0.2906 57.2 20 37.25

209 C_Ridge CPRV-39 2,125.50 250 Active 20 6.4183 70.3 20 50.36

210 D_PostRidge_400CI DPRV-1 2,017.80 150 Active 20 0.8057 38.8 20 18.88

211 D_PostRidge_400CI DPRV-2 1,998.00 150 Active 20 0.7223 39.4 20 19.48

212 D_PostRidge_400CI DPRV-3 1,974.60 100 Active 20 0.6993 42.5 20 22.57

213 D_PostRidge_400CI DPRV-4 1,952.60 100 Active 20 0.6891 41.1 20 21.13

214 D_PostRidge_400CI DPRV-5 1,933.10 80 Active 20 0.5115 37.1 20 17.17

215 D_PostRidge_400CI DPRV-6 1,895.00 80 Active 20 0.4954 53.8 20 33.91

216 D_PostRidge_400CI DPRV-7 1,996.00 100 Active 25 0.4664 60.2 25 35.31

217 D_PostRidge_400CI DPRV-8 1,962.40 100 Active 20 0.3817 57.5 20 37.55

218 D_PostRidge_400CI DPRV-9 1,942.40 80 Active 20 0.3285 39.3 20 19.32

219 D_PostRidge_400CI DPRV-10 1,988.70 100 Active 20 0.0402 49 20 29.03

220 D_PostRidge_400CI DPRV-11 1,964.20 80 Active 20 0.0257 44.4 20 24.47

221 D_PostRidge_400CI DPRV-12 1,931.80 80 Active 20 0.0368 40.7 20 20.73

222 D_PostRidge_400CI DPRV-13 1,925.90 80 Active 20 0.0836 46.3 20 26.37

223 D_PostRidge_400CI DPRV-14 1,912.30 80 Active 20 0.0115 39.5 20 19.49

224 D_PostRidge_400CI DPRV-15 1,910.80 80 Active 20 0.0086 40.9 20 20.91

225 D_PostRidge_400CI DPRV-16 1,906.70 80 Active 20 0.0301 39.2 20 19.23

226 D_PostRidge_400CI DPRV-17 1,908.80 80 Active 20 0.0272 37.1 20 17.12

227 D_PostRidge_400CI DPRV-18 1,877.80 80 Active 20 0.1763 36.1 20 16.1

228 D_PostRidge_400CI DPRV-19 1,982.60 150 Active 20 1.3128 83 20 63.15

229 D_PostRidge_400CI DPRV-20 2,069.40 150 Active 20 2.4014 55 20 35.08

230 D_PostRidge_400CI DPRV-21 1,950.30 200 Active 20 3.8123 51.3 20 31.38

231 D_PostRidge_400CI DPRV-22 1,913.00 200 Active 20 3.0463 56 20 36.02

Page 128: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

128

SN PRV_Area Label Elevation (m) Diameter (Valve)

(mm) Status (Initial)

Pressure Setting (Initial) (m H2O)

Flow (ML/day) Pressure (From)

(m H2O) Pressure (To) (m

H2O) Headloss (m)

232 D_PostRidge_400CI DPRV-23 1,887.30 150 Active 20 2.6968 44.5 20 24.52

233 D_PostRidge_400CI DPRV-24 1,853.20 100 Active 20 0.8301 51.5 20 31.6

234 D_PostRidge_400CI DPRV-25 1,931.40 150 Active 20 1.2469 36 20 16.05

235 D_PostRidge_400CI DPRV-26 1,924.20 150 Active 20 1.7112 42 20 22.03

236 D_PostRidge_400CI DPRV-27 1,904.80 100 Active 20 0.4531 38.1 20 18.15

237 D_PostRidge_400CI DPRV-28 1,891.80 100 Active 20 0.8003 50.6 20 30.61

238 D_PostRidge_400CI DPRV-29 1,870.20 80 Active 20 0.7457 38.2 20 18.23

239 D_PostRidge_400CI DPRV-30 1,847.40 80 Active 20 0.5463 36.4 20 16.45

240 D_PostRidge_400CI DPRV-31 1,904.70 100 Active 20 0.1178 45.6 20 25.6

241 D_PostRidge_400CI DPRV-32 1,884.90 80 Active 20 0.013 39.7 20 19.78

242 D_PostRidge_400CI DPRV-33 1,906.70 80 Active 20 0.4244 41.3 20 21.37

243 D_PostRidge_400CI DPRV-34 1,887.70 80 Active 20 0.3543 38.1 20 18.1

244 D_PostRidge_400CI DPRV-35 1,948.70 200 Active 20 3.2536 52.5 20 32.55

245 D_PostRidge_400CI DPRV-36 1,929.60 80 Active 20 0.1373 37.9 20 17.94

246 D_PostRidge_400CI DPRV-37 1,928.50 80 Active 20 0.0359 40.8 20 20.83

247 D_PostRidge_400CI DPRV-38 1,973.40 150 Active 20 2.1183 51.2 20 31.28

248 D_PostRidge_400CI DPRV-39 1,928.40 80 Active 20 0.1369 64.5 20 44.62

249 D_PostRidge_400CI DPRV-40 1,925.00 150 Active 20 1.84 65.1 20 45.22

250 D_PostRidge_400CI DPRV-41 1,884.30 150 Active 20 1.679 57.6 20 37.64

251 D_PostRidge_400CI DPRV-42 1,994.00 80 Active 20 0.0982 67 20 47.09

252 D_PostRidge_400CI DPRV-43 1,938.70 80 Active 20 0.0702 75.1 20 55.22

253 D_PostRidge_400CI DPRV-44 1,966.30 150 Active 20 2.1952 43.7 20 23.77

254 D_PostRidge_400CI DPRV-45 2,029.80 150 Active 20 1.3811 60.8 20 40.84

255 D_PostRidge_400CI DPRV-46 2,036.50 80 Active 20 0.1531 54.3 20 34.4

256 D_PostRidge_400CI DPRV-47 2,061.30 100 Active 20 0.3488 70.6 20 50.65

257 D_PostRidge_400CI DPRV-48 2,059.30 100 Active 30 0.4162 72.5 30 42.56

258 D_PostRidge_400CI DPRV-49 2,016.80 80 Active 20 0.1161 71.3 20 51.36

259 D_PostRidge_400CI DPRV-50 2,028.20 80 Active 20 0.1647 62.3 20 42.37

260 D_PostRidge_400CI DPRV-51 1,988.10 100 Active 20 0.5559 59.5 20 39.53

261 D_PostRidge_400CI DPRV-52 2,016.20 100 Active 20 0.1554 72.1 20 52.24

262 D_PostRidge_400CI DPRV-53 1,937.40 150 Active 20 2.0086 43.9 20 23.9

263 D_PostRidge_400CI DPRV-54 1,991.50 150 Active 20 2.1952 95.7 20 75.88

264 D_PostRidge_400CI DPRV-55 2,005.60 150 Active 20 2.1183 81.1 20 61.23

265 D_PostRidge_400CI DPRV-56 1,977.70 100 Active 20 0.9889 52.8 20 32.88

266 D_PostRidge_400CI DPRV-57 2,013.80 150 Active 20 2.3482 73.1 20 53.18

267 D_PostRidge_400CI DPRV-58 1,996.30 150 Active 20 1.3409 89.8 20 69.9

268 D_PostRidge_400CI PRV-776 2,046.20 150 Active 20 1.3128 74.7 20 54.76

269 E_Mains_Field EPRV-1 1,897.20 200 Active 30 2.9209 94.5 30 64.59

270 E_Mains_Field EPRV-2 1,875.30 150 Active 20 1.2784 51.1 20 31.2

Page 129: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

129

SN PRV_Area Label Elevation (m) Diameter (Valve)

(mm) Status (Initial)

Pressure Setting (Initial) (m H2O)

Flow (ML/day) Pressure (From)

(m H2O) Pressure (To) (m

H2O) Headloss (m)

271 E_Mains_Field EPRV-3 1,836.20 80 Active 20 0.1669 48.9 20 28.94

272 E_Mains_Field EPRV-4 1,799.30 80 Active 20 0.4943 87.3 20 67.47

273 E_Mains_Field EPRV-5 1,956.00 150 Active 20 0.4691 38.2 20 18.22

274 E_Mains_Field EPRV-6 1,908.30 80 Active 20 0.4356 67.3 20 47.39

275 E_Mains_Field EPRV-7 1,887.10 80 Active 20 0.3728 40.2 20 20.2

276 E_Mains_Field EPRV-8 1,862.00 80 Active 20 0.2307 44.5 20 24.51

277 E_Mains_Field EPRV-9 1,947.50 80 Active 20 0.3165 46.3 20 26.34

278 E_Mains_Field EPRV-10 1,916.40 80 Active 20 0.0577 50.7 20 30.75

279 E_Mains_Field EPRV-11 1,939.90 100 Active 20 1.0409 52.7 20 32.78

280 E_Mains_Field EPRV-12 1,912.20 80 Active 20 0.6691 43 20 23.01

281 E_Mains_Field EPRV-13 1,915.00 80 Active 20 0.2668 43.1 20 23.1

282 E_Mains_Field EPRV-14 1,846.30 80 Active 20 0.1674 88.1 20 68.24

283 E_Mains_Field EPRV-15 1,799.30 80 Active 20 0.5294 41.4 20 21.43

284 E_Mains_Field EPRV-16 1,875.90 80 Active 20 0.5604 51.8 20 31.86

285 E_Mains_Field EPRV-17 1,764.10 80 Active 20 0.1225 52.1 20 32.12

286 E_Mains_Field EPRV-18 1,987.10 150 Active 20 1.4486 45.4 20 25.42

287 E_Mains_Field EPRV-19 1,968.00 80 Active 20 0.2864 32.1 20 12.12

288 E_Mains_Field EPRV-20 1,943.20 80 Active 20 0.6197 59.1 20 39.16

289 E_Mains_Field EPRV-21 2,013.50 150 Active 20 2.044 71 20 51.05

290 E_Mains_Field EPRV-22 2,026.90 150 Active 20 1.7256 58.2 20 38.25

291 E_Mains_Field EPRV-23 1,988.40 200 Active 20 3.2618 75.6 20 55.73

292 E_Mains_Field EPRV-24 1,957.30 150 Active 20 1.7385 50.5 20 30.55

293 E_Mains_Field EPRV-25 1,918.90 80 Active 20 0.2513 54.3 20 34.35

294 E_Mains_Field EPRV-26 2,108.20 80 Active 20 0.397 10.3 10.3 0

295 E_Mains_Field EPRV-27 2,132.30 100 Active 20 0.8146 49.5 20 29.59

296 E_Mains_Field EPRV-28 2,100.80 80 Active 20 0.6421 36.6 20 16.61

297 E_Mains_Field EPRV-29 2,141.40 200 Active 20 3.3832 43.2 20 23.27

298 E_Mains_Field EPRV-30 2,074.60 200 Active 20 3.698 63.3 20 43.43

299 E_Mains_Field EPRV-31 1,959.60 100 Active 20 0.9479 48.1 20 28.13

300 E_Mains_Field EPRV-32 2,052.60 80 Active 20 0.6628 59.2 20 39.23

301 E_Mains_Field EPRV-33 2,094.90 200 Active 25 3.2943 64.3 25 39.39

302 E_Mains_Field EPRV-34 2,137.40 80 Active 20 0.2189 46.7 20 26.76

303 E_Mains_Field EPRV-35 2,108.60 80 Active 20 0.1872 48.5 20 28.53

304 E_Mains_Field EPRV-36 2,120.00 200 Active 20 3.9478 63.4 20 43.46

305 E_Mains_Field EPRV-37 1,918.70 100 Active 20 0.1876 30.3 20 10.26

306 E_Mains_Field EPRV-38 1,904.30 100 Active 20 0.1378 34.3 20 14.32

307 E_Mains_Field EPRV-39 1,860.70 80 Active 20 0.2135 39.1 20 19.12

308 E_Mains_Field EPRV-40 1,905.70 150 Active 20 0.7768 78.5 20 58.64

309 E_Mains_Field EPRV-41 1,969.80 150 Active 20 0.4966 60 20 40.12

Page 130: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

130

SN PRV_Area Label Elevation (m) Diameter (Valve)

(mm) Status (Initial)

Pressure Setting (Initial) (m H2O)

Flow (ML/day) Pressure (From)

(m H2O) Pressure (To) (m

H2O) Headloss (m)

310 E_Mains_Field EPRV-42 1,946.20 100 Active 20 0.4059 43.3 20 23.35

311 E_Mains_Field EPRV-43 1,973.90 80 Active 20 0.2747 55.1 20 35.17

312 E_Mains_Field EPRV-44 1,903.50 80 Active 20 0.2178 44 20 24.07

313 E_Mains_Field EPRV-45 1,868.60 80 Active 20 0.409 53.8 20 33.84

314 E_Mains_Field EPRV-46 2,046.00 100 Active 20 0.8407 54 20 34.08

315 E_Mains_Field EPRV-47 1,803.30 150 Active 20 2.0842 38 20 18.07

316 E_Mains_Field EPRV-48 1,979.90 150 Active 20 0.9595 65.7 20 45.77

317 E_Mains_Field EPRV-49 1,964.80 150 Active 20 1.5288 60.5 20 40.58

318 E_Mains_Field EPRV-50 1,928.20 150 Active 20 0.3215 55.3 20 35.36

319 E_Mains_Field EPRV-51 1,934.20 150 Active 20 0.0852 49.4 20 29.44

320 E_Mains_Field EPRV-52 1,993.50 150 Active 20 1.9458 53.6 20 33.67

321 E_Mains_Field EPRV-53 1,751.30 100 Active 20 0.1302 65.5 20 45.57

322 E_Mains_Field EPRV-54 1,743.00 150 Active 20 1.4542 69.1 20 49.2

323 E_Mains_Field EPRV-55 2,031.70 200 Active 20 2.7783 61.2 20 41.26

324 E_Mains_Field EPRV-56 1,817.90 150 Active 20 0.6248 105.6 20 85.81

325 E_Mains_Field EPRV-57 1,961.80 100 Active 20 0.3841 54.7 20 34.74

326 E_Mains_Field EPRV-58 1,756.10 100 Active 20 0.2871 63.1 20 43.14

327 E_Mains_Field EPRV-59 1,956.70 150 Active 20 1.0012 57.8 20 37.86

328 E_Mains_Field EPRV-60 1,824.00 150 Active 20 2.2637 59.4 20 39.49

329 E_Mains_Field EPRV-61 1,888.40 80 Active 20 0.0937 52.2 20 32.29

330 E_Mains_Field EPRV-62 1,894.00 80 Active 20 0.0711 43.3 20 23.29

331 E_Mains_Field EPRV-63 2,013.80 100 Active 20 1.1234 66.8 20 46.85

332 E_Mains_Field EPRV-64 2,007.60 100 Active 20 0.9638 23.4 20 3.43

333 E_Mains_Field EPRV-65 1,961.30 100 Active 20 0.4215 65.1 20 45.2

334 E_Mains_Field EPRV-66 2,083.10 150 Active 20 1.0684 57.8 20 37.84

335 E_Mains_Field EPRV-67 1,821.10 80 Active 20 0.5294 73.8 20 53.85

336 E_Mains_Field EPRV-68 2,081.20 250 Active 20 6.0942 59 20 39.07

337 E_Mains_Field EPRV-69 2,121.80 250 Active 20 7.5313 60.9 20 40.98

338 E_Mains_Field EPRV-70 2,034.70 250 Active 30 5.2875 64.2 30 34.28

339 F_Dhingodevi FPRV-1 2,188.10 80 Active 20 0.6376 82.3 20 62.43

340 F_Dhingodevi FPRV-2 2,177.50 80 Active 22 0.0222 97.4 22 75.54

341 F_Dhingodevi FPRV-3 2,151.70 80 Active 5 0.3799 36.6 5 31.64

342 F_Dhingodevi FPRV-4 2,213.00 80 Active 16 0.0443 63.4 16 47.5

343 F_Dhingodevi FPRV-5 2,174.60 80 Active 15 0.5641 21.8 15 6.76

344 F_Dhingodevi FPRV-6 2,165.70 80 Active 20 0.0191 25.6 20 5.58

345 F_Dhingodevi FPRV-7 2,206.20 80 Active 20 0.0514 69.4 20 49.46

346 F_Dhingodevi FPRV-8 2,221.10 80 Active 15 0.0361 54.7 15 39.79

347 F_Dhingodevi FPRV-9 2,264.90 80 Active 10 0.2731 70.3 10 60.38

348 F_Dhingodevi FPRV-10 2,212.90 80 Active 5 0.2438 60.5 5 55.56

Page 131: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

131

SN PRV_Area Label Elevation (m) Diameter (Valve)

(mm) Status (Initial)

Pressure Setting (Initial) (m H2O)

Flow (ML/day) Pressure (From)

(m H2O) Pressure (To) (m

H2O) Headloss (m)

349 F_Dhingodevi FPRV-11 2,191.70 100 Active 5 0.0626 52.6 5 47.66

350 F_Dhingodevi FPRV-12 2,172.40 200 Active 20 1.8648 70.4 20 50.54

351 F_Dhingodevi FPRV-13 1,992.00 80 Active 20 0.2918 60.6 20 40.63

352 F_Dhingodevi FPRV-14 2,069.50 80 Active 20 0.0349 76.4 20 56.5

353 F_Dhingodevi FPRV-15 2,093.10 150 Active 20 0.078 52.8 20 32.9

354 F_Dhingodevi FPRV-16 2,130.00 150 Active 20 1.0067 49.3 20 29.39

355 F_Dhingodevi FPRV-17 2,104.90 150 Active 20 0.6645 43 20 23.05

356 F_Dhingodevi FPRV-18 2,097.80 150 Active 20 0.5667 26.8 20 6.8

357 F_Dhingodevi FPRV-19 2,121.30 80 Active 20 0.2967 17.6 17.6 0

358 F_Dhingodevi FPRV-20 2,161.30 150 Active 20 1.9705 61.6 20 41.63

359 F_Dhingodevi FPRV-21 2,118.70 80 Active 20 0.3255 56.5 20 36.56

360 F_Dhingodevi FPRV-22 2,126.50 100 Active 20 0.957 62.1 20 42.2

361 F_Dhingodevi FPRV-23 2,138.90 80 Active 20 0.1937 51.1 20 31.19

362 F_Dhingodevi FPRV-24 2,155.20 80 Active 20 0.068 35.1 20 15.14

363 F_Dhingodevi FPRV-25 2,182.70 80 Active 20 0.7505 47.6 20 27.66

364 F_Dhingodevi FPRV-26 2,175.20 80 Active 20 0.1844 56.6 20 36.68

365 F_Dhingodevi FPRV-27 2,210.30 250 Active 20 5.7165 63.6 20 43.7

366 F_Dhingodevi FPRV-28 2,175.90 200 Active 20 2.1169 54.1 20 34.16

367 F_Dhingodevi FPRV-29 2,216.20 200 Active 20 3.3396 72.7 20 52.76

368 F_Dhingodevi FPRV-30 2,160.50 80 Active 20 0.2518 71.1 20 51.23

369 F_Dhingodevi FPRV-31 2,220.20 80 Active 20 0.5041 66.7 20 46.79

370 F_Dhingodevi FPRV-32 2,141.50 80 Active 20 0.6914 56.3 20 36.34

371 F_Dhingodevi FPRV-33 2,115.40 80 Active 20 0.5415 73.9 20 53.98

372 F_Dhingodevi FPRV-34 2,214.00 80 Active 20 0.2516 49.4 20 29.46

373 F_Dhingodevi FPRV-35 2,250.20 150 Active 20 1.0077 56.6 20 36.62

374 F_Dhingodevi FPRV-36 2,222.40 80 Active 20 0.237 47.2 20 27.24

375 F_Dhingodevi FPRV-37 2,136.40 80 Active 20 0.012 60.2 20 40.3

376 F_Dhingodevi FPRV-38 2,033.60 80 Active 20 0.5351 98 20 78.14

377 F_Dhingodevi FPRV-39 2,073.50 80 Active 20 0.0635 66 20 46.13

378 F_Dhingodevi FPRV-40 2,142.00 80 Active 20 0.0481 49.6 20 29.61

379 F_Dhingodevi FPRV-41 2,063.60 80 Active 20 0.1921 76.1 20 56.18

380 F_Dhingodevi FPRV-42 2,254.70 80 Active 20 0.2169 46.7 20 26.73

381 F_Dhingodevi FPRV-43 2,104.70 150 Active 20 0.7015 46.7 20 26.7

382 F_Dhingodevi FPRV-44 2,214.60 80 Active 20 0.1619 72.6 20 52.66

383 F_Dhingodevi FPRV-45 2,311.30 80 Active 20 0.0335 26.5 20 6.49

384 F_Dhingodevi FPRV-46 2,182.60 80 Active 20 0.2644 53 20 33.06

385 F_Dhingodevi FPRV-47 2,171.20 150 Active 20 1.3452 60.5 20 40.58

386 F_Dhingodevi FPRV-48 2,047.20 80 Active 20 0.0672 69.6 20 49.7

387 F_Dhingodevi FPRV-49 2,122.50 80 Active 20 0.4447 27.5 20 7.52

Page 132: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

132

SN PRV_Area Label Elevation (m) Diameter (Valve)

(mm) Status (Initial)

Pressure Setting (Initial) (m H2O)

Flow (ML/day) Pressure (From)

(m H2O) Pressure (To) (m

H2O) Headloss (m)

388 F_Dhingodevi FPRV-50 2,185.80 80 Active 20 0.1336 47.4 20 27.4

389 F_Dhingodevi FPRV-51 2,224.40 100 Active 20 0.1463 82 20 62.11

390 F_Dhingodevi FPRV-52 2,076.00 80 Active 20 0.1993 48.1 20 28.19

391 F_Dhingodevi FPRV-53 2,142.90 100 Active 20 0.0373 53.7 20 33.76

392 F_Dhingodevi FPRV-54 2,104.80 80 Active 20 0.0205 58 20 38.08

393 F_Dhingodevi FPRV-55 2,280.10 80 Active 20 0.2608 54.8 20 34.83

394 F_Dhingodevi FPRV-56 2,069.80 80 Active 20 0.0273 46.3 20 26.39

395 F_Dhingodevi FPRV-57 2,140.30 80 Active 20 0.1565 47 20 27.04

396 F_Dhingodevi FPRV-58 2,259.00 150 Active 20 1.8272 40.2 20 20.2

397 F_Dhingodevi FPRV-59 2,136.70 80 Active 20 0.1928 58.7 20 38.79

398 F_Dhingodevi FPRV-60 1,947.30 80 Active 20 0.2601 62.7 20 42.74

399 F_Dhingodevi FPRV-61 2,300.10 80 Active 20 0.0864 38.2 20 18.19

400 F_Dhingodevi FPRV-62 2,236.00 80 Active 20 0.1031 46 20 26.05

401 F_Dhingodevi FPRV-63 2,126.00 150 Active 20 0.1882 42.4 20 22.48

402 F_Dhingodevi FPRV-64 2,171.30 100 Active 20 0.1898 103.5 20 83.64

403 F_Dhingodevi FPRV-65 2,148.50 150 Active 20 0.1882 79.7 20 59.85

404 F_Dhingodevi FPRV-66 2,223.20 200 Active 20 1.8648 50.3 20 30.33

405 F_Dhingodevi FPRV-67 2,131.60 150 Active 20 1.1923 63.4 20 43.51

406 G_Mashobra GPRV-1 2,315.00 100 Active 30 1.0448 72.4 30 42.51

407 G_Mashobra GPRV-2 2,349.50 250 Active 40 5.4168 35.6 35.6 0

408 G_Mashobra GPRV-3 2,337.80 150 Active 20 1.4214 46.5 20 26.5

409 I_Dhalli IPRV-1 2,184.70 100 Active 50 0.3595 80.6 50 30.6

410 I_Dhalli IPRV-2 2,187.80 80 Active 15 0.0128 46.8 15 31.84

411 I_Dhalli IPRV-3 2,168.40 80 Active 20 0.2122 65.9 20 45.97

412 I_Dhalli IPRV-4 2,160.10 80 Active 15 0.094 57 15 42.09

413 I_Dhalli IPRV-5 2,142.90 80 Active 20 0.5692 70.7 20 50.8

414 I_Dhalli IPRV-6 2,204.50 100 Active 20 1.0849 64 20 44.11

415 I_Dhalli IPRV-7 2,207.30 80 Active 20 0.358 61.7 20 41.78

416 J_Kusumpti JPRV-1 1,935.90 80 Active 20 0.0038 35.4 20 15.45

417 J_Kusumpti JPRV-2 1,892.40 80 Active 20 0.1288 33.8 20 13.8

418 J_Kusumpti JPRV-3 1,924.10 80 Active 20 0.0394 25 20 5

419 J_Kusumpti JPRV-4 1,906.50 80 Active 20 0.1987 62.9 20 43.01

420 J_Kusumpti JPRV-5 1,929.20 80 Active 20 0.051 42 20 22.04

421 J_Kusumpti JPRV-6 1,911.00 150 Active 30 1.9094 57.9 30 27.93

422 J_Kusumpti JPRV-7 1,819.10 150 Active 20 1.8615 115.9 20 96.07

423 J_Kusumpti JPRV-8 1,702.20 80 Active 20 0.5494 55.6 20 35.66

424 J_Kusumpti JPRV-9 1,689.60 80 Active 15 0.4557 27.2 15 12.19

425 J_Kusumpti JPRV-10 1,758.80 100 Active 20 0.8092 69.3 20 49.38

426 J_Kusumpti JPRV-11 1,635.10 80 Active 20 0.6846 31.2 20 11.2

Page 133: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

133

SN PRV_Area Label Elevation (m) Diameter (Valve)

(mm) Status (Initial)

Pressure Setting (Initial) (m H2O)

Flow (ML/day) Pressure (From)

(m H2O) Pressure (To) (m

H2O) Headloss (m)

427 J_Kusumpti JPRV-12 1,593.50 80 Active 20 0.6794 54.9 20 34.96

428 J_Kusumpti JPRV-13 1,545.30 80 Active 20 0.6434 52.5 20 32.58

429 J_Kusumpti JPRV-14 1,658.30 80 Active 20 0.7318 42.8 20 22.85

430 J_Kusumpti JPRV-15 1,792.20 100 Active 30 0.1941 44.9 30 14.9

431 J_Kusumpti JPRV-16 1,791.70 80 Active 20 0.156 29.7 20 9.68

432 J_Kusumpti JPRV-17 2,011.20 150 Active 20 0.4484 48.1 20 28.14

433 J_Kusumpti JPRV-18 1,978.20 100 Active 20 0.3186 52.5 20 32.54

434 J_Kusumpti JPRV-19 2,002.80 80 Active 20 0.1363 51.6 20 31.61

435 J_Kusumpti JPRV-20 1,897.40 80 Active 20 0.1889 67.9 20 47.98

436 J_Kusumpti JPRV-21 1,878.90 80 Active 20 0.1179 38.4 20 18.47

437 J_Kusumpti JPRV-22 1,929.30 100 Active 20 0.796 33.8 20 13.81

438 J_Kusumpti JPRV-23 1,894.00 80 Active 20 0.0922 54.7 20 34.73

439 J_Kusumpti JPRV-24 1,899.60 80 Active 20 0.3209 47.4 20 27.4

440 J_Kusumpti JPRV-25 1,896.30 80 Active 20 0.0967 51.2 20 31.22

441 J_Kusumpti JPRV-26 1,873.60 80 Active 20 0.0601 40.4 20 20.45

442 J_Kusumpti JPRV-27 1,928.50 200 Active 20 3.479 100.7 20 80.87

443 J_Kusumpti JPRV-28 1,873.30 150 Active 20 1.1974 62.1 20 42.15

444 J_Kusumpti JPRV-29 1,820.70 100 Active 20 0.414 66.3 20 46.43

445 J_Kusumpti JPRV-30 1,963.00 150 Active 20 2.7442 79.5 20 59.57

446 J_Kusumpti JPRV-31 1,921.90 150 Active 20 2.3082 54.1 20 34.13

447 J_Kusumpti JPRV-32 1,892.40 150 Active 20 0.6656 48.8 20 28.87

448 J_Kusumpti JPRV-33 1,843.80 150 Active 20 0.2965 68.5 20 48.56

449 J_Kusumpti JPRV-34 1,804.50 80 Active 20 0.008 59.2 20 39.24

450 J_Kusumpti JPRV-35 1,801.80 80 Active 20 0.0562 60.9 20 41

451 J_Kusumpti JPRV-36 1,763.90 80 Active 20 0.0463 57.8 20 37.83

452 J_Kusumpti JPRV-37 1,850.50 150 Active 20 0.6223 83.8 20 63.88

453 J_Kusumpti JPRV-38 1,863.80 80 Active 20 0.1805 70.2 20 50.3

454 J_Kusumpti JPRV-39 1,872.50 150 Active 20 0.4209 66.8 20 46.89

455 J_Kusumpti JPRV-40 1,840.50 150 Active 20 0.3214 51.8 20 31.9

456 J_Kusumpti JPRV-41 1,802.60 100 Active 20 0.2499 57.6 20 37.63

457 J_Kusumpti JPRV-42 1,760.60 100 Active 20 0.2174 61.5 20 41.59

458 J_Kusumpti JPRV-43 1,718.90 80 Active 20 0.1421 60.7 20 40.75

459 J_Kusumpti JPRV-44 1,906.00 80 Active 20 0.0241 62.3 20 42.38

460 J_Kusumpti JPRV-45 1,907.70 150 Active 20 0.0305 60.6 20 40.68

461 J_Kusumpti JPRV-46 1,908.00 80 Active 20 0.1377 26.6 20 6.64

462 J_Kusumpti JPRV-47 1,914.90 150 Active 20 0.2164 53.8 20 33.83

463 J_Kusumpti JPRV-48 1,910.00 150 Active 20 0.8312 57.4 20 37.51

464 J_Kusumpti JPRV-49 1,914.60 200 Active 20 1.1108 53.3 20 33.41

465 J_Kusumpti JPRV-50 1,877.70 150 Active 20 0.1298 56.7 20 36.8

Page 134: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

134

SN PRV_Area Label Elevation (m) Diameter (Valve)

(mm) Status (Initial)

Pressure Setting (Initial) (m H2O)

Flow (ML/day) Pressure (From)

(m H2O) Pressure (To) (m

H2O) Headloss (m)

466 J_Kusumpti JPRV-51 1,819.30 80 Active 20 0.0607 78.2 20 58.34

467 J_Kusumpti JPRV-52 1,828.80 150 Active 20 0.026 57.8 20 37.83

468 J_Kusumpti JPRV-53 1,856.70 150 Active 20 0.3207 73.2 20 53.32

469 J_Kusumpti JPRV-54 1,863.60 100 Active 20 0.3885 65.4 20 45.46

470 J_Kusumpti JPRV-55 1,849.80 80 Active 20 0.08 79.3 20 59.39

471 J_Kusumpti JPRV-56 1,814.10 100 Active 20 0.3639 68.9 20 49

472 J_Kusumpti JPRV-57 1,790.80 100 Active 20 0.0431 45.5 20 25.51

473 J_Kusumpti JPRV-58 1,762.50 100 Active 20 0.3605 76.4 20 56.54

474 J_Kusumpti JPRV-59 1,672.20 80 Active 20 0.2987 51.4 20 31.44

475 J_Kusumpti JPRV-60 1,864.70 80 Active 20 0.3019 67.5 20 47.6

476 J_Kusumpti JPRV-61 1,776.20 80 Active 20 0.3392 38.8 20 18.79

477 J_Kusumpti JPRV-62 1,698.40 80 Active 20 0.0904 51.2 20 31.28

478 J_Kusumpti JPRV-63 1,731.20 80 Active 20 0.2188 62.5 20 42.6

479 J_Kusumpti JPRV-64 1,699.80 80 Active 20 0.2128 50.9 20 30.95

480 J_Kusumpti JPRV-65 1,816.70 80 Active 20 0.0554 56.7 20 36.76

481 J_Kusumpti JPRV-66 1,820.60 100 Active 20 0.4157 49.4 20 29.43

482 J_Kusumpti JPRV-67 1,782.70 100 Active 20 0.3873 57.2 20 37.23

483 J_Kusumpti JPRV-68 1,734.10 100 Active 20 0.2305 67.2 20 47.29

484 J_Kusumpti JPRV-69 1,807.50 80 Active 20 0.1673 50.5 20 30.54

485 J_Kusumpti JPRV-70 1,764.80 80 Active 20 0.1515 62.3 20 42.36

486 J_Kusumpti JPRV-71 1,900.40 80 Active 20 0.3389 38.3 20 18.36

487 J_Kusumpti JPRV-72 1,862.10 80 Active 20 0.0385 57.9 20 38

488 J_Kusumpti JPRV-73 1,819.80 80 Active 20 0.0384 43.6 20 23.59

489 J_Kusumpti JPRV-74 1,921.90 200 Active 20 0.0708 46 20 26.06

490 J_Kusumpti JPRV-75 1,873.60 100 Active 30 0.0374 68.2 30 38.3

491 J_Kusumpti JPRV-76 1,833.20 80 Active 20 0.1373 34.4 20 14.42

492 J_Kusumpti JPRV-77 1,869.60 150 Active 40 0.8217 75.7 40 35.73

493 J_Kusumpti JPRV-78 1,913.30 150 Active 20 1.4144 61.6 20 41.73

494 J_Kusumpti JPRV-79 1,912.00 100 Active 20 0.8385 47.7 20 27.72

495 J_Kusumpti JPRV-80 1,880.60 80 Active 20 0.2769 50 20 30.07

496 J_Kusumpti JPRV-81 1,779.50 80 Active 20 0.0329 36.7 20 16.69

497 J_Kusumpti JPRV-82 1,827.40 80 Active 20 0.2578 60.1 20 40.13

498 J_Kusumpti JPRV-83 1,994.30 100 Active 20 0.5182 54.3 20 34.39

499 J_Kusumpti JPRV-84 1,896.10 80 Active 20 0.0498 51.7 20 31.74

500 J_Kusumpti JPRV-85 1,809.60 80 Active 20 0.2981 68.4 20 48.51

501 J_Kusumpti JPRV-86 1,821.20 80 Active 20 0.0175 60.7 20 40.81

502 J_Kusumpti JPRV-87 1,925.90 100 Active 20 0.3881 49.8 20 29.84

503 J_Kusumpti JPRV-88 1,974.20 80 Active 20 0.1203 73.4 20 53.51

504 J_Kusumpti JPRV-89 1,961.90 100 Active 20 0.4016 61 20 41.1

Page 135: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

135

SN PRV_Area Label Elevation (m) Diameter (Valve)

(mm) Status (Initial)

Pressure Setting (Initial) (m H2O)

Flow (ML/day) Pressure (From)

(m H2O) Pressure (To) (m

H2O) Headloss (m)

505 J_Kusumpti JPRV-90 1,816.30 100 Active 20 0.0675 60.2 20 40.29

506 J_Kusumpti JPRV-91 1,824.20 100 Active 20 0.1413 52.2 20 32.23

507 J_Kusumpti JPRV-92 1,893.30 80 Active 20 0.0055 52.4 20 32.42

508 J_Kusumpti JPRV-93 1,862.30 80 Active 20 0.3472 68.5 20 48.63

509 J_Kusumpti JPRV-94 1,866.60 150 Active 20 0.026 67.8 20 47.91

510 J_Kusumpti JPRV-95 1,729.80 80 Active 20 0.0904 64.2 20 44.31

511 J_Kusumpti JPRV-96 1,913.20 80 Active 20 0.3019 48.3 20 28.37

512 J_Kusumpti JPRV-97 1,853.50 80 Active 20 0.0554 42.6 20 22.64

513 J_Kusumpti JPRV-98 1,942.20 80 Active 20 0.3019 101.7 20 81.9

514 J_Kusumpti JPRV-99 1,704.80 80 Active 20 0.2987 75.3 20 55.41

515 J_Kusumpti JPRV-100 1,843.40 80 Active 20 0.0384 88.7 20 68.86

516 J_Kusumpti JPRV-101 1,876.10 80 Active 20 0.0554 70.5 20 50.62

517 J_Kusumpti JPRV-102 1,693.90 80 Active 20 0.7318 70.2 20 50.31

518 J_Kusumpti JPRV-103 1,847.90 80 Active 20 0.1373 86.9 20 67.03

519 J_Kusumpti JPRV-104 1,848.90 100 Active 20 0.3978 34.8 20 14.79

520 J_Kusumpti JPRV-105 1,796.30 80 Active 20 0.4038 74.4 20 54.55

521 J_Kusumpti JPRV-106 1,875.50 80 Active 20 0.0207 17.8 17.8 0

522 J_Kusumpti JPRV-107 1,887.20 80 Active 20 0.0439 48 20 28.03

523 J_Kusumpti JPRV-108 1,746.40 80 Active 20 0.7763 19.5 19.5 0

524 K_Jakhu KPRV-1 2,329.30 400 Active 20 11.6217 55.7 20 35.74

525 K_Jakhu KPRV-2 2,289.70 400 Active 25 10.3253 59.3 25 34.37

526 K_Jakhu KPRV-3 2,129.40 150 Active 20 2.2777 28.1 20 8.13

527 K_Jakhu KPRV-4 2,103.20 150 Active 20 1.9926 43.4 20 23.4

528 K_Jakhu KPRV-5 2,219.70 80 Active 20 0.3354 25.6 20 5.57

529 K_Jakhu KPRV-6 2,169.30 150 Active 20 2.0137 71.8 20 51.89

530 K_Jakhu KPRV-7 2,070.30 150 Active 20 1.253 87.7 20 67.82

531 K_Jakhu KPRV-8 2,276.90 200 Active 20 2.9943 37.1 20 17.15

532 K_Jakhu KPRV-9 2,244.60 200 Active 20 0.9941 52.1 20 32.21

533 K_Jakhu KPRV-10 2,221.30 200 Active 20 0.7367 43.3 20 23.29

534 K_Jakhu KPRV-11 2,227.00 250 Active 20 7.1875 85.7 20 65.83

535 K_Jakhu KPRV-12 2,162.70 200 Active 30 0.1366 78.3 30 48.4

536 K_Jakhu KPRV-13 2,139.10 150 Active 20 2.3858 40.2 20 20.23

537 K_Jakhu KPRV-14 2,140.60 150 Active 20 1.6362 46.5 20 26.57

538 K_Jakhu KPRV-15 2,153.30 100 Active 20 0.8037 90.2 20 70.36

539 K_Jakhu KPRV-16 2,300.60 80 Active 20 0.0929 48.4 20 28.49

540 K_Jakhu KPRV-17 2,203.00 80 Active 20 0.0333 37.8 20 17.8

541 K_Jakhu KPRV-18 2,225.00 80 Active 20 0.1271 62.4 20 42.51

542 K_Jakhu KPRV-19 2,288.70 300 Active 20 7.4073 72.2 20 52.3

543 K_Jakhu KPRV-20 2,190.60 250 Active 20 5.0099 36.2 20 16.27

Page 136: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

136

SN PRV_Area Label Elevation (m) Diameter (Valve)

(mm) Status (Initial)

Pressure Setting (Initial) (m H2O)

Flow (ML/day) Pressure (From)

(m H2O) Pressure (To) (m

H2O) Headloss (m)

544 K_Jakhu KPRV-21 2,238.10 200 Active 20 4.7181 83.9 20 63.99

545 K_Jakhu KPRV-22 2,114.50 150 Active 20 1.0233 91.3 20 71.45

546 K_Jakhu KPRV-23 2,073.90 150 Active 20 0.9561 59.4 20 39.52

547 K_Jakhu KPRV-24 1,996.20 80 Active 40 0.4483 87.7 40 47.78

548 K_Jakhu KPRV-25 2,230.40 150 Active 20 1.0355 71.4 20 51.46

549 K_Jakhu KPRV-26 2,187.10 150 Active 20 0.3776 63.1 20 43.15

550 K_Jakhu KPRV-27 2,178.50 150 Active 20 1.7884 75.9 20 55.98

551 K_Jakhu KPRV-28 2,134.60 150 Active 20 1.3208 60.5 20 40.56

552 K_Jakhu KPRV-29 2,095.80 80 Active 20 0.4366 55 20 35.06

553 K_Jakhu KPRV-30 2,110.20 200 Active 20 2.2963 96.5 20 76.63

554 K_Jakhu KPRV-31 2,064.60 150 Active 20 1.5598 63.7 20 43.81

555 K_Jakhu KPRV-32 2,233.00 80 Active 30 0.1321 107.3 30 77.46

556 K_Jakhu KPRV-33 2,256.80 100 Active 20 0.6067 81.1 20 61.25

557 K_Jakhu KPRV-34 2,190.70 150 Active 20 0.3016 64.3 20 44.4

558 K_Jakhu KPRV-35 2,163.10 150 Active 20 2.6484 80.7 20 60.77

559 K_Jakhu KPRV-36 2,074.40 80 Active 20 0.2063 51.5 20 31.51

560 K_Jakhu KPRV-37 2,135.70 80 Active 20 0.2266 68.9 20 48.99

561 K_Jakhu KPRV-38 2,341.60 300 Active 20 7.4073 50.4 20 30.47

562 K_Jakhu KPRV-39 2,208.20 250 Active 20 5.0099 97.6 20 77.77

563 K_Jakhu KPRV-40 2,365.40 400 Active 20 11.6217 64.5 20 44.55

564 K_Jakhu KPRV-41 2,308.40 250 Active 20 5.5119 79.7 20 59.86

565 K_Jakhu KPRV-42 2,221.20 100 Active 20 1.1653 57.1 20 37.19

566 L_North_Oak_1 LPRV-1 2,205.40 100 Active 20 0.5019 58.3 20 38.37

567 L_North_Oak_1 LPRV-2 2,163.70 80 Active 20 0.3839 60 20 40.08

568 L_North_Oak_1 LPRV-3 2,196.50 80 Active 20 0.0239 68.6 20 48.65

569 L_North_Oak_1 LPRV-4 2,208.30 100 Active 20 0.0915 56.8 20 36.88

570 L_North_Oak_1 LPRV-5 2,199.10 80 Active 20 0.0844 66 20 46.11

571 M_Shoghi MPRV-1 1,822.10 100 Active 20 0.2942 53.2 20 33.3

572 M_Shoghi MPRV-2 1,615.80 100 Active 20 0.4452 57.7 20 37.82

573 M_Shoghi MPRV-3 1,795.20 150 Active 20 0.3434 80.2 20 60.34

574 M_Shoghi MPRV-4 1,820.30 100 Active 20 0.0236 55 20 35.07

575 M_Shoghi MPRV-5 1,791.80 80 Active 20 0.0927 85.7 20 65.79

576 M_Shoghi MPRV-6 1,771.90 150 Active 20 0.6653 36.8 20 16.81

577 M_Shoghi MPRV-7 1,712.20 150 Active 20 0.5171 66.1 20 46.18

578 M_Shoghi MPRV-8 1,568.80 100 Active 20 0.4267 63.2 20 43.29

579 M_Shoghi MPRV-9 1,658.90 80 Active 20 0.0432 73.1 20 53.23

580 M_Shoghi MPRV-10 1,760.30 150 Active 20 0.5823 31.3 20 11.27

581 M_Shoghi MPRV-11 1,789.00 150 Active 20 0.6653 89.9 20 70.08

582 M_Shoghi MPRV-12 1,655.30 100 Active 20 0.4452 75.7 20 55.84

Page 137: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

137

Abstract of PRVs is shown in Table 7.10. Table 7.10: Abstract of PRVs

Shimla Area Diameter (mm) Grand

Total 80 100 150 200 250 300 400

B_PostSanjauli_450DI 77 25 39 23 2 4 170

C_Ridge 10 11 12 5 1 39

D_PostRidge_400CI 24 14 18 3 59

E_Mains_Field 28 13 19 7 3 70

F_Dhingodevi 45 5 12 4 1 67

G_Mashobra 1 1 1 3

I_Dhalli 5 2 7

J_Kusumpti 63 22 20 3 108

K_Jakhu 9 3 15 6 4 2 3 42

L_North_Oak_1 3 2 5

M_Shoghi 2 5 5 12

Grand Total 266 103 141 51 12 6 3 582

PRVs as shown in Tables 7.9 and 7.10 are also shown in Figure 7.9 for entire Shimla.

Figure 7.9: PRVs in entire Shimla.

Page 138: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

138

The Pressure Surface

Pressure surfaces without PRV for entire Shimla area is prepared and shown in Figure 7.10 and with PRV in Figure 7.11.

From Figures 7.10 and 7.11, it is observed that if PRVs are not installed then there is huge nodal pressure of 374 m, however, when PRVs are considered the nodal pressure is maintained in the range of 20 to 98 m. Thus, PRVs play very important role in pressure management of the Shimla area.

Further Reducing Pressure to 20m Direct Acting Valves are used in high rise buildings to control pressure fluctuations between floors. The same valves are also used in Municipal water systems at service connections in a high pressure distribution zone. A typical direct acting PRV is shown in Figure 7.12.

Figure 7.10: Without PRV: Pressures in Shimla area

Figure 7.11: With PRV: Pressures in Shimla area

Page 139: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

139

Figure 7.12: Direct acting PRV

(d) Pressure Gauges

Pressure gauges at critical points are required to measure the pressures in each of pressure zone cum DMA. It is suggested to install 5 pressure gauges per zone. So, 320(5x64) pressures gauges are required.

7.10 OTHER VALVES

7.10.1 Isolation Valves

Isolation valves are operated for the two reasons- (i) repairs during O&M and (ii) closing and opening during the ‘Step Test.’ Formation of segments are essential for both of these two reasons. Details of isolation valves are shown in Appendix-K. Abstract of the isolation valves (sluice/ Butter fly) used in the distribution system to make the segments is shown in Table 7.11. Table 7.11: Abstract of isolation valves

Shimla Area Diameter (mm)

Grand Total

80 100 150 200 250 300 400

B_PostSanjauli_450DI 84 27 70 31 2 14 228

C_Ridge 19 17 28 6 1 2 73

D_PostRidge_400CI 33 23 25 7 8 96

E_Mains_Field 62 10 71 19 2 8 172

F_Dhingodevi 60 12 35 8 3 118

G_Mashobra 1 4 4 1 1 11

H_Craignaino 2 3 5

I_Dhalli 6 6 5 1 1 19

J_Kusumpti 69 31 65 14 3 182

K_Jakhu 11 1 27 7 3 1 1 51

L_North_Oak_1 5 3 11 4 23

M_Shoghi 7 4 3 14

Grand Total 352 141 348 101 8 41 1 992

Segments formed due to isolation valves are shown in Appendix L.

Page 140: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

140

7.10.2 Flow Controlling Valves

Flow controlling valves (FCV) are required to regulate the flow in different pressure zones. Flow of water at the entry point of each pressure zone/ DMA should be equal to the demand in the zone. Thus, FCVs enable equitable flow in the distribution system. They are shown in Table 7.12. Though these valves are shown as “Inactive” (fully open), during commissioning of the project, the pilots of the valves shall be adjusted to the flow which is equivalent to the demands in the pressure zones. FCVs should have “RTU/ condor” having capacity to transmit signals to

the SCADA system. Table 7.12: Details of FCV

SN FCV_Area Label Elevation (m) Diameter

(Valve) (mm)

1 B_PostSanjauli_450DI BFCV-1 2,107.10 200

2 B_PostSanjauli_450DI BFCV-2 2,115.50 200

3 B_PostSanjauli_450DI BFCV-3 2,165.00 300

4 B_PostSanjauli_450DI BFCV-4 2,055.00 250

5 B_PostSanjauli_450DI BFCV-5 2,130.00 300

6 B_PostSanjauli_450DI BFCV-6 2,066.50 200

7 B_PostSanjauli_450DI BFCV-7 2,062.90 300

8 B_PostSanjauli_450DI BFCV-8 2,179.00 300

9 B_PostSanjauli_450DI BFCV-9 2,181.00 150

10 B_PostSanjauli_450DI BFCV-10 2,197.80 300

11 B_PostSanjauli_450DI BFCV-11 2,212.10 300

12 B_PostSanjauli_450DI BFCV-12 2,199.20 300

13 C_Ridge CFCV-1 2,198.10 350

14 D_PostRidge_400CI DFCV-1 2,090.70 300

15 D_PostRidge_400CI DFCV-2 2,001.40 300

16 D_PostRidge_400CI DFCV-3 2,060.30 150

17 D_PostRidge_400CI DFCV-4 2,057.00 200

18 D_PostRidge_400CI DFCV-5 2,131.40 300

19 E_Mains_Field EFCV-1 2,184.00 300

20 E_Mains_Field EFCV-2 2,183.60 300

21 E_Mains_Field EFCV-3 2,093.00 250

22 E_Mains_Field EFCV-4 2,083.70 300

23 E_Mains_Field EFCV-5 1,959.30 150

24 E_Mains_Field EFCV-6 1,949.10 150

25 E_Mains_Field EFCV-7 1,904.30 150

26 E_Mains_Field EFCV-8 1,859.40 200

27 E_Mains_Field EFCV-9 1,900.30 300

28 E_Mains_Field EFCV-10 1,995.40 300

29 E_Mains_Field EFCV-11 2,018.30 200

30 E_Mains_Field EFCV-12 2,028.60 200

31 F_Dhingodevi FFCV-4 2,307.00 200

32 F_Dhingodevi FFCV-5 2,307.00 300

33 F_Dhingodevi FFCV-6 2,303.60 200

Page 141: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

141

SN FCV_Area Label Elevation (m) Diameter

(Valve) (mm)

34 F_Dhingodevi FFCV-7 2,290.00 300

35 F_Dhingodevi FFCV-8 2,275.00 300

36 G_Mashobra GFCV-1 2,315.00 300

37 G_Mashobra GFCV-2 2,315.00 150

38 H_Craignaino HFCV-1 2,315.00 200

39 I_Dhalli IFCV-1 2,268.80 100

40 I_Dhalli IFCV-2 2,275.00 300

41 J_Kusumpti JFCV-4 1,970.00 150

42 J_Kusumpti JFCV-5 1,970.00 150

43 J_Kusumpti JFCV-6 1,970.00 150

44 J_Kusumpti JFCV-7 1,946.70 150

45 J_Kusumpti JFCV-8 1,976.50 200

46 J_Kusumpti JFCV-9 2,049.50 250

47 J_Kusumpti JFCV-10 2,030.70 250

48 J_Kusumpti JFCV-11 2,060.00 200

49 J_Kusumpti JFCV-12 2,060.00 300

50 J_Kusumpti JFCV-13 1,968.10 300

51 J_Kusumpti JFCV-14 1,892.30 150

52 J_Kusumpti JFCV-15 1,965.20 150

53 K_Jakhu KFCV-1 2,420.50 400

54 K_Jakhu KFCV-2 2,392.00 350

55 L_North_Oak_1 LFCV-3 2,250.00 200

56 M_Shoghi MFCV-2 1,875.90 200

57 B_PostSanjauli_450DI BFCV-13 2,121.20 200

58 B_PostSanjauli_450DI BFCV-14 2,112.80 200

59 B_PostSanjauli_450DI BFCV-15 2,190.40 200

60 B_PostSanjauli_450DI BFCV-16 2,105.00 200

61 B_PostSanjauli_450DI BFCV-17 1,930.70 250

62 B_PostSanjauli_450DI BFCV-18 2,091.30 200

63 B_PostSanjauli_450DI BFCV-19 1,952.80 150

64 B_PostSanjauli_450DI BFCV-20 2,081.20 100

65 B_PostSanjauli_450DI BFCV-21 1,988.40 250

66 B_PostSanjauli_450DI BFCV-22 2,041.00 200

67 B_PostSanjauli_450DI BFCV-23 2,221.30 300

68 B_PostSanjauli_450DI BFCV-24 2,157.80 150

69 C_Ridge CFCV-2 2,114.80 200

70 C_Ridge CFCV-3 2,119.30 250

71 D_PostRidge_400CI DFCV-6 2,077.00 200

72 D_PostRidge_400CI DFCV-7 1,987.40 300

73 D_PostRidge_400CI DFCV-8 2,023.80 150

74 D_PostRidge_400CI DFCV-9 2,095.60 200

75 E_Mains_Field EFCV-13 2,039.40 250

76 E_Mains_Field EFCV-14 2,172.90 300

77 E_Mains_Field EFCV-15 1,987.90 200

78 E_Mains_Field EFCV-16 1,965.50 150

79 E_Mains_Field EFCV-17 1,847.50 150

Page 142: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

142

SN FCV_Area Label Elevation (m) Diameter

(Valve) (mm)

80 F_Dhingodevi FFCV-1 2,261.00 200

81 F_Dhingodevi FFCV-2 2,232.30 200

82 F_Dhingodevi FFCV-3 2,248.50 150

83 J_Kusumpti JFCV-1 1,931.40 150

84 J_Kusumpti JFCV-2 1,901.30 150

85 J_Kusumpti JFCV-3 1,961.00 200

86 K_Jakhu KFCV-3 2,285.30 250

87 K_Jakhu KFCV-4 2,380.10 250

88 L_North_Oak_1 LFCV-1 2,250.00 200

89 L_North_Oak_1 LFCV-2 2,250.00 200

90 M_Shoghi MFCV-1 1,799.60 150

Note: At the time of commissioning and Flow Setting (Initial) in (ML/day) shall be as per the demand of respective operational zone / DMA. Abstract of the Flow Control Valves (FCV) is shown in Table 7.13. All FCVs are shown in Figure 7.13. Table 7.13: Abstract of the FCVs

Area Diameter (mm)

100 150 200 250 300 350 400 Grand Total

B_PostSanjauli_450DI 1 3 9 3 8 24

C_Ridge 1 1 1 3

D_PostRidge_400CI 2 3 4 9

E_Mains_Field 5 4 2 6 17

F_Dhingodevi 1 4 3 8

G_Mashobra 1 1 2

H_Craignaino 1 1

I_Dhalli 1 1 2

J_Kusumpti 8 3 2 2 15

K_Jakhu 2 1 1 4

L_North_Oak_1 3 3

M_Shoghi 1 1 2

Grand Total 2 21 29 10 25 2 1 90

Page 143: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

143

Figure 7.13: FCVs in entire Shimla.

7.10.3 Bulk Meters

Bulk meters required at the outlets of the tanks to measure the flow into the system and are shown in Table 7.14. Table 7.14: Number of bulk meters

SN BM_Area Label Elevation

(m) BM_Dia

1 B_PostSanjauli_450DI BBM-1 2,115.50 200

2 B_PostSanjauli_450DI BBM-2 2,165.00 300 3 B_PostSanjauli_450DI BBM-3 2,055.00 250

4 B_PostSanjauli_450DI BBM-4 2,107.30 200 5 B_PostSanjauli_450DI BBM-5 2,130.00 300

6 B_PostSanjauli_450DI BBM-6 2,072.90 200 7 B_PostSanjauli_450DI BBM-7 2,066.60 200

8 B_PostSanjauli_450DI BBM-8 2,063.80 300 9 B_PostSanjauli_450DI BBM-9 2,179.80 300

10 B_PostSanjauli_450DI BBM-10 2,181.30 150 11 B_PostSanjauli_450DI BBM-11 2,197.90 300

Page 144: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

144

SN BM_Area Label Elevation

(m) BM_Dia

12 B_PostSanjauli_450DI BBM-12 2,212.10 300 13 B_PostSanjauli_450DI BBM-13 2,199.20 300

14 C_Ridge CBM-1 2,198.20 350 15 D_PostRidge_400CI DBM-1 2,091.00 300

16 D_PostRidge_400CI DBM-2 2,001.50 300 17 D_PostRidge_400CI DBM-3 2,060.40 150

18 D_PostRidge_400CI DBM-4 2,057.00 200 19 D_PostRidge_400CI DBM-5 2,131.40 300

20 E_Mains_Field EBM-1 2,184.20 300 21 E_Mains_Field EBM-2 2,183.90 300

22 E_Mains_Field EBM-3 2,093.40 250 23 E_Mains_Field EBM-4 2,083.90 300

24 E_Mains_Field EBM-5 1,959.60 150 25 E_Mains_Field EBM-6 1,949.00 150

26 E_Mains_Field EBM-7 1,904.30 150 27 E_Mains_Field EBM-8 1,859.60 200

28 E_Mains_Field EBM-9 1,900.40 300 29 E_Mains_Field EBM-10 1,995.30 300

30 E_Mains_Field EBM-11 2,018.50 200 31 E_Mains_Field EBM-12 2,029.40 200

32 F_Dhingodevi FBM-1 2,307.10 200 33 F_Dhingodevi FBM-2 2,306.80 300

34 F_Dhingodevi FBM-3 2,304.10 200 35 F_Dhingodevi FBM-4 2,290.00 300

36 F_Dhingodevi FBM-5 2,275.00 300 37 G_Mashobra GBM-1 2,315.00 300

38 G_Mashobra GBM-2 2,315.00 150 39 H_Craignaino HBM-1 2,315.00 200

40 I_Dhalli IBM-1 2,269.10 100 41 I_Dhalli IBM-2 2,275.00 300

42 J_Kusumpti JBM-4 1,970.00 150 43 J_Kusumpti JBM-5 1,970.00 150

44 J_Kusumpti JBM-6 1,970.00 150 45 J_Kusumpti JBM-7 1,946.90 150

46 J_Kusumpti JBM-8 1,976.70 200 47 J_Kusumpti JBM-9 2,050.00 250

48 J_Kusumpti JBM-10 2,030.70 250 49 J_Kusumpti JBM-11 2,060.00 200

50 J_Kusumpti JBM-12 2,060.00 300 51 J_Kusumpti JBM-13 1,968.40 300

52 J_Kusumpti JBM-14 1,893.10 150 53 J_Kusumpti JBM-15 1,965.30 150

54 K_Jakhu KBM-3 2,422.80 400 55 K_Jakhu KBM-4 2,392.00 350

56 L_North_Oak_1 LBM-1 2,250.00 200 57 M_Shoghi MBM-2 1,876.60 200

58 B_PostSanjauli_450DI BBM-14 2,121.00 200 59 B_PostSanjauli_450DI BBM-15 2,114.30 200

Page 145: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

145

SN BM_Area Label Elevation

(m) BM_Dia

60 B_PostSanjauli_450DI BBM-16 2,190.50 200 61 B_PostSanjauli_450DI BBM-17 2,105.00 200

62 B_PostSanjauli_450DI BBM-18 1,930.90 250 63 B_PostSanjauli_450DI BBM-19 2,091.20 200

64 B_PostSanjauli_450DI BBM-20 1,952.40 150 65 B_PostSanjauli_450DI BBM-21 2,081.30 100

66 B_PostSanjauli_450DI BBM-22 1,988.80 250 67 B_PostSanjauli_450DI BBM-23 2,042.30 200

68 B_PostSanjauli_450DI BBM-24 2,221.20 300 69 B_PostSanjauli_450DI BBM-25 2,161.30 150

70 C_Ridge CBM-2 2,116.90 200 71 C_Ridge CBM-3 2,121.00 250

72 D_PostRidge_400CI DBM-6 2,078.20 200 73 D_PostRidge_400CI DBM-7 1,987.80 300

74 D_PostRidge_400CI DBM-8 2,024.80 150 75 D_PostRidge_400CI DBM-9 2,097.00 200

76 E_Mains_Field EBM-13 2,040.10 250 77 E_Mains_Field EBM-14 2,173.40 300

78 E_Mains_Field EBM-15 1,987.90 200 79 E_Mains_Field EBM-16 1,965.70 150

80 E_Mains_Field EBM-17 1,847.90 150 81 F_Dhingodevi FBM-6 2,261.30 200

82 F_Dhingodevi FBM-7 2,234.80 200 83 F_Dhingodevi FBM-8 2,249.70 150

84 J_Kusumpti JBM-1 1,933.10 150 85 J_Kusumpti JBM-2 1,901.90 150

86 J_Kusumpti JBM-3 1,961.00 200 87 K_Jakhu KBM-1 2,286.40 250

88 K_Jakhu KBM-2 2,380.60 250 89 L_North_Oak_1 H-103 2,250.00 200

90 L_North_Oak_1 H-104 2,250.00 200 91 M_Shoghi MBM-1 1,799.70 150

Abstract of the bulk meters is shown in Table 7.15.

Page 146: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

146

Table 7.15: Abstract of the bulk meters

Area

Diameter (mm) Grand Total 100 150 200 250 300 350 400

B_PostSanjauli_450DI

1 3 10 3 8 25

C_Ridge 1 1 1 3

D_PostRidge_400CI 2 3 4 9

E_Mains_Field 5 4 2 6 17

F_Dhingodevi 1 4 3 8

G_Mashobra 1 1 2

H_Craignaino 1 1

I_Dhalli 1 1 2

J_Kusumpti 8 3 2 2 15

K_Jakhu 2 1 1 4

L_North_Oak_1 3 3

M_Shoghi 1 1 2

Grand Total 2 21 30 10 25 2 1 91

All Bulk Meters are shown in Figure 7.23.

Page 147: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

147

Figure 7.14: Bulk Meters in entire Shimla.

7.10.4 Scour Valves

Scour valves are proposed at the lowest elevations. Details of scour valves is shown in Appendix-M and Abstract of scour valves is shown in Table 7.16.

Page 148: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

148

Table 7.16: Abstract of scour valves

Shimla Area Diameter (mm) Grand

Total 80 100 150 200

B_PostSanjauli_450DI 51 2 3 56

C_Ridge 11 1 12

D_PostRidge_400CI 30 2 1 33

E_Mains_Field 32 2 2 36

F_Dhingodevi 38 1 39

G_Mashobra 4 4

H_Craignaino 1 1

I_Dhalli 7 7

J_Kusumpti 33 33

K_Jakhu 14 1 15

L_North_Oak_1 10 10

M_Shoghi 3 3

Grand Total 234 8 6 1 249

All Scour Valves are shown in Figure 7.15.

Figure 7.15: Scour Valves in entire Shimla.

Page 149: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

149

7.11 SCADA

The project includes establishment of bulk meters, flow control valves and pressure reducing valves and measuring instruments like pressure gauges at various components like intake, water treatment plants and pumping stations etc of the water supply system. The data received shall be processed and analyzed in real time by a Supervisory Control and Data Acquisition (SCADA). The SCADA shall also be used to help water audit and monitoring the water quality in the distribution system.

In each pressure zone cum DMA, the values of the flow meter readings as well as pressures shall be measured and transmitted at control centre. The success of the project lies with the effective pressure management within each of the pressure zone cum DMA. Hence, SCADA must be installed for the project.

**

Page 150: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

150

CHAPTER-8

DESIGN OF TRANSMISSION MAINS

8.1 NETWORK IN SHIMLA AREA

Transmission pipe network and tanks in Shimla is shown in Figure 8.1.

Figure 8.1: Existing tanks at Sanjauli1 and Sanjauli2 areas

Water Supply Arrangement: Existing water supply to the Shimla City is shown in Table 8.1. Table 8.1: Existing water supply

Source MLD

Gumma 21

Giri 14

Jagroti 4.5

Ashwin Khad 4.5

Total 4

Water supply arrangement of Shimla city is shown in Figure 8.2.

Page 151: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

151

Figure 8.2: Flow diagram of water supply of Shimla

0.2

0.8

2.341

8.035

14.513

45.936

1.453

3.153

Craignaino

7 ML

Mashobra

6.547 .547

12.193

Sanjauli Tank

Kusumpti Tank

B_PostSanjauli_450DI

D_PostRidge_400CI

C_Ridge

E_Mains_Field

F_Dhingodevi

G_Mashobra

H_Craignaino

I_Dhalli

J_Kusumpti

L_North_Oak_1

K_Jaku

M_Shoghi

A_Demo_Area

Gumma

Ridge Tank

Giri

Ashwin Khad

Proposed Kol Dam

Existing Source

Shimla Area

MBR

Legend

Jagroti

23.743

1.08

4.137

60.449

8.53

18.975

4.5

7.693

1.341

10.739

8

7.666

4.5

21

14

Dalli

2.403

13 17.394

16.825

1023 mm dia

820 mm dia

470 mm dia

Page 152: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

152

There are number of outlets emanating from the Sanjauli, Ridge and Kusumpti tanks supplying water to various operational zones. The groups of such zones are clubbed together in the area. Such areas in the distribution area of Shimla are shown in Figure 6.1 and Table 6.1 of the Chapter 6 and also in Table 8.2.

8.2 PROJECTION OF DEMANDS

Demands for the year 2020, 2035 and 2050 of various operational zones of the tanks are shown in Table 8.2. Table 8.2: Projection of demand

R_id Area Area_ID Tank_Name Demand (2020) (MLD)

Demand (2035) (MLD)

Demand (2050) in

model (MLD)

1

A_Demo_Area

A North_Oak_2 0.195 0.258 0.348 2 A New_Housing_Board 0.282 0.373 0.502 3 A Bangala_Colony 0.245 0.324 0.436 4 A Corner_House 0.830 1.098 1.479

5 A Engine_Ghar 0.695 0.919 1.238

6 A Old_Housing_Board1 0.199 0.263 0.354 7 A Old_Housing_Board2 0.149 0.197 0.265 8 A Totu 3.435 4.540 6.117

Total 6.029 7.970 10.739

9

B_PostSanjauli_450DI

B Kelestone1 1.412 1.866 2.515 10 B Kelestone2/Bharari 1.517 2.005 2.702

11 B Fingask_1 0.514 0.679 0.915

12 B Fingask_2 1.241 1.641 2.210 13 B Tutikandi_1 0.388 0.512 0.690 14 B Tutikandi_2 1.747 2.309 3.111 15 B Z7_Tutikandi_3 0.301 0.398 0.537 16 B Advance_Study_Steel_Tank 1.072 1.417 1.909 17 B IIAS_Summer Hill 0.665 0.879 1.184 18 B Z6_Baluganj_Harinagar 0.590 0.779 1.050 19 B Chakkar/Sandal 1.365 1.805 2.431 20 B Kamnadevi_Temple 1.604 2.120 2.857 21 B Ridge_direct_from Sanjauli 0.916 1.211 1.632

Total 13.330 17.621 23.743

22 C_Ridge

C Ridge 2.323 3.070 4.137

Total 2.323 3.070 4.137

23

D_PostRidge

D Tara_Hall 1.517 2.005 2.702 24 D Phagali 1.449 1.915 2.580 25 D Summerhill Bazar 0.100 0.132 0.177 26 D HP_University 0.316 0.417 0.563 27 D Z4_New1 1.130 1.494 2.013

Total 4.511 5.964 8.035

28

E_Mains_Field

E Mains_Field1 1.617 2.137 2.879 29 E Mains_Field2 1.454 1.923 2.591 30 E Shivpuri 0.818 1.081 1.456 31 E Khalini_Forest_Steel_Tank 1.470 1.944 2.619 32 E Z3_Knolls_Wood 1.741 2.301 3.101 33 E SDA_Complex 0.668 0.883 1.189 34 E Knolls_Wood 0.903 1.193 1.608 35 E Taramata_Temple_Sector1 0.183 0.242 0.326 36 E New_Shimla_Sector2 0.175 0.232 0.312 37 E New_Shimla_Sector3A 0.236 0.313 0.421 38 E New_Shimla_Sector4 0.982 1.298 1.749 39 E New_Shimla_Sector3 0.407 0.538 0.724

Total 10.653 14.083 18.975

Page 153: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

153

R_id Area Area_ID Tank_Name Demand (2020) (MLD)

Demand (2035) (MLD)

Demand (2050) in

model (MLD)

40

F_Dhingodevi

F Z8_Dhingo5 1.779 2.352 3.169 41 F Z5_Dhingodevi4 1.172 1.550 2.088 42 F Dhingodevi1 0.560 0.741 0.998 43 F Dhingodevi2 0.510 0.674 0.908 44 F Z1_Dhingodevi3 0.283 0.374 0.504

Total 4.304 5.689 7.666

45 G_Mashobra

G Mashobra 1.770 2.340 3.153

Total 1.770 2.340 3.153

46 H_Craignaino

H Craignaino 0.816 1.079 1.453

Total 0.816 1.079 1.453

47

I_Dhalli

I Dhalli_WTP1_Sump 0.514 0.679 0.915 48 I Dhalli_WTP2_Sump 0.836 1.105 1.488

Total 1.349 1.783 2.403

49

J_Kusumpti

J Sackrala 0.935 1.236 1.665 50 J Z10_Tibti_Panthaghati 0.658 0.870 1.172 51 J Basant_Vihar 1.085 1.434 1.933 52 J Phase_2_New_Shimla_Sector_6 0.284 0.376 0.506 53 J Phase_2_New_Shimla 0.288 0.380 0.513 54 J Vikasnagar 0.922 1.219 1.642 55 J Z11_Sargeen_Chowk 0.268 0.355 0.478 56 J IAS_Colony1 0.061 0.081 0.109 57 J IAS_Colony2 0.359 0.475 0.640 58 J IAS_Colony3 0.069 0.091 0.123 59 J Kusumpti 0.642 0.848 1.143 60 J HP_PWD_Near_Kusumpti 1.274 1.684 2.269

Total 6.845 9.049 12.193

61

I_Jakhu

K Jakhu 2.245 2.967 3.998 62 K Z2_Jakhu2 2.544 3.364 4.532

Total 4.789 6.331 8.530

63 J_North_Oak_1

L North_Oak_1 0.607 0.802 1.080

Total 0.607 0.802 1.080

64 K_Shoghi

M Z9_Shoghi 0.753 0.996 1.341

Total 0.753 0.996 1.341

Grand Total 58.08 76.78 103.45

8.3 DESIGN OF TRANSMISSION/ FEEDER MAINS

Transmission/ feeder mains are shown in Chapter 6. Following scenario of this transmission mains are created in WaterGEMS:

1. A_Demo_Area 2. B_PostSanjauli_450DI 3. C_Ridge 4. D_PostRidge_400CI 5. E_Mains_Field 6. F_Dhingodevi_and_Dalli 7. G_Mashobra and Craignaino 8. H_Kusumpti 9. I_Jakhu 10. J_North_Oak_1 11. K_Shoghi

Page 154: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

154

Consolidated demands for the year 2020, 2035 and 2050 of various Shimla areas are shown in Table 8.3. The transmission mains of these different areas are designed for the demands of the year 2050. Table 8.3: Projection of demand

SN Shimla Area Demand (2020) (MLD)

Demand (2035) (MLD)

Demand (2050) (MLD)

1 A_Demo_Area 6.029 7.970 10.739

2 B_PostSanjauli_450DI 13.330 17.621 23.743

3 C_Ridge 2.323 3.070 4.137

4 D_PostRidge_400CI 4.511 5.964 8.035

5 E_Mains_Field 10.653 14.083 18.975 6 F_Dhingodevi 4.304 5.689 7.666

7 G_Mashobra 1.770 2.340 3.153

8 H_Craignaino 0.816 1.079 1.453 9 I_Dhalli 1.349 1.783 2.403 10 J_Kusumpti 6.845 9.049 12.193 11 I_Jakhu 4.789 6.331 8.530 12 J_North_Oak_1 0.607 0.802 1.080 13 K_Shoghi 0.753 0.996 1.341 Grand Total 58.080 76.776 103.449

Water Balance: Water inflow to various tanks and the outflows are shown in Figure 8.2 and Table 8.4. Table 8.4: Projection of demand

Reservoir Toal Inflow Outflow Remark Demand of

Craignaino 21 1.453 Craignaino 19.547 Mashobra

Toal 21 21

Mashobra

19.547 3.153 G_Mashobra 14 15 Dalli 15.394 Dalli

Toal 33.547 33.547

Dalli

15 2.403 I_Dhalli

15.394 7.666 F_Dhingodevi

4.5 16.825

8

Toal 34.894 34.894

Sanjauli

45.936 10.739 A_Demo_Area

16.825 23.743 B_PostSanjauli_450DI

8 18.975 E_Mains_Field

7.693 J_Kusumpti- inflow from Ashwin

8.530 K_Jakhu

1.080 L_North_Oak_1

Toal 70.761 70.761

Kusumpti 7.693 12.193 J_Kusumpti 4.5

Toal 12.193 12.193

Ridge

14.513 8.035 D_PostRidge_400CI

1.000 Enroutes

1.341 Shoghi

4.137 C_Ridge

Toal 14.513 14.513

Page 155: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

155

8.3.1 A_DEMO_AREA

Transmission mains of the Demo area are designed and submitted ealier.

8.3.2 B_POSTSANJAULI_450DI

Transmission mains of the B_PostSanjauli_450DI area are shown in Figure 8.3. All the tanks (demand nodes) get water from the Sanjauli tank by gravity. Due to very high pressures, one Break Pressure Tank (BPT) is incorporated into the transmission main.

Figure 8.3: Transmission mains of the B_PostSanjauli_450DI area

It is to be noted that though the Totu zone is included in the Demo zone, it receives water from transmission mains of this area. Thus, total demand for this transmission main is 29.86 (23.743+6.117) MLD. There is pump house for pumping water to the Kamnadevi temple tank. The demand of Kamnadevi temple tank is attached to this node of pump house. The existing pipes are shown in green colour and the new proposed pipes are shown in blue colour.

BPT: As pressures are enormous one Break Pressure Tank (BPT-9) is introduced. Table 8.5: Demand before BPT

SN Tank Demand of 2050 (MLD)

1 Kelestone1 2.515 2 Kelestone2/Bharari 2.702

3 Fingask_1 0.915

4 Fingask_2 2.210

5 Ridge_direct_from Sanjauli 1.632

Total 9.974

Page 156: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

156

Table 8.6: Demand after BPT (at inlet of BPT)

SN Tank Demand of 2050 (MLD)

1 Tutikandi_1 0.690 2 Tutikandi_2 3.111 3 Z7_Tutikandi_3 0.537 4 Advance_Study_Steel_Tank 1.909 5 IIAS_Summer Hill 1.184

6 Z6_Baluganj_Harinagar 1.050

7 Chakkar/Sandal 2.431

8 Kamnadevi_Temple 2.857

Total 13.769

Demand before and after BPT are shown in Tables 8.5 and 8.6 respectively. Since, the tank Totu from Demo zone is also on this transmission main, its demand is added. Thus, the demand of 19.886 is given to the node representing the inlet of the BPT. The demands of the year 2050 are also given to the respective demand nodes.

The results for the demand of the year 2050 are taken. It is observed that even for the supply hours of 24 hours, there are negative pressures in some of the nodes. Hence, this transmission main can not be used for 30 years.

When the demand of the year 2035 is given and if supply hour is 24 hours, then maximum velocity is 1.98 m/s which is less than maximum velocity of 2.1 m/s as specified by the CPHEEO manul; and the nodal pressures are more than zero. The pipe results and the junction results are shown in Table 1(a) and 1(b) of Volume 4.

Observations:

(i) These results are for the demand of the year 2035 and for 24 hours supply. This means transmission main can be used only upto year 2050 but with only 20 hours of supply.

(ii) After 15 years, i.e., in 2035 the pipeline should be replaced by a higher diameter pipeline.

LSections

LSections, ie., grapgh of distance vs. ground elevations/ pipe invert and HGL are ploteed. Various such Lsections are shown in Volume 8 (LSection drawings for Transmission Mains).

Double kinetic Air valves are shown at summit points or at 500m interval and the scour valves are shown at lowest elevations in the Lsections.

8.3.3 C_RIDGE

Existing Arrangement: Existing transmission mains of the C_Ridge area are shown in Figure 8.4. Presently, the Ridge tank gets water from the Sanjauli tank by gravity by two gravity mains both CI with diameters of 225 mm and 450 mm.

Page 157: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

157

Figure 8.4: Existing Transmission mains from Sanjauli to Ridge tank

Proposed Arrangement: Ridge tank is proposed to get water from the Kol dam. Hence, the existing pipelines as shown in Figure 8.4 are not required. Moreover, these pipelines are unable to supply flow of the year 2050. Hence, the pipelines as shown in Figure 8.4 are to be discarded.

8.3.4 D_POSTRIDGE

The proposed pipelines are shown in Figure 8.5. All the tanks (demand nodes) of this area should get water from the Ridge tank by gravity.

Figure 8.5: Proposed Transmission mains from the Ridge tank

CI: 225 mm

CI: 450 mm

Page 158: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

158

Total demand for this transmission main is 14.513 MLD (Table 8.4 and Table 8.7) for nodes of areas of C_Ridge, D_PostRidge_400CI, M_Shoghi and enroute spots of Shoghi are given. Table 8.7: Demand

Area Tank Demand of 2050 (MLD)

C_Ridge Ridge 4.137

D_PostRidge_400CI

Tara_Hall 2.702 Phagali 2.580

Summerhill Bazar 0.177

HP_University 0.563 Z4_New1 2.013

Enroutes 1.000 M_Shoghi Shoghi 1.3414

Total 14.514

BPTs: As the Shoghi tank is at much lower elevation and since there would be enormous pressures on the pipeline, one BPT is introduced (Figure 8.5). The pipe results for the demand of the year 2050 with 20 hours of supply and the junction results are shown in Table 2(a) and 2(b) of Volume 4.

Observations:

(i) These results are for the demand of the year 2050 and for 20 hours supply. (ii) This means transmission main can be used upto year 2050 with 20 hours of

supply.

8.3.5 E_MAINS_FIELD

Transmission mains from Sanjauli tank to tanks in the E_Mains_Field area are shown in Figure 8.6. Water from the Sanjauli tank is proposed to be pumped to the Break Pressure Tank (BPT) to be located near the tank of Corner House. All the tanks (demand nodes) of this area should get water from the BPT by gravity. Water to be Supplied to H_Kusumpti Area Total demand for the H_Kusumpti area is 12.193 (Table 8.2) MLD. Presently, 4.5 MLD water is supplied from the source of Ashwin Khad source to this area. Hence, net demand of the H_Kusumpti area is 7.693 (12.193-4.5) MLD which needs to be supplied from the water that is supplied from the Sanjauli tank.

Page 159: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

159

Figure 8.6: Transmission mains from Sanjauli tank to E_Mains_Field area Thus, the demand of this area is (Table 8.2 and 8.3) of 27.668 (18.975+7.693) MLD. The existing pipes are shown in green colour and the new proposed pipes are shown in blue colour. BPTs Total 8 Break Pressure Tanks (BPT)s are introduced in this area. BPT wise demands are shown in Table 8.8.

Page 160: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

160

Table 8.8: BPT wise demands

BPT Tank Demand (2050) in

MLD

BPT1 All tanks in E area 26.668

Total

BPT2

Mains_Field1 2.879 Mains_Field2 2.591 Inlets of BPT3 21.198 Total 26.668

BPT3

Inlet of BPT7 4.075 Knolls_Wood 1.608 Inlet of BPT5 3.532

Inlet of BPT4 11.983

Total 21.198

BPT4

Z3_Knolls_Wood 3.101 SDA_Complex 1.189 Kusumpti 7.693 Total 11.983

BPT5 Inlet of BPT6 3.532

Total 3.532

BPT6

New_Shimla_Sector2 0.312 New_Shimla_Sector3A 0.421 New_Shimla_Sector4 1.749 New_Shimla_Sector3 0.724 Total 3.532

BPT7 Inlet of BPT7 4.075 Total 4.075

BPT8 Shivpuri 1.456 Khalini_Forest_Steel_Tank 2.619 Total 4.075

Results for Transmission Main from BPT to E_Mains_Field area BPT wise demands are given to the nodes representing inlets of BPT. The pipe results and the junction results are shown in Table 3(a) and 3(b) of Volume 4.

Observations:

(i) These results are for the demand of the year 2050 and for 20 hours supply. (ii) This means transmission main can be used upto year 2050 with 20 hours of supply

but with maximum velocity of 2.17 m/s for 4 nodes and 2.04 m/s for 6 nodes. (iii) Maximum vrlocities are 2.17 m/s which is as per CPHEEO manual.

Page 161: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

161

8.3.6 F_DHINGODEVI AND DALLI

Department is constructing a new tank at Dalli’s existing tanks. Transmission mains from this new tank to the tanks in F_Dhingodevi and Dalli area are shown in Figure 8.7. Water from the the new tank is proposed to be transmitted by gravity to the Dalli1, Dalli2 distribution zones and also to the sumps at existing sump at Dhingodevi and proposed sump.

Figure 8.7: Transmission mains from Sanjauli tank to E_Mains_Field area

Results for Transmission Main from BPT to E_Mains_Field area Demands as shown in Table 8.9 are given to the respective nodes representing sumps and tanks. Also demands of other tanks Dalli1 and Dalli2 and nodes of inlet to Sanjauli are given. The pipe results and the junction results are shown in Table 4(a) and 4(b) of Volume 4. Table 8.9: Operational zone wise demands at Sump Dingodevi_Rest

Sump Operational Zone

Demand (2050) in

model (MLD)

1.2*Demand (2050) in

model (MLD)

Sump Dhingodevi_Rest

Dhingodevi1 0.998 1.1976

Dhingodevi2 0.908 1.0896

Z1_Dhingodevi3 0.504 0.6048

Total 2.41 2.892

Z8_Dhingo5 3.169 3.8028

Z5_Dhingodevi4 2.088 2.5056

Total 5.257 6.3084

Grand Total 7.667 9.2004

Page 162: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

162

Observations:

(i) These results are for the demand of the year 2050 and for 20 hours supply. (ii) This means transmission main can be used upto year 2050 with 20 hours of supply

but with maximum velocity of 2.17 m/s for 4 nodes and 2.04 m/s for 6 nodes. (iii) Maximum vrlocities are 2.17 m/s which is as per CPHEEO manual.

8.3.7 G_MASHOBRA ZND CRAIGNAINO

Transmission mains of G_Mashobra_Craignaino area are shown in Figure 8.8.

Figure 8.8: Transmission mains for G_Mashobra_Craignaino

It was told that water from the Craignaino tank is transmitted by gravity to the existing Dalli tank by the existing 450 mm CI pipe line. So also, it is conveyed by existing 150 mm DI to the Mashobra tank. Following are the observations:

(i) Elevations at Craignaino tank and tank at Mashobra are equal as found by Drone survey. One senior ex engineer also told that because of this reason water is not transmitted from Craignaino tank to the tank at Mashobra by gravity.

(ii) Water from Craignaino tank to the existing tank at Mashobra is conveyed by gravity. However, from the elevation data given by Drone survey does’nt permit this (Figure 8.9). Ground elevations are more than HGL.

Page 163: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

163

Figure 8.9: LSection of pipeline from Craignaino tank and tank at Mashobra

is unable to suuply full demand. Hence a new 273 mm (OD, 260.4 mm ID) MS pipeline is proposed to be laid in parallel. A new pump is proposed sinvce the flow is 6 MLD for the year 2050 which is 7.2 MLD for 20 hours of supply.

Results for Transmission Main from BPT to E_Mains_Field area Demands as shown in Table 8.10 are given to the respective nodes representing sumps and tanks. Table 8.10: Demands

Node Demand (ML/day)

Inlet_Dalli_NewTank2 15

Inlet_Dalli_NewTank1 20

46Craignaino 1.453

Inlet_Mashobra 6

The pipe results and the junction results are shown in Table 5(a) and 5(b) of Volume 4.

Observations:

(i) These results are for the demand of the year 2050 and for 20 hours supply. (ii) This means transmission main can be used upto year 2050 with 20 hours of supply

but with maximum velocity of 2.17 m/s for 4 nodes and 2.04 m/s for 6 nodes. (iii) Maximum vrlocities are 2.17 m/s which is as per CPHEEO manual.

8.3.8 H_KUSUMPTI

Transmission mains from Kusumpti tank to various tanks in H_Kusumpti area are shown in Figure 8.10. Water from the Kusumpti tank is proposed to be pumped to the three tanks of Sackrala, Z10_Tibti_Panthaghati and Basant_Vihar and also to the tank of HP_PWD_Near_Kusumpti. Rest of the tanks (demand nodes) of this area should get water from the Kusumpti tank by gravity.

Page 164: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

164

Supply to Kusumpti Tank: Total demand for the H_Kusumpti area is 12.193 (Table 8.2) MLD. Presently, 4.5 MLD water is supplied from the source of Ashwin Khad source to this area. Hence, 7.693 (12.193-4.5) MLD is proposed from the Sanjauli Tank.

Figure 8.10: Transmission mains from Sanjauli tank to E_Mains_Field area Results for Transmission Main from BPT to E_Mains_Field area Thus, the demand of this area is (Table 8.2 and 8.3) of 12.193. The existing pipes are shown in green colour and the new proposed pipes are shown in blue colour. The pipe results and the junction results are shown in Table 6(a) and 6(b) of Volume 4.

Observations:

(i) These results are for the demand of the year 2050 and for 20 hours supply. (ii) This means transmission main can be used upto year 2050 with 20 hours of

supply.

8.3.9 I_JAKHU

Present Jakhu tank is at higher level. It is proposed to pump water from the Sanjauli tank to the existing tank and the proposed tank. Pumping mains from the Sanjauli tank to the two tanks in

Page 165: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

165

I_Jakhu area are shown in Figure 8.11. Total demand for the H_Kusumpti area is 8.53 (Table 8.2) MLD.

Figure 8.11: Transmission mains from Sanjauli tank to I_Jakhu area There are all new pipes which are shown in blue colour. The pipe results and the junction results are shown in Table 7(a) and 7(b) of Volume 4.

Observations:

(i) These results are for the demand of the year 2050 and for 20 hours supply. (ii) This means proposed pumping mains can be used upto year 2050 with 20 hours of

supply.

8.3.10 J_NORTH_OAK_1

Pumping main from Sanjauli tank to the North Oak tank in J_North_Oak_1 area is shown in Figure 8.12. Total demand for the J_North_Oak_1 area is 1.0803 (Table 8.2) MLD.

The pipe results and the junction results are shown in Table 8(a) and 8(b) of Volume 4.

Observations:

(i) These results are for the demand of the year 2050 and for 20 hours supply. (ii) This means proposed pumping mains can be used upto year 2050 with 20 hours of

supply.

Page 166: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

166

Figure 8.12: Pumping main from Sanjauli tank to the North Oak tank

8.3.11 PIPE MATERIAL

Pipe material for the diameters of 80 mm and 100 mm is proposed as follows: • Diameter = 80, 100 or 150 mm; Material is GI Heavy Duty (As per IS 1239, Part 1)

• Diameter = 200 or more; Material is MS (As per IS 3589:2001)

8.4 NEW PIPES AND VALVES

(b) New Pipes

Length (m) of the new MS pipes is shown in Table 8.11.

Page 167: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

167

Table 8.11: New MS pipes

Shimla Area

GI Heavy Duty (As per IS 1239, Part 1) MS (As per IS 3589:2001)

Grand Total 100 (t=5.4mm)

150 (t=5.4mm)

Total ID=260.4 mm

(t=6.3 mm)

ID= 309.7 mm (t=7.1

mm)

ID= 339.6 mm (t=8

mm)

ID= 388.8 mm (t=8.8

mm)

ID= 437 mm (t=10 mm)

ID= 486 mm (t=11 mm)

ID= 585 mm (t=12.5 mm)

585 Total

B_PostSanjauli_450DI 1151 53 1204 1089 1182 1149 3420 4624

D_PostRidge 33 8942 8975 1559 11 1570 10545

E_Mains_Field 412 928 1339 2295 11 256 2499 506 3011 26 8604 9943

F_Dhigodevi_Dalli 23 23 301 142 794 57 1294 1317

G_Mashobra_Craignaino 23 3826 59 56 3964 3964

H_Kusumpti 0 655 656 277 277 933

I_Jakhu 72 10 1102 1184 1184

J_PostSanjauli_North_Oak_1 6 6 6

Grand Total 1602 10600 12203 5220 1589 5394 3293 506 1161 3068 83 20312 32515

Page 168: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

168

(b)Isolation Valves: Isolation valves (sluice/ Butter fly) are required in the feeder mains to isolate the valves. The isolation valves are shown in Table 8.12. Table 8.12: Number of isolation valves

Diameter

(mm)

B_PostSanjauli_450DI

C_Ridge

D_PostRidge

E_MainsField

F_Dhigodevi_

Dalli

G_Mashobra_Craigna

ino

H_Kusumpti

I_Jakhu

J_PostSanjauli_North_Oak_1

Grand Total

80 1 1 2

100 2 3 1 1 7

150 7 4 6 3 8 28

200 4 2 2 8 1 2 2 21

250 2 1 1 4

300 2 1 9 3 2 17

400 1 2 3 6

450 3 2 2 3 10

500 4 1 1 6

600 3 3

800

1000

Grand Total

18 4 10 35 13 8 12 3 1 104

(c) Flow Controlling Valves Flow controlling valves (FCV) are required to regulate the flow in the tanks. Besides this the FCVs shall act as water level controller. When the water level touches the FSL in a tank, the FCV should close and when the water level goes down to minimum supply level, FCV should open. FCVs should have “RTU/ Condor” having capacity to transmit signals to the SCADA system. Details of FCVs required are shown in Table 8.13. Table 8.13: Details of FCV

Area

Diameter (mm) Grand Total 80 100 150 200 250 300 400 450 500 600

B_PostSanjauli_450DI 7 4 1 1 2 15

D_PostRidge 1 2 3 2 1 9

E_MainsField 3 6 5 4 1 2 1 22

F_Dhigodevi_Dalli 4 1 1 2 8

G_Mashobra_Craignaino 1 1 2 4

H_Kusumpti 1 1 8 1 11

I_Jakhu 2 2

J_PostSanjauli_North_Oak_1 1 1

Grand Total 2 7 29 14 2 8 3 4 2 1 72

Page 169: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

169

Though all the FCVs are shown fully open, they shall be set to actual required flow as per the flow values given in Table 8.2. (d) Pressure Reducing Valves (PRV)s Pressure Reducing Valves (PRV)s are required to control/ reduce excessive nodal pressures. PRVs should have “RTU/ Condor” having capacity to transmit signals to the SCADA system. Details of PRVs required are shown in Table 8.14. Table 8.14: Details of PRVs

Area Diameter (mm)

Grand Total 80 100 150 200 250 260 300 400 450 500 600

B_PostSanjauli_450DI 2 6 3 1 2 2 16

D_PostRidge 1 2 3 2 3 11

E_MainsField 4 5 5 6 1 2 1 24

F_Dhigodevi_Dalli 2 2 1 1 2 8

G_Mashobra_Craignaino 1 1 2 4

H_Kusumpti 1 1 10 4 16

I_Jakhu 2 2

Grand Total 2 12 26 16 1 1 13 3 4 2 1 81

(e) Bulk Meters Bulk meters required just before the tanks to measure the flow into the tank and are shown in Table 8.15. Table 8.15: Number of bulk meters

Area Diameter (mm)

Grand Total 80 100 150 200 250 300 400 450 500

B_PostSanjauli_450DI 5 5 3 2 1 16

D_PostRidge 1 2 4 2 1 1 11

E_MainsField 2 4 10 11 4 3 34

F_Dhigodevi_Dalli 2 1 2 2 1 8

G_Mashobra_Craignaino 1 1 4 2 8

H_Kusumpti 1 1 8 4 2 16

I_Jakhu 2 1 3

J_PostSanjauli_North_Oak_1 2 2

Grand Total 2 7 23 22 8 17 9 6 4 98

(f) Scour Valves

Scour valves are proposed at the lowest elevations. Abstract of scour valves is shown in Table 8.16.

Page 170: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

170

Table 8.16: Abstract Scour valves

Area Diameter (mm)

Grand Total 80 100 150 200 250 300 400 450 500

B_PostSanjauli_450DI 3 4 2 2 7 18

D_PostRidge 1 3 10 1 3 18

E_MainsField 1 9 4 1 8 1 1 3 28

F_Dhigodevi_Dalli 1 2 3

G_Mashobra_Craignaino 2 2 2 6

H_Kusumpti 3 5 1 9

Grand Total 2 4 27 14 4 15 1 12 3 82

(g) Air Valves

Air valves are proposed at about 400m interval as the fall in elevation is continuous. Abstract of scour valves is shown in Table 8.17.

Table 8.17: Abstract Scour valves

Area Diameter (Air Inflow and outflow Orifice) (mm) Grand Total

Row Labels 25 50 80 100 150

B_PostSanjauli_450DI 4 12 8 1 25

D_PostRidge 17 6 23

E_MainsField 8 16 3 27

F_Dhigodevi_Dalli 1 1 8 10

G_Mashobra_Craignaino 5 5 2 12

H_Kusumpti 6 11 17

I_Jakhu 3 3

Grand Total 41 51 10 14 1 117

BPT: There are huge pressures in transmission mains. For breaking them Break Pressure Tanks (BPT) are incorporated, which are shown in Table 8.18.

Page 171: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

171

Table 8.18: Details of BPTs

J_Area BPT J_Zone Elevation

(m) Demand (ML/day)

Volume for 30

minute storage

(m3)

Depth Area (m2)

Diameter (m)

E_MainsField 1 Inlet of BPT1 2,261.30 32.002 666.7083 5 133.3 13

E_MainsField 2 Inlet of BPT2 2,239.90 32.002 666.7083 5 133.3 13

E_MainsField 3 Inlet1 of BPT3 2,191.70 20.638 429.9583 5 86.0 11

E_MainsField 3 Inlet2 of BPT3 2,192.00 4.8 100 5 20.0 5

E_MainsField 4 Inlet of BPT4 2,123.80 15.58 324.5833 5 64.9 10

E_MainsField 5 Inlet1 of BPT5 2,113.90 3.532 73.58333 5 14.7 5

E_MainsField 6 Inlet1 of BPT6 2,015.00 4.238 88.29167 5 17.7 5

E_MainsField 7 Inlet of BPT7 2,150.00 4.89 101.875 5 20.4 5

E_MainsField 8 Inlet of BPT8 2,041.70 4.89 101.875 5 20.4 5

B_PostSanjauli_450DI 9 Inlet of BPT9 2,170.00 23.863 497.1458 5 99.4 12

D_PostRidge 10 Inlet of BPT_Shoghi 1,990.50 2.341 48.77083 5 9.8 5

Tanks: For giving tapping to the habitations which are enroute to Shogi and to the sump at Digodevi sump, following tanks are desined which are shown in Table 8.19. Table 8.19: Details of Tanks

J_Area Elevatio

n (m)

Demand (ML/day

)

Volume for 30

minute storage

(m3)

Depth

Area

(m2)

Diameter (m)

D_PostRidge EnRoute1 1,870.60 0.8 16.6666

7 4 4.2 3

D_PostRidge EnRoute2 1,755.00 0.2 4.16666

7 4 1.0 2

F_Dhigodevi_Dalli Inlet of Sump_Dingodevi_Rest 2,237.60 9.2 191.666

7 4 47.9 8

B_PostSanjauli_450DI

Inlet of PH_Kamnadevi Temple

2,078.30 3.428 71.4166

7 4 17.9 5

***

Page 172: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

172

CHAPTER-9

DESIGN OF PUMPING MAIN

As per discussions with Authority, it was informed that following pumping mains are already designed and hence these pumping mains are not considered for design in this work. (a)Head work at Kol dam to Ridge and Sanjauli tanks (b)Gumma to Craignaino (c)Giri source to Mashobra (d)Ashwin-khad to Kusumti tank Rest of the various Pumping Mains are shown in Table 9.1. Table 9.1: Various Pumping Mains

SN Shimla Area Pumping Main

1 B_POST SANJAULI_450DI pump house (PH_Kamnadevi) to the KamnadeviTemple

2 E_MainsField Sanjauli tank to the BPT1

3 F_Dhigodevi_Dalli Sump_Digodevi_Rest to various tanks in this area

4 H_Kusumpti Kusumpti tank to HP_PWD_Near_Kusumpti

5 I_Jakhu Sanjauli tank to Jakhu tanks 6 J_PostSanjauli_North_Oak_1 Sanjauli tank to North_Oak_1 7 K_Kol_Dam Head work to Ridge and Sanjauli tanks

9.1 PUMPING MAINS IN POSTSANJAULI_450DI

Existing pumpin main from pump house (PH_Kamnadevi) to the KamnadeviTemple in this area is shown in Figure 9.1.

Page 173: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

173

Figure 9.1: Pumping main from pump house to Kamanadevi Temple tank

9.1.1 Design of Rising Main

The demands the tank is shown in Table 9.2.

Table 9.2: Demands (MLD) of the Kamanadevi Temple tank

Tank Demand (2020) (MLD)

Demand (2035) (MLD)

1.2*Demand of 2035 (MLD)

Demand (2050)

in model (MLD)

1.2*Demand of 2050 (MLD)

Kamnadevi_Temple 1.604 2.120 2.544 2.857 3.428

Model Results Presently, 150 mm diameter GI pipe is used. However, this pipeline is unable to pump demand of the year 2050. Hence, new 100 mm GI pipe is introduced as parallel pipe. The model is run for the flow and head of the year 2050 with 20hours of supply (Table 9.2) and the results of the model are taken which are shown in Tables 9.3 and 9.4.

Page 174: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

174

Table 9.3: Pipe result

Label Start Node Stop Node Materi

al

Hazen-Williams C

Length

(Scaled) (m)

Diameter

(mm)

Flow (ML/da

y)

Velocity

(m/s)

P_EN

P_Max (m)

BRMP-1 BRMJ-1 BRMAV-2 GI 100 420.7 100 0.878 1.29 N 119.5

BRMP-2 BRMAV-2 BRMJ-2 GI 100 195.2 100 0.878 1.29 N 38.38

BRMP-3 BRMPRV-1 BRMFCV-1 MS 120 0.2 200 3.428 1.26 N 5

BRMP-4 BRMFCV-1 20Kamnadevi_Te

mple MS 120 0.2 200 3.428 1.26 N 3.25

BRMP-5 BRMJ-2 BRMBM-2 MS 120 0.3 200 3.428 1.26 N 12.31

BRMP-6 BRMBM-2 BRMPRV-1 MS 120 0.1 200 3.428 1.26 N 10.05

BRMP-7 PH_Kamnadevi_Te

mple BRMBM-1 GI 100 1 250 3.428 0.81 E 0

BRMP-8 BRMBM-1 PMP_Kamnadevi GI 100 2.6 250 3.428 0.81 E

-0.25 (on

suction

side)

BRMP-9 PMP_Kamnadevi BRMJ-1 GI 100 0.3 250 3.428 0.81 E 119.5

8

BRMP-10 BRMAV-1 BRMJ-2 GI 100 196.5 150 2.55 1.67 E 38.5

BRMP-11 BRMJ-1 BRMAV-1 GI 100 420.3 150 2.55 1.67 E 119.5

Table 9.4: Junction result Label Elevation (m) Hydraulic Grade (m) Demand (ML/day) Pressure (m H2O)

20Kamnadevi_Temple 2,171.30 2,173.10 3.428 1.75

BRMJ-1 2,077.30 2,197.00 0 119.5

BRMJ-2 2,165.00 2,177.30 0 12.31

It can be seen that the velocity is less than 2.1 m/s and the nodal pressures are adequate.

9.1.2 Design of Pumps

The pumps are designed for next 15 year’s demand. Duty points of the pump is shown in Table 9.5. With this data the reults are found OK. Table 9.5: Pump details

Tank Name 2035 2050

Flow (MLD)

Head (m)

Flow (MLD)

Head (m)

PMP_Kamnadevi 2.544 105 3.428 112

LSection

LSection is shown in Figure 9.2.

Page 175: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

175

Figure 9.2: LSection from pump house to Kamanadevi Temple tank

Bulk Meter: Details of a Bulk meters required is shown in Table 9.6. Table 9.6: Bulk Meter details

Label Elevation (m) BM_Dia Pressure (m

H2O)

BBM-1 2,165 200 14.85

BBM-2 2,070 250 -0.36 (suction

side)

PRV: Details of a PRV required is shown in Table 9.7. Table 9.7: PRV details

Label Elevatio

n (m)

Diameter (Valve)

(mm)

Status (Initial

)

Pressure

Setting (Initial)

(m H2O)

Flow (ML/day

)

Pressure (From) (m H2O)

Pressure (To)

(m H2O)

Headloss (m)

BPRV-15 2,165 200 Active 5 2.543 14.85 5 9.86

FCV: Details of a FCV required is shown in Table 9.8. Table 9.8: FCV details

Label Elevation (m) Diameter

(Valve) (mm)

BFCV-15 2,165 200

Air Valve: Details of a Air Valves required is shown in Table 9.9.

Page 176: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

176

Table 9.9: Air valve details

Label Elevation

(m) Air Valve Type

Diameter (Air Inflow

Orifice) (mm)

Diameter (Air Outflow

Orifice) (mm)

Pressure Head (m)

BAV-22 2,145 Double Acting 25 25 38.46

BAV-23 2,135 Double Acting 25 25 48.25

Isolation Valves: Details of a Isolation Valves required is shown in Table 9.10. Table 9.10: FCV details

Label Diameter

(Valve) (mm) Elevation (m)

BRMISO-1 200 2,165.00

BRMISO-2 250 2,076.50

Scour Valves: As length is less, scour valves are not proposed.

9.2 PUMPING MAINS IN E_MAINSFIELD

Proposed pumping main from the Sanjauli tank to the BPT1 in this area is shown in Figure 9.3.

Figure 9.3: Pumping main from Sanjauli to BPT1

Page 177: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

177

9.2.1 Design of Rising Main

The demands of all the tanks in this area is shown in Table 9.11.

Table 9.11: Demands (MLD) of the tanks in the area

Tank Demand (2020) (MLD)

Demand (2035) (MLD)

1.2*Demand of 2035

Demand (2050) in

model (MLD)

1.2*Demand of 2050

E_Mains_Field 10.653 14.083 16.899 18.975 22.770

Model Results The model is run for the flow and head of the year 2050 with 20hours of supply (Table 9.11) and the results of the model are taken which are shown in Tables 9.12 and 9.13.

Table 9.12: Pipe result

Label Start Node Stop Node Material Hazen-

Williams C

Length (Scaled)

(m)

Diameter (mm)

Flow (ML/day)

Velocity (m/s)

P_EN P_Max

(m)

ERMP-1 EPRV-18 EFCV-16 MS 120 0.7 585 33.204 1.43 N 5

ERMP-2 EFCV-16 BPT MS 120 1 585 33.204 1.43 N 4.82

ERMP-3 PMP-

E_MainsField EBM-4 MS 120 5.4 585 33.204 1.43 N -0.7

ERMP-4 EBM-4 Sanjauli MS 120 1.1 585 33.204 1.43 N 0

ERMP-5 ERMJ-2 ESV-2 MS 120 104.3 396.4 17.179 1.61 N 68.44

ERMP-6 ERMJ-1 EBM-5 MS 120 8.2 585 33.204 1.43 N 52.13

ERMP-7 EBM-5 EPRV-18 MS 120 0.4 585 33.204 1.43 N 50.09

ERMP-8 ESV-2 EAV-2 MS 120 136.9 396.4 17.179 1.61 N 68.44

ERMP-9 EAV-2 ERMJ-1 MS 120 223.5 396.4 17.179 1.61 N 63.25

ERMP-10 ERMJ-2 PMP-

E_MainsField CI 80 4.4 600 33.204 1.36 E 64.11

ERMP-11 EAV-1 ESV-1 CI 80 136.6 450 16.025 1.17 E 68.37

ERMP-12 ESV-1 ERMJ-2 CI 80 103.6 450 16.025 1.17 E 68.37

ERMP-13 ERMJ-1 EAV-1 CI 80 222.6 450 16.025 1.17 E 62.44

Table 9.13: Junction result

Label Elevation (m) Hydraulic Grade (m)

Demand (ML/day)

Pressure (m H2O)

BPT 2,261.30 2,265.90 33.204 4.58

ERMJ-1 2,258.80 2,311.00 0 52.13

ERMJ-2 2,250.00 2,314.20 0 64.09

It can be seen that the velocity is less than 2.1 m/s and the nodal pressures are adequate. DESIGN OF PUMPS The pumps are designed for next 15 year’s demand. Duty points of the pump is shown in Table 9.14. With this data the reults are found OK.

Page 178: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

178

Table 9.14: Pump details

Tank Name 2035 2050

Flow (MLD)

Head (m)

Flow (MLD)

Head (m)

BPT1 16.899 40 22.770 50

LSection

LSection is shown in Figure 9.4.

Figure 9.4: LSection from Sanjauli to BPT1

Bulk Meter: Details of a Bulk meters required is shown in Table 9.15. Table 9.15: Bulk Meter details

Label Elevation (m) BM_Dia Pressure (m H2O)

EBM-16 2,269 600 16.69

EBM-31 2,245 600 1

PRV: Details of a PRV required is shown in Table 9.16. Table 9.16: PRV details

Label Elevation

(m)

Diameter (Valve) (mm)

Status (Initial)

Pressure Setting (Initial)

(m H2O)

Flow (ML/day)

Pressure (From)

(m H2O)

Pressure (To) (m H2O)

Headloss (m)

EPRV-18

2,269 600 Active 15 27.67 16.69 15.01 1.69

FCV: Details of a FCV required is shown in Table 9.17. Table 9.17: FCV details

Label Elevation

(m)

Diameter (Valve) (mm)

Pressure (From)

(m H2O)

Pressure (To) (m H2O)

EFCV-16

2,260 600 23.99 23.99

Page 179: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

179

Air Valve: Details of a Air Valves required is shown in Table 9.18. Table 9.18: Air valve details

Label Elevation (m) Air Valve Type Diameter (Air

Inflow Orifice) (mm)

Diameter (Air Outflow

Orifice) (mm)

Pressure Head (m)

EAV-1 2,250 Double Acting 50 50 36.84

EAV-2 2,250 Double Acting 50 50 36.84

Isolation Valves: Details of a Isolation Valves required is shown in Table 9.19. Table 9.19: ISO details

Label Diameter (Valve)

(mm) Elevation (m)

EISO-16 600 2,260

EISO-31 600 2,245

Scour Valves: As length is less, scour valves are not proposed.

9.3 PUMPING MAINS IN F_DHIGODEVI_DALLI

Proposed pumping mains from the sump called as Sump_Digodevi_Rest to various tanks in this area are shown in Figure 9.5.

Figure 9.5: Pumping main from Sanjauli to BPT1

9.3.1 Design of Rising Main

The demands of all the tanks in this area is shown in Table 9.20.

Page 180: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

180

Table 9.20: Demands (MLD) of the tanks in the area

Tank Demand (2020) (MLD)

Demand (2035) (MLD)

1.2*Demand of 2035

Demand (2050) in

model (MLD)

1.2*Demand of 2050

Z8_Dhingo5 1.779 2.352 2.822 3.169 3.802

Z5_Dhingodevi4 1.172 1.550 1.860 2.088 2.506

Dhingodevi1 0.560 0.741 0.889 0.998 1.197

Dhingodevi2 0.510 0.674 0.809 0.908 1.089

Z1_Dhingodevi3 0.283 0.374 0.448 0.504 0.604

Total 4.304 5.689 6.827 7.666 9.199

There are two pumping mains- (1) on temple side and (2) on down side as shown in Figure 9.5 and Table 9.21. Table 9.21: Demands (MLD) of the tanks in the area

Side Tank Demand (2020) (MLD)

Demand (2035) (MLD)

1.2*Demand of 2035

Demand (2050) in

model (MLD)

1.2*Demand of 2050

Down

Z8_Dhingo5 1.779 2.352 2.822 3.169 3.802

Z5_Dhingodevi4 1.172 1.550 1.860 2.088 2.506

Total 2.951 3.901 4.682 5.257 6.308

Temple

Dhingodevi1 0.560 0.741 0.889 0.998 1.197

Dhingodevi2 0.510 0.674 0.809 0.908 1.089

Z1_Dhingodevi3 0.283 0.374 0.448 0.504 0.604

Total 1.353 1.788 2.146 2.409 2.891

Economic Diameter on Temple Side As there is one pipe upto a common point and then joins 3 tanks. The economic size is computed upto this common point considering total flow as shown in Table N1 in Appendix N. It is found that the optimum size is 260.3 mm of MS pipe with thickness of 6.4 mm. Economic Diameter on Down Side As there is one pipe upto a common point and then joins 2 tanks. The economic size is computed upto this common point considering total flow as shown in Table N1 in Appendix N. It is found that the optimum size is 341.5 mm of MS pipe with thickness of 7.1 mm. Model Results The model is run for the flow and head of the year 2050 with 20 hours of supply (Table 9.21) and the results of the model are taken which are shown in Tables 9.22 and 9.23.

Page 181: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

181

Table 9.22: Pipe result

Label Start Node Stop Node Material

Hazen-Williams C

Length (Scaled) (m)

Diameter (mm)

Flow (ML/day)

Velocity (m/s)

P_EN

P_Max (m)

FP-1 FPRV-4 FFCV-4 GI 100 0.8 150 0.605 0.4 N 5.17

FP-2 FFCV-4 44Z1_Dhingo

devi3 GI 100 3.6 150 0.605 0.4 N 5.92

FP-3 40Z8_Dhingo

5 FFCV-8 MS 120 10.1 341.5 3.803 0.48 N 5

FP-4 FFCV-8 FPRV-8 MS 120 2.2 341.5 3.803 0.48 N 5

FP-5 FJ-4 PMP-

DhingodeviRest

MS 120 142.4 341.5 5.891 0.74 N 78.5

FP-6 PMP-

DhingodeviRest

FAV-2 MS 120 2 341.5 5.891 0.74 N 0.46

FP-9 41Z5_Dhingo

devi4 FFCV-7 MS 120 13.4 309.7 2.088 0.32 N 5

FP-10 FFCV-7 FPRV-7 MS 120 1.4 312.7 2.088 0.31 N 5

FP-13 FAV-1 PMP_Dingode

viPH MS 120 1.2 341.5 2.892 0.37 N -0.26

FP-14 PMP_Dingode

viPH FJ-2 MS 120 295.8 260.3 2.892 0.63 N 94.43

FP-16 FAV-2 Sump_Dingod

evi_Rest MS 120 5.9 341.5 5.891 0.74 N 0.34

FP-17 Sump_Dingod

evi_Rest FAV-1 MS 120 4.5 341.5 2.892 0.37 N 0

FP-18 FJ-1 FPRV-4 GI 100 11.3 150 0.605 0.4 N 25

FP-19 FJ-2 FPRV-2 MS 120 7.1 150 1.198 0.78 N 22.97

FP-20 FJ-1 FPRV-3 MS 120 5 250 1.09 0.26 N 24.04

FP-21 FPRV-8 FJ-4 MS 120 625.8 341.5 3.803 0.48 N 76.78

FP-23 FPRV-7 FJ-4 MS 120 89.1 312.7 2.088 0.31 N 76.78

FP-31 FPRV-2 FFCV-2 MS 120 0.7 150 1.198 0.78 E 5.11

FP-32 FFCV-2 42Dhingodevi

1 MS 120 17.1 150 1.198 0.78 E 5.68

FP-43 FJ-2 FJ-1 MS 120 3.1 250 1.694 0.4 E 22.98

FP-46 FPRV-3 FFCV-3 MS 120 1 250 1.09 0.26 E 5.21

FP-47 FFCV-3 43Dhingodevi

2 MS 120 5.5 250 1.09 0.26 E 6.35

Table 9.23: Junction result

Label Elevation (m) Hydraulic Grade (m) Demand (ML/day)

Pressure (m H2O)

40Z8_Dhingo5 2,275.00 2,280.00 3.803 4.99

41Z5_Dhingodevi4 2,290.00 2,295.00 2.088 5

42Dhingodevi1 2,307.60 2,313.30 1.198 5.68

43Dhingodevi2 2,306.00 2,312.30 1.09 6.35

44Z1_Dhingodevi3 2,305.40 2,311.30 0.605 5.92

FJ-1 2,308.40 2,331.40 0 22.98

FJ-2 2,309.10 2,331.40 0 22.27

FJ-4 2,238.00 2,314.90 0 76.78

It can be seen that the velocity is less than 2.1 m/s and the nodal pressures are adequate. DESIGN OF PUMPS The pumps are designed for next 15 year’s demand. Duty points of the pump is shown in Table 9.24. With this data the reults are found OK.

Page 182: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

182

Table 9.24: Pump details

Side 2035 2050

Flow (MLD)

Head (m)

Flow (MLD)

Head (m)

Temple 2.146 90 2.891 95 Down 3.901 70 6.308 75

LSection

LSection on Temple side is shown in Figure 9.6.

Figure 9.6: LSection from sump to Dingodevi1

LSection on temple Down side is shown in Figure 9.7.

Figure 9.7: LSection from Sanjauli to BPT1

Bulk Meter: Details of a Bulk meters required is shown in Table 9.25.

Page 183: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

183

Table 9.25: Bulk Meter details Label Elevation (m) BM_Dia Pressure (m H2O)

FRMBM-1 2,237 300 0.22

FRMBM-2 2,237 150 -0.27

FRMBM-3 2,305 150 35.95

FRMBM-4 2,308 150 33.04

FRMBM-5 2,307 250 34.26

FRMBM-6 2,290 300 29.13

FRMBM-7 2,270 200 48.74

PRV: Details of a PRV required is shown in Table 9.26. Table 9.26: PRV details

Label Elevation

(m)

Diameter (Valve) (mm)

Status (Initial)

Pressure Setting (Initial)

(m H2O)

Flow (ML/day)

Pressure (From) (m

H2O)

Pressure (To) (m H2O)

Headloss (m)

FRMPRV-1 2,308 150 Active 5 0.998 33.19 5 28.25

FRMPRV-2 2,306 260 Active 5 0.908 34.58 5 29.64

FRMPRV-3 2,305 150 Active 5 0.504 36.1 5 31.16

FRMPRV-4 2,290 300 Active 5 2.088 29.13 5 24.18

FRMPRV-5 2,270 100 Active 5 3.169 48.74 5 43.83

FCV: Details of a FCV required is shown in Table 9.27. Table 9.27: FCV details

Label Elevation (m) Diameter (Valve)

(mm) Pressure (From)

(m H2O) Pressure (To) (m

H2O)

FRMFCV-1 2,307 150 5.17 5.17

FRMFCV-2 2,306 250 5.32 5.32

FRMFCV-3 2,304 150 5.23 5.23

FRMFCV-4 2,290 300 5 5

FRMFCV-5 2,270 152.4 5 5

Air Valve: Details of a Air Valves required is shown in Table 9.28. Table 9.28: Air valve details

Label Elevation (m) Air Valve Type Diameter (Air Inflow Orifice)

(mm)

Diameter (Air Outflow

Orifice) (mm)

Pressure Head (m)

FRMAV-1 2,237 Double Acting 25 25 -0.35

FRMAV-2 2,236 Double Acting 50 50 0.42

FRMAV-3 2,320 Double Acting 50 50 21.01

FRMAV-4 2,244 Double Acting 50 50 74.91

Isolation Valves: Details of a Isolation Valves required is shown in Table 9.29.

Page 184: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

184

Table 9.29: ISO details Label Diameter (Valve) (mm) Elevation (m)

FRMISO-1 300 2,237

FRMISO-2 250 2,307

FRMISO-3 150 2,308

FRMISO-4 150 2,305

FRMISO-5 300 2,290

FRMISO-6 200 2,270

FRMISO-7 150 2,237

Scour Valves: As length is less, scour valves are not proposed.

9.4 PUMPING MAINS IN H_KUSUMPTI

Proposed pumping main from the Kusumpti tank to HP_PWD_Near_Kusumpti in this area is shown in Figure 9.8.

Figure 9.8: Pumping main from Kusumpti tank to HP_PWD_Near_Kusumpti

9.4.1 Design of Rising Main

The demand of tank in this area is shown in Table 9.30.

Table 9.30: Demands (MLD) of the tank in the area

Tank Demand (2020) (MLD)

Demand (2035) (MLD)

1.2*Demand of 2035

Demand (2050) in

model (MLD)

1.2*Demand of 2050

HP_PWD_Near_Kusumpti 1.2739 1.6840 2.0208 2.2690 2.7228

Total 3.9521 5.2243 6.2692 7.0393 8.4472

Economic Diameter on HP_PWD Side The economic size is computed as shown in Table N3 in Appendix N. It is found that the optimum size is 206.3 mm of MS pipe with thickness of 6.4 mm.

Page 185: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

185

Model Results The model is run for the flow and head of the year 2050 with 20 hours of supply (Table 9.19) and the results of the model are taken which are shown in Tables 9.31 and 9.32.

Table 9.31: Pipe result

Label Start Node Stop Node Material

Hazen-Williams

C

Length (Scaled)

(m)

Diameter (mm)

Flow (Absolute) (ML/day)

Velocity (m/s)

P_EN

P_Max (m)

HP-6 Kusumpti

Tank

PMP-HP_PWD_Near_

Kusumpti MS 100 0.3 210.1 2.723 0.91 N 0

HP-7 PMP-

HP_PWD_Near_Kusumpti

HBM-1 MS 100 25.4 210.1 2.723 0.91 N 22.99

HP-8 HBM-1 HPRV-11 MS 100 0.8 210.1 2.723 0.91 N 22.81

HP-9 HPRV-11 HFCV-6 MS 100 1 210.1 2.723 0.91 N 5

HP-10 HFCV-6 60HP_PWD_Nea

r_Kusumpti MS 100 1 210.1 2.723 0.91 N 4.99

Table 9.32: Junction result

Label Elevation (m) Hydraulic Grade

(m) Demand (ML/day)

Pressure (m H2O)

60HP_PWD_Near_Kusumpti 2,064.80 2,065.00 2.723 0.2

It can be seen that the velocity is less than 2.1 m/s and the nodal pressures are adequate. DESIGN OF PUMPS The pumps are designed for next 15 year’s demand. Duty points of the pump is shown in Table 9.33. With this data the reults are found OK. Table 9.33: Pump details

Pump

2035 2050

Flow (MLD) Head (m) Flow

(MLD) Head (m)

HP_PWD 2.146 90 2.891 10

Bulk Meter: Details of a Bulk meters required is shown in Table 9.34. Table 9.34: Bulk Meter details

Label Elevation (m) BM_Dia

HBM-1 2,060.00 200

HBM-2 2,060.00 200

PRV: Details of a PRV required is shown in Table 9.35.

Page 186: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

186

Table 9.35: PRV details

Label Elevation

(m)

Diameter (Valve) (mm)

Status (Initial)

Pressure Setting

(Initial) (m H2O)

Flow (ML/day)

Pressure (From) (m

H2O)

Pressure (To) (m H2O)

Headloss (m)

HPRV-11 2,060.00 200 Active 5 2.723 22.81 5 17.84

FCV: Details of a FCV required is shown in Table 9.36. Table 9.36: FCV details

Label Elevation (m) Diameter (Valve) (mm) Pressure (From) (m H2O)

HFCV-6 2,060.00 200 4.99

Isolation Valves: Details of a Isolation Valves required is shown in Table 9.37. Table 9.37: ISO details

Label Diameter (Valve)

(mm) Elevation (m)

HRMISO-1 200 2,060.00

HRMISO-2 200 2,060.00

Scour Valves: As length is less, scour valves are not proposed.

9.5 PUMPING MAINS IN I_JAKHU

Proposed pumping main from the Sanjauli tank to Jakhu tanks in this area is shown in Figure 9.8.

Figure 9.9: Pumping main from Sanjauli tank to Jakhu tanks

9.5.1 Design of Rising Main

The demand of tank in this area is shown in Table 9.38.

Table 9.38: Demands (MLD) of the tank in the area

Tank Demand (2020) (MLD)

Demand (2035) (MLD)

1.2*Demand of 2035

Demand (2050) in

model (MLD)

1.2*Demand of 2050

Jakhu 2.245 2.967 3.561 3.998 4.798 Z2_Jakhu2 2.544 3.364 4.036 4.532 5.438

Total 4.789 6.331 7.597 8.530 10.236

Page 187: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

187

Economic Diameter on HP_PWD Side The economic size is computed as shown in Table N3 in Appendix N. It is found that the optimum size is 206.3 mm of MS pipe with thickness of 6.4 mm. Model Results The model is run for the flow and head of the year 2050 with 20 hours of supply (Table 9.28) and the results of the model are taken which are shown in Tables 9.39 and 9.40.

Table 9.39: Pipe result

P_Area Label Start Node Stop Node Material Hazen-

Williams C

Length (Scaled)

(m)

Diameter (mm)

Flow (Absolute) (ML/day)

Velocity (m/s)

P_EN P_Max

(m)

I_Jakhu IP-3 IPRV-1 IFCV-1 MS 120 1.6 263 5.438 1.16 N 10.12

I_Jakhu IP-4 IFCV-1 62Z2_Jakhu2 MS 120 4.4 263 5.438 1.16 N 10.12

I_Jakhu IP-12 IJ-1 IBM-3 MS 120 64.9 263 5.438 1.16 N 104.89

I_Jakhu IP-13 IBM-3 IPRV-1 MS 120 1.4 263 5.438 1.16 N 105.9

I_Jakhu IP-1 IPRV-2 IFCV-2 MS 120 0.6 309.7 4.798 0.74 N 10.96

I_Jakhu IP-2 IFCV-2 61Jakhu MS 120 0.4 309.7 4.798 0.74 N 10.96

I_Jakhu IP-8 IJ-1 IBM-2 MS 120 8 309.7 4.798 0.74 N 66.68

I_Jakhu IP-9 IBM-2 IPRV-2 MS 120 0.5 309.7 4.798 0.74 N 67.26

I_Jakhu IP-5 Surge

Arrester PMP-Jakhu MS 120 2.4 419 10.236 0.86 N 250.55

I_Jakhu IP-10 IAV-1 Surge

Arrester MS 120 409.2 419 10.236 0.86 N 250.54

I_Jakhu IP-11 IJ-1 IAV-3 MS 120 264 419 10.236 0.86 N 59.27

I_Jakhu IP-14 IAV-3 IAV-2 MS 120 197.8 419 10.236 0.86 N 149.48

I_Jakhu IP-15 IAV-2 IAV-1 MS 120 222.5 419 10.236 0.86 N 214.79

I_Jakhu IP-6 PMP-Jakhu

IBM-1 MS 120 4.6 419 10.236 0.86 N -1.13

I_Jakhu IP-7 IBM-1 Sanjauli MS 120 1.8 419 10.236 0.86 N 0

Table 9.40: Junction result

J_Area Label Elevation

(m) Hydraulic Grade

(m) Demand (ML/day)

Pressure (m H2O)

J_Zone

I_Jakhu 61Jakhu 2,439.00 2,441.50 4.798 2.46 Jakhu

I_Jakhu 62Z2_Jakhu2 2,397.50 2,402.30 5.438 4.82 Z3_Jakhu2_New

I_Jakhu IJ-1 2,442.40 2,498.90 0 56.36

I_Jakhu Surge

Arrester 2,250.00 2,501.00 0 250.54

It can be seen that the velocity is less than 2.1 m/s and the nodal pressures are adequate. DESIGN OF PUMPS The pumps are designed for next 15 year’s demand. Duty points of the pump is shown in Table 9.41. With this data the reults are found OK. Table 9.41: Pump details

Pump

2035 2050

Flow (MLD) Head (m) Flow

(MLD) Head (m)

PMP_Jakhu 7.597 245 10.236 255

Page 188: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

188

Bulk Meter: Details of a Bulk meters required is shown in Table 9.42. Table 9.42: Bulk Meter details

Label Elevation

(m) BM_Dia

IBM-1 2,247.10 450

IBM-2 2,432.00 250

IBM-3 2,393.40 250

PRV: Details of a PRV required is shown in Table 9.43. Table 9.43: PRV details

Label Elevation

(m) Diameter (Valve)

(mm) Status (Initial)

Pressure Setting (Initial)

(m H2O)

Flow (ML/day)

Pressure (From)

(m H2O)

Pressure (To) (m H2O)

Headloss (m)

IPRV-1 2,392.30 200 Active 10 5.438 105.9 10 96.09

IPRV-2 2,431.40 200 Active 10 4.798 67.26 10 57.37

FCV: Details of a FCV required is shown in Table 9.44. Table 9.44: FCV details

Label Elevation (m) Diameter (Valve) (mm)

IFCV-1 2,392.20 200

IFCV-2 2,430.50 200

Isolation Valves: Details of a Isolation Valves required is shown in Table 9.45. Table 9.45: ISO details

Label Diameter (Valve) (mm)

IISO-1 200

IISO-2 200

IISO-3 500

Scour Valves: Scour valve details are shown in Table 9.46. Table 9.46: Scour valve details

Label Elevation

(m) SV_Dia

ISV-1 2,245 400

Page 189: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

189

9.6 PUMPING MAINS IN J_POSTSANJAULI_NORTH_OAK_1

Proposed pumping main from the Sanjauli tank to Jakhu tanks in this area is shown in Figure 9.8.

Figure 9.10: Pumping main from Sanjauli tank to Jakhu tanks

9.6.1 Design of Rising Main

The demand of tank in this area is shown in Table 9.47.

Table 9.47: Demands (MLD) of the tank in the area

Tank Demand (2020) (MLD)

Demand (2035) (MLD)

1.2*Demand of 2035

Demand (2050) in

model (MLD)

1.2*Demand of 2050

North_Oak_1 0.607 0.802 0.962 1.080 1.296 Total 0.607 0.802 0.962 1.080 1.296

Model Results The model is run for the flow and head of the year 2050 with 20 hours of supply (Table 9.29) and the results of the model are taken which are shown in Tables 9.48 and 9.49.

Page 190: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

190

Table 9.48: Pipe result

Label Start Node Stop Node Materia

l

Hazen-William

s C

Length (Scaled

) (m)

Diameter (mm)

Flow (Absolute

) (ML/day)

Velocity (m/s)

P_EN P_Max

(m)

JP-1 PMP-

North_Oak_1 JBM-2 MS 120 98.6 100 1.296 1.91 E 30.67

JP-3 JBM-2 JFCV-1 MS 120 1.8 100 1.296 1.91 E 26.06

JP-4 JFCV-1 63_North_Oak_

1 MS 120 1.5 100 1.296 1.91 E 25.98

JP-5 Sanjauli JBM-1 MS 120 2.3 100 1.296 1.91 N 0

JP-6 JBM-1 PMP-

North_Oak_1 MS 120 3.5 100 1.296 1.91 N

-1.7 (suction side)

Table 9.49: Junction result

Label Elevation

(m) Hydraulic Grade

(m) Demand (ML/day)

Pressure (m H2O)

63_North_Oak_1 2,270.00 2,276.00 1.296 5.94

It can be seen that the velocity is less than 2.1 m/s and the nodal pressures are adequate. DESIGN OF PUMPS The pumps are designed for next 15 year’s demand. Duty points of the pump is shown in Table 9.50. With this data the reults are found OK. Table 9.50: Pump details

Pump

2035 2050

Flow (MLD) Head (m) Flow

(MLD) Head (m)

North_Oak_1 0.962 30 1.296 35

Bulk Meter: Details of a Bulk meters required is shown in Table 9.51. Table 9.51: Bulk Meter details

Diameter (mm) J_PostSanjauli_North_Oak_1

100 2

Grand Total 2

PRV: No PRV is proposed. FCV: Details of a FCV required is shown in Table 9.52.

Page 191: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

191

Table 9.52: FCV details Diameter

(mm) No.

100 1

Grand Total

1

Isolation Valves: Details of Isolation Valves required is shown in Table 9.53. Table 9.53: ISO details

Diameter (mm)

No.

100 1

Grand Total 1

Scour Valves: As length is less, scour valves are not proposed. Summary of Pumps

PMP_Area Label

2035 2050

Flow (ML/day)

Pump Head (m)

Flow (ML/day)

Pump Head (m)

F_Dhigodevi_Dalli PMP_DingodeviPH (Temple side) 2.146 90 2.891 95

F_Dhigodevi_Dalli PMP-DhingodeviRest (down side)

3.901 70 6.308 75

B_PostSanjauli_450DI PMP_Kamnadevi 2.544 105 3.428 112

I_Jakhu PMP-Jakhu 7.597 245 10.236 255

J_PostSanjauli_North_Oak_1 PMP-North_Oak_1 0.962 30 1.296 35

E_MainsField PMP-E_MainsField 16.899 40 22.77 50

H_Kusumpti PMP-HP_PWD_Near_Kusumpti 2.146 90 2.891 10

***

Page 192: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

192

APPENDIX-A Mass Curve Spread Sheets of Post-Sanjauli 450 DI Area

Table A1: Kelestone1 Note: Tank is not enough, present diameter is 11 m. Increase it to 16m

Tank at Kelestone1

Maximum surplus (m3) 588.7

3 Minimum surplus (m3) 12.5

16 1st Guess Capacity (m3) 601.2

24 As per CPHEEO Capacity (m3) 754.374

0.000 Final computed Capacity (m3) 965

2199.500 Max. serving Demand (mld) 2.5152200.500 Max. Population serving 15915

2204.300 Initial Volume (m3) 201.06

1 Fire storage (m3) 121.5

201.06 Depth for Fire (m) 0.201

16 Av. Flow (m3/h)= 157.161

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 157.2 358.2 0.2 21.0 21.0 337.3 136.21 2200.500 20.8 OK

1 0.0 358.2 0.2 21.0 41.9 316.3 -20.95 2201.177 34.9 OK

2 0.0 358.2 0.2 21.0 62.9 295.4 -20.95 2201.073 32.8 OK

3 0.0 358.2 0.2 21.0 83.8 274.4 -20.95 2200.969 30.6 OK

4 0.0 358.2 0.5 52.4 136.2 222.0 -52.39 2200.865 28.4 OK

5 157.2 515.4 1 104.8 241.0 274.4 52.39 2200.604 23.0 OK

6 157.2 672.5 1 104.8 345.8 326.8 52.39 2200.865 28.4 OK

7 157.2 829.7 3 314.3 660.1 169.6 -157.16 2201.125 33.9 OK

8 157.2 986.9 3 314.3 974.4 12.5 -157.16 2200.344 17.6 OK

9 157.2 1144.0 1 104.8 1079.2 64.9 52.39 2199.562 1.3 OK

10 157.2 1301.2 1 104.8 1183.9 117.2 52.39 2199.823 6.7 OK

11 157.2 1458.4 1 104.8 1288.7 169.6 52.39 2200.083 12.1 OK

12 157.2 1615.5 1 104.8 1393.5 222.0 52.39 2200.344 17.6 OK

13 157.2 1772.7 0.5 52.4 1445.9 326.8 104.77 2200.604 23.0 OK

14 157.2 1929.8 0.5 52.4 1498.3 431.6 104.77 2201.125 33.9 OK

15 157.2 2087.0 1 104.8 1603.0 484.0 52.39 2201.646 44.7 OK

16 157.2 2244.2 1 104.8 1707.8 536.3 52.39 2201.907 50.1 OK

17 157.2 2401.3 1 104.8 1812.6 588.7 52.39 2202.168 55.6 OK

18 157.2 2558.5 2 209.5 2022.1 536.3 -52.39 2202.428 61.0 OK

19 157.2 2715.6 2 209.5 2231.7 484.0 -52.39 2202.168 55.6 OK

20 0.0 2715.6 1 104.8 2336.5 379.2 -104.77 2201.907 50.1 OK

21 0.0 2715.6 1 104.8 2441.2 274.4 -104.77 2201.386 39.3 OK

22 0.0 2715.6 0.5 52.4 2493.6 222.0 -52.39 2200.865 28.4 OK

23 0.0 2715.6 0.2 21.0 2514.6 201.1 -20.95 2200.604 23.0 OK

24 157.2 2872.8 0.2 21.0 2535.5 337.3 136.21 2200.500 20.8 OK

Total 2514.6 24.0 2514.6

Time from Start

(hours)

Inflow (m3/h)

Kelestone1

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 193: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

193

Table A2: Kelestone2/Bharari

Tank at Kelestone2/Bharari

Maximum surplus (m3) 614.2

3 Minimum surplus (m3) 0.1

16 1st Guess Capacity (m3) 614.3

24 As per CPHEEO Capacity (m3) 804

0.000 Final computed Capacity (m3) 1307

2212.500 Max. serving Demand (mld) 2.6802213.500 Max. Population serving 16962

2219.000 Initial Volume (m3) 201.06

1 Fire storage (m3) 129.5

201.06 Depth for Fire (m) 0.215

16 Av. Flow (m3/h)= 167.500

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 167.5 368.6 0.2 22.3 22.3 346.2 145.17 2213.500 15.4 OK

1 0.0 368.6 0.2 22.3 44.7 323.9 -22.33 2214.222 26.5 OK

2 0.0 368.6 0.2 22.3 67.0 301.6 -22.33 2214.111 24.8 OK

3 0.0 368.6 0.2 22.3 89.3 279.2 -22.33 2214.000 23.1 OK

4 0.0 368.6 0.5 55.8 145.2 223.4 -55.83 2213.889 21.4 OK

5 167.5 536.1 1 111.7 256.8 279.2 55.83 2213.611 17.1 OK

6 167.5 703.6 1 111.7 368.5 335.1 55.83 2213.889 21.4 OK

7 167.5 871.1 3 335.0 703.5 167.6 -167.50 2214.166 25.6 OK

8 167.5 1038.6 3 335.0 1038.5 0.1 -167.50 2213.333 12.8 OK

9 167.5 1206.1 1 111.7 1150.2 55.9 55.83 2212.500 0.0 OK

10 167.5 1373.6 1 111.7 1261.8 111.7 55.83 2212.778 4.3 OK

11 167.5 1541.1 1 111.7 1373.5 167.6 55.83 2213.056 8.5 OK

12 167.5 1708.6 1 111.7 1485.2 223.4 55.83 2213.333 12.8 OK

13 167.5 1876.1 0.5 55.8 1541.0 335.1 111.67 2213.611 17.1 OK

14 167.5 2043.6 0.5 55.8 1596.8 446.7 111.67 2214.166 25.6 OK

15 167.5 2211.1 1 111.7 1708.5 502.6 55.83 2214.722 34.2 OK

16 167.5 2378.6 1 111.7 1820.2 558.4 55.83 2215.000 38.5 OK

17 167.5 2546.1 1 111.7 1931.8 614.2 55.83 2215.277 42.7 OK

18 167.5 2713.6 2 223.3 2155.2 558.4 -55.83 2215.555 47.0 OK

19 167.5 2881.1 2 223.3 2378.5 502.6 -55.83 2215.277 42.7 OK

20 0.0 2881.1 1 111.7 2490.2 390.9 -111.67 2215.000 38.5 OK

21 0.0 2881.1 1 111.7 2601.8 279.2 -111.67 2214.444 29.9 OK

22 0.0 2881.1 0.5 55.8 2657.7 223.4 -55.83 2213.889 21.4 OK

23 0.0 2881.1 0.2 22.3 2680.0 201.1 -22.33 2213.611 17.1 OK

24 167.5 3048.6 0.2 22.3 2702.3 346.2 145.17 2213.500 15.4 OK

Total 2680.0 24.0 2680.0

Time from Start

(hours)

Inflow (m3/h)

Kelestone2/Bharari

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 194: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

194

Table A3: Fingask_1 Tank can serve demand of 0.69 MLD up to year 2034. Lateron, diameter shall be increased to take a demand of 0.915 MLD.

Tank at Fingask_1

Maximum surplus (m3) 153.6

3 Minimum surplus (m3) 0.0

16 1st Guess Capacity (m3) 153.6

24 As per CPHEEO Capacity (m3) 201

0.000 Final computed Capacity (m3) 322

2182.500 Max. serving Demand (mld) 0.6702183.500 Max. Population serving 4241

2188.900 Initial Volume (m3) 50.27

1 Fire storage (m3) 32.4

50.27 Depth for Fire (m) 0.215

8 Av. Flow (m3/h)= 41.875

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 41.9 92.1 0.2 5.6 5.6 86.6 36.29 2183.500 15.6 OK

1 0.0 92.1 0.2 5.6 11.2 81.0 -5.58 2184.222 26.9 OK

2 0.0 92.1 0.2 5.6 16.8 75.4 -5.58 2184.111 25.2 OK

3 0.0 92.1 0.2 5.6 22.3 69.8 -5.58 2184.000 23.4 OK

4 0.0 92.1 0.5 14.0 36.3 55.8 -13.96 2183.889 21.7 OK

5 41.9 134.0 1 27.9 64.2 69.8 13.96 2183.611 17.4 OK

6 41.9 175.9 1 27.9 92.1 83.8 13.96 2183.889 21.7 OK

7 41.9 217.8 3 83.8 175.9 41.9 -41.88 2184.166 26.0 OK

8 41.9 259.6 3 83.8 259.6 0.0 -41.88 2183.333 13.0 OK

9 41.9 301.5 1 27.9 287.5 14.0 13.96 2182.500 0.0 OK

10 41.9 343.4 1 27.9 315.5 27.9 13.96 2182.778 4.3 OK

11 41.9 385.3 1 27.9 343.4 41.9 13.96 2183.056 8.7 OK

12 41.9 427.1 1 27.9 371.3 55.8 13.96 2183.333 13.0 OK

13 41.9 469.0 0.5 14.0 385.3 83.8 27.92 2183.611 17.4 OK

14 41.9 510.9 0.5 14.0 399.2 111.7 27.92 2184.166 26.0 OK

15 41.9 552.8 1 27.9 427.1 125.6 13.96 2184.722 34.7 OK

16 41.9 594.6 1 27.9 455.0 139.6 13.96 2185.000 39.1 OK

17 41.9 636.5 1 27.9 483.0 153.6 13.96 2185.277 43.4 OK

18 41.9 678.4 2 55.8 538.8 139.6 -13.96 2185.555 47.7 OK

19 41.9 720.3 2 55.8 594.6 125.6 -13.96 2185.277 43.4 OK

20 0.0 720.3 1 27.9 622.5 97.7 -27.92 2185.000 39.1 OK

21 0.0 720.3 1 27.9 650.5 69.8 -27.92 2184.444 30.4 OK

22 0.0 720.3 0.5 14.0 664.4 55.8 -13.96 2183.889 21.7 OK

23 0.0 720.3 0.2 5.6 670.0 50.3 -5.58 2183.611 17.4 OK

24 41.9 762.1 0.2 5.6 675.6 86.6 36.29 2183.500 15.6 OK

Total 670.0 24.0 670.0

Tank Status%Tank Full

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m)Time from Start

(hours)

Inflow (m3/h)

Fingask_1

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Page 195: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

195

Table A4: Fingask_2 Note: Tank is not enough, present diameter is 8 m. Increase it to 15m

Tank at Fingask_2

Maximum surplus (m3) 517.5

3 Minimum surplus (m3) 10.9

16 1st Guess Capacity (m3) 528.4

24 As per CPHEEO Capacity (m3) 663.14376

0.000 Final computed Capacity (m3) 707

2182.500 Max. serving Demand (mld) 2.2102183.500 Max. Population serving 13990

2186.500 Initial Volume (m3) 176.72

1 Fire storage (m3) 106.8

176.72 Depth for Fire (m) 0.201

15 Av. Flow (m3/h)= 138.155

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 138.2 314.9 0.2 18.4 18.4 296.4 119.73 2183.500 25.0 OK

1 0.0 314.9 0.2 18.4 36.8 278.0 -18.42 2184.178 41.9 OK

2 0.0 314.9 0.2 18.4 55.3 259.6 -18.42 2184.073 39.3 OK

3 0.0 314.9 0.2 18.4 73.7 241.2 -18.42 2183.969 36.7 OK

4 0.0 314.9 0.5 46.1 119.7 195.1 -46.05 2183.865 34.1 OK

5 138.2 453.0 1 92.1 211.8 241.2 46.05 2183.604 27.6 OK

6 138.2 591.2 1 92.1 303.9 287.2 46.05 2183.865 34.1 OK

7 138.2 729.3 3 276.3 580.3 149.1 -138.15 2184.125 40.6 OK

8 138.2 867.5 3 276.3 856.6 10.9 -138.15 2183.344 21.1 OK

9 138.2 1005.6 1 92.1 948.7 57.0 46.05 2182.562 1.5 OK

10 138.2 1143.8 1 92.1 1040.8 103.0 46.05 2182.822 8.1 OK

11 138.2 1282.0 1 92.1 1132.9 149.1 46.05 2183.083 14.6 OK

12 138.2 1420.1 1 92.1 1225.0 195.1 46.05 2183.344 21.1 OK

13 138.2 1558.3 0.5 46.1 1271.0 287.2 92.10 2183.604 27.6 OK

14 138.2 1696.4 0.5 46.1 1317.1 379.3 92.10 2184.125 40.6 OK

15 138.2 1834.6 1 92.1 1409.2 425.4 46.05 2184.647 53.7 OK

16 138.2 1972.7 1 92.1 1501.3 471.4 46.05 2184.907 60.2 OK

17 138.2 2110.9 1 92.1 1593.4 517.5 46.05 2185.168 66.7 OK

18 138.2 2249.0 2 184.2 1777.6 471.4 -46.05 2185.428 73.2 OK

19 138.2 2387.2 2 184.2 1961.8 425.4 -46.05 2185.168 66.7 OK

20 0.0 2387.2 1 92.1 2053.9 333.3 -92.10 2184.907 60.2 OK

21 0.0 2387.2 1 92.1 2146.0 241.2 -92.10 2184.386 47.2 OK

22 0.0 2387.2 0.5 46.1 2192.1 195.1 -46.05 2183.865 34.1 OK

23 0.0 2387.2 0.2 18.4 2210.5 176.7 -18.42 2183.604 27.6 OK

24 138.2 2525.3 0.2 18.4 2228.9 296.4 119.73 2183.500 25.0 OK

Total 2210.5 24.0 2210.5

Time from Start

(hours)

Inflow (m3/h)

Fingask_2

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 196: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

196

Table A5: Tutikandi_1

Tank at Tutikandi_1

Maximum surplus (m3) 239.2

3 Minimum surplus (m3) 81.0

16 1st Guess Capacity (m3) 320.1

24 As per CPHEEO Capacity (m3) 207.11499

0.000 Final computed Capacity (m3) 995

2067.500 Max. serving Demand (mld) 0.6902068.500 Max. Population serving 4370

2075.000 Initial Volume (m3) 132.73

1 Fire storage (m3) 33.4

132.73 Depth for Fire (m) 0.084

13 Av. Flow (m3/h)= 43.149

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 43.1 175.9 0.2 5.8 5.8 170.1 37.40 2068.500 13.3 OK

1 0.0 175.9 0.2 5.8 11.5 164.4 -5.75 2068.782 17.1 OK

2 0.0 175.9 0.2 5.8 17.3 158.6 -5.75 2068.738 16.5 OK

3 0.0 175.9 0.2 5.8 23.0 152.9 -5.75 2068.695 15.9 OK

4 0.0 175.9 0.5 14.4 37.4 138.5 -14.38 2068.652 15.4 OK

5 43.1 219.0 1 28.8 66.2 152.9 14.38 2068.543 13.9 OK

6 43.1 262.2 1 28.8 94.9 167.3 14.38 2068.652 15.4 OK

7 43.1 305.3 3 86.3 181.2 124.1 -43.15 2068.760 16.8 OK

8 43.1 348.5 3 86.3 267.5 81.0 -43.15 2068.435 12.5 OK

9 43.1 391.6 1 28.8 296.3 95.3 14.38 2068.110 8.1 OK

10 43.1 434.8 1 28.8 325.1 109.7 14.38 2068.218 9.6 OK

11 43.1 477.9 1 28.8 353.8 124.1 14.38 2068.327 11.0 OK

12 43.1 521.1 1 28.8 382.6 138.5 14.38 2068.435 12.5 OK

13 43.1 564.2 0.5 14.4 397.0 167.3 28.77 2068.543 13.9 OK

14 43.1 607.4 0.5 14.4 411.4 196.0 28.77 2068.760 16.8 OK

15 43.1 650.5 1 28.8 440.1 210.4 14.38 2068.977 19.7 OK

16 43.1 693.7 1 28.8 468.9 224.8 14.38 2069.085 21.1 OK

17 43.1 736.8 1 28.8 497.7 239.2 14.38 2069.194 22.6 OK

18 43.1 780.0 2 57.5 555.2 224.8 -14.38 2069.302 24.0 OK

19 43.1 823.1 2 57.5 612.7 210.4 -14.38 2069.194 22.6 OK

20 0.0 823.1 1 28.8 641.5 181.6 -28.77 2069.085 21.1 OK

21 0.0 823.1 1 28.8 670.2 152.9 -28.77 2068.868 18.2 OK

22 0.0 823.1 0.5 14.4 684.6 138.5 -14.38 2068.652 15.4 OK

23 0.0 823.1 0.2 5.8 690.4 132.7 -5.75 2068.543 13.9 OK

24 43.1 866.3 0.2 5.8 696.1 170.1 37.40 2068.500 13.3 OK

Total 690.4 24.0 690.4

Time from Start

(hours)

Inflow (m3/h)

Tutikandi_1

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 197: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

197

Table A6: Tutikandi_2 Note: Tank is not enough, present diameter is 7 m. Increase it to 18m

Tank at Tutikandi_2

Maximum surplus (m3) 734.1

3 Minimum surplus (m3) 21.2

16 1st Guess Capacity (m3) 755.2

24 As per CPHEEO Capacity (m3) 933.24708

0.000 Final computed Capacity (m3) 840

2066.500 Max. serving Demand (mld) 3.1112067.500 Max. Population serving 19689

2069.800 Initial Volume (m3) 254.47

1 Fire storage (m3) 150.3

254.47 Depth for Fire (m) 0.197

18 Av. Flow (m3/h)= 194.426

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 194.4 448.9 0.2 25.9 25.9 423.0 168.50 2067.500 30.3 OK

1 0.0 448.9 0.2 25.9 51.8 397.0 -25.92 2068.162 50.4 OK

2 0.0 448.9 0.2 25.9 77.8 371.1 -25.92 2068.060 47.3 OK

3 0.0 448.9 0.2 25.9 103.7 345.2 -25.92 2067.958 44.2 OK

4 0.0 448.9 0.5 64.8 168.5 280.4 -64.81 2067.857 41.1 OK

5 194.4 643.3 1 129.6 298.1 345.2 64.81 2067.602 33.4 OK

6 194.4 837.7 1 129.6 427.7 410.0 64.81 2067.857 41.1 OK

7 194.4 1032.2 3 388.9 816.6 215.6 -194.43 2068.111 48.8 OK

8 194.4 1226.6 3 388.9 1205.4 21.2 -194.43 2067.347 25.7 OK

9 194.4 1421.0 1 129.6 1335.1 86.0 64.81 2066.583 2.5 OK

10 194.4 1615.5 1 129.6 1464.7 150.8 64.81 2066.838 10.2 OK

11 194.4 1809.9 1 129.6 1594.3 215.6 64.81 2067.093 18.0 OK

12 194.4 2004.3 1 129.6 1723.9 280.4 64.81 2067.347 25.7 OK

13 194.4 2198.7 0.5 64.8 1788.7 410.0 129.62 2067.602 33.4 OK

14 194.4 2393.2 0.5 64.8 1853.5 539.6 129.62 2068.111 48.8 OK

15 194.4 2587.6 1 129.6 1983.2 604.4 64.81 2068.621 64.3 OK

16 194.4 2782.0 1 129.6 2112.8 669.2 64.81 2068.875 72.0 OK

17 194.4 2976.4 1 129.6 2242.4 734.1 64.81 2069.130 79.7 OK

18 194.4 3170.9 2 259.2 2501.6 669.2 -64.81 2069.385 87.4 OK

19 194.4 3365.3 2 259.2 2760.9 604.4 -64.81 2069.130 79.7 OK

20 0.0 3365.3 1 129.6 2890.5 474.8 -129.62 2068.875 72.0 OK

21 0.0 3365.3 1 129.6 3020.1 345.2 -129.62 2068.366 56.5 OK

22 0.0 3365.3 0.5 64.8 3084.9 280.4 -64.81 2067.857 41.1 OK

23 0.0 3365.3 0.2 25.9 3110.8 254.5 -25.92 2067.602 33.4 OK

24 194.4 3559.7 0.2 25.9 3136.7 423.0 168.50 2067.500 30.3 OK

Total 3110.8 24.0 3110.8

Time from Start

(hours)

Inflow (m3/h)

Tutikandi_2

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 198: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

198

Table A7: Z7_Tutikandi_3

Tank at Z7_Tutikandi_3

Maximum surplus (m3) 195.8

3 Minimum surplus (m3) 72.8

16 1st Guess Capacity (m3) 268.7

24 As per CPHEEO Capacity (m3) 161.01693

0.000 Final computed Capacity (m3) 565

2071.500 Max. serving Demand (mld) 0.5372072.500 Max. Population serving 3397

2076.500 Initial Volume (m3) 113.10

1 Fire storage (m3) 25.9

113.10 Depth for Fire (m) 0.076

12 Av. Flow (m3/h)= 33.545

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 33.5 146.6 0.2 4.5 4.5 142.2 29.07 2072.500 20.0 OK

1 0.0 146.6 0.2 4.5 8.9 137.7 -4.47 2072.757 25.1 OK

2 0.0 146.6 0.2 4.5 13.4 133.2 -4.47 2072.718 24.4 OK

3 0.0 146.6 0.2 4.5 17.9 128.8 -4.47 2072.678 23.6 OK

4 0.0 146.6 0.5 11.2 29.1 117.6 -11.18 2072.638 22.8 OK

5 33.5 180.2 1 22.4 51.4 128.8 11.18 2072.540 20.8 OK

6 33.5 213.7 1 22.4 73.8 139.9 11.18 2072.638 22.8 OK

7 33.5 247.3 3 67.1 140.9 106.4 -33.55 2072.737 24.7 OK

8 33.5 280.8 3 67.1 208.0 72.8 -33.55 2072.441 18.8 OK

9 33.5 314.4 1 22.4 230.3 84.0 11.18 2072.144 12.9 OK

10 33.5 347.9 1 22.4 252.7 95.2 11.18 2072.243 14.9 OK

11 33.5 381.5 1 22.4 275.1 106.4 11.18 2072.342 16.8 OK

12 33.5 415.0 1 22.4 297.4 117.6 11.18 2072.441 18.8 OK

13 33.5 448.5 0.5 11.2 308.6 139.9 22.36 2072.540 20.8 OK

14 33.5 482.1 0.5 11.2 319.8 162.3 22.36 2072.737 24.7 OK

15 33.5 515.6 1 22.4 342.2 173.5 11.18 2072.935 28.7 OK

16 33.5 549.2 1 22.4 364.5 184.7 11.18 2073.034 30.7 OK

17 33.5 582.7 1 22.4 386.9 195.8 11.18 2073.133 32.7 OK

18 33.5 616.3 2 44.7 431.6 184.7 -11.18 2073.232 34.6 OK

19 33.5 649.8 2 44.7 476.3 173.5 -11.18 2073.133 32.7 OK

20 0.0 649.8 1 22.4 498.7 151.1 -22.36 2073.034 30.7 OK

21 0.0 649.8 1 22.4 521.1 128.8 -22.36 2072.836 26.7 OK

22 0.0 649.8 0.5 11.2 532.3 117.6 -11.18 2072.638 22.8 OK

23 0.0 649.8 0.2 4.5 536.7 113.1 -4.47 2072.540 20.8 OK

24 33.5 683.4 0.2 4.5 541.2 142.2 29.07 2072.500 20.0 OK

Total 536.7 24.0 536.7

Time from Start

(hours)

Inflow (m3/h)

Z7_Tutikandi_3

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 199: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

199

Table A8: Advance_Study_Steel_Tank Note: Tank is not enough, present diameter is 8.4 m. Increase it to 15m

Tank at Advance_Study_Steel_Tank

Maximum surplus (m3) 471.0

3 Minimum surplus (m3) 33.5

16 1st Guess Capacity (m3) 504.6

24 As per CPHEEO Capacity (m3) 572.75751

0.000 Final computed Capacity (m3) 636

2130.000 Max. serving Demand (mld) 1.9092131.000 Max. Population serving 12083

2133.600 Initial Volume (m3) 176.72

1 Fire storage (m3) 92.2

176.72 Depth for Fire (m) 0.174

15 Av. Flow (m3/h)= 119.324

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 119.3 296.0 0.2 15.9 15.9 280.1 103.41 2131.000 27.8 OK

1 0.0 296.0 0.2 15.9 31.8 264.2 -15.91 2131.585 44.0 OK

2 0.0 296.0 0.2 15.9 47.7 248.3 -15.91 2131.495 41.5 OK

3 0.0 296.0 0.2 15.9 63.6 232.4 -15.91 2131.405 39.0 OK

4 0.0 296.0 0.5 39.8 103.4 192.6 -39.77 2131.315 36.5 OK

5 119.3 415.4 1 79.5 183.0 232.4 39.77 2131.090 30.3 OK

6 119.3 534.7 1 79.5 262.5 272.2 39.77 2131.315 36.5 OK

7 119.3 654.0 3 238.6 501.2 152.9 -119.32 2131.540 42.8 OK

8 119.3 773.3 3 238.6 739.8 33.5 -119.32 2130.865 24.0 OK

9 119.3 892.7 1 79.5 819.4 73.3 39.77 2130.190 5.3 OK

10 119.3 1012.0 1 79.5 898.9 113.1 39.77 2130.415 11.5 OK

11 119.3 1131.3 1 79.5 978.5 152.9 39.77 2130.640 17.8 OK

12 119.3 1250.6 1 79.5 1058.0 192.6 39.77 2130.865 24.0 OK

13 119.3 1370.0 0.5 39.8 1097.8 272.2 79.55 2131.090 30.3 OK

14 119.3 1489.3 0.5 39.8 1137.6 351.7 79.55 2131.540 42.8 OK

15 119.3 1608.6 1 79.5 1217.1 391.5 39.77 2131.990 55.3 OK

16 119.3 1727.9 1 79.5 1296.7 431.3 39.77 2132.215 61.5 OK

17 119.3 1847.3 1 79.5 1376.2 471.0 39.77 2132.441 67.8 OK

18 119.3 1966.6 2 159.1 1535.3 431.3 -39.77 2132.666 74.0 OK

19 119.3 2085.9 2 159.1 1694.4 391.5 -39.77 2132.441 67.8 OK

20 0.0 2085.9 1 79.5 1774.0 311.9 -79.55 2132.215 61.5 OK

21 0.0 2085.9 1 79.5 1853.5 232.4 -79.55 2131.765 49.0 OK

22 0.0 2085.9 0.5 39.8 1893.3 192.6 -39.77 2131.315 36.5 OK

23 0.0 2085.9 0.2 15.9 1909.2 176.7 -15.91 2131.090 30.3 OK

24 119.3 2205.2 0.2 15.9 1925.1 280.1 103.41 2131.000 27.8 OK

Total 1909.2 24.0 1909.2

Time from Start

(hours)

Inflow (m3/h)

Advance_Study_Steel_Tank

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 200: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

200

Table A9: IIAS_Summer Hill

Tank at IIAS_Summer Hill

Maximum surplus (m3) 295.6

3 Minimum surplus (m3) 24.3

16 1st Guess Capacity (m3) 319.9

24 As per CPHEEO Capacity (m3) 355.14639

0.000 Final computed Capacity (m3) 452

2108.500 Max. serving Demand (mld) 1.1842109.500 Max. Population serving 7493

2112.500 Initial Volume (m3) 113.10

1 Fire storage (m3) 57.2

113.10 Depth for Fire (m) 0.169

12 Av. Flow (m3/h)= 73.989

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 74.0 187.1 0.2 9.9 9.9 177.2 64.12 2109.500 25.0 OK

1 0.0 187.1 0.2 9.9 19.7 167.4 -9.87 2110.067 39.2 OK

2 0.0 187.1 0.2 9.9 29.6 157.5 -9.87 2109.980 37.0 OK

3 0.0 187.1 0.2 9.9 39.5 147.6 -9.87 2109.893 34.8 OK

4 0.0 187.1 0.5 24.7 64.1 123.0 -24.66 2109.805 32.6 OK

5 74.0 261.1 1 49.3 113.4 147.6 24.66 2109.587 27.2 OK

6 74.0 335.1 1 49.3 162.8 172.3 24.66 2109.805 32.6 OK

7 74.0 409.1 3 148.0 310.8 98.3 -73.99 2110.023 38.1 OK

8 74.0 483.0 3 148.0 458.7 24.3 -73.99 2109.369 21.7 OK

9 74.0 557.0 1 49.3 508.1 49.0 24.66 2108.715 5.4 OK

10 74.0 631.0 1 49.3 557.4 73.6 24.66 2108.933 10.8 OK

11 74.0 705.0 1 49.3 606.7 98.3 24.66 2109.151 16.3 OK

12 74.0 779.0 1 49.3 656.0 123.0 24.66 2109.369 21.7 OK

13 74.0 853.0 0.5 24.7 680.7 172.3 49.33 2109.587 27.2 OK

14 74.0 927.0 0.5 24.7 705.4 221.6 49.33 2110.023 38.1 OK

15 74.0 1001.0 1 49.3 754.7 246.3 24.66 2110.459 49.0 OK

16 74.0 1075.0 1 49.3 804.0 270.9 24.66 2110.678 54.4 OK

17 74.0 1148.9 1 49.3 853.3 295.6 24.66 2110.896 59.9 OK

18 74.0 1222.9 2 98.7 952.0 270.9 -24.66 2111.114 65.3 OK

19 74.0 1296.9 2 98.7 1050.6 246.3 -24.66 2110.896 59.9 OK

20 0.0 1296.9 1 49.3 1100.0 197.0 -49.33 2110.678 54.4 OK

21 0.0 1296.9 1 49.3 1149.3 147.6 -49.33 2110.241 43.5 OK

22 0.0 1296.9 0.5 24.7 1174.0 123.0 -24.66 2109.805 32.6 OK

23 0.0 1296.9 0.2 9.9 1183.8 113.1 -9.87 2109.587 27.2 OK

24 74.0 1370.9 0.2 9.9 1193.7 177.2 64.12 2109.500 25.0 OK

Total 1183.8 24.0 1183.8

Time from Start

(hours)

Inflow (m3/h)

IIAS_Summer Hill

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 201: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

201

Table A10: Z6_Baluganj_Harinagar

Tank at Z6_Baluganj_Harinagar

Maximum surplus (m3) 362.9

3 Minimum surplus (m3) 122.3

16 1st Guess Capacity (m3) 485.2

24 As per CPHEEO Capacity (m3) 315.0006

0.000 Final computed Capacity (m3) 1005

2115.500 Max. serving Demand (mld) 1.0502116.500 Max. Population serving 6646

2120.500 Initial Volume (m3) 201.06

1 Fire storage (m3) 50.7

201.06 Depth for Fire (m) 0.084

16 Av. Flow (m3/h)= 65.625

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 65.6 266.7 0.2 8.8 8.8 257.9 56.88 2116.500 20.0 OK

1 0.0 266.7 0.2 8.8 17.5 249.2 -8.75 2116.783 25.7 OK

2 0.0 266.7 0.2 8.8 26.3 240.4 -8.75 2116.739 24.8 OK

3 0.0 266.7 0.2 8.8 35.0 231.7 -8.75 2116.696 23.9 OK

4 0.0 266.7 0.5 21.9 56.9 209.8 -21.88 2116.652 23.0 OK

5 65.6 332.3 1 43.8 100.6 231.7 21.88 2116.544 20.9 OK

6 65.6 397.9 1 43.8 144.4 253.6 21.88 2116.652 23.0 OK

7 65.6 463.6 3 131.3 275.6 187.9 -65.63 2116.761 25.2 OK

8 65.6 529.2 3 131.3 406.9 122.3 -65.63 2116.435 18.7 OK

9 65.6 594.8 1 43.8 450.6 144.2 21.88 2116.108 12.2 OK

10 65.6 660.4 1 43.8 494.4 166.1 21.88 2116.217 14.3 OK

11 65.6 726.1 1 43.8 538.1 187.9 21.88 2116.326 16.5 OK

12 65.6 791.7 1 43.8 581.9 209.8 21.88 2116.435 18.7 OK

13 65.6 857.3 0.5 21.9 603.8 253.6 43.75 2116.544 20.9 OK

14 65.6 922.9 0.5 21.9 625.6 297.3 43.75 2116.761 25.2 OK

15 65.6 988.6 1 43.8 669.4 319.2 21.88 2116.979 29.6 OK

16 65.6 1054.2 1 43.8 713.1 341.1 21.88 2117.088 31.8 OK

17 65.6 1119.8 1 43.8 756.9 362.9 21.88 2117.196 33.9 OK

18 65.6 1185.4 2 87.5 844.4 341.1 -21.88 2117.305 36.1 OK

19 65.6 1251.1 2 87.5 931.9 319.2 -21.88 2117.196 33.9 OK

20 0.0 1251.1 1 43.8 975.6 275.4 -43.75 2117.088 31.8 OK

21 0.0 1251.1 1 43.8 1019.4 231.7 -43.75 2116.870 27.4 OK

22 0.0 1251.1 0.5 21.9 1041.3 209.8 -21.88 2116.652 23.0 OK

23 0.0 1251.1 0.2 8.8 1050.0 201.1 -8.75 2116.544 20.9 OK

24 65.6 1316.7 0.2 8.8 1058.8 257.9 56.88 2116.500 20.0 OK

Total 1050.0 24.0 1050.0

Time from Start

(hours)

Inflow (m3/h)

Z6_Baluganj_Harinagar

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 202: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

202

Table A11: Chakkar/Sandal Note: Tank is not enough, present diameter is 12 m. Increase it to 16m

Tank at Chakkar/Sandal

Maximum surplus (m3) 575.9

3 Minimum surplus (m3) 18.7

16 1st Guess Capacity (m3) 594.6

24 As per CPHEEO Capacity (m3) 729.43905

0.000 Final computed Capacity (m3) 1689

2056.500 Max. serving Demand (mld) 2.4312057.500 Max. Population serving 15389

2064.900 Initial Volume (m3) 201.06

1 Fire storage (m3) 117.5

201.06 Depth for Fire (m) 0.195

16 Av. Flow (m3/h)= 151.966

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 152.0 353.0 0.2 20.3 20.3 332.8 131.70 2057.500 11.9 OK

1 0.0 353.0 0.2 20.3 40.5 312.5 -20.26 2058.155 19.7 OK

2 0.0 353.0 0.2 20.3 60.8 292.2 -20.26 2058.054 18.5 OK

3 0.0 353.0 0.2 20.3 81.0 272.0 -20.26 2057.953 17.3 OK

4 0.0 353.0 0.5 50.7 131.7 221.3 -50.66 2057.853 16.1 OK

5 152.0 505.0 1 101.3 233.0 272.0 50.66 2057.601 13.1 OK

6 152.0 657.0 1 101.3 334.3 322.6 50.66 2057.853 16.1 OK

7 152.0 808.9 3 303.9 638.3 170.7 -151.97 2058.105 19.1 OK

8 152.0 960.9 3 303.9 942.2 18.7 -151.97 2057.349 10.1 OK

9 152.0 1112.9 1 101.3 1043.5 69.4 50.66 2056.593 1.1 OK

10 152.0 1264.8 1 101.3 1144.8 120.0 50.66 2056.845 4.1 OK

11 152.0 1416.8 1 101.3 1246.1 170.7 50.66 2057.097 7.1 OK

12 152.0 1568.8 1 101.3 1347.4 221.3 50.66 2057.349 10.1 OK

13 152.0 1720.7 0.5 50.7 1398.1 322.6 101.31 2057.601 13.1 OK

14 152.0 1872.7 0.5 50.7 1448.7 423.9 101.31 2058.105 19.1 OK

15 152.0 2024.7 1 101.3 1550.1 474.6 50.66 2058.609 25.1 OK

16 152.0 2176.6 1 101.3 1651.4 525.3 50.66 2058.860 28.1 OK

17 152.0 2328.6 1 101.3 1752.7 575.9 50.66 2059.112 31.1 OK

18 152.0 2480.6 2 202.6 1955.3 525.3 -50.66 2059.364 34.1 OK

19 152.0 2632.5 2 202.6 2157.9 474.6 -50.66 2059.112 31.1 OK

20 0.0 2632.5 1 101.3 2259.2 373.3 -101.31 2058.860 28.1 OK

21 0.0 2632.5 1 101.3 2360.5 272.0 -101.31 2058.357 22.1 OK

22 0.0 2632.5 0.5 50.7 2411.2 221.3 -50.66 2057.853 16.1 OK

23 0.0 2632.5 0.2 20.3 2431.5 201.1 -20.26 2057.601 13.1 OK

24 152.0 2784.5 0.2 20.3 2451.7 332.8 131.70 2057.500 11.9 OK

Total 2431.5 24.0 2431.5

Tank Status%Tank Full

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m)Time from Start

(hours)

Inflow (m3/h)

Chakkar/Sandal

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Page 203: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

203

Table A12: Kamnadevi_Temple Note: Tank is not enough, present diameter is 10 m. Increase it to 17m.

Tank at Kamnadevi_Temple

Maximum surplus (m3) 667.4

3 Minimum surplus (m3) 12.7

16 1st Guess Capacity (m3) 680.1

24 As per CPHEEO Capacity (m3) 856.97334

0.000 Final computed Capacity (m3) 1090

2166.500 Max. serving Demand (mld) 2.8572167.500 Max. Population serving 18080

2171.300 Initial Volume (m3) 226.98

1 Fire storage (m3) 138.0

226.98 Depth for Fire (m) 0.203

17 Av. Flow (m3/h)= 178.536

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 178.5 405.5 0.2 23.8 23.8 381.7 154.73 2167.500 20.8 OK

1 0.0 405.5 0.2 23.8 47.6 357.9 -23.80 2168.182 35.0 OK

2 0.0 405.5 0.2 23.8 71.4 334.1 -23.80 2168.077 32.9 OK

3 0.0 405.5 0.2 23.8 95.2 310.3 -23.80 2167.972 30.7 OK

4 0.0 405.5 0.5 59.5 154.7 250.8 -59.51 2167.867 28.5 OK

5 178.5 584.1 1 119.0 273.8 310.3 59.51 2167.605 23.0 OK

6 178.5 762.6 1 119.0 392.8 369.8 59.51 2167.867 28.5 OK

7 178.5 941.1 3 357.1 749.9 191.3 -178.54 2168.129 33.9 OK

8 178.5 1119.7 3 357.1 1106.9 12.7 -178.54 2167.343 17.6 OK

9 178.5 1298.2 1 119.0 1225.9 72.2 59.51 2166.556 1.2 OK

10 178.5 1476.7 1 119.0 1345.0 131.8 59.51 2166.818 6.6 OK

11 178.5 1655.3 1 119.0 1464.0 191.3 59.51 2167.080 12.1 OK

12 178.5 1833.8 1 119.0 1583.0 250.8 59.51 2167.343 17.6 OK

13 178.5 2012.3 0.5 59.5 1642.5 369.8 119.02 2167.605 23.0 OK

14 178.5 2190.9 0.5 59.5 1702.0 488.8 119.02 2168.129 33.9 OK

15 178.5 2369.4 1 119.0 1821.1 548.3 59.51 2168.654 44.9 OK

16 178.5 2548.0 1 119.0 1940.1 607.9 59.51 2168.916 50.3 OK

17 178.5 2726.5 1 119.0 2059.1 667.4 59.51 2169.178 55.8 OK

18 178.5 2905.0 2 238.0 2297.2 607.9 -59.51 2169.440 61.3 OK

19 178.5 3083.6 2 238.0 2535.2 548.3 -59.51 2169.178 55.8 OK

20 0.0 3083.6 1 119.0 2654.2 429.3 -119.02 2168.916 50.3 OK

21 0.0 3083.6 1 119.0 2773.3 310.3 -119.02 2168.391 39.4 OK

22 0.0 3083.6 0.5 59.5 2832.8 250.8 -59.51 2167.867 28.5 OK

23 0.0 3083.6 0.2 23.8 2856.6 227.0 -23.80 2167.605 23.0 OK

24 178.5 3262.1 0.2 23.8 2880.4 381.7 154.73 2167.500 20.8 OK

Total 2856.6 24.0 2856.6

Tank Status%Tank Full

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m)Time from Start

(hours)

Inflow (m3/h)

Kamnadevi_Temple

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Page 204: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

204

Table A13: Ridge_direct_from Sanjauli

Tank at Ridge_direct_from Sanjauli

Maximum surplus (m3) 1154.2

3 Minimum surplus (m3) 780.2

16 1st Guess Capacity (m3) 1934.4

24 As per CPHEEO Capacity (m3) 489.53787

0.000 Final computed Capacity (m3) 3610

2246.000 Max. serving Demand (mld) 1.6322247.000 Max. Population serving 10328

2250.000 Initial Volume (m3) 902.59

1 Fire storage (m3) 78.8

902.59 Depth for Fire (m) 0.029

33.9 Av. Flow (m3/h)= 101.987

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 102.0 1004.6 0.2 13.6 13.6 991.0 88.39 2247.000 25.0 OK

1 0.0 1004.6 0.2 13.6 27.2 977.4 -13.60 2247.098 27.4 OK

2 0.0 1004.6 0.2 13.6 40.8 963.8 -13.60 2247.083 27.1 OK

3 0.0 1004.6 0.2 13.6 54.4 950.2 -13.60 2247.068 26.7 OK

4 0.0 1004.6 0.5 34.0 88.4 916.2 -34.00 2247.053 26.3 OK

5 102.0 1106.6 1 68.0 156.4 950.2 34.00 2247.015 25.4 OK

6 102.0 1208.6 1 68.0 224.4 984.2 34.00 2247.053 26.3 OK

7 102.0 1310.5 3 204.0 428.3 882.2 -101.99 2247.090 27.3 OK

8 102.0 1412.5 3 204.0 632.3 780.2 -101.99 2246.977 24.4 OK

9 102.0 1514.5 1 68.0 700.3 814.2 34.00 2246.864 21.6 OK

10 102.0 1616.5 1 68.0 768.3 848.2 34.00 2246.902 22.6 OK

11 102.0 1718.5 1 68.0 836.3 882.2 34.00 2246.940 23.5 OK

12 102.0 1820.5 1 68.0 904.3 916.2 34.00 2246.977 24.4 OK

13 102.0 1922.5 0.5 34.0 938.3 984.2 67.99 2247.015 25.4 OK

14 102.0 2024.4 0.5 34.0 972.3 1052.2 67.99 2247.090 27.3 OK

15 102.0 2126.4 1 68.0 1040.3 1086.2 34.00 2247.166 29.1 OK

16 102.0 2228.4 1 68.0 1108.3 1120.2 34.00 2247.203 30.1 OK

17 102.0 2330.4 1 68.0 1176.3 1154.2 34.00 2247.241 31.0 OK

18 102.0 2432.4 2 136.0 1312.2 1120.2 -34.00 2247.279 32.0 OK

19 102.0 2534.4 2 136.0 1448.2 1086.2 -34.00 2247.241 31.0 OK

20 0.0 2534.4 1 68.0 1516.2 1018.2 -67.99 2247.203 30.1 OK

21 0.0 2534.4 1 68.0 1584.2 950.2 -67.99 2247.128 28.2 OK

22 0.0 2534.4 0.5 34.0 1618.2 916.2 -34.00 2247.053 26.3 OK

23 0.0 2534.4 0.2 13.6 1631.8 902.6 -13.60 2247.015 25.4 OK

24 102.0 2636.4 0.2 13.6 1645.4 991.0 88.39 2247.000 25.0 OK

Total 1631.8 24.0 1631.8

Time from Start

(hours)

Inflow (m3/h)

Ridge_direct_from Sanjauli

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 205: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

205

APPENDIX-B Mass Curve Spread Sheets of PostSanjauli_450CI

Table B1: Ridge

Tank at Ridge

Maximum surplus (m3) 2580.0

3 Minimum surplus (m3) 59.2

16 1st Guess Capacity (m3) 2639.2

24 As per CPHEEO Capacity (m3) 3300

0.000 Final computed Capacity (m3) 5747

2198.000 Max. serving Demand (mld) 11.0002199.000 Max. Population serving 69620

2204.500 Initial Volume (m3) 884.17

1 Fire storage (m3) 531.4

884.17 Depth for Fire (m) 0.200

Av. Flow (m3/h)= 687.500

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 687.5 1571.7 0.2 91.7 91.7 1480.0 595.83 2199.000 15.4 OK

1 0.0 1571.7 0.2 91.7 183.3 1388.3 -91.67 2199.674 25.8 OK

2 0.0 1571.7 0.2 91.7 275.0 1296.7 -91.67 2199.570 24.2 OK

3 0.0 1571.7 0.2 91.7 366.7 1205.0 -91.67 2199.467 22.6 OK

4 0.0 1571.7 0.5 229.2 595.8 975.8 -229.17 2199.363 21.0 OK

5 687.5 2259.2 1 458.3 1054.2 1205.0 229.17 2199.104 17.0 OK

6 687.5 2946.7 1 458.3 1512.5 1434.2 229.17 2199.363 21.0 OK

7 687.5 3634.2 3 1375.0 2887.5 746.7 -687.50 2199.622 25.0 OK

8 687.5 4321.7 3 1375.0 4262.5 59.2 -687.50 2198.844 13.0 OK

9 687.5 5009.2 1 458.3 4720.8 288.3 229.17 2198.067 1.0 OK

10 687.5 5696.7 1 458.3 5179.2 517.5 229.17 2198.326 5.0 OK

11 687.5 6384.2 1 458.3 5637.5 746.7 229.17 2198.585 9.0 OK

12 687.5 7071.7 1 458.3 6095.8 975.8 229.17 2198.844 13.0 OK

13 687.5 7759.2 0.5 229.2 6325.0 1434.2 458.33 2199.104 17.0 OK

14 687.5 8446.7 0.5 229.2 6554.2 1892.5 458.33 2199.622 25.0 OK

15 687.5 9134.2 1 458.3 7012.5 2121.7 229.17 2200.140 32.9 OK

16 687.5 9821.7 1 458.3 7470.8 2350.8 229.17 2200.400 36.9 OK

17 687.5 10509.2 1 458.3 7929.2 2580.0 229.17 2200.659 40.9 OK

18 687.5 11196.7 2 916.7 8845.8 2350.8 -229.17 2200.918 44.9 OK

19 687.5 11884.2 2 916.7 9762.5 2121.7 -229.17 2200.659 40.9 OK

20 0.0 11884.2 1 458.3 10220.8 1663.3 -458.33 2200.400 36.9 OK

21 0.0 11884.2 1 458.3 10679.2 1205.0 -458.33 2199.881 28.9 OK

22 0.0 11884.2 0.5 229.2 10908.3 975.8 -229.17 2199.363 21.0 OK

23 0.0 11884.2 0.2 91.7 11000.0 884.2 -91.67 2199.104 17.0 OK

24 687.5 12571.7 0.2 91.7 11091.7 1480.0 595.83 2199.000 15.4 OK

Total 11000.0 24.0 11000.0

Time from Start

(hours)

Inflow (m3/h)

Ridge

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 206: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

206

APPENDIX-C Mass Curve Spread Sheets of PostRidge_400CI

Table C1: Tara_Hall Note: Tank is not enough, present diameter is 8 m. Increase it to 17m.

Tank at Tara_Hall

Maximum surplus (m3) 649.9

3 Minimum surplus (m3) 21.2

16 1st Guess Capacity (m3) 671.1

24 As per CPHEEO Capacity (m3) 823.00032

0.000 Final computed Capacity (m3) 1453

2092.500 Max. serving Demand (mld) 2.7432093.500 Max. Population serving 17363

2098.900 Initial Volume (m3) 226.98

1 Fire storage (m3) 132.5

226.98 Depth for Fire (m) 0.195

17 Av. Flow (m3/h)= 171.458

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 171.5 398.4 0.2 22.9 22.9 375.6 148.60 2093.500 15.6 OK

1 0.0 398.4 0.2 22.9 45.7 352.7 -22.86 2094.155 25.9 OK

2 0.0 398.4 0.2 22.9 68.6 329.9 -22.86 2094.054 24.3 OK

3 0.0 398.4 0.2 22.9 91.4 307.0 -22.86 2093.953 22.7 OK

4 0.0 398.4 0.5 57.2 148.6 249.8 -57.15 2093.853 21.1 OK

5 171.5 569.9 1 114.3 262.9 307.0 57.15 2093.601 17.2 OK

6 171.5 741.4 1 114.3 377.2 364.1 57.15 2093.853 21.1 OK

7 171.5 912.8 3 342.9 720.1 192.7 -171.46 2094.104 25.1 OK

8 171.5 1084.3 3 342.9 1063.0 21.2 -171.46 2093.349 13.3 OK

9 171.5 1255.7 1 114.3 1177.3 78.4 57.15 2092.594 1.5 OK

10 171.5 1427.2 1 114.3 1291.7 135.5 57.15 2092.845 5.4 OK

11 171.5 1598.6 1 114.3 1406.0 192.7 57.15 2093.097 9.3 OK

12 171.5 1770.1 1 114.3 1520.3 249.8 57.15 2093.349 13.3 OK

13 171.5 1941.6 0.5 57.2 1577.4 364.1 114.31 2093.601 17.2 OK

14 171.5 2113.0 0.5 57.2 1634.6 478.5 114.31 2094.104 25.1 OK

15 171.5 2284.5 1 114.3 1748.9 535.6 57.15 2094.608 32.9 OK

16 171.5 2455.9 1 114.3 1863.2 592.8 57.15 2094.860 36.9 OK

17 171.5 2627.4 1 114.3 1977.5 649.9 57.15 2095.111 40.8 OK

18 171.5 2798.9 2 228.6 2206.1 592.8 -57.15 2095.363 44.7 OK

19 171.5 2970.3 2 228.6 2434.7 535.6 -57.15 2095.111 40.8 OK

20 0.0 2970.3 1 114.3 2549.0 421.3 -114.31 2094.860 36.9 OK

21 0.0 2970.3 1 114.3 2663.3 307.0 -114.31 2094.356 29.0 OK

22 0.0 2970.3 0.5 57.2 2720.5 249.8 -57.15 2093.853 21.1 OK

23 0.0 2970.3 0.2 22.9 2743.3 227.0 -22.86 2093.601 17.2 OK

24 171.5 3141.8 0.2 22.9 2766.2 375.6 148.60 2093.500 15.6 OK

Total 2743.3 24.0 2743.3

Tank Status%Tank Full

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m)Time from Start

(hours)

Inflow (m3/h)

Tara_Hall

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Page 207: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

207

Table C2: Phagali Note: Tank is not enough, present diameter is 9 m. Increase it to 16m.

Tank at Phagali

Maximum surplus (m3) 596.9

3 Minimum surplus (m3) 8.5

16 1st Guess Capacity (m3) 605.4

24 As per CPHEEO Capacity (m3) 770.3667

0.000 Final computed Capacity (m3) 603

2002.000 Max. serving Demand (mld) 2.5682003.000 Max. Population serving 16252

2005.000 Initial Volume (m3) 201.06

1 Fire storage (m3) 124.1

201.06 Depth for Fire (m) 0.206

16 Av. Flow (m3/h)= 160.493

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 160.5 361.6 0.2 21.4 21.4 340.2 139.09 2003.000 33.3 OK

1 0.0 361.6 0.2 21.4 42.8 318.8 -21.40 2003.692 56.4 OK

2 0.0 361.6 0.2 21.4 64.2 297.4 -21.40 2003.585 52.8 OK

3 0.0 361.6 0.2 21.4 85.6 276.0 -21.40 2003.479 49.3 OK

4 0.0 361.6 0.5 53.5 139.1 222.5 -53.50 2003.373 45.8 OK

5 160.5 522.0 1 107.0 246.1 276.0 53.50 2003.106 36.9 OK

6 160.5 682.5 1 107.0 353.1 329.5 53.50 2003.373 45.8 OK

7 160.5 843.0 3 321.0 674.1 169.0 -160.49 2003.639 54.6 OK

8 160.5 1003.5 3 321.0 995.1 8.5 -160.49 2002.840 28.0 OK

9 160.5 1164.0 1 107.0 1102.1 62.0 53.50 2002.042 1.4 OK

10 160.5 1324.5 1 107.0 1209.0 115.5 53.50 2002.308 10.3 OK

11 160.5 1485.0 1 107.0 1316.0 169.0 53.50 2002.574 19.1 OK

12 160.5 1645.5 1 107.0 1423.0 222.5 53.50 2002.840 28.0 OK

13 160.5 1806.0 0.5 53.5 1476.5 329.5 107.00 2003.106 36.9 OK

14 160.5 1966.5 0.5 53.5 1530.0 436.5 107.00 2003.639 54.6 OK

15 160.5 2127.0 1 107.0 1637.0 489.9 53.50 2004.171 72.4 OK

16 160.5 2287.5 1 107.0 1744.0 543.4 53.50 2004.437 81.2 OK

17 160.5 2448.0 1 107.0 1851.0 596.9 53.50 2004.703 90.1 OK

18 160.5 2608.5 2 214.0 2065.0 543.4 -53.50 2004.969 99.0 OK

19 160.5 2769.0 2 214.0 2279.0 489.9 -53.50 2004.703 90.1 OK

20 0.0 2769.0 1 107.0 2386.0 383.0 -107.00 2004.437 81.2 OK

21 0.0 2769.0 1 107.0 2493.0 276.0 -107.00 2003.905 63.5 OK

22 0.0 2769.0 0.5 53.5 2546.5 222.5 -53.50 2003.373 45.8 OK

23 0.0 2769.0 0.2 21.4 2567.9 201.1 -21.40 2003.106 36.9 OK

24 160.5 2929.4 0.2 21.4 2589.3 340.2 139.09 2003.000 33.3 OK

Total 2567.9 24.0 2567.9

Tank Status%Tank Full

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m)Time from Start

(hours)

Inflow (m3/h)

Phagali

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Page 208: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

208

Table C3: Summerhill Bazar Note: Tank is not enough, present diameter is 7 m. Increase it to 12m.

Tank at Summerhill Bazar

Maximum surplus (m3) 65.8

3 Minimum surplus (m3) 25.2

16 1st Guess Capacity (m3) 91.0

24 As per CPHEEO Capacity (m3) 53.20545

0.000 Final computed Capacity (m3) 139

2061.500 Max. serving Demand (mld) 0.1772062.500 Max. Population serving 1122

2065.100 Initial Volume (m3) 38.48

1 Fire storage (m3) 8.6

38.48 Depth for Fire (m) 0.074

7 Av. Flow (m3/h)= 11.084

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 11.1 49.6 0.2 1.5 1.5 48.1 9.61 2062.500 27.8 OK

1 0.0 49.6 0.2 1.5 3.0 46.6 -1.48 2062.750 34.7 OK

2 0.0 49.6 0.2 1.5 4.4 45.1 -1.48 2062.711 33.6 OK

3 0.0 49.6 0.2 1.5 5.9 43.7 -1.48 2062.673 32.6 OK

4 0.0 49.6 0.5 3.7 9.6 40.0 -3.69 2062.634 31.5 OK

5 11.1 60.7 1 7.4 17.0 43.7 3.69 2062.538 28.8 OK

6 11.1 71.7 1 7.4 24.4 47.4 3.69 2062.634 31.5 OK

7 11.1 82.8 3 22.2 46.6 36.3 -11.08 2062.730 34.2 OK

8 11.1 93.9 3 22.2 68.7 25.2 -11.08 2062.442 26.2 OK

9 11.1 105.0 1 7.4 76.1 28.9 3.69 2062.154 18.2 OK

10 11.1 116.1 1 7.4 83.5 32.6 3.69 2062.250 20.8 OK

11 11.1 127.2 1 7.4 90.9 36.3 3.69 2062.346 23.5 OK

12 11.1 138.2 1 7.4 98.3 40.0 3.69 2062.442 26.2 OK

13 11.1 149.3 0.5 3.7 102.0 47.4 7.39 2062.538 28.8 OK

14 11.1 160.4 0.5 3.7 105.7 54.7 7.39 2062.730 34.2 OK

15 11.1 171.5 1 7.4 113.1 58.4 3.69 2062.922 39.5 OK

16 11.1 182.6 1 7.4 120.5 62.1 3.69 2063.018 42.2 OK

17 11.1 193.7 1 7.4 127.8 65.8 3.69 2063.114 44.8 OK

18 11.1 204.8 2 14.8 142.6 62.1 -3.69 2063.210 47.5 OK

19 11.1 215.8 2 14.8 157.4 58.4 -3.69 2063.114 44.8 OK

20 0.0 215.8 1 7.4 164.8 51.0 -7.39 2063.018 42.2 OK

21 0.0 215.8 1 7.4 172.2 43.7 -7.39 2062.826 36.8 OK

22 0.0 215.8 0.5 3.7 175.9 40.0 -3.69 2062.634 31.5 OK

23 0.0 215.8 0.2 1.5 177.4 38.5 -1.48 2062.538 28.8 OK

24 11.1 226.9 0.2 1.5 178.8 48.1 9.61 2062.500 27.8 OK

Total 177.4 24.0 177.4

Tank Status%Tank Full

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m)Time from Start

(hours)

Inflow (m3/h)

Summerhill Bazar

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Page 209: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

209

Table C4: HP_University

Tank at HP_University

Maximum surplus (m3) 265.0

3 Minimum surplus (m3) 133.8

16 1st Guess Capacity (m3) 398.8

24 As per CPHEEO Capacity (m3) 171.82449

0.000 Final computed Capacity (m3) 636

2057.000 Max. serving Demand (mld) 0.5732058.000 Max. Population serving 3625

2060.600 Initial Volume (m3) 176.72

1 Fire storage (m3) 27.7

176.72 Depth for Fire (m) 0.052

15 Av. Flow (m3/h)= 35.797

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 35.8 212.5 0.2 4.8 4.8 207.7 31.02 2058.000 27.8 OK

1 0.0 212.5 0.2 4.8 9.5 203.0 -4.77 2058.176 32.7 OK

2 0.0 212.5 0.2 4.8 14.3 198.2 -4.77 2058.149 31.9 OK

3 0.0 212.5 0.2 4.8 19.1 193.4 -4.77 2058.122 31.2 OK

4 0.0 212.5 0.5 11.9 31.0 181.5 -11.93 2058.095 30.4 OK

5 35.8 248.3 1 23.9 54.9 193.4 11.93 2058.027 28.5 OK

6 35.8 284.1 1 23.9 78.8 205.4 11.93 2058.095 30.4 OK

7 35.8 319.9 3 71.6 150.3 169.6 -35.80 2058.162 32.3 OK

8 35.8 355.7 3 71.6 221.9 133.8 -35.80 2057.959 26.7 OK

9 35.8 391.5 1 23.9 245.8 145.7 11.93 2057.757 21.0 OK

10 35.8 427.3 1 23.9 269.7 157.6 11.93 2057.824 22.9 OK

11 35.8 463.1 1 23.9 293.5 169.6 11.93 2057.892 24.8 OK

12 35.8 498.9 1 23.9 317.4 181.5 11.93 2057.959 26.7 OK

13 35.8 534.7 0.5 11.9 329.3 205.4 23.86 2058.027 28.5 OK

14 35.8 570.5 0.5 11.9 341.3 229.2 23.86 2058.162 32.3 OK

15 35.8 606.3 1 23.9 365.1 241.1 11.93 2058.297 36.0 OK

16 35.8 642.1 1 23.9 389.0 253.1 11.93 2058.365 37.9 OK

17 35.8 677.9 1 23.9 412.9 265.0 11.93 2058.432 39.8 OK

18 35.8 713.7 2 47.7 460.6 253.1 -11.93 2058.500 41.7 OK

19 35.8 749.5 2 47.7 508.3 241.1 -11.93 2058.432 39.8 OK

20 0.0 749.5 1 23.9 532.2 217.3 -23.86 2058.365 37.9 OK

21 0.0 749.5 1 23.9 556.0 193.4 -23.86 2058.230 34.2 OK

22 0.0 749.5 0.5 11.9 568.0 181.5 -11.93 2058.095 30.4 OK

23 0.0 749.5 0.2 4.8 572.7 176.7 -4.77 2058.027 28.5 OK

24 35.8 785.3 0.2 4.8 577.5 207.7 31.02 2058.000 27.8 OK

Total 572.7 24.0 572.7

Tank Status%Tank Full

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m)Time from Start

(hours)

Inflow (m3/h)

HP_University

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Page 210: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

210

Table C5: Z4_New1

Tank at Z4_New1

Maximum surplus (m3) 464.3

3 Minimum surplus (m3) 3.0

16 1st Guess Capacity (m3) 467.2

24 As per CPHEEO Capacity (m3) 603.90483

0.000 Final computed Capacity (m3) 770

2132.500 Max. serving Demand (mld) 2.0132133.500 Max. Population serving 12741

2137.500 Initial Volume (m3) 153.94

1 Fire storage (m3) 97.2

153.94 Depth for Fire (m) 0.211

14 Av. Flow (m3/h)= 125.814

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 125.8 279.8 0.2 16.8 16.8 263.0 109.04 2133.500 20.0 OK

1 0.0 279.8 0.2 16.8 33.6 246.2 -16.78 2134.208 34.2 OK

2 0.0 279.8 0.2 16.8 50.3 229.4 -16.78 2134.099 32.0 OK

3 0.0 279.8 0.2 16.8 67.1 212.7 -16.78 2133.990 29.8 OK

4 0.0 279.8 0.5 41.9 109.0 170.7 -41.94 2133.881 27.6 OK

5 125.8 405.6 1 83.9 192.9 212.7 41.94 2133.609 22.2 OK

6 125.8 531.4 1 83.9 276.8 254.6 41.94 2133.881 27.6 OK

7 125.8 657.2 3 251.6 528.4 128.8 -125.81 2134.154 33.1 OK

8 125.8 783.0 3 251.6 780.0 3.0 -125.81 2133.337 16.7 OK

9 125.8 908.8 1 83.9 863.9 44.9 41.94 2132.519 0.4 OK

10 125.8 1034.6 1 83.9 947.8 86.8 41.94 2132.792 5.8 OK

11 125.8 1160.4 1 83.9 1031.7 128.8 41.94 2133.064 11.3 OK

12 125.8 1286.3 1 83.9 1115.5 170.7 41.94 2133.337 16.7 OK

13 125.8 1412.1 0.5 41.9 1157.5 254.6 83.88 2133.609 22.2 OK

14 125.8 1537.9 0.5 41.9 1199.4 338.5 83.88 2134.154 33.1 OK

15 125.8 1663.7 1 83.9 1283.3 380.4 41.94 2134.699 44.0 OK

16 125.8 1789.5 1 83.9 1367.2 422.3 41.94 2134.971 49.4 OK

17 125.8 1915.3 1 83.9 1451.0 464.3 41.94 2135.244 54.9 OK

18 125.8 2041.1 2 167.8 1618.8 422.3 -41.94 2135.516 60.3 OK

19 125.8 2167.0 2 167.8 1786.6 380.4 -41.94 2135.244 54.9 OK

20 0.0 2167.0 1 83.9 1870.4 296.5 -83.88 2134.971 49.4 OK

21 0.0 2167.0 1 83.9 1954.3 212.7 -83.88 2134.426 38.5 OK

22 0.0 2167.0 0.5 41.9 1996.2 170.7 -41.94 2133.881 27.6 OK

23 0.0 2167.0 0.2 16.8 2013.0 153.9 -16.78 2133.609 22.2 OK

24 125.8 2292.8 0.2 16.8 2029.8 263.0 109.04 2133.500 20.0 OK

Total 2013.0 24.0 2013.0

Tank StatusPeak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) %Tank Full

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Time from Start

(hours)

Inflow (m3/h)

Z4_New1

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Page 211: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

211

APPENDIX-D Mass Curve Spread Sheets of Mains_Field

Table D1: Mains_Field1 Note: Tank is not enough, present diameter is 14 m. Increase it to 18m.

Tank at Mains_Field1

Maximum surplus (m3) 698.4

3 Minimum surplus (m3) 38.5

16 1st Guess Capacity (m3) 736.9

24 As per CPHEEO Capacity (m3) 863.80155

0.000 Final computed Capacity (m3) 1527

2186.500 Max. serving Demand (mld) 2.8792187.500 Max. Population serving 18224

2192.500 Initial Volume (m3) 254.47

1 Fire storage (m3) 139.1

254.47 Depth for Fire (m) 0.182

18 Av. Flow (m3/h)= 179.959

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 180.0 434.4 0.2 24.0 24.0 410.4 155.96 2187.500 16.7 OK

1 0.0 434.4 0.2 24.0 48.0 386.4 -23.99 2188.113 26.9 OK

2 0.0 434.4 0.2 24.0 72.0 362.4 -23.99 2188.019 25.3 OK

3 0.0 434.4 0.2 24.0 96.0 338.5 -23.99 2187.924 23.7 OK

4 0.0 434.4 0.5 60.0 156.0 278.5 -59.99 2187.830 22.2 OK

5 180.0 614.4 1 120.0 275.9 338.5 59.99 2187.594 18.2 OK

6 180.0 794.3 1 120.0 395.9 398.4 59.99 2187.830 22.2 OK

7 180.0 974.3 3 359.9 755.8 218.5 -179.96 2188.066 26.1 OK

8 180.0 1154.3 3 359.9 1115.7 38.5 -179.96 2187.359 14.3 OK

9 180.0 1334.2 1 120.0 1235.7 98.5 59.99 2186.651 2.5 OK

10 180.0 1514.2 1 120.0 1355.7 158.5 59.99 2186.887 6.5 OK

11 180.0 1694.1 1 120.0 1475.7 218.5 59.99 2187.123 10.4 OK

12 180.0 1874.1 1 120.0 1595.6 278.5 59.99 2187.359 14.3 OK

13 180.0 2054.1 0.5 60.0 1655.6 398.4 119.97 2187.594 18.2 OK

14 180.0 2234.0 0.5 60.0 1715.6 518.4 119.97 2188.066 26.1 OK

15 180.0 2414.0 1 120.0 1835.6 578.4 59.99 2188.537 34.0 OK

16 180.0 2593.9 1 120.0 1955.6 638.4 59.99 2188.773 37.9 OK

17 180.0 2773.9 1 120.0 2075.5 698.4 59.99 2189.009 41.8 OK

18 180.0 2953.8 2 239.9 2315.5 638.4 -59.99 2189.244 45.7 OK

19 180.0 3133.8 2 239.9 2555.4 578.4 -59.99 2189.009 41.8 OK

20 0.0 3133.8 1 120.0 2675.4 458.4 -119.97 2188.773 37.9 OK

21 0.0 3133.8 1 120.0 2795.4 338.5 -119.97 2188.301 30.0 OK

22 0.0 3133.8 0.5 60.0 2855.3 278.5 -59.99 2187.830 22.2 OK

23 0.0 3133.8 0.2 24.0 2879.3 254.5 -23.99 2187.594 18.2 OK

24 180.0 3313.8 0.2 24.0 2903.3 410.4 155.96 2187.500 16.7 OK

Total 2879.3 24.0 2879.3

Tank Status%Tank Full

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m)Time from Start

(hours)

Inflow (m3/h)

Mains_Field1

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Page 212: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

212

Table D2: Mains_Field2 Note: In 2035 this tank is not enough at that time increase diameter to 18m to cater demand of 2.59 MLD. However, till year 2034, present tank can serve.

Tank at Mains_Field2

Maximum surplus (m3) 449.9

3 Minimum surplus (m3) 9.9

16 1st Guess Capacity (m3) 459.9

24 As per CPHEEO Capacity (m3) 576

0.000 Final computed Capacity (m3) 924

2185.000 Max. serving Demand (mld) 1.9202186.000 Max. Population serving 12152

2191.000 Initial Volume (m3) 153.94

1 Fire storage (m3) 92.8

153.94 Depth for Fire (m) 0.201

14 Av. Flow (m3/h)= 120.000

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 120.0 273.9 0.2 16.0 16.0 257.9 104.00 2186.000 16.7 OK

1 0.0 273.9 0.2 16.0 32.0 241.9 -16.00 2186.676 27.9 OK

2 0.0 273.9 0.2 16.0 48.0 225.9 -16.00 2186.572 26.2 OK

3 0.0 273.9 0.2 16.0 64.0 209.9 -16.00 2186.468 24.5 OK

4 0.0 273.9 0.5 40.0 104.0 169.9 -40.00 2186.364 22.7 OK

5 120.0 393.9 1 80.0 184.0 209.9 40.00 2186.104 18.4 OK

6 120.0 513.9 1 80.0 264.0 249.9 40.00 2186.364 22.7 OK

7 120.0 633.9 3 240.0 504.0 129.9 -120.00 2186.624 27.1 OK

8 120.0 753.9 3 240.0 744.0 9.9 -120.00 2185.844 14.1 OK

9 120.0 873.9 1 80.0 824.0 49.9 40.00 2185.065 1.1 OK

10 120.0 993.9 1 80.0 904.0 89.9 40.00 2185.324 5.4 OK

11 120.0 1113.9 1 80.0 984.0 129.9 40.00 2185.584 9.7 OK

12 120.0 1233.9 1 80.0 1064.0 169.9 40.00 2185.844 14.1 OK

13 120.0 1353.9 0.5 40.0 1104.0 249.9 80.00 2186.104 18.4 OK

14 120.0 1473.9 0.5 40.0 1144.0 329.9 80.00 2186.624 27.1 OK

15 120.0 1593.9 1 80.0 1224.0 369.9 40.00 2187.143 35.7 OK

16 120.0 1713.9 1 80.0 1304.0 409.9 40.00 2187.403 40.1 OK

17 120.0 1833.9 1 80.0 1384.0 449.9 40.00 2187.663 44.4 OK

18 120.0 1953.9 2 160.0 1544.0 409.9 -40.00 2187.923 48.7 OK

19 120.0 2073.9 2 160.0 1704.0 369.9 -40.00 2187.663 44.4 OK

20 0.0 2073.9 1 80.0 1784.0 289.9 -80.00 2187.403 40.1 OK

21 0.0 2073.9 1 80.0 1864.0 209.9 -80.00 2186.883 31.4 OK

22 0.0 2073.9 0.5 40.0 1904.0 169.9 -40.00 2186.364 22.7 OK

23 0.0 2073.9 0.2 16.0 1920.0 153.9 -16.00 2186.104 18.4 OK

24 120.0 2193.9 0.2 16.0 1936.0 257.9 104.00 2186.000 16.7 OK

Total 1920.0 24.0 1920.0

Tank Status%Tank Full

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m)Time from Start

(hours)

Inflow (m3/h)

Mains_Field2

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Page 213: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

213

Table D3: Shivpuri Note: Existing diameter is 5m. Increase it to 13 m.

Tank at Shivpuri

Maximum surplus (m3) 357.2

3 Minimum surplus (m3) 23.5

16 1st Guess Capacity (m3) 380.7

24 As per CPHEEO Capacity (m3) 436.86339

0.000 Final computed Capacity (m3) 425

2018.500 Max. serving Demand (mld) 1.4562019.500 Max. Population serving 9217

2021.700 Initial Volume (m3) 132.73

1 Fire storage (m3) 70.3

132.73 Depth for Fire (m) 0.177

13 Av. Flow (m3/h)= 91.013

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 91.0 223.7 0.2 12.1 12.1 211.6 78.88 2019.500 31.2 OK

1 0.0 223.7 0.2 12.1 24.3 199.5 -12.14 2020.094 49.8 OK

2 0.0 223.7 0.2 12.1 36.4 187.3 -12.14 2020.003 47.0 OK

3 0.0 223.7 0.2 12.1 48.5 175.2 -12.14 2019.911 44.1 OK

4 0.0 223.7 0.5 30.3 78.9 144.9 -30.34 2019.820 41.2 OK

5 91.0 314.8 1 60.7 139.6 175.2 30.34 2019.591 34.1 OK

6 91.0 405.8 1 60.7 200.2 205.5 30.34 2019.820 41.2 OK

7 91.0 496.8 3 182.0 382.3 114.5 -91.01 2020.049 48.4 OK

8 91.0 587.8 3 182.0 564.3 23.5 -91.01 2019.363 27.0 OK

9 91.0 678.8 1 60.7 625.0 53.9 30.34 2018.677 5.5 OK

10 91.0 769.8 1 60.7 685.6 84.2 30.34 2018.906 12.7 OK

11 91.0 860.8 1 60.7 746.3 114.5 30.34 2019.134 19.8 OK

12 91.0 951.9 1 60.7 807.0 144.9 30.34 2019.363 27.0 OK

13 91.0 1042.9 0.5 30.3 837.3 205.5 60.68 2019.591 34.1 OK

14 91.0 1133.9 0.5 30.3 867.7 266.2 60.68 2020.049 48.4 OK

15 91.0 1224.9 1 60.7 928.3 296.6 30.34 2020.506 62.7 OK

16 91.0 1315.9 1 60.7 989.0 326.9 30.34 2020.734 69.8 OK

17 91.0 1406.9 1 60.7 1049.7 357.2 30.34 2020.963 77.0 OK

18 91.0 1497.9 2 121.4 1171.0 326.9 -30.34 2021.191 84.1 OK

19 91.0 1588.9 2 121.4 1292.4 296.6 -30.34 2020.963 77.0 OK

20 0.0 1588.9 1 60.7 1353.1 235.9 -60.68 2020.734 69.8 OK

21 0.0 1588.9 1 60.7 1413.7 175.2 -60.68 2020.277 55.5 OK

22 0.0 1588.9 0.5 30.3 1444.1 144.9 -30.34 2019.820 41.2 OK

23 0.0 1588.9 0.2 12.1 1456.2 132.7 -12.14 2019.591 34.1 OK

24 91.0 1680.0 0.2 12.1 1468.3 211.6 78.88 2019.500 31.2 OK

Total 1456.2 24.0 1456.2

Tank Status%Tank Full

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m)Time from Start

(hours)

Inflow (m3/h)

Shivpuri

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Page 214: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

214

Table D4: Khalini_Forest_Steel_Tank Note: Existing diameter is 6m. Increase it to 16 m. Also increase height by 2m so that Elevation(max) becomes 1999.5m.

Tank at Khalini_Forest_Steel_Tank

Maximum surplus (m3) 604.8

3 Minimum surplus (m3) 4.6

16 1st Guess Capacity (m3) 609.5

24 As per CPHEEO Capacity (m3) 785.72802

0.000 Final computed Capacity (m3) 804

1995.500 Max. serving Demand (mld) 2.6191996.500 Max. Population serving 16577

1999.500 Initial Volume (m3) 201.06

1 Fire storage (m3) 126.5

201.06 Depth for Fire (m) 0.210

16 Av. Flow (m3/h)= 163.693

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 163.7 364.8 0.2 21.8 21.8 342.9 141.87 1996.500 25.0 OK

1 0.0 364.8 0.2 21.8 43.7 321.1 -21.83 1997.206 42.6 OK

2 0.0 364.8 0.2 21.8 65.5 299.3 -21.83 1997.097 39.9 OK

3 0.0 364.8 0.2 21.8 87.3 277.5 -21.83 1996.988 37.2 OK

4 0.0 364.8 0.5 54.6 141.9 222.9 -54.56 1996.880 34.5 OK

5 163.7 528.4 1 109.1 251.0 277.5 54.56 1996.609 27.7 OK

6 163.7 692.1 1 109.1 360.1 332.0 54.56 1996.880 34.5 OK

7 163.7 855.8 3 327.4 687.5 168.3 -163.69 1997.151 41.3 OK

8 163.7 1019.5 3 327.4 1014.9 4.6 -163.69 1996.337 20.9 OK

9 163.7 1183.2 1 109.1 1124.0 59.2 54.56 1995.523 0.6 OK

10 163.7 1346.9 1 109.1 1233.2 113.8 54.56 1995.794 7.4 OK

11 163.7 1510.6 1 109.1 1342.3 168.3 54.56 1996.066 14.1 OK

12 163.7 1674.3 1 109.1 1451.4 222.9 54.56 1996.337 20.9 OK

13 163.7 1838.0 0.5 54.6 1506.0 332.0 109.13 1996.609 27.7 OK

14 163.7 2001.7 0.5 54.6 1560.5 441.1 109.13 1997.151 41.3 OK

15 163.7 2165.4 1 109.1 1669.7 495.7 54.56 1997.694 54.9 OK

16 163.7 2329.1 1 109.1 1778.8 550.3 54.56 1997.965 61.6 OK

17 163.7 2492.8 1 109.1 1887.9 604.8 54.56 1998.237 68.4 OK

18 163.7 2656.5 2 218.3 2106.2 550.3 -54.56 1998.508 75.2 OK

19 163.7 2820.2 2 218.3 2324.4 495.7 -54.56 1998.237 68.4 OK

20 0.0 2820.2 1 109.1 2433.6 386.6 -109.13 1997.965 61.6 OK

21 0.0 2820.2 1 109.1 2542.7 277.5 -109.13 1997.423 48.1 OK

22 0.0 2820.2 0.5 54.6 2597.3 222.9 -54.56 1996.880 34.5 OK

23 0.0 2820.2 0.2 21.8 2619.1 201.1 -21.83 1996.609 27.7 OK

24 163.7 2983.8 0.2 21.8 2640.9 342.9 141.87 1996.500 25.0 OK

Total 2619.1 24.0 2619.1

Tank Status%Tank Full

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m)Time from Start

(hours)

Inflow (m3/h)

Khalini_Forest_Steel_Tank

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Page 215: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

215

Table D5: Z3_Knolls_Wood

Tank at Z3_Knolls_Wood

Maximum surplus (m3) 732.5

3 Minimum surplus (m3) 21.9

16 1st Guess Capacity (m3) 754.4

24 As per CPHEEO Capacity (m3) 930.15687

0.000 Final computed Capacity (m3) 1272

2085.500 Max. serving Demand (mld) 3.1012086.500 Max. Population serving 19624

2090.500 Initial Volume (m3) 254.47

1 Fire storage (m3) 149.8

254.47 Depth for Fire (m) 0.196

18 Av. Flow (m3/h)= 193.783

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 193.8 448.3 0.2 25.8 25.8 422.4 167.94 2086.500 20.0 OK

1 0.0 448.3 0.2 25.8 51.7 396.6 -25.84 2087.160 33.2 OK

2 0.0 448.3 0.2 25.8 77.5 370.7 -25.84 2087.058 31.2 OK

3 0.0 448.3 0.2 25.8 103.4 344.9 -25.84 2086.957 29.1 OK

4 0.0 448.3 0.5 64.6 167.9 280.3 -64.59 2086.855 27.1 OK

5 193.8 642.0 1 129.2 297.1 344.9 64.59 2086.602 22.0 OK

6 193.8 835.8 1 129.2 426.3 409.5 64.59 2086.855 27.1 OK

7 193.8 1029.6 3 387.6 813.9 215.7 -193.78 2087.109 32.2 OK

8 193.8 1223.4 3 387.6 1201.5 21.9 -193.78 2086.348 17.0 OK

9 193.8 1417.2 1 129.2 1330.6 86.5 64.59 2085.586 1.7 OK

10 193.8 1610.9 1 129.2 1459.8 151.1 64.59 2085.840 6.8 OK

11 193.8 1804.7 1 129.2 1589.0 215.7 64.59 2086.094 11.9 OK

12 193.8 1998.5 1 129.2 1718.2 280.3 64.59 2086.348 17.0 OK

13 193.8 2192.3 0.5 64.6 1782.8 409.5 129.19 2086.602 22.0 OK

14 193.8 2386.1 0.5 64.6 1847.4 538.7 129.19 2087.109 32.2 OK

15 193.8 2579.9 1 129.2 1976.6 603.3 64.59 2087.617 42.3 OK

16 193.8 2773.6 1 129.2 2105.8 667.9 64.59 2087.871 47.4 OK

17 193.8 2967.4 1 129.2 2235.0 732.5 64.59 2088.125 52.5 OK

18 193.8 3161.2 2 258.4 2493.3 667.9 -64.59 2088.378 57.6 OK

19 193.8 3355.0 2 258.4 2751.7 603.3 -64.59 2088.125 52.5 OK

20 0.0 3355.0 1 129.2 2880.9 474.1 -129.19 2087.871 47.4 OK

21 0.0 3355.0 1 129.2 3010.1 344.9 -129.19 2087.363 37.3 OK

22 0.0 3355.0 0.5 64.6 3074.7 280.3 -64.59 2086.855 27.1 OK

23 0.0 3355.0 0.2 25.8 3100.5 254.5 -25.84 2086.602 22.0 OK

24 193.8 3548.8 0.2 25.8 3126.4 422.4 167.94 2086.500 20.0 OK

Total 3100.5 24.0 3100.5

Tank StatusPeak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) %Tank Full

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Time from Start

(hours)

Inflow (m3/h)

Z3_Knolls_Wood

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Page 216: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

216

Table D6: SDA_Complex Note: Tank is not enough, present diameter is 8 m. Increase it to 11m.

Tank at SDA_Complex

Maximum surplus (m3) 278.4

3 Minimum surplus (m3) 5.8

16 1st Guess Capacity (m3) 284.2

24 As per CPHEEO Capacity (m3) 356.74443

0.000 Final computed Capacity (m3) 618

2032.500 Max. serving Demand (mld) 1.1892033.500 Max. Population serving 7526

2039.000 Initial Volume (m3) 95.03

1 Fire storage (m3) 57.4

95.03 Depth for Fire (m) 0.201

11 Av. Flow (m3/h)= 74.322

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 74.3 169.4 0.2 9.9 9.9 159.4 64.41 2033.500 15.4 OK

1 0.0 169.4 0.2 9.9 19.8 149.5 -9.91 2034.178 25.8 OK

2 0.0 169.4 0.2 9.9 29.7 139.6 -9.91 2034.074 24.2 OK

3 0.0 169.4 0.2 9.9 39.6 129.7 -9.91 2033.969 22.6 OK

4 0.0 169.4 0.5 24.8 64.4 104.9 -24.77 2033.865 21.0 OK

5 74.3 243.7 1 49.5 114.0 129.7 24.77 2033.604 17.0 OK

6 74.3 318.0 1 49.5 163.5 154.5 24.77 2033.865 21.0 OK

7 74.3 392.3 3 148.6 312.2 80.2 -74.32 2034.126 25.0 OK

8 74.3 466.6 3 148.6 460.8 5.8 -74.32 2033.344 13.0 OK

9 74.3 541.0 1 49.5 510.3 30.6 24.77 2032.562 0.9 OK

10 74.3 615.3 1 49.5 559.9 55.4 24.77 2032.822 5.0 OK

11 74.3 689.6 1 49.5 609.4 80.2 24.77 2033.083 9.0 OK

12 74.3 763.9 1 49.5 659.0 104.9 24.77 2033.344 13.0 OK

13 74.3 838.3 0.5 24.8 683.8 154.5 49.55 2033.604 17.0 OK

14 74.3 912.6 0.5 24.8 708.5 204.0 49.55 2034.126 25.0 OK

15 74.3 986.9 1 49.5 758.1 228.8 24.77 2034.647 33.0 OK

16 74.3 1061.2 1 49.5 807.6 253.6 24.77 2034.908 37.0 OK

17 74.3 1135.5 1 49.5 857.2 278.4 24.77 2035.168 41.1 OK

18 74.3 1209.9 2 99.1 956.3 253.6 -24.77 2035.429 45.1 OK

19 74.3 1284.2 2 99.1 1055.4 228.8 -24.77 2035.168 41.1 OK

20 0.0 1284.2 1 49.5 1104.9 179.3 -49.55 2034.908 37.0 OK

21 0.0 1284.2 1 49.5 1154.5 129.7 -49.55 2034.386 29.0 OK

22 0.0 1284.2 0.5 24.8 1179.2 104.9 -24.77 2033.865 21.0 OK

23 0.0 1284.2 0.2 9.9 1189.1 95.0 -9.91 2033.604 17.0 OK

24 74.3 1358.5 0.2 9.9 1199.1 159.4 64.41 2033.500 15.4 OK

Total 1189.1 24.0 1189.1

Tank Status%Tank Full

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m)Time from Start

(hours)

Inflow (m3/h)

SDA_Complex

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Page 217: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

217

Table D7: Knolls_Wood

Tank at Knolls_Wood

Maximum surplus (m3) 361.2

3 Minimum surplus (m3) 53.1

16 1st Guess Capacity (m3) 414.3

24 As per CPHEEO Capacity (m3) 403.31532

0.000 Final computed Capacity (m3) 924

2094.500 Max. serving Demand (mld) 1.3442095.500 Max. Population serving 8509

2100.500 Initial Volume (m3) 153.94

1 Fire storage (m3) 64.9

153.94 Depth for Fire (m) 0.141

14 Av. Flow (m3/h)= 84.024

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 84.0 238.0 0.2 11.2 11.2 226.8 72.82 2095.500 16.7 OK

1 0.0 238.0 0.2 11.2 22.4 215.6 -11.20 2095.973 24.6 OK

2 0.0 238.0 0.2 11.2 33.6 204.4 -11.20 2095.900 23.3 OK

3 0.0 238.0 0.2 11.2 44.8 193.1 -11.20 2095.827 22.1 OK

4 0.0 238.0 0.5 28.0 72.8 165.1 -28.01 2095.755 20.9 OK

5 84.0 322.0 1 56.0 128.8 193.1 28.01 2095.573 17.9 OK

6 84.0 406.0 1 56.0 184.9 221.2 28.01 2095.755 20.9 OK

7 84.0 490.0 3 168.0 352.9 137.1 -84.02 2095.937 23.9 OK

8 84.0 574.1 3 168.0 520.9 53.1 -84.02 2095.391 14.8 OK

9 84.0 658.1 1 56.0 577.0 81.1 28.01 2094.845 5.8 OK

10 84.0 742.1 1 56.0 633.0 109.1 28.01 2095.027 8.8 OK

11 84.0 826.1 1 56.0 689.0 137.1 28.01 2095.209 11.8 OK

12 84.0 910.2 1 56.0 745.0 165.1 28.01 2095.391 14.8 OK

13 84.0 994.2 0.5 28.0 773.0 221.2 56.02 2095.573 17.9 OK

14 84.0 1078.2 0.5 28.0 801.0 277.2 56.02 2095.937 23.9 OK

15 84.0 1162.2 1 56.0 857.0 305.2 28.01 2096.301 30.0 OK

16 84.0 1246.3 1 56.0 913.1 333.2 28.01 2096.482 33.0 OK

17 84.0 1330.3 1 56.0 969.1 361.2 28.01 2096.664 36.1 OK

18 84.0 1414.3 2 112.0 1081.1 333.2 -28.01 2096.846 39.1 OK

19 84.0 1498.3 2 112.0 1193.1 305.2 -28.01 2096.664 36.1 OK

20 0.0 1498.3 1 56.0 1249.2 249.2 -56.02 2096.482 33.0 OK

21 0.0 1498.3 1 56.0 1305.2 193.1 -56.02 2096.119 27.0 OK

22 0.0 1498.3 0.5 28.0 1333.2 165.1 -28.01 2095.755 20.9 OK

23 0.0 1498.3 0.2 11.2 1344.4 153.9 -11.20 2095.573 17.9 OK

24 84.0 1582.3 0.2 11.2 1355.6 226.8 72.82 2095.500 16.7 OK

Total 1344.4 24.0 1344.4

Tank Status%Tank Full

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m)Time from Start

(hours)

Inflow (m3/h)

Knolls_Wood

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Page 218: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

218

Table D8: Taramata_Temple_Sector1

Tank at Taramata_Temple_Sector1

Maximum surplus (m3) 180.6

3 Minimum surplus (m3) 28.9

16 1st Guess Capacity (m3) 209.5

24 As per CPHEEO Capacity (m3) 198.68001

0.000 Final computed Capacity (m3) 668

1961.500 Max. serving Demand (mld) 0.6621962.500 Max. Population serving 4192

1970.000 Initial Volume (m3) 78.54

1 Fire storage (m3) 32.0

78.54 Depth for Fire (m) 0.136

10 Av. Flow (m3/h)= 41.392

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 41.4 119.9 0.2 5.5 5.5 114.4 35.87 1962.500 11.8 OK

1 0.0 119.9 0.2 5.5 11.0 108.9 -5.52 1962.957 17.1 OK

2 0.0 119.9 0.2 5.5 16.6 103.4 -5.52 1962.886 16.3 OK

3 0.0 119.9 0.2 5.5 22.1 97.9 -5.52 1962.816 15.5 OK

4 0.0 119.9 0.5 13.8 35.9 84.1 -13.80 1962.746 14.7 OK

5 41.4 161.3 1 27.6 63.5 97.9 13.80 1962.570 12.6 OK

6 41.4 202.7 1 27.6 91.1 111.7 13.80 1962.746 14.7 OK

7 41.4 244.1 3 82.8 173.8 70.3 -41.39 1962.922 16.7 OK

8 41.4 285.5 3 82.8 256.6 28.9 -41.39 1962.395 10.5 OK

9 41.4 326.9 1 27.6 284.2 42.7 13.80 1961.868 4.3 OK

10 41.4 368.3 1 27.6 311.8 56.5 13.80 1962.043 6.4 OK

11 41.4 409.7 1 27.6 339.4 70.3 13.80 1962.219 8.5 OK

12 41.4 451.1 1 27.6 367.0 84.1 13.80 1962.395 10.5 OK

13 41.4 492.5 0.5 13.8 380.8 111.7 27.59 1962.570 12.6 OK

14 41.4 533.8 0.5 13.8 394.6 139.2 27.59 1962.922 16.7 OK

15 41.4 575.2 1 27.6 422.2 153.0 13.80 1963.273 20.9 OK

16 41.4 616.6 1 27.6 449.8 166.8 13.80 1963.449 22.9 OK

17 41.4 658.0 1 27.6 477.4 180.6 13.80 1963.624 25.0 OK

18 41.4 699.4 2 55.2 532.6 166.8 -13.80 1963.800 27.1 OK

19 41.4 740.8 2 55.2 587.8 153.0 -13.80 1963.624 25.0 OK

20 0.0 740.8 1 27.6 615.4 125.5 -27.59 1963.449 22.9 OK

21 0.0 740.8 1 27.6 643.0 97.9 -27.59 1963.097 18.8 OK

22 0.0 740.8 0.5 13.8 656.7 84.1 -13.80 1962.746 14.7 OK

23 0.0 740.8 0.2 5.5 662.3 78.5 -5.52 1962.570 12.6 OK

24 41.4 782.2 0.2 5.5 667.8 114.4 35.87 1962.500 11.8 OK

Total 662.3 24.0 662.3

Tank Status%Tank Full

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m)Time from Start

(hours)

Inflow (m3/h)

Taramata_Temple_Sector1

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Page 219: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

219

Table D9: New_Shimla_Sector2

Tank at New_Shimla_Sector2

Maximum surplus (m3) 98.4

3 Minimum surplus (m3) 26.8

16 1st Guess Capacity (m3) 125.3

24 As per CPHEEO Capacity (m3) 93.72147

0.000 Final computed Capacity (m3) 151

1949.500 Max. serving Demand (mld) 0.3121950.500 Max. Population serving 1977

1952.500 Initial Volume (m3) 50.27

1 Fire storage (m3) 15.1

50.27 Depth for Fire (m) 0.100

8 Av. Flow (m3/h)= 19.525

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 19.5 69.8 0.2 2.6 2.6 67.2 16.92 1950.500 33.3 OK

1 0.0 69.8 0.2 2.6 5.2 64.6 -2.60 1950.837 44.6 OK

2 0.0 69.8 0.2 2.6 7.8 62.0 -2.60 1950.785 42.8 OK

3 0.0 69.8 0.2 2.6 10.4 59.4 -2.60 1950.733 41.1 OK

4 0.0 69.8 0.5 6.5 16.9 52.9 -6.51 1950.681 39.4 OK

5 19.5 89.3 1 13.0 29.9 59.4 6.51 1950.552 35.1 OK

6 19.5 108.8 1 13.0 43.0 65.9 6.51 1950.681 39.4 OK

7 19.5 128.4 3 39.1 82.0 46.4 -19.53 1950.811 43.7 OK

8 19.5 147.9 3 39.1 121.1 26.8 -19.53 1950.422 30.7 OK

9 19.5 167.4 1 13.0 134.1 33.3 6.51 1950.034 17.8 OK

10 19.5 186.9 1 13.0 147.1 39.9 6.51 1950.163 22.1 OK

11 19.5 206.5 1 13.0 160.1 46.4 6.51 1950.293 26.4 OK

12 19.5 226.0 1 13.0 173.1 52.9 6.51 1950.422 30.7 OK

13 19.5 245.5 0.5 6.5 179.6 65.9 13.02 1950.552 35.1 OK

14 19.5 265.0 0.5 6.5 186.1 78.9 13.02 1950.811 43.7 OK

15 19.5 284.6 1 13.0 199.2 85.4 6.51 1951.070 52.3 OK

16 19.5 304.1 1 13.0 212.2 91.9 6.51 1951.199 56.6 OK

17 19.5 323.6 1 13.0 225.2 98.4 6.51 1951.329 61.0 OK

18 19.5 343.1 2 26.0 251.2 91.9 -6.51 1951.458 65.3 OK

19 19.5 362.7 2 26.0 277.3 85.4 -6.51 1951.329 61.0 OK

20 0.0 362.7 1 13.0 290.3 72.4 -13.02 1951.199 56.6 OK

21 0.0 362.7 1 13.0 303.3 59.4 -13.02 1950.940 48.0 OK

22 0.0 362.7 0.5 6.5 309.8 52.9 -6.51 1950.681 39.4 OK

23 0.0 362.7 0.2 2.6 312.4 50.3 -2.60 1950.552 35.1 OK

24 19.5 382.2 0.2 2.6 315.0 67.2 16.92 1950.500 33.3 OK

Total 312.4 24.0 312.4

Tank Status%Tank Full

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m)Time from Start

(hours)

Inflow (m3/h)

New_Shimla_Sector2

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Page 220: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

220

Table D10: New_Shimla_Sector3A Note: In 2035 this tank is not enough at that time increase diameter to from 6m to 9m to cater demand of 0.421 MLD. However, till year 2034, present tank can serve.

Tank at New_Shimla_Sector3A

Maximum surplus (m3) 128.6

3 Minimum surplus (m3) 32.0

16 1st Guess Capacity (m3) 160.6

24 As per CPHEEO Capacity (m3) 126.36519

0.000 Final computed Capacity (m3) 254

1904.500 Max. serving Demand (mld) 0.4211905.500 Max. Population serving 2666

1908.500 Initial Volume (m3) 63.62

1 Fire storage (m3) 20.3

63.62 Depth for Fire (m) 0.107

9 Av. Flow (m3/h)= 26.326

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 26.3 89.9 0.2 3.5 3.5 86.4 22.82 1905.500 25.0 OK

1 0.0 89.9 0.2 3.5 7.0 82.9 -3.51 1905.859 34.0 OK

2 0.0 89.9 0.2 3.5 10.5 79.4 -3.51 1905.803 32.6 OK

3 0.0 89.9 0.2 3.5 14.0 75.9 -3.51 1905.748 31.2 OK

4 0.0 89.9 0.5 8.8 22.8 67.1 -8.78 1905.693 29.8 OK

5 26.3 116.3 1 17.6 40.4 75.9 8.78 1905.555 26.4 OK

6 26.3 142.6 1 17.6 57.9 84.7 8.78 1905.693 29.8 OK

7 26.3 168.9 3 52.7 110.6 58.4 -26.33 1905.831 33.3 OK

8 26.3 195.2 3 52.7 163.2 32.0 -26.33 1905.417 22.9 OK

9 26.3 221.6 1 17.6 180.8 40.8 8.78 1905.003 12.6 OK

10 26.3 247.9 1 17.6 198.3 49.6 8.78 1905.141 16.0 OK

11 26.3 274.2 1 17.6 215.9 58.4 8.78 1905.279 19.5 OK

12 26.3 300.6 1 17.6 233.4 67.1 8.78 1905.417 22.9 OK

13 26.3 326.9 0.5 8.8 242.2 84.7 17.55 1905.555 26.4 OK

14 26.3 353.2 0.5 8.8 251.0 102.2 17.55 1905.831 33.3 OK

15 26.3 379.5 1 17.6 268.5 111.0 8.78 1906.107 40.2 OK

16 26.3 405.9 1 17.6 286.1 119.8 8.78 1906.245 43.6 OK

17 26.3 432.2 1 17.6 303.6 128.6 8.78 1906.383 47.1 OK

18 26.3 458.5 2 35.1 338.7 119.8 -8.78 1906.521 50.5 OK

19 26.3 484.8 2 35.1 373.8 111.0 -8.78 1906.383 47.1 OK

20 0.0 484.8 1 17.6 391.4 93.5 -17.55 1906.245 43.6 OK

21 0.0 484.8 1 17.6 408.9 75.9 -17.55 1905.969 36.7 OK

22 0.0 484.8 0.5 8.8 417.7 67.1 -8.78 1905.693 29.8 OK

23 0.0 484.8 0.2 3.5 421.2 63.6 -3.51 1905.555 26.4 OK

24 26.3 511.2 0.2 3.5 424.7 86.4 22.82 1905.500 25.0 OK

Total 421.2 24.0 421.2

Tank Status%Tank Full

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m)Time from Start

(hours)

Inflow (m3/h)

New_Shimla_Sector3A

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Page 221: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

221

Table D11: New_Shimla_Sector4 Note: Tank is not enough, present diameter is 10 m. Increase it to 13m.

Tank at New_Shimla_Sector4

Maximum surplus (m3) 402.3

3 Minimum surplus (m3) 1.6

16 1st Guess Capacity (m3) 403.9

24 As per CPHEEO Capacity (m3) 524.57385

0.000 Final computed Capacity (m3) 730

1901.000 Max. serving Demand (mld) 1.7491902.000 Max. Population serving 11067

1906.500 Initial Volume (m3) 132.73

1 Fire storage (m3) 84.5

132.73 Depth for Fire (m) 0.212

13 Av. Flow (m3/h)= 109.286

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 109.3 242.0 0.2 14.6 14.6 227.4 94.71 1902.000 18.2 OK

1 0.0 242.0 0.2 14.6 29.1 212.9 -14.57 1902.714 31.2 OK

2 0.0 242.0 0.2 14.6 43.7 198.3 -14.57 1902.604 29.2 OK

3 0.0 242.0 0.2 14.6 58.3 183.7 -14.57 1902.494 27.2 OK

4 0.0 242.0 0.5 36.4 94.7 147.3 -36.43 1902.384 25.2 OK

5 109.3 351.3 1 72.9 167.6 183.7 36.43 1902.110 20.2 OK

6 109.3 460.6 1 72.9 240.4 220.2 36.43 1902.384 25.2 OK

7 109.3 569.9 3 218.6 459.0 110.9 -109.29 1902.659 30.2 OK

8 109.3 679.2 3 218.6 677.6 1.6 -109.29 1901.835 15.2 OK

9 109.3 788.4 1 72.9 750.4 38.0 36.43 1901.012 0.2 OK

10 109.3 897.7 1 72.9 823.3 74.4 36.43 1901.286 5.2 OK

11 109.3 1007.0 1 72.9 896.1 110.9 36.43 1901.561 10.2 OK

12 109.3 1116.3 1 72.9 969.0 147.3 36.43 1901.835 15.2 OK

13 109.3 1225.6 0.5 36.4 1005.4 220.2 72.86 1902.110 20.2 OK

14 109.3 1334.9 0.5 36.4 1041.9 293.0 72.86 1902.659 30.2 OK

15 109.3 1444.2 1 72.9 1114.7 329.4 36.43 1903.208 40.1 OK

16 109.3 1553.5 1 72.9 1187.6 365.9 36.43 1903.482 45.1 OK

17 109.3 1662.7 1 72.9 1260.4 402.3 36.43 1903.756 50.1 OK

18 109.3 1772.0 2 145.7 1406.1 365.9 -36.43 1904.031 55.1 OK

19 109.3 1881.3 2 145.7 1551.9 329.4 -36.43 1903.756 50.1 OK

20 0.0 1881.3 1 72.9 1624.7 256.6 -72.86 1903.482 45.1 OK

21 0.0 1881.3 1 72.9 1697.6 183.7 -72.86 1902.933 35.1 OK

22 0.0 1881.3 0.5 36.4 1734.0 147.3 -36.43 1902.384 25.2 OK

23 0.0 1881.3 0.2 14.6 1748.6 132.7 -14.57 1902.110 20.2 OK

24 109.3 1990.6 0.2 14.6 1763.2 227.4 94.71 1902.000 18.2 OK

Total 1748.6 24.0 1748.6

Tank Status%Tank Full

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m)Time from Start

(hours)

Inflow (m3/h)

New_Shimla_Sector4

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Page 222: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

222

Table D12: New_Shimla_Sector3

Tank at New_Shimla_Sector3

Maximum surplus (m3) 190.2

3 Minimum surplus (m3) 24.2

16 1st Guess Capacity (m3) 214.4

24 As per CPHEEO Capacity (m3) 217.28187

0.000 Final computed Capacity (m3) 668

1861.500 Max. serving Demand (mld) 0.7241862.500 Max. Population serving 4584

1870.000 Initial Volume (m3) 78.54

1 Fire storage (m3) 35.0

78.54 Depth for Fire (m) 0.148

10 Av. Flow (m3/h)= 45.267

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 45.3 123.8 0.2 6.0 6.0 117.8 39.23 1862.500 11.8 OK

1 0.0 123.8 0.2 6.0 12.1 111.7 -6.04 1863.000 17.6 OK

2 0.0 123.8 0.2 6.0 18.1 105.7 -6.04 1862.923 16.7 OK

3 0.0 123.8 0.2 6.0 24.1 99.7 -6.04 1862.846 15.8 OK

4 0.0 123.8 0.5 15.1 39.2 84.6 -15.09 1862.769 14.9 OK

5 45.3 169.1 1 30.2 69.4 99.7 15.09 1862.577 12.7 OK

6 45.3 214.3 1 30.2 99.6 114.8 15.09 1862.769 14.9 OK

7 45.3 259.6 3 90.5 190.1 69.5 -45.27 1862.961 17.2 OK

8 45.3 304.9 3 90.5 280.7 24.2 -45.27 1862.385 10.4 OK

9 45.3 350.1 1 30.2 310.8 39.3 15.09 1861.808 3.6 OK

10 45.3 395.4 1 30.2 341.0 54.4 15.09 1862.000 5.9 OK

11 45.3 440.7 1 30.2 371.2 69.5 15.09 1862.193 8.1 OK

12 45.3 485.9 1 30.2 401.4 84.6 15.09 1862.385 10.4 OK

13 45.3 531.2 0.5 15.1 416.5 114.8 30.18 1862.577 12.7 OK

14 45.3 576.5 0.5 15.1 431.5 144.9 30.18 1862.961 17.2 OK

15 45.3 621.7 1 30.2 461.7 160.0 15.09 1863.345 21.7 OK

16 45.3 667.0 1 30.2 491.9 175.1 15.09 1863.537 24.0 OK

17 45.3 712.3 1 30.2 522.1 190.2 15.09 1863.730 26.2 OK

18 45.3 757.5 2 60.4 582.4 175.1 -15.09 1863.922 28.5 OK

19 45.3 802.8 2 60.4 642.8 160.0 -15.09 1863.730 26.2 OK

20 0.0 802.8 1 30.2 673.0 129.8 -30.18 1863.537 24.0 OK

21 0.0 802.8 1 30.2 703.1 99.7 -30.18 1863.153 19.4 OK

22 0.0 802.8 0.5 15.1 718.2 84.6 -15.09 1862.769 14.9 OK

23 0.0 802.8 0.2 6.0 724.3 78.5 -6.04 1862.577 12.7 OK

24 45.3 848.1 0.2 6.0 730.3 117.8 39.23 1862.500 11.8 OK

Total 724.3 24.0 724.3

Tank Status%Tank Full

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m)Time from Start

(hours)

Inflow (m3/h)

New_Shimla_Sector3

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Page 223: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

223

APPENDIX-E Mass Curve Spread Sheets of Dhingo devI

Table E1: Z8_Dhingo5

Tank at Z8_Dhingo5

Maximum surplus (m3) 743.0

3 Minimum surplus (m3) 16.8

16 1st Guess Capacity (m3) 759.8

24 As per CPHEEO Capacity (m3) 950.5605

0.000 Final computed Capacity (m3) 1145

2275.500 Max. serving Demand (mld) 3.1692276.500 Max. Population serving 20054

2280.000 Initial Volume (m3) 254.47

1 Fire storage (m3) 153.1

254.47 Depth for Fire (m) 0.201

18 Av. Flow (m3/h)= 198.033

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 198.0 452.5 0.2 26.4 26.4 426.1 171.63 2276.500 22.2 OK

1 0.0 452.5 0.2 26.4 52.8 399.7 -26.40 2277.174 37.2 OK

2 0.0 452.5 0.2 26.4 79.2 373.3 -26.40 2277.071 34.9 OK

3 0.0 452.5 0.2 26.4 105.6 346.9 -26.40 2276.967 32.6 OK

4 0.0 452.5 0.5 66.0 171.6 280.9 -66.01 2276.863 30.3 OK

5 198.0 650.5 1 132.0 303.7 346.9 66.01 2276.604 24.5 OK

6 198.0 848.6 1 132.0 435.7 412.9 66.01 2276.863 30.3 OK

7 198.0 1046.6 3 396.1 831.7 214.9 -198.03 2277.123 36.1 OK

8 198.0 1244.6 3 396.1 1227.8 16.8 -198.03 2276.344 18.8 OK

9 198.0 1442.7 1 132.0 1359.8 82.8 66.01 2275.566 1.5 OK

10 198.0 1640.7 1 132.0 1491.9 148.9 66.01 2275.826 7.2 OK

11 198.0 1838.7 1 132.0 1623.9 214.9 66.01 2276.085 13.0 OK

12 198.0 2036.8 1 132.0 1755.9 280.9 66.01 2276.344 18.8 OK

13 198.0 2234.8 0.5 66.0 1821.9 412.9 132.02 2276.604 24.5 OK

14 198.0 2432.8 0.5 66.0 1887.9 544.9 132.02 2277.123 36.1 OK

15 198.0 2630.9 1 132.0 2019.9 610.9 66.01 2277.641 47.6 OK

16 198.0 2828.9 1 132.0 2152.0 676.9 66.01 2277.901 53.4 OK

17 198.0 3026.9 1 132.0 2284.0 743.0 66.01 2278.160 59.1 OK

18 198.0 3225.0 2 264.0 2548.0 676.9 -66.01 2278.420 64.9 OK

19 198.0 3423.0 2 264.0 2812.1 610.9 -66.01 2278.160 59.1 OK

20 0.0 3423.0 1 132.0 2944.1 478.9 -132.02 2277.901 53.4 OK

21 0.0 3423.0 1 132.0 3076.1 346.9 -132.02 2277.382 41.8 OK

22 0.0 3423.0 0.5 66.0 3142.1 280.9 -66.01 2276.863 30.3 OK

23 0.0 3423.0 0.2 26.4 3168.5 254.5 -26.40 2276.604 24.5 OK

24 198.0 3621.0 0.2 26.4 3194.9 426.1 171.63 2276.500 22.2 OK

Total 3168.5 24.0 3168.5

Time from Start

(hours)

Inflow (m3/h)

Z8_Dhingo5

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 224: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

224

Table E2: Z5_Dhingodevi4

Tank at Z5_Dhingodevi4

Maximum surplus (m3) 498.6

3 Minimum surplus (m3) 20.1

16 1st Guess Capacity (m3) 518.7

24 As per CPHEEO Capacity (m3) 626.43192

0.000 Final computed Capacity (m3) 884

2290.500 Max. serving Demand (mld) 2.0882291.500 Max. Population serving 13216

2295.500 Initial Volume (m3) 176.72

1 Fire storage (m3) 100.9

176.72 Depth for Fire (m) 0.190

15 Av. Flow (m3/h)= 130.507

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 130.5 307.2 0.2 17.4 17.4 289.8 113.11 2291.500 20.0 OK

1 0.0 307.2 0.2 17.4 34.8 272.4 -17.40 2292.140 32.8 OK

2 0.0 307.2 0.2 17.4 52.2 255.0 -17.40 2292.042 30.8 OK

3 0.0 307.2 0.2 17.4 69.6 237.6 -17.40 2291.943 28.9 OK

4 0.0 307.2 0.5 43.5 113.1 194.1 -43.50 2291.845 26.9 OK

5 130.5 437.7 1 87.0 200.1 237.6 43.50 2291.598 22.0 OK

6 130.5 568.2 1 87.0 287.1 281.1 43.50 2291.845 26.9 OK

7 130.5 698.7 3 261.0 548.1 150.6 -130.51 2292.091 31.8 OK

8 130.5 829.2 3 261.0 809.1 20.1 -130.51 2291.352 17.0 OK

9 130.5 959.8 1 87.0 896.1 63.6 43.50 2290.614 2.3 OK

10 130.5 1090.3 1 87.0 983.2 107.1 43.50 2290.860 7.2 OK

11 130.5 1220.8 1 87.0 1070.2 150.6 43.50 2291.106 12.1 OK

12 130.5 1351.3 1 87.0 1157.2 194.1 43.50 2291.352 17.0 OK

13 130.5 1481.8 0.5 43.5 1200.7 281.1 87.00 2291.598 22.0 OK

14 130.5 1612.3 0.5 43.5 1244.2 368.1 87.00 2292.091 31.8 OK

15 130.5 1742.8 1 87.0 1331.2 411.6 43.50 2292.583 41.7 OK

16 130.5 1873.3 1 87.0 1418.2 455.1 43.50 2292.829 46.6 OK

17 130.5 2003.8 1 87.0 1505.2 498.6 43.50 2293.075 51.5 OK

18 130.5 2134.3 2 174.0 1679.2 455.1 -43.50 2293.322 56.4 OK

19 130.5 2264.8 2 174.0 1853.2 411.6 -43.50 2293.075 51.5 OK

20 0.0 2264.8 1 87.0 1940.2 324.6 -87.00 2292.829 46.6 OK

21 0.0 2264.8 1 87.0 2027.2 237.6 -87.00 2292.337 36.7 OK

22 0.0 2264.8 0.5 43.5 2070.7 194.1 -43.50 2291.845 26.9 OK

23 0.0 2264.8 0.2 17.4 2088.1 176.7 -17.40 2291.598 22.0 OK

24 130.5 2395.3 0.2 17.4 2105.5 289.8 113.11 2291.500 20.0 OK

Total 2088.1 24.0 2088.1

Time from Start

(hours)

Inflow (m3/h)

Z5_Dhingodevi4

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 225: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

225

Table E3: Dhingodevi1 Note: In 2035 this tank is not enough at that time increase diameter from 10m to 18m to cater demand of 0.008 MLD. However, till year 2034, present tank can serve.

Tank at Dhingodevi1

Maximum surplus (m3) 232.4

3 Minimum surplus (m3) 3.7

16 1st Guess Capacity (m3) 236.1

24 As per CPHEEO Capacity (m3) 299.37387

0.000 Final computed Capacity (m3) 471

2307.500 Max. serving Demand (mld) 0.9982308.500 Max. Population serving 6316

2313.500 Initial Volume (m3) 78.54

1 Fire storage (m3) 48.2

78.54 Depth for Fire (m) 0.205

10 Av. Flow (m3/h)= 62.370

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 62.4 140.9 0.2 8.3 8.3 132.6 54.05 2308.500 16.7 OK

1 0.0 140.9 0.2 8.3 16.6 124.3 -8.32 2309.188 28.1 OK

2 0.0 140.9 0.2 8.3 24.9 116.0 -8.32 2309.082 26.4 OK

3 0.0 140.9 0.2 8.3 33.3 107.6 -8.32 2308.976 24.6 OK

4 0.0 140.9 0.5 20.8 54.1 86.9 -20.79 2308.871 22.8 OK

5 62.4 203.3 1 41.6 95.6 107.6 20.79 2308.606 18.4 OK

6 62.4 265.6 1 41.6 137.2 128.4 20.79 2308.871 22.8 OK

7 62.4 328.0 3 124.7 262.0 66.1 -62.37 2309.135 27.3 OK

8 62.4 390.4 3 124.7 386.7 3.7 -62.37 2308.341 14.0 OK

9 62.4 452.8 1 41.6 428.3 24.5 20.79 2307.547 0.8 OK

10 62.4 515.1 1 41.6 469.9 45.3 20.79 2307.812 5.2 OK

11 62.4 577.5 1 41.6 511.4 66.1 20.79 2308.076 9.6 OK

12 62.4 639.9 1 41.6 553.0 86.9 20.79 2308.341 14.0 OK

13 62.4 702.2 0.5 20.8 573.8 128.4 41.58 2308.606 18.4 OK

14 62.4 764.6 0.5 20.8 594.6 170.0 41.58 2309.135 27.3 OK

15 62.4 827.0 1 41.6 636.2 190.8 20.79 2309.665 36.1 OK

16 62.4 889.3 1 41.6 677.7 211.6 20.79 2309.929 40.5 OK

17 62.4 951.7 1 41.6 719.3 232.4 20.79 2310.194 44.9 OK

18 62.4 1014.1 2 83.2 802.5 211.6 -20.79 2310.459 49.3 OK

19 62.4 1076.5 2 83.2 885.6 190.8 -20.79 2310.194 44.9 OK

20 0.0 1076.5 1 41.6 927.2 149.2 -41.58 2309.929 40.5 OK

21 0.0 1076.5 1 41.6 968.8 107.6 -41.58 2309.400 31.7 OK

22 0.0 1076.5 0.5 20.8 989.6 86.9 -20.79 2308.871 22.8 OK

23 0.0 1076.5 0.2 8.3 997.9 78.5 -8.32 2308.606 18.4 OK

24 62.4 1138.8 0.2 8.3 1006.2 132.6 54.05 2308.500 16.7 OK

Total 997.9 24.0 997.9

Time from Start

(hours)

Inflow (m3/h)

Dhingodevi1

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 226: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

226

Table E4: Dhingodevi2 Note: Existing diameter is 8m. Increase it to 10 m

Tank at Dhingodevi2

Maximum surplus (m3) 218.5

3 Minimum surplus (m3) 10.5

16 1st Guess Capacity (m3) 228.9

24 As per CPHEEO Capacity (m3) 272.34759

0.000 Final computed Capacity (m3) 314

2307.500 Max. serving Demand (mld) 0.9082308.500 Max. Population serving 5746

2311.500 Initial Volume (m3) 78.54

1 Fire storage (m3) 43.9

78.54 Depth for Fire (m) 0.186

10 Av. Flow (m3/h)= 56.739

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 56.7 135.3 0.2 7.6 7.6 127.7 49.17 2308.500 25.0 OK

1 0.0 135.3 0.2 7.6 15.1 120.1 -7.57 2309.126 40.7 OK

2 0.0 135.3 0.2 7.6 22.7 112.6 -7.57 2309.030 38.2 OK

3 0.0 135.3 0.2 7.6 30.3 105.0 -7.57 2308.933 35.8 OK

4 0.0 135.3 0.5 18.9 49.2 86.1 -18.91 2308.837 33.4 OK

5 56.7 192.0 1 37.8 87.0 105.0 18.91 2308.596 27.4 OK

6 56.7 248.8 1 37.8 124.8 123.9 18.91 2308.837 33.4 OK

7 56.7 305.5 3 113.5 238.3 67.2 -56.74 2309.078 39.4 OK

8 56.7 362.2 3 113.5 351.8 10.5 -56.74 2308.356 21.4 OK

9 56.7 419.0 1 37.8 389.6 29.4 18.91 2307.633 3.3 OK

10 56.7 475.7 1 37.8 427.4 48.3 18.91 2307.874 9.3 OK

11 56.7 532.5 1 37.8 465.3 67.2 18.91 2308.115 15.4 OK

12 56.7 589.2 1 37.8 503.1 86.1 18.91 2308.356 21.4 OK

13 56.7 645.9 0.5 18.9 522.0 123.9 37.83 2308.596 27.4 OK

14 56.7 702.7 0.5 18.9 540.9 161.8 37.83 2309.078 39.4 OK

15 56.7 759.4 1 37.8 578.7 180.7 18.91 2309.560 51.5 OK

16 56.7 816.1 1 37.8 616.6 199.6 18.91 2309.800 57.5 OK

17 56.7 872.9 1 37.8 654.4 218.5 18.91 2310.041 63.5 OK

18 56.7 929.6 2 75.7 730.0 199.6 -18.91 2310.282 69.5 OK

19 56.7 986.4 2 75.7 805.7 180.7 -18.91 2310.041 63.5 OK

20 0.0 986.4 1 37.8 843.5 142.8 -37.83 2309.800 57.5 OK

21 0.0 986.4 1 37.8 881.3 105.0 -37.83 2309.319 45.5 OK

22 0.0 986.4 0.5 18.9 900.3 86.1 -18.91 2308.837 33.4 OK

23 0.0 986.4 0.2 7.6 907.8 78.5 -7.57 2308.596 27.4 OK

24 56.7 1043.1 0.2 7.6 915.4 127.7 49.17 2308.500 25.0 OK

Total 907.8 24.0 907.8

Tank StatusPeak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) %Tank Full

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Time from Start

(hours)

Inflow (m3/h)

Dhingodevi2

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Page 227: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

227

Table E5: Z1_Dhingodevi3

Tank at Z1_Dhingodevi3

Maximum surplus (m3) 178.3

3 Minimum surplus (m3) 62.9

16 1st Guess Capacity (m3) 241.3

24 As per CPHEEO Capacity (m3) 151.06329

0.000 Final computed Capacity (m3) 504

2305.500 Max. serving Demand (mld) 0.5042306.500 Max. Population serving 3187

2310.500 Initial Volume (m3) 100.71

1 Fire storage (m3) 24.3

100.71 Depth for Fire (m) 0.081

11.324 Av. Flow (m3/h)= 31.472

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 31.5 132.2 0.2 4.2 4.2 128.0 27.28 2306.500 20.0 OK

1 0.0 132.2 0.2 4.2 8.4 123.8 -4.20 2306.771 25.4 OK

2 0.0 132.2 0.2 4.2 12.6 119.6 -4.20 2306.729 24.6 OK

3 0.0 132.2 0.2 4.2 16.8 115.4 -4.20 2306.687 23.7 OK

4 0.0 132.2 0.5 10.5 27.3 104.9 -10.49 2306.646 22.9 OK

5 31.5 163.7 1 21.0 48.3 115.4 10.49 2306.542 20.8 OK

6 31.5 195.1 1 21.0 69.2 125.9 10.49 2306.646 22.9 OK

7 31.5 226.6 3 62.9 132.2 94.4 -31.47 2306.750 25.0 OK

8 31.5 258.1 3 62.9 195.1 62.9 -31.47 2306.438 18.8 OK

9 31.5 289.5 1 21.0 216.1 73.4 10.49 2306.125 12.5 OK

10 31.5 321.0 1 21.0 237.1 83.9 10.49 2306.229 14.6 OK

11 31.5 352.5 1 21.0 258.1 94.4 10.49 2306.333 16.7 OK

12 31.5 384.0 1 21.0 279.0 104.9 10.49 2306.438 18.8 OK

13 31.5 415.4 0.5 10.5 289.5 125.9 20.98 2306.542 20.8 OK

14 31.5 446.9 0.5 10.5 300.0 146.9 20.98 2306.750 25.0 OK

15 31.5 478.4 1 21.0 321.0 157.4 10.49 2306.958 29.2 OK

16 31.5 509.8 1 21.0 342.0 167.8 10.49 2307.062 31.2 OK

17 31.5 541.3 1 21.0 363.0 178.3 10.49 2307.167 33.3 OK

18 31.5 572.8 2 42.0 404.9 167.8 -10.49 2307.271 35.4 OK

19 31.5 604.3 2 42.0 446.9 157.4 -10.49 2307.167 33.3 OK

20 0.0 604.3 1 21.0 467.9 136.4 -20.98 2307.062 31.2 OK

21 0.0 604.3 1 21.0 488.9 115.4 -20.98 2306.854 27.1 OK

22 0.0 604.3 0.5 10.5 499.3 104.9 -10.49 2306.646 22.9 OK

23 0.0 604.3 0.2 4.2 503.5 100.7 -4.20 2306.542 20.8 OK

24 31.5 635.7 0.2 4.2 507.7 128.0 27.28 2306.500 20.0 OK

Total 503.5 24.0 503.5

Tank StatusPeak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) %Tank Full

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Time from Start

(hours)

Inflow (m3/h)

Z1_Dhingodevi3

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Page 228: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

228

APPENDIX-F Mass Curve Spread Sheets of Mashobra and Craignaino

Table F1: Mashobra Note: Increase height by 2m.

Tank at Mashobra

Maximum surplus (m3) 740.5

3 Minimum surplus (m3) 18.0

16 1st Guess Capacity (m3) 758.5

24 As per CPHEEO Capacity (m3) 945.81951

0.000 Final computed Capacity (m3) 1018

2315.500 Max. serving Demand (mld) 3.1532316.500 Max. Population serving 19954

2319.500 Initial Volume (m3) 254.47

1 Fire storage (m3) 152.3

254.47 Depth for Fire (m) 0.200

18 Av. Flow (m3/h)= 197.046

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 197.0 451.5 0.2 26.3 26.3 425.2 170.77 2316.500 25.0 OK

1 0.0 451.5 0.2 26.3 52.5 399.0 -26.27 2317.171 41.8 OK

2 0.0 451.5 0.2 26.3 78.8 372.7 -26.27 2317.068 39.2 OK

3 0.0 451.5 0.2 26.3 105.1 346.4 -26.27 2316.965 36.6 OK

4 0.0 451.5 0.5 65.7 170.8 280.7 -65.68 2316.861 34.0 OK

5 197.0 648.6 1 131.4 302.1 346.4 65.68 2316.603 27.6 OK

6 197.0 845.6 1 131.4 433.5 412.1 65.68 2316.861 34.0 OK

7 197.0 1042.7 3 394.1 827.6 215.1 -197.05 2317.119 40.5 OK

8 197.0 1239.7 3 394.1 1221.7 18.0 -197.05 2316.345 21.1 OK

9 197.0 1436.7 1 131.4 1353.0 83.7 65.68 2315.571 1.8 OK

10 197.0 1633.8 1 131.4 1484.4 149.4 65.68 2315.829 8.2 OK

11 197.0 1830.8 1 131.4 1615.8 215.1 65.68 2316.087 14.7 OK

12 197.0 2027.9 1 131.4 1747.1 280.7 65.68 2316.345 21.1 OK

13 197.0 2224.9 0.5 65.7 1812.8 412.1 131.36 2316.603 27.6 OK

14 197.0 2422.0 0.5 65.7 1878.5 543.5 131.36 2317.119 40.5 OK

15 197.0 2619.0 1 131.4 2009.9 609.2 65.68 2317.636 53.4 OK

16 197.0 2816.1 1 131.4 2141.2 674.8 65.68 2317.894 59.8 OK

17 197.0 3013.1 1 131.4 2272.6 740.5 65.68 2318.152 66.3 OK

18 197.0 3210.2 2 262.7 2535.3 674.8 -65.68 2318.410 72.8 OK

19 197.0 3407.2 2 262.7 2798.0 609.2 -65.68 2318.152 66.3 OK

20 0.0 3407.2 1 131.4 2929.4 477.8 -131.36 2317.894 59.8 OK

21 0.0 3407.2 1 131.4 3060.8 346.4 -131.36 2317.378 46.9 OK

22 0.0 3407.2 0.5 65.7 3126.5 280.7 -65.68 2316.861 34.0 OK

23 0.0 3407.2 0.2 26.3 3152.7 254.5 -26.27 2316.603 27.6 OK

24 197.0 3604.2 0.2 26.3 3179.0 425.2 170.77 2316.500 25.0 OK

Total 3152.7 24.0 3152.7

Time from Start

(hours)

Inflow (m3/h)

Mashobra

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 229: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

229

Table F2: Craignaino

Tank at Craignaino

Maximum surplus (m3) 884.6

3 Minimum surplus (m3) 551.5

16 1st Guess Capacity (m3) 1436.1

24 As per CPHEEO Capacity (m3) 436.01472

0.000 Final computed Capacity (m3) 2312

2315.500 Max. serving Demand (mld) 1.4532316.500 Max. Population serving 9199

2319.000 Initial Volume (m3) 660.52

1 Fire storage (m3) 70.2

660.52 Depth for Fire (m) 0.035

29 Av. Flow (m3/h)= 90.836

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 90.8 751.4 0.2 12.1 12.1 739.2 78.72 2316.500 28.6 OK

1 0.0 751.4 0.2 12.1 24.2 727.1 -12.11 2316.619 32.0 OK

2 0.0 751.4 0.2 12.1 36.3 715.0 -12.11 2316.601 31.5 OK

3 0.0 751.4 0.2 12.1 48.4 702.9 -12.11 2316.583 30.9 OK

4 0.0 751.4 0.5 30.3 78.7 672.6 -30.28 2316.564 30.4 OK

5 90.8 842.2 1 60.6 139.3 702.9 30.28 2316.518 29.1 OK

6 90.8 933.0 1 60.6 199.8 733.2 30.28 2316.564 30.4 OK

7 90.8 1023.9 3 181.7 381.5 642.4 -90.84 2316.610 31.7 OK

8 90.8 1114.7 3 181.7 563.2 551.5 -90.84 2316.472 27.8 OK

9 90.8 1205.5 1 60.6 623.7 581.8 30.28 2316.335 23.9 OK

10 90.8 1296.4 1 60.6 684.3 612.1 30.28 2316.381 25.2 OK

11 90.8 1387.2 1 60.6 744.9 642.4 30.28 2316.427 26.5 OK

12 90.8 1478.0 1 60.6 805.4 672.6 30.28 2316.472 27.8 OK

13 90.8 1568.9 0.5 30.3 835.7 733.2 60.56 2316.518 29.1 OK

14 90.8 1659.7 0.5 30.3 866.0 793.7 60.56 2316.610 31.7 OK

15 90.8 1750.6 1 60.6 926.5 824.0 30.28 2316.702 34.3 OK

16 90.8 1841.4 1 60.6 987.1 854.3 30.28 2316.748 35.6 OK

17 90.8 1932.2 1 60.6 1047.6 884.6 30.28 2316.793 37.0 OK

18 90.8 2023.1 2 121.1 1168.8 854.3 -30.28 2316.839 38.3 OK

19 90.8 2113.9 2 121.1 1289.9 824.0 -30.28 2316.793 37.0 OK

20 0.0 2113.9 1 60.6 1350.4 763.5 -60.56 2316.748 35.6 OK

21 0.0 2113.9 1 60.6 1411.0 702.9 -60.56 2316.656 33.0 OK

22 0.0 2113.9 0.5 30.3 1441.3 672.6 -30.28 2316.564 30.4 OK

23 0.0 2113.9 0.2 12.1 1453.4 660.5 -12.11 2316.518 29.1 OK

24 90.8 2204.7 0.2 12.1 1465.5 739.2 78.72 2316.500 28.6 OK

Total 1453.4 24.0 1453.4

Time from Start

(hours)

Inflow (m3/h)

Craignaino

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 230: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

230

APPENDIX-G Mass Curve Spread Sheets of Dhalli

Table G1: Dhalli_WTP1_Sump Note: Tank is not enough, present diameter is 3 m. Increase it to 11m.

Tank at Dhalli_WTP1_Sump

Maximum surplus (m3) 236.0

3 Minimum surplus (m3) 26.4

16 1st Guess Capacity (m3) 262.5

24 As per CPHEEO Capacity (m3) 274.40199

0.000 Final computed Capacity (m3) 238

2270.500 Max. serving Demand (mld) 0.9152271.500 Max. Population serving 5789

2273.000 Initial Volume (m3) 95.03

1 Fire storage (m3) 44.2

95.03 Depth for Fire (m) 0.155

11 Av. Flow (m3/h)= 57.167

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 57.2 152.2 0.2 7.6 7.6 144.6 49.54 2271.500 40.0 OK

1 0.0 152.2 0.2 7.6 15.2 137.0 -7.62 2272.021 60.9 OK

2 0.0 152.2 0.2 7.6 22.9 129.3 -7.62 2271.941 57.6 OK

3 0.0 152.2 0.2 7.6 30.5 121.7 -7.62 2271.861 54.4 OK

4 0.0 152.2 0.5 19.1 49.5 102.7 -19.06 2271.781 51.2 OK

5 57.2 209.4 1 38.1 87.7 121.7 19.06 2271.580 43.2 OK

6 57.2 266.5 1 38.1 125.8 140.8 19.06 2271.781 51.2 OK

7 57.2 323.7 3 114.3 240.1 83.6 -57.17 2271.981 59.2 OK

8 57.2 380.9 3 114.3 354.4 26.4 -57.17 2271.380 35.2 OK

9 57.2 438.0 1 38.1 392.5 45.5 19.06 2270.778 11.1 OK

10 57.2 495.2 1 38.1 430.7 64.5 19.06 2270.979 19.1 OK

11 57.2 552.4 1 38.1 468.8 83.6 19.06 2271.179 27.2 OK

12 57.2 609.5 1 38.1 506.9 102.7 19.06 2271.380 35.2 OK

13 57.2 666.7 0.5 19.1 525.9 140.8 38.11 2271.580 43.2 OK

14 57.2 723.9 0.5 19.1 545.0 178.9 38.11 2271.981 59.2 OK

15 57.2 781.0 1 38.1 583.1 197.9 19.06 2272.382 75.3 OK

16 57.2 838.2 1 38.1 621.2 217.0 19.06 2272.583 83.3 OK

17 57.2 895.4 1 38.1 659.3 236.0 19.06 2272.783 91.3 OK

18 57.2 952.5 2 76.2 735.5 217.0 -19.06 2272.984 99.4 OK

19 57.2 1009.7 2 76.2 811.8 197.9 -19.06 2272.783 91.3 OK

20 0.0 1009.7 1 38.1 849.9 159.8 -38.11 2272.583 83.3 OK

21 0.0 1009.7 1 38.1 888.0 121.7 -38.11 2272.182 67.3 OK

22 0.0 1009.7 0.5 19.1 907.1 102.7 -19.06 2271.781 51.2 OK

23 0.0 1009.7 0.2 7.6 914.7 95.0 -7.62 2271.580 43.2 OK

24 57.2 1066.9 0.2 7.6 922.3 144.6 49.54 2271.500 40.0 OK

Total 914.7 24.0 914.7

Time from Start

(hours)

Inflow (m3/h)

Dhalli_WTP1_Sump

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 231: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

231

Table G2: Dhalli_WTP2_Sump Note: Tank is not enough, present diameter is 10 m. Increase it to 14m.

Tank at Dhalli_WTP2_Sump

Maximum surplus (m3) 383.4

3 Minimum surplus (m3) 42.3

16 1st Guess Capacity (m3) 425.7

24 As per CPHEEO Capacity (m3) 446.50731

0.000 Final computed Capacity (m3) 385

2275.500 Max. serving Demand (mld) 1.4882276.500 Max. Population serving 9420

2278.000 Initial Volume (m3) 153.94

1 Fire storage (m3) 71.9

153.94 Depth for Fire (m) 0.156

14 Av. Flow (m3/h)= 93.022

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 93.0 247.0 0.2 12.4 12.4 234.6 80.62 2276.500 40.0 OK

1 0.0 247.0 0.2 12.4 24.8 222.2 -12.40 2277.024 60.9 OK

2 0.0 247.0 0.2 12.4 37.2 209.8 -12.40 2276.943 57.7 OK

3 0.0 247.0 0.2 12.4 49.6 197.3 -12.40 2276.863 54.5 OK

4 0.0 247.0 0.5 31.0 80.6 166.3 -31.01 2276.782 51.3 OK

5 93.0 340.0 1 62.0 142.6 197.3 31.01 2276.581 43.2 OK

6 93.0 433.0 1 62.0 204.6 228.4 31.01 2276.782 51.3 OK

7 93.0 526.0 3 186.0 390.7 135.3 -93.02 2276.983 59.3 OK

8 93.0 619.1 3 186.0 576.7 42.3 -93.02 2276.379 35.2 OK

9 93.0 712.1 1 62.0 638.8 73.3 31.01 2275.775 11.0 OK

10 93.0 805.1 1 62.0 700.8 104.3 31.01 2275.976 19.1 OK

11 93.0 898.1 1 62.0 762.8 135.3 31.01 2276.178 27.1 OK

12 93.0 991.1 1 62.0 824.8 166.3 31.01 2276.379 35.2 OK

13 93.0 1084.2 0.5 31.0 855.8 228.4 62.01 2276.581 43.2 OK

14 93.0 1177.2 0.5 31.0 886.8 290.4 62.01 2276.983 59.3 OK

15 93.0 1270.2 1 62.0 948.8 321.4 31.01 2277.386 75.5 OK

16 93.0 1363.2 1 62.0 1010.8 352.4 31.01 2277.588 83.5 OK

17 93.0 1456.3 1 62.0 1072.9 383.4 31.01 2277.789 91.6 OK

18 93.0 1549.3 2 124.0 1196.9 352.4 -31.01 2277.991 99.6 OK

19 93.0 1642.3 2 124.0 1320.9 321.4 -31.01 2277.789 91.6 OK

20 0.0 1642.3 1 62.0 1382.9 259.4 -62.01 2277.588 83.5 OK

21 0.0 1642.3 1 62.0 1444.9 197.3 -62.01 2277.185 67.4 OK

22 0.0 1642.3 0.5 31.0 1476.0 166.3 -31.01 2276.782 51.3 OK

23 0.0 1642.3 0.2 12.4 1488.4 153.9 -12.40 2276.581 43.2 OK

24 93.0 1735.3 0.2 12.4 1500.8 234.6 80.62 2276.500 40.0 OK

Total 1488.4 24.0 1488.4

Time from Start

(hours)

Inflow (m3/h)

Dhalli_WTP2_Sump

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 232: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

232

APPENDIX-H Mass Curve Spread Sheets of Kusumpti

Table H1: Sackrala Note: Tank is not enough, present diameter is 5 m. Increase it to 13m.

Tank at Sackrala

Maximum surplus (m3) 389.4

3 Minimum surplus (m3) 7.9

16 1st Guess Capacity (m3) 397.3

24 As per CPHEEO Capacity (m3) 499.52838

0.000 Final computed Capacity (m3) 478

2050.500 Max. serving Demand (mld) 1.6652051.500 Max. Population serving 10539

2054.100 Initial Volume (m3) 132.73

1 Fire storage (m3) 80.4

132.73 Depth for Fire (m) 0.202

13 Av. Flow (m3/h)= 104.068

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 104.1 236.8 0.2 13.9 13.9 222.9 90.19 2051.500 27.8 OK

1 0.0 236.8 0.2 13.9 27.8 209.0 -13.88 2052.180 46.7 OK

2 0.0 236.8 0.2 13.9 41.6 195.2 -13.88 2052.075 43.7 OK

3 0.0 236.8 0.2 13.9 55.5 181.3 -13.88 2051.970 40.8 OK

4 0.0 236.8 0.5 34.7 90.2 146.6 -34.69 2051.866 37.9 OK

5 104.1 340.9 1 69.4 159.6 181.3 34.69 2051.605 30.7 OK

6 104.1 444.9 1 69.4 229.0 216.0 34.69 2051.866 37.9 OK

7 104.1 549.0 3 208.1 437.1 111.9 -104.07 2052.127 45.2 OK

8 104.1 653.1 3 208.1 645.2 7.9 -104.07 2051.343 23.4 OK

9 104.1 757.1 1 69.4 714.6 42.5 34.69 2050.559 1.6 OK

10 104.1 861.2 1 69.4 784.0 77.2 34.69 2050.820 8.9 OK

11 104.1 965.3 1 69.4 853.4 111.9 34.69 2051.082 16.2 OK

12 104.1 1069.3 1 69.4 922.7 146.6 34.69 2051.343 23.4 OK

13 104.1 1173.4 0.5 34.7 957.4 216.0 69.38 2051.605 30.7 OK

14 104.1 1277.5 0.5 34.7 992.1 285.4 69.38 2052.127 45.2 OK

15 104.1 1381.6 1 69.4 1061.5 320.1 34.69 2052.650 59.7 OK

16 104.1 1485.6 1 69.4 1130.9 354.7 34.69 2052.911 67.0 OK

17 104.1 1589.7 1 69.4 1200.3 389.4 34.69 2053.173 74.2 OK

18 104.1 1693.8 2 138.8 1339.0 354.7 -34.69 2053.434 81.5 OK

19 104.1 1797.8 2 138.8 1477.8 320.1 -34.69 2053.173 74.2 OK

20 0.0 1797.8 1 69.4 1547.2 250.7 -69.38 2052.911 67.0 OK

21 0.0 1797.8 1 69.4 1616.5 181.3 -69.38 2052.389 52.5 OK

22 0.0 1797.8 0.5 34.7 1651.2 146.6 -34.69 2051.866 37.9 OK

23 0.0 1797.8 0.2 13.9 1665.1 132.7 -13.88 2051.605 30.7 OK

24 104.1 1901.9 0.2 13.9 1679.0 222.9 90.19 2051.500 27.8 OK

Total 1665.1 24.0 1665.1

Tank StatusPeak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) %Tank Full

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Time from Start

(hours)

Inflow (m3/h)

Sackrala

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Page 233: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

233

Table H2: Z10_Tibti_Panthaghati

Tank at Z10_Tibti_Panthaghati

Maximum surplus (m3) 293.8

3 Minimum surplus (m3) 25.2

16 1st Guess Capacity (m3) 319.0

24 As per CPHEEO Capacity (m3) 351.70599

0.000 Final computed Capacity (m3) 565

1977.500 Max. serving Demand (mld) 1.1721978.500 Max. Population serving 7420

1982.500 Initial Volume (m3) 113.10

1 Fire storage (m3) 56.6

113.10 Depth for Fire (m) 0.167

12 Av. Flow (m3/h)= 73.272

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 73.3 186.4 0.2 9.8 9.8 176.6 63.50 1978.500 20.0 OK

1 0.0 186.4 0.2 9.8 19.5 166.8 -9.77 1979.061 31.2 OK

2 0.0 186.4 0.2 9.8 29.3 157.1 -9.77 1978.975 29.5 OK

3 0.0 186.4 0.2 9.8 39.1 147.3 -9.77 1978.889 27.8 OK

4 0.0 186.4 0.5 24.4 63.5 122.9 -24.42 1978.802 26.0 OK

5 73.3 259.6 1 48.8 112.4 147.3 24.42 1978.586 21.7 OK

6 73.3 332.9 1 48.8 161.2 171.7 24.42 1978.802 26.0 OK

7 73.3 406.2 3 146.5 307.7 98.4 -73.27 1979.018 30.4 OK

8 73.3 479.5 3 146.5 454.3 25.2 -73.27 1978.370 17.4 OK

9 73.3 552.7 1 48.8 503.1 49.6 24.42 1977.723 4.5 OK

10 73.3 626.0 1 48.8 552.0 74.0 24.42 1977.939 8.8 OK

11 73.3 699.3 1 48.8 600.8 98.4 24.42 1978.154 13.1 OK

12 73.3 772.5 1 48.8 649.7 122.9 24.42 1978.370 17.4 OK

13 73.3 845.8 0.5 24.4 674.1 171.7 48.85 1978.586 21.7 OK

14 73.3 919.1 0.5 24.4 698.5 220.6 48.85 1979.018 30.4 OK

15 73.3 992.4 1 48.8 747.4 245.0 24.42 1979.450 39.0 OK

16 73.3 1065.6 1 48.8 796.2 269.4 24.42 1979.666 43.3 OK

17 73.3 1138.9 1 48.8 845.1 293.8 24.42 1979.882 47.6 OK

18 73.3 1212.2 2 97.7 942.8 269.4 -24.42 1980.098 52.0 OK

19 73.3 1285.5 2 97.7 1040.5 245.0 -24.42 1979.882 47.6 OK

20 0.0 1285.5 1 48.8 1089.3 196.1 -48.85 1979.666 43.3 OK

21 0.0 1285.5 1 48.8 1138.2 147.3 -48.85 1979.234 34.7 OK

22 0.0 1285.5 0.5 24.4 1162.6 122.9 -24.42 1978.802 26.0 OK

23 0.0 1285.5 0.2 9.8 1172.4 113.1 -9.77 1978.586 21.7 OK

24 73.3 1358.7 0.2 9.8 1182.1 176.6 63.50 1978.500 20.0 OK

Total 1172.4 24.0 1172.4

Time from Start

(hours)

Inflow (m3/h)

Z10_Tibti_Panthaghati

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 234: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

234

Table H3: Basant_Vihar Note: Tank is not enough, present diameter is 7 m. Increase it to 14m.

Tank at Basant_Vihar

Maximum surplus (m3) 451.9

3 Minimum surplus (m3) 9.0

16 1st Guess Capacity (m3) 460.9

24 As per CPHEEO Capacity (m3) 579.85395

0.000 Final computed Capacity (m3) 616

2031.500 Max. serving Demand (mld) 1.9332032.500 Max. Population serving 12233

2035.500 Initial Volume (m3) 153.94

1 Fire storage (m3) 93.4

153.94 Depth for Fire (m) 0.202

14 Av. Flow (m3/h)= 120.803

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 120.8 274.7 0.2 16.1 16.1 258.6 104.70 2032.500 25.0 OK

1 0.0 274.7 0.2 16.1 32.2 242.5 -16.11 2033.180 42.0 OK

2 0.0 274.7 0.2 16.1 48.3 226.4 -16.11 2033.075 39.4 OK

3 0.0 274.7 0.2 16.1 64.4 210.3 -16.11 2032.971 36.8 OK

4 0.0 274.7 0.5 40.3 104.7 170.0 -40.27 2032.866 34.2 OK

5 120.8 395.5 1 80.5 185.2 210.3 40.27 2032.605 27.6 OK

6 120.8 516.3 1 80.5 265.8 250.6 40.27 2032.866 34.2 OK

7 120.8 637.2 3 241.6 507.4 129.8 -120.80 2033.128 40.7 OK

8 120.8 758.0 3 241.6 749.0 9.0 -120.80 2032.343 21.1 OK

9 120.8 878.8 1 80.5 829.5 49.2 40.27 2031.558 1.5 OK

10 120.8 999.6 1 80.5 910.0 89.5 40.27 2031.820 8.0 OK

11 120.8 1120.4 1 80.5 990.6 129.8 40.27 2032.081 14.5 OK

12 120.8 1241.2 1 80.5 1071.1 170.0 40.27 2032.343 21.1 OK

13 120.8 1362.0 0.5 40.3 1111.4 250.6 80.54 2032.605 27.6 OK

14 120.8 1482.8 0.5 40.3 1151.7 331.1 80.54 2033.128 40.7 OK

15 120.8 1603.6 1 80.5 1232.2 371.4 40.27 2033.651 53.8 OK

16 120.8 1724.4 1 80.5 1312.7 411.7 40.27 2033.913 60.3 OK

17 120.8 1845.2 1 80.5 1393.3 451.9 40.27 2034.174 66.9 OK

18 120.8 1966.0 2 161.1 1554.3 411.7 -40.27 2034.436 73.4 OK

19 120.8 2086.8 2 161.1 1715.4 371.4 -40.27 2034.174 66.9 OK

20 0.0 2086.8 1 80.5 1795.9 290.8 -80.54 2033.913 60.3 OK

21 0.0 2086.8 1 80.5 1876.5 210.3 -80.54 2033.389 47.2 OK

22 0.0 2086.8 0.5 40.3 1916.7 170.0 -40.27 2032.866 34.2 OK

23 0.0 2086.8 0.2 16.1 1932.8 153.9 -16.11 2032.605 27.6 OK

24 120.8 2207.6 0.2 16.1 1949.0 258.6 104.70 2032.500 25.0 OK

Total 1932.8 24.0 1932.8

Time from Start

(hours)

Inflow (m3/h)

Basant_Vihar

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 235: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

235

Table H4: Phase_2_New_Shimla_Sector_6

Tank at Phase_2_New_Shimla_Sector_6

Maximum surplus (m3) 128.3

3 Minimum surplus (m3) 12.3

16 1st Guess Capacity (m3) 140.6

24 As per CPHEEO Capacity (m3) 151.91028

0.000 Final computed Capacity (m3) 302

1966.000 Max. serving Demand (mld) 0.5061967.000 Max. Population serving 3205

1972.000 Initial Volume (m3) 50.27

1 Fire storage (m3) 24.5

50.27 Depth for Fire (m) 0.162

8 Av. Flow (m3/h)= 31.648

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 31.6 81.9 0.2 4.2 4.2 77.7 27.43 1967.000 16.7 OK

1 0.0 81.9 0.2 4.2 8.4 73.5 -4.22 1967.546 25.8 OK

2 0.0 81.9 0.2 4.2 12.7 69.3 -4.22 1967.462 24.4 OK

3 0.0 81.9 0.2 4.2 16.9 65.0 -4.22 1967.378 23.0 OK

4 0.0 81.9 0.5 10.5 27.4 54.5 -10.55 1967.294 21.6 OK

5 31.6 113.6 1 21.1 48.5 65.0 10.55 1967.084 18.1 OK

6 31.6 145.2 1 21.1 69.6 75.6 10.55 1967.294 21.6 OK

7 31.6 176.9 3 63.3 132.9 43.9 -31.65 1967.504 25.1 OK

8 31.6 208.5 3 63.3 196.2 12.3 -31.65 1966.874 14.6 OK

9 31.6 240.2 1 21.1 217.3 22.8 10.55 1966.244 4.1 OK

10 31.6 271.8 1 21.1 238.4 33.4 10.55 1966.454 7.6 OK

11 31.6 303.4 1 21.1 259.5 43.9 10.55 1966.664 11.1 OK

12 31.6 335.1 1 21.1 280.6 54.5 10.55 1966.874 14.6 OK

13 31.6 366.7 0.5 10.5 291.2 75.6 21.10 1967.084 18.1 OK

14 31.6 398.4 0.5 10.5 301.7 96.7 21.10 1967.504 25.1 OK

15 31.6 430.0 1 21.1 322.8 107.2 10.55 1967.923 32.1 OK

16 31.6 461.7 1 21.1 343.9 117.8 10.55 1968.133 35.6 OK

17 31.6 493.3 1 21.1 365.0 128.3 10.55 1968.343 39.1 OK

18 31.6 525.0 2 42.2 407.2 117.8 -10.55 1968.553 42.6 OK

19 31.6 556.6 2 42.2 449.4 107.2 -10.55 1968.343 39.1 OK

20 0.0 556.6 1 21.1 470.5 86.1 -21.10 1968.133 35.6 OK

21 0.0 556.6 1 21.1 491.6 65.0 -21.10 1967.714 28.6 OK

22 0.0 556.6 0.5 10.5 502.1 54.5 -10.55 1967.294 21.6 OK

23 0.0 556.6 0.2 4.2 506.4 50.3 -4.22 1967.084 18.1 OK

24 31.6 588.3 0.2 4.2 510.6 77.7 27.43 1967.000 16.7 OK

Total 506.4 24.0 506.4

Time from Start

(hours)

Inflow (m3/h)

Phase_2_New_Shimla_Sector_6

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 236: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

236

Table H5: Phase_2_New_Shimla

Tank at Phase_2_New_Shimla

Maximum surplus (m3) 129.3

3 Minimum surplus (m3) 11.8

16 1st Guess Capacity (m3) 141.1

24 As per CPHEEO Capacity (m3) 153.77391

0.000 Final computed Capacity (m3) 151

1894.500 Max. serving Demand (mld) 0.5131895.500 Max. Population serving 3244

1897.500 Initial Volume (m3) 50.27

1 Fire storage (m3) 24.8

50.27 Depth for Fire (m) 0.164

8 Av. Flow (m3/h)= 32.036

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 32.0 82.3 0.2 4.3 4.3 78.0 27.76 1895.500 33.3 OK

1 0.0 82.3 0.2 4.3 8.5 73.8 -4.27 1896.052 51.7 OK

2 0.0 82.3 0.2 4.3 12.8 69.5 -4.27 1895.967 48.9 OK

3 0.0 82.3 0.2 4.3 17.1 65.2 -4.27 1895.882 46.1 OK

4 0.0 82.3 0.5 10.7 27.8 54.5 -10.68 1895.797 43.2 OK

5 32.0 114.3 1 21.4 49.1 65.2 10.68 1895.585 36.2 OK

6 32.0 146.4 1 21.4 70.5 75.9 10.68 1895.797 43.2 OK

7 32.0 178.4 3 64.1 134.6 43.9 -32.04 1896.010 50.3 OK

8 32.0 210.4 3 64.1 198.6 11.8 -32.04 1895.373 29.1 OK

9 32.0 242.5 1 21.4 220.0 22.5 10.68 1894.735 7.8 OK

10 32.0 274.5 1 21.4 241.3 33.2 10.68 1894.948 14.9 OK

11 32.0 306.6 1 21.4 262.7 43.9 10.68 1895.160 22.0 OK

12 32.0 338.6 1 21.4 284.1 54.5 10.68 1895.373 29.1 OK

13 32.0 370.6 0.5 10.7 294.7 75.9 21.36 1895.585 36.2 OK

14 32.0 402.7 0.5 10.7 305.4 97.3 21.36 1896.010 50.3 OK

15 32.0 434.7 1 21.4 326.8 107.9 10.68 1896.435 64.5 OK

16 32.0 466.7 1 21.4 348.1 118.6 10.68 1896.647 71.6 OK

17 32.0 498.8 1 21.4 369.5 129.3 10.68 1896.860 78.7 OK

18 32.0 530.8 2 42.7 412.2 118.6 -10.68 1897.072 85.7 OK

19 32.0 562.8 2 42.7 454.9 107.9 -10.68 1896.860 78.7 OK

20 0.0 562.8 1 21.4 476.3 86.6 -21.36 1896.647 71.6 OK

21 0.0 562.8 1 21.4 497.6 65.2 -21.36 1896.222 57.4 OK

22 0.0 562.8 0.5 10.7 508.3 54.5 -10.68 1895.797 43.2 OK

23 0.0 562.8 0.2 4.3 512.6 50.3 -4.27 1895.585 36.2 OK

24 32.0 594.9 0.2 4.3 516.9 78.0 27.76 1895.500 33.3 OK

Total 512.6 24.0 512.6

Time from Start

(hours)

Inflow (m3/h)

Phase_2_New_Shimla

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 237: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

237

Table H6: Vikasnagar Note: Tank is not enough, present diameter is 5 m. Increase it to 13m.

Tank at Vikasnagar

Maximum surplus (m3) 385.9

3 Minimum surplus (m3) 9.6

16 1st Guess Capacity (m3) 395.5

24 As per CPHEEO Capacity (m3) 492.66171

0.000 Final computed Capacity (m3) 398

1969.500 Max. serving Demand (mld) 1.6421970.500 Max. Population serving 10394

1972.500 Initial Volume (m3) 132.73

1 Fire storage (m3) 79.3

132.73 Depth for Fire (m) 0.199

13 Av. Flow (m3/h)= 102.638

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 102.6 235.4 0.2 13.7 13.7 221.7 88.95 1970.500 33.3 OK

1 0.0 235.4 0.2 13.7 27.4 208.0 -13.69 1971.170 55.7 OK

2 0.0 235.4 0.2 13.7 41.1 194.3 -13.69 1971.067 52.2 OK

3 0.0 235.4 0.2 13.7 54.7 180.6 -13.69 1970.964 48.8 OK

4 0.0 235.4 0.5 34.2 89.0 146.4 -34.21 1970.861 45.4 OK

5 102.6 338.0 1 68.4 157.4 180.6 34.21 1970.603 36.8 OK

6 102.6 440.6 1 68.4 225.8 214.8 34.21 1970.861 45.4 OK

7 102.6 543.3 3 205.3 431.1 112.2 -102.64 1971.119 54.0 OK

8 102.6 645.9 3 205.3 636.4 9.6 -102.64 1970.345 28.2 OK

9 102.6 748.6 1 68.4 704.8 43.8 34.21 1969.572 2.4 OK

10 102.6 851.2 1 68.4 773.2 78.0 34.21 1969.830 11.0 OK

11 102.6 953.8 1 68.4 841.6 112.2 34.21 1970.088 19.6 OK

12 102.6 1056.5 1 68.4 910.1 146.4 34.21 1970.345 28.2 OK

13 102.6 1159.1 0.5 34.2 944.3 214.8 68.43 1970.603 36.8 OK

14 102.6 1261.7 0.5 34.2 978.5 283.3 68.43 1971.119 54.0 OK

15 102.6 1364.4 1 68.4 1046.9 317.5 34.21 1971.634 71.1 OK

16 102.6 1467.0 1 68.4 1115.3 351.7 34.21 1971.892 79.7 OK

17 102.6 1569.7 1 68.4 1183.8 385.9 34.21 1972.150 88.3 OK

18 102.6 1672.3 2 136.9 1320.6 351.7 -34.21 1972.407 96.9 OK

19 102.6 1774.9 2 136.9 1457.5 317.5 -34.21 1972.150 88.3 OK

20 0.0 1774.9 1 68.4 1525.9 249.1 -68.43 1971.892 79.7 OK

21 0.0 1774.9 1 68.4 1594.3 180.6 -68.43 1971.376 62.5 OK

22 0.0 1774.9 0.5 34.2 1628.5 146.4 -34.21 1970.861 45.4 OK

23 0.0 1774.9 0.2 13.7 1642.2 132.7 -13.69 1970.603 36.8 OK

24 102.6 1877.6 0.2 13.7 1655.9 221.7 88.95 1970.500 33.3 OK

Total 1642.2 24.0 1642.2

Tank StatusPeak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) %Tank Full

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Time from Start

(hours)

Inflow (m3/h)

Vikasnagar

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Page 238: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

238

Table H7: Z11_Sargeen_Chowk Construct new by demolishing existing tank of diameter of 7m with mew diameter of 9m.

Tank at Z11_Sargeen_Chowk

Maximum surplus (m3) 137.3

3 Minimum surplus (m3) 27.8

16 1st Guess Capacity (m3) 165.1

24 As per CPHEEO Capacity (m3) 143.46726

0.000 Final computed Capacity (m3) 159

1947.500 Max. serving Demand (mld) 0.4781948.500 Max. Population serving 3027

1950.000 Initial Volume (m3) 63.62

1 Fire storage (m3) 23.1

63.62 Depth for Fire (m) 0.121

9 Av. Flow (m3/h)= 29.889

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 29.9 93.5 0.2 4.0 4.0 89.5 25.90 1948.500 40.0 OK

1 0.0 93.5 0.2 4.0 8.0 85.5 -3.99 1948.907 56.3 OK

2 0.0 93.5 0.2 4.0 12.0 81.6 -3.99 1948.845 53.8 OK

3 0.0 93.5 0.2 4.0 15.9 77.6 -3.99 1948.782 51.3 OK

4 0.0 93.5 0.5 10.0 25.9 67.6 -9.96 1948.719 48.8 OK

5 29.9 123.4 1 19.9 45.8 77.6 9.96 1948.563 42.5 OK

6 29.9 153.3 1 19.9 65.8 87.5 9.96 1948.719 48.8 OK

7 29.9 183.2 3 59.8 125.5 57.6 -29.89 1948.876 55.0 OK

8 29.9 213.1 3 59.8 185.3 27.8 -29.89 1948.406 36.2 OK

9 29.9 243.0 1 19.9 205.2 37.7 9.96 1947.936 17.4 OK

10 29.9 272.8 1 19.9 225.2 47.7 9.96 1948.093 23.7 OK

11 29.9 302.7 1 19.9 245.1 57.6 9.96 1948.249 30.0 OK

12 29.9 332.6 1 19.9 265.0 67.6 9.96 1948.406 36.2 OK

13 29.9 362.5 0.5 10.0 275.0 87.5 19.93 1948.563 42.5 OK

14 29.9 392.4 0.5 10.0 284.9 107.5 19.93 1948.876 55.0 OK

15 29.9 422.3 1 19.9 304.9 117.4 9.96 1949.189 67.6 OK

16 29.9 452.2 1 19.9 324.8 127.4 9.96 1949.346 73.8 OK

17 29.9 482.1 1 19.9 344.7 137.3 9.96 1949.502 80.1 OK

18 29.9 512.0 2 39.9 384.6 127.4 -9.96 1949.659 86.4 OK

19 29.9 541.8 2 39.9 424.4 117.4 -9.96 1949.502 80.1 OK

20 0.0 541.8 1 19.9 444.3 97.5 -19.93 1949.346 73.8 OK

21 0.0 541.8 1 19.9 464.3 77.6 -19.93 1949.032 61.3 OK

22 0.0 541.8 0.5 10.0 474.2 67.6 -9.96 1948.719 48.8 OK

23 0.0 541.8 0.2 4.0 478.2 63.6 -3.99 1948.563 42.5 OK

24 29.9 571.7 0.2 4.0 482.2 89.5 25.90 1948.500 40.0 OK

Total 478.2 24.0 478.2

Tank StatusPeak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) %Tank Full

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Time from Start

(hours)

Inflow (m3/h)

Z11_Sargeen_Chowk

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Page 239: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

239

Table H8: IAS_Colony1

Tank at IAS_Colony1

Maximum surplus (m3) 29.3

3 Minimum surplus (m3) 4.4

16 1st Guess Capacity (m3) 33.7

24 As per CPHEEO Capacity (m3) 32.56332

0.000 Final computed Capacity (m3) 31

1971.500 Max. serving Demand (mld) 0.1091972.500 Max. Population serving 687

1974.000 Initial Volume (m3) 12.57

1 Fire storage (m3) 5.2

12.57 Depth for Fire (m) 0.139

4 Av. Flow (m3/h)= 6.784

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 6.8 19.4 0.2 0.9 0.9 18.4 5.88 1972.500 40.0 OK

1 0.0 19.4 0.2 0.9 1.8 17.5 -0.90 1972.968 58.7 OK

2 0.0 19.4 0.2 0.9 2.7 16.6 -0.90 1972.896 55.8 OK

3 0.0 19.4 0.2 0.9 3.6 15.7 -0.90 1972.824 53.0 OK

4 0.0 19.4 0.5 2.3 5.9 13.5 -2.26 1972.752 50.1 OK

5 6.8 26.1 1 4.5 10.4 15.7 2.26 1972.572 42.9 OK

6 6.8 32.9 1 4.5 14.9 18.0 2.26 1972.752 50.1 OK

7 6.8 39.7 3 13.6 28.5 11.2 -6.78 1972.932 57.3 OK

8 6.8 46.5 3 13.6 42.1 4.4 -6.78 1972.392 35.7 OK

9 6.8 53.3 1 4.5 46.6 6.7 2.26 1971.852 14.1 OK

10 6.8 60.1 1 4.5 51.1 8.9 2.26 1972.032 21.3 OK

11 6.8 66.8 1 4.5 55.6 11.2 2.26 1972.212 28.5 OK

12 6.8 73.6 1 4.5 60.2 13.5 2.26 1972.392 35.7 OK

13 6.8 80.4 0.5 2.3 62.4 18.0 4.52 1972.572 42.9 OK

14 6.8 87.2 0.5 2.3 64.7 22.5 4.52 1972.932 57.3 OK

15 6.8 94.0 1 4.5 69.2 24.8 2.26 1973.292 71.7 OK

16 6.8 100.8 1 4.5 73.7 27.0 2.26 1973.472 78.9 OK

17 6.8 107.5 1 4.5 78.2 29.3 2.26 1973.652 86.1 OK

18 6.8 114.3 2 9.0 87.3 27.0 -2.26 1973.832 93.3 OK

19 6.8 121.1 2 9.0 96.3 24.8 -2.26 1973.652 86.1 OK

20 0.0 121.1 1 4.5 100.9 20.3 -4.52 1973.472 78.9 OK

21 0.0 121.1 1 4.5 105.4 15.7 -4.52 1973.112 64.5 OK

22 0.0 121.1 0.5 2.3 107.6 13.5 -2.26 1972.752 50.1 OK

23 0.0 121.1 0.2 0.9 108.5 12.6 -0.90 1972.572 42.9 OK

24 6.8 127.9 0.2 0.9 109.4 18.4 5.88 1972.500 40.0 OK

Total 108.5 24.0 108.5

Time from Start

(hours)

Inflow (m3/h)

IAS_Colony1

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 240: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

240

Table H9: IAS_Colony2 Note: Tank is not enough, present diameter is 4 m. Increase it to 10m.

Tank at IAS_Colony2

Maximum surplus (m3) 177.2

3 Minimum surplus (m3) 30.6

16 1st Guess Capacity (m3) 207.7

24 As per CPHEEO Capacity (m3) 191.92701

0.000 Final computed Capacity (m3) 196

1971.500 Max. serving Demand (mld) 0.6401972.500 Max. Population serving 4049

1974.000 Initial Volume (m3) 78.54

1 Fire storage (m3) 30.9

78.54 Depth for Fire (m) 0.131

10 Av. Flow (m3/h)= 39.985

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 40.0 118.5 0.2 5.3 5.3 113.2 34.65 1972.500 40.0 OK

1 0.0 118.5 0.2 5.3 10.7 107.9 -5.33 1972.941 57.6 OK

2 0.0 118.5 0.2 5.3 16.0 102.5 -5.33 1972.873 54.9 OK

3 0.0 118.5 0.2 5.3 21.3 97.2 -5.33 1972.805 52.2 OK

4 0.0 118.5 0.5 13.3 34.7 83.9 -13.33 1972.738 49.5 OK

5 40.0 158.5 1 26.7 61.3 97.2 13.33 1972.568 42.7 OK

6 40.0 198.5 1 26.7 88.0 110.5 13.33 1972.738 49.5 OK

7 40.0 238.5 3 80.0 167.9 70.5 -39.98 1972.907 56.3 OK

8 40.0 278.5 3 80.0 247.9 30.6 -39.98 1972.398 35.9 OK

9 40.0 318.4 1 26.7 274.6 43.9 13.33 1971.889 15.6 OK

10 40.0 358.4 1 26.7 301.2 57.2 13.33 1972.059 22.4 OK

11 40.0 398.4 1 26.7 327.9 70.5 13.33 1972.228 29.1 OK

12 40.0 438.4 1 26.7 354.5 83.9 13.33 1972.398 35.9 OK

13 40.0 478.4 0.5 13.3 367.9 110.5 26.66 1972.568 42.7 OK

14 40.0 518.4 0.5 13.3 381.2 137.2 26.66 1972.907 56.3 OK

15 40.0 558.4 1 26.7 407.8 150.5 13.33 1973.247 69.9 OK

16 40.0 598.3 1 26.7 434.5 163.8 13.33 1973.416 76.7 OK

17 40.0 638.3 1 26.7 461.2 177.2 13.33 1973.586 83.4 OK

18 40.0 678.3 2 53.3 514.5 163.8 -13.33 1973.756 90.2 OK

19 40.0 718.3 2 53.3 567.8 150.5 -13.33 1973.586 83.4 OK

20 0.0 718.3 1 26.7 594.4 123.9 -26.66 1973.416 76.7 OK

21 0.0 718.3 1 26.7 621.1 97.2 -26.66 1973.077 63.1 OK

22 0.0 718.3 0.5 13.3 634.4 83.9 -13.33 1972.738 49.5 OK

23 0.0 718.3 0.2 5.3 639.8 78.5 -5.33 1972.568 42.7 OK

24 40.0 758.3 0.2 5.3 645.1 113.2 34.65 1972.500 40.0 OK

Total 639.8 24.0 639.8

Tank StatusPeak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) %Tank Full

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Time from Start

(hours)

Inflow (m3/h)

IAS_Colony2

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Page 241: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

241

Table H10: IAS_Colony3

Tank at IAS_Colony3

Maximum surplus (m3) 47.2

3 Minimum surplus (m3) 19.1

16 1st Guess Capacity (m3) 66.3

24 As per CPHEEO Capacity (m3) 36.82062

0.000 Final computed Capacity (m3) 68

1971.500 Max. serving Demand (mld) 0.1231972.500 Max. Population serving 777

1973.900 Initial Volume (m3) 28.27

1 Fire storage (m3) 5.9

28.27 Depth for Fire (m) 0.070

6 Av. Flow (m3/h)= 7.671

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 7.7 35.9 0.2 1.0 1.0 34.9 6.65 1972.500 41.7 OK

1 0.0 35.9 0.2 1.0 2.0 33.9 -1.02 1972.735 51.5 OK

2 0.0 35.9 0.2 1.0 3.1 32.9 -1.02 1972.699 50.0 OK

3 0.0 35.9 0.2 1.0 4.1 31.9 -1.02 1972.663 48.4 OK

4 0.0 35.9 0.5 2.6 6.6 29.3 -2.56 1972.627 46.9 OK

5 7.7 43.6 1 5.1 11.8 31.9 2.56 1972.536 43.2 OK

6 7.7 51.3 1 5.1 16.9 34.4 2.56 1972.627 46.9 OK

7 7.7 59.0 3 15.3 32.2 26.7 -7.67 1972.717 50.7 OK

8 7.7 66.6 3 15.3 47.6 19.1 -7.67 1972.446 39.4 OK

9 7.7 74.3 1 5.1 52.7 21.6 2.56 1972.174 28.1 OK

10 7.7 82.0 1 5.1 57.8 24.2 2.56 1972.265 31.9 OK

11 7.7 89.6 1 5.1 62.9 26.7 2.56 1972.355 35.6 OK

12 7.7 97.3 1 5.1 68.0 29.3 2.56 1972.446 39.4 OK

13 7.7 105.0 0.5 2.6 70.6 34.4 5.11 1972.536 43.2 OK

14 7.7 112.7 0.5 2.6 73.1 39.5 5.11 1972.717 50.7 OK

15 7.7 120.3 1 5.1 78.2 42.1 2.56 1972.898 58.2 OK

16 7.7 128.0 1 5.1 83.4 44.6 2.56 1972.988 62.0 OK

17 7.7 135.7 1 5.1 88.5 47.2 2.56 1973.079 65.8 OK

18 7.7 143.3 2 10.2 98.7 44.6 -2.56 1973.169 69.6 OK

19 7.7 151.0 2 10.2 108.9 42.1 -2.56 1973.079 65.8 OK

20 0.0 151.0 1 5.1 114.0 37.0 -5.11 1972.988 62.0 OK

21 0.0 151.0 1 5.1 119.2 31.9 -5.11 1972.807 54.5 OK

22 0.0 151.0 0.5 2.6 121.7 29.3 -2.56 1972.627 46.9 OK

23 0.0 151.0 0.2 1.0 122.7 28.3 -1.02 1972.536 43.2 OK

24 7.7 158.7 0.2 1.0 123.8 34.9 6.65 1972.500 41.7 OK

Total 122.7 24.0 122.7

Time from Start

(hours)

Inflow (m3/h)

IAS_Colony3

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 242: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

242

Table H11: Kusumpti

Tank at Kusumpti

Maximum surplus (m3) 615.4

3 Minimum surplus (m3) 430.3

16 1st Guess Capacity (m3) 1045.7

24 As per CPHEEO Capacity (m3) 242.40486

0.000 Final computed Capacity (m3) 2209

2060.500 Max. serving Demand (mld) 0.8082061.500 Max. Population serving 5114

2065.000 Initial Volume (m3) 490.88

1 Fire storage (m3) 39.0

490.88 Depth for Fire (m) 0.027

25 Av. Flow (m3/h)= 50.501

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 50.5 541.4 0.2 6.7 6.7 534.6 43.77 2061.500 22.2 OK

1 0.0 541.4 0.2 6.7 13.5 527.9 -6.73 2061.589 24.2 OK

2 0.0 541.4 0.2 6.7 20.2 521.2 -6.73 2061.575 23.9 OK

3 0.0 541.4 0.2 6.7 26.9 514.4 -6.73 2061.562 23.6 OK

4 0.0 541.4 0.5 16.8 43.8 497.6 -16.83 2061.548 23.3 OK

5 50.5 591.9 1 33.7 77.4 514.4 16.83 2061.514 22.5 OK

6 50.5 642.4 1 33.7 111.1 531.3 16.83 2061.548 23.3 OK

7 50.5 692.9 3 101.0 212.1 480.8 -50.50 2061.582 24.1 OK

8 50.5 743.4 3 101.0 313.1 430.3 -50.50 2061.479 21.8 OK

9 50.5 793.9 1 33.7 346.8 447.1 16.83 2061.377 19.5 OK

10 50.5 844.4 1 33.7 380.4 463.9 16.83 2061.411 20.2 OK

11 50.5 894.9 1 33.7 414.1 480.8 16.83 2061.445 21.0 OK

12 50.5 945.4 1 33.7 447.8 497.6 16.83 2061.479 21.8 OK

13 50.5 995.9 0.5 16.8 464.6 531.3 33.67 2061.514 22.5 OK

14 50.5 1046.4 0.5 16.8 481.4 564.9 33.67 2061.582 24.1 OK

15 50.5 1096.9 1 33.7 515.1 581.8 16.83 2061.651 25.6 OK

16 50.5 1147.4 1 33.7 548.8 598.6 16.83 2061.685 26.3 OK

17 50.5 1197.9 1 33.7 582.4 615.4 16.83 2061.719 27.1 OK

18 50.5 1248.4 2 67.3 649.8 598.6 -16.83 2061.754 27.9 OK

19 50.5 1298.9 2 67.3 717.1 581.8 -16.83 2061.719 27.1 OK

20 0.0 1298.9 1 33.7 750.8 548.1 -33.67 2061.685 26.3 OK

21 0.0 1298.9 1 33.7 784.4 514.4 -33.67 2061.617 24.8 OK

22 0.0 1298.9 0.5 16.8 801.3 497.6 -16.83 2061.548 23.3 OK

23 0.0 1298.9 0.2 6.7 808.0 490.9 -6.73 2061.514 22.5 OK

24 50.5 1349.4 0.2 6.7 814.7 534.6 43.77 2061.500 22.2 OK

Total 808.0 24.0 808.0

Time from Start

(hours)

Inflow (m3/h)

Kusumpti

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Peak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) Tank Status%Tank Full

Page 243: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

243

Table H12: HP_PWD_Near_Kusumpti Note: Tank is not enough, present diameter is 8 m. Increase it to 17m.

Tank at HP_PWD_Near_Kusumpti

Maximum surplus (m3) 681.6

3 Minimum surplus (m3) 5.8

16 1st Guess Capacity (m3) 687.4

24 As per CPHEEO Capacity (m3) 884.71188

0.000 Final computed Capacity (m3) 1090

2060.500 Max. serving Demand (mld) 2.9492061.500 Max. Population serving 18665

2065.300 Initial Volume (m3) 226.98

1 Fire storage (m3) 142.5

226.98 Depth for Fire (m) 0.209

17 Av. Flow (m3/h)= 184.315

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 184.3 411.3 0.2 24.6 24.6 386.7 159.74 2061.500 20.8 OK

1 0.0 411.3 0.2 24.6 49.2 362.1 -24.58 2062.204 35.5 OK

2 0.0 411.3 0.2 24.6 73.7 337.6 -24.58 2062.095 33.2 OK

3 0.0 411.3 0.2 24.6 98.3 313.0 -24.58 2061.987 31.0 OK

4 0.0 411.3 0.5 61.4 159.7 251.6 -61.44 2061.879 28.7 OK

5 184.3 595.6 1 122.9 282.6 313.0 61.44 2061.608 23.1 OK

6 184.3 779.9 1 122.9 405.5 374.4 61.44 2061.879 28.7 OK

7 184.3 964.2 3 368.6 774.1 190.1 -184.31 2062.150 34.4 OK

8 184.3 1148.6 3 368.6 1142.8 5.8 -184.31 2061.338 17.4 OK

9 184.3 1332.9 1 122.9 1265.6 67.2 61.44 2060.526 0.5 OK

10 184.3 1517.2 1 122.9 1388.5 128.7 61.44 2060.796 6.2 OK

11 184.3 1701.5 1 122.9 1511.4 190.1 61.44 2061.067 11.8 OK

12 184.3 1885.8 1 122.9 1634.3 251.6 61.44 2061.338 17.4 OK

13 184.3 2070.1 0.5 61.4 1695.7 374.4 122.88 2061.608 23.1 OK

14 184.3 2254.4 0.5 61.4 1757.1 497.3 122.88 2062.150 34.4 OK

15 184.3 2438.8 1 122.9 1880.0 558.7 61.44 2062.691 45.6 OK

16 184.3 2623.1 1 122.9 2002.9 620.2 61.44 2062.962 51.3 OK

17 184.3 2807.4 1 122.9 2125.8 681.6 61.44 2063.232 56.9 OK

18 184.3 2991.7 2 245.8 2371.5 620.2 -61.44 2063.503 62.6 OK

19 184.3 3176.0 2 245.8 2617.3 558.7 -61.44 2063.232 56.9 OK

20 0.0 3176.0 1 122.9 2740.1 435.9 -122.88 2062.962 51.3 OK

21 0.0 3176.0 1 122.9 2863.0 313.0 -122.88 2062.420 40.0 OK

22 0.0 3176.0 0.5 61.4 2924.5 251.6 -61.44 2061.879 28.7 OK

23 0.0 3176.0 0.2 24.6 2949.0 227.0 -24.58 2061.608 23.1 OK

24 184.3 3360.3 0.2 24.6 2973.6 386.7 159.74 2061.500 20.8 OK

Total 2949.0 24.0 2949.0

Tank StatusPeak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) %Tank Full

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Time from Start

(hours)

Inflow (m3/h)

HP_PWD_Near_Kusumpti

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Page 244: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

244

APPENDIX-I Mass Curve Spread Sheets of Jakhu Area

Table I1: Jakhu Note: Tank is not enough, present diameter is 10 m. Increase it to 20m.

Tank at Jakhu

Maximum surplus (m3) 930.5

3 Minimum surplus (m3) 14.3

16 1st Guess Capacity (m3) 944.8

24 As per CPHEEO Capacity (m3) 1199.43351

0.000 Final computed Capacity (m3) 2670

2430.500 Max. serving Demand (mld) 3.9982431.500 Max. Population serving 25305

2439.000 Initial Volume (m3) 314.16

1 Fire storage (m3) 193.1

314.16 Depth for Fire (m) 0.205

20 Av. Flow (m3/h)= 249.882

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 249.9 564.0 0.2 33.3 33.3 530.7 216.56 2431.500 11.8 OK

1 0.0 564.0 0.2 33.3 66.6 497.4 -33.32 2432.189 19.9 OK

2 0.0 564.0 0.2 33.3 100.0 464.1 -33.32 2432.083 18.6 OK

3 0.0 564.0 0.2 33.3 133.3 430.8 -33.32 2431.977 17.4 OK

4 0.0 564.0 0.5 83.3 216.6 347.5 -83.29 2431.871 16.1 OK

5 249.9 813.9 1 166.6 383.2 430.8 83.29 2431.606 13.0 OK

6 249.9 1063.8 1 166.6 549.7 514.1 83.29 2431.871 16.1 OK

7 249.9 1313.7 3 499.8 1049.5 264.2 -249.88 2432.136 19.3 OK

8 249.9 1563.6 3 499.8 1549.3 14.3 -249.88 2431.341 9.9 OK

9 249.9 1813.5 1 166.6 1715.9 97.6 83.29 2430.546 0.5 OK

10 249.9 2063.3 1 166.6 1882.4 180.9 83.29 2430.811 3.7 OK

11 249.9 2313.2 1 166.6 2049.0 264.2 83.29 2431.076 6.8 OK

12 249.9 2563.1 1 166.6 2215.6 347.5 83.29 2431.341 9.9 OK

13 249.9 2813.0 0.5 83.3 2298.9 514.1 166.59 2431.606 13.0 OK

14 249.9 3062.9 0.5 83.3 2382.2 680.7 166.59 2432.136 19.3 OK

15 249.9 3312.7 1 166.6 2548.8 763.9 83.29 2432.667 25.5 OK

16 249.9 3562.6 1 166.6 2715.4 847.2 83.29 2432.932 28.6 OK

17 249.9 3812.5 1 166.6 2882.0 930.5 83.29 2433.197 31.7 OK

18 249.9 4062.4 2 333.2 3215.1 847.2 -83.29 2433.462 34.8 OK

19 249.9 4312.3 2 333.2 3548.3 763.9 -83.29 2433.197 31.7 OK

20 0.0 4312.3 1 166.6 3714.9 597.4 -166.59 2432.932 28.6 OK

21 0.0 4312.3 1 166.6 3881.5 430.8 -166.59 2432.401 22.4 OK

22 0.0 4312.3 0.5 83.3 3964.8 347.5 -83.29 2431.871 16.1 OK

23 0.0 4312.3 0.2 33.3 3998.1 314.2 -33.32 2431.606 13.0 OK

24 249.9 4562.2 0.2 33.3 4031.4 530.7 216.56 2431.500 11.8 OK

Total 3998.1 24.0 3998.1

Tank StatusPeak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) %Tank Full

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Time from Start

(hours)

Inflow (m3/h)

Jakhu

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Page 245: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

245

Table I2: Z2_Jakhu2

Tank at Z2_Jakhu2

Maximum surplus (m3) 1078.8

3 Minimum surplus (m3) 40.2

16 1st Guess Capacity (m3) 1119.1

24 As per CPHEEO Capacity (m3) 1359.61842

0.000 Final computed Capacity (m3) 1901

2392.500 Max. serving Demand (mld) 4.5322393.500 Max. Population serving 28684

2397.500 Initial Volume (m3) 380.13

1 Fire storage (m3) 218.9

380.13 Depth for Fire (m) 0.192

22 Av. Flow (m3/h)= 283.254

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 283.3 663.4 0.2 37.8 37.8 625.6 245.49 2393.500 20.0 OK

1 0.0 663.4 0.2 37.8 75.5 587.9 -37.77 2394.146 32.9 OK

2 0.0 663.4 0.2 37.8 113.3 550.1 -37.77 2394.046 30.9 OK

3 0.0 663.4 0.2 37.8 151.1 512.3 -37.77 2393.947 28.9 OK

4 0.0 663.4 0.5 94.4 245.5 417.9 -94.42 2393.848 27.0 OK

5 283.3 946.6 1 188.8 434.3 512.3 94.42 2393.599 22.0 OK

6 283.3 1229.9 1 188.8 623.2 606.7 94.42 2393.848 27.0 OK

7 283.3 1513.1 3 566.5 1189.7 323.5 -283.25 2394.096 31.9 OK

8 283.3 1796.4 3 566.5 1756.2 40.2 -283.25 2393.351 17.0 OK

9 283.3 2079.7 1 188.8 1945.0 134.6 94.42 2392.606 2.1 OK

10 283.3 2362.9 1 188.8 2133.8 229.1 94.42 2392.854 7.1 OK

11 283.3 2646.2 1 188.8 2322.7 323.5 94.42 2393.103 12.1 OK

12 283.3 2929.4 1 188.8 2511.5 417.9 94.42 2393.351 17.0 OK

13 283.3 3212.7 0.5 94.4 2605.9 606.7 188.84 2393.599 22.0 OK

14 283.3 3495.9 0.5 94.4 2700.4 795.6 188.84 2394.096 31.9 OK

15 283.3 3779.2 1 188.8 2889.2 890.0 94.42 2394.593 41.9 OK

16 283.3 4062.4 1 188.8 3078.0 984.4 94.42 2394.841 46.8 OK

17 283.3 4345.7 1 188.8 3266.9 1078.8 94.42 2395.090 51.8 OK

18 283.3 4628.9 2 377.7 3644.5 984.4 -94.42 2395.338 56.8 OK

19 283.3 4912.2 2 377.7 4022.2 890.0 -94.42 2395.090 51.8 OK

20 0.0 4912.2 1 188.8 4211.0 701.2 -188.84 2394.841 46.8 OK

21 0.0 4912.2 1 188.8 4399.9 512.3 -188.84 2394.344 36.9 OK

22 0.0 4912.2 0.5 94.4 4494.3 417.9 -94.42 2393.848 27.0 OK

23 0.0 4912.2 0.2 37.8 4532.1 380.1 -37.77 2393.599 22.0 OK

24 283.3 5195.4 0.2 37.8 4569.8 625.6 245.49 2393.500 20.0 OK

Total 4532.1 24.0 4532.1

Tank StatusPeak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) %Tank Full

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Time from Start

(hours)

Inflow (m3/h)

Z2_Jakhu2

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Page 246: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

246

APPENDIX-J Mass Curve Spread Sheets of North_Oak_1 and Z9_Shoghi Area

Table J1: North_Oak_1 Note: Tank is not enough, present diameter is 7 m. Increase it to 11m.

Tank at North_Oak_1

Maximum surplus (m3) 261.6

3 Minimum surplus (m3) 14.0

16 1st Guess Capacity (m3) 275.6

24 As per CPHEEO Capacity (m3) 324.08955

0.000 Final computed Capacity (m3) 380

2266.000 Max. serving Demand (mld) 1.0802267.000 Max. Population serving 6837

2270.000 Initial Volume (m3) 95.03

1 Fire storage (m3) 52.2

95.03 Depth for Fire (m) 0.183

11 Av. Flow (m3/h)= 67.519

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 67.5 162.6 0.2 9.0 9.0 153.5 58.52 2267.000 25.0 OK

1 0.0 162.6 0.2 9.0 18.0 144.5 -9.00 2267.616 40.4 OK

2 0.0 162.6 0.2 9.0 27.0 135.5 -9.00 2267.521 38.0 OK

3 0.0 162.6 0.2 9.0 36.0 126.5 -9.00 2267.426 35.7 OK

4 0.0 162.6 0.5 22.5 58.5 104.0 -22.51 2267.332 33.3 OK

5 67.5 230.1 1 45.0 103.5 126.5 22.51 2267.095 27.4 OK

6 67.5 297.6 1 45.0 148.5 149.0 22.51 2267.332 33.3 OK

7 67.5 365.1 3 135.0 283.6 81.5 -67.52 2267.568 39.2 OK

8 67.5 432.6 3 135.0 418.6 14.0 -67.52 2266.858 21.4 OK

9 67.5 500.1 1 45.0 463.6 36.5 22.51 2266.147 3.7 OK

10 67.5 567.7 1 45.0 508.6 59.0 22.51 2266.384 9.6 OK

11 67.5 635.2 1 45.0 553.7 81.5 22.51 2266.621 15.5 OK

12 67.5 702.7 1 45.0 598.7 104.0 22.51 2266.858 21.4 OK

13 67.5 770.2 0.5 22.5 621.2 149.0 45.01 2267.095 27.4 OK

14 67.5 837.7 0.5 22.5 643.7 194.1 45.01 2267.568 39.2 OK

15 67.5 905.3 1 45.0 688.7 216.6 22.51 2268.042 51.1 OK

16 67.5 972.8 1 45.0 733.7 239.1 22.51 2268.279 57.0 OK

17 67.5 1040.3 1 45.0 778.7 261.6 22.51 2268.516 62.9 OK

18 67.5 1107.8 2 90.0 868.7 239.1 -22.51 2268.752 68.8 OK

19 67.5 1175.3 2 90.0 958.8 216.6 -22.51 2268.516 62.9 OK

20 0.0 1175.3 1 45.0 1003.8 171.6 -45.01 2268.279 57.0 OK

21 0.0 1175.3 1 45.0 1048.8 126.5 -45.01 2267.805 45.1 OK

22 0.0 1175.3 0.5 22.5 1071.3 104.0 -22.51 2267.332 33.3 OK

23 0.0 1175.3 0.2 9.0 1080.3 95.0 -9.00 2267.095 27.4 OK

24 67.5 1242.9 0.2 9.0 1089.3 153.5 58.52 2267.000 25.0 OK

Total 1080.3 24.0 1080.3

Tank StatusPeak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) %Tank Full

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Time from Start

(hours)

Inflow (m3/h)

North_Oak_1

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Page 247: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

247

Table J2: Z9_Shoghi

Tank at Z12_Shoghi

Maximum surplus (m3) 319.9

3 Minimum surplus (m3) 12.5

16 1st Guess Capacity (m3) 332.4

24 As per CPHEEO Capacity (m3) 402.42066

0.000 Final computed Capacity (m3) 565

1882.500 Max. serving Demand (mld) 1.3411883.500 Max. Population serving 8490

1887.500 Initial Volume (m3) 113.10

1 Fire storage (m3) 64.8

113.10 Depth for Fire (m) 0.191

12 Av. Flow (m3/h)= 83.838

Inflow (m3) Cumulative

Inflow (m3)

Outflow

(m3)

Cumulative

Outflow

(m3)

0 83.8 196.9 0.2 11.2 11.2 185.8 72.66 1883.500 20.0 OK

1 0.0 196.9 0.2 11.2 22.4 174.6 -11.18 1884.142 32.8 OK

2 0.0 196.9 0.2 11.2 33.5 163.4 -11.18 1884.044 30.9 OK

3 0.0 196.9 0.2 11.2 44.7 152.2 -11.18 1883.945 28.9 OK

4 0.0 196.9 0.5 27.9 72.7 124.3 -27.95 1883.846 26.9 OK

5 83.8 280.8 1 55.9 128.6 152.2 27.95 1883.599 22.0 OK

6 83.8 364.6 1 55.9 184.4 180.2 27.95 1883.846 26.9 OK

7 83.8 448.4 3 167.7 352.1 96.3 -83.84 1884.093 31.9 OK

8 83.8 532.3 3 167.7 519.8 12.5 -83.84 1883.352 17.0 OK

9 83.8 616.1 1 55.9 575.7 40.4 27.95 1882.610 2.2 OK

10 83.8 700.0 1 55.9 631.6 68.4 27.95 1882.858 7.2 OK

11 83.8 783.8 1 55.9 687.5 96.3 27.95 1883.105 12.1 OK

12 83.8 867.6 1 55.9 743.4 124.3 27.95 1883.352 17.0 OK

13 83.8 951.5 0.5 27.9 771.3 180.2 55.89 1883.599 22.0 OK

14 83.8 1035.3 0.5 27.9 799.3 236.1 55.89 1884.093 31.9 OK

15 83.8 1119.1 1 55.9 855.1 264.0 27.95 1884.587 41.7 OK

16 83.8 1203.0 1 55.9 911.0 292.0 27.95 1884.834 46.7 OK

17 83.8 1286.8 1 55.9 966.9 319.9 27.95 1885.081 51.6 OK

18 83.8 1370.7 2 111.8 1078.7 292.0 -27.95 1885.329 56.6 OK

19 83.8 1454.5 2 111.8 1190.5 264.0 -27.95 1885.081 51.6 OK

20 0.0 1454.5 1 55.9 1246.4 208.1 -55.89 1884.834 46.7 OK

21 0.0 1454.5 1 55.9 1302.3 152.2 -55.89 1884.340 36.8 OK

22 0.0 1454.5 0.5 27.9 1330.2 124.3 -27.95 1883.846 26.9 OK

23 0.0 1454.5 0.2 11.2 1341.4 113.1 -11.18 1883.599 22.0 OK

24 83.8 1538.3 0.2 11.2 1352.6 185.8 72.66 1883.500 20.0 OK

Total 1341.4 24.0 1341.4

Tank StatusPeak Factor

Outflow (m3/h) Cumu. Inflow-Cumu. Outflow

(m3)

Surplus or Deficit (Inflow-Outflow)

(m3)

Level (m) %Tank Full

Initial water level (m)

Maximum wataer level (m)

Initial water depth in tank

Area of CSDiameter (m)

Time from Start

(hours)

Inflow (m3/h)

Z12_Shoghi

Peak Factor

Inflow Hours

Outflow Hours

Av_GL

Minimum wataer level (m)

Page 248: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

248

APPENDIX-K Details of Isolation Valves

Table K1: Isolation valves

ISO_Area Label Diameter

(Valve) (mm)

B_PostSanjauli_450DI BISO-1 150

B_PostSanjauli_450DI BISO-2 100

B_PostSanjauli_450DI BISO-3 100

B_PostSanjauli_450DI BISO-4 80 B_PostSanjauli_450DI BISO-5 200

B_PostSanjauli_450DI BISO-6 150

B_PostSanjauli_450DI BISO-7 150

B_PostSanjauli_450DI BISO-8 150

B_PostSanjauli_450DI BISO-9 200

B_PostSanjauli_450DI BISO-10 200

B_PostSanjauli_450DI BISO-11 80

B_PostSanjauli_450DI BISO-12 200

B_PostSanjauli_450DI BISO-13 80

B_PostSanjauli_450DI BISO-14 150

B_PostSanjauli_450DI BISO-15 80

B_PostSanjauli_450DI BISO-16 100

B_PostSanjauli_450DI BISO-17 150

B_PostSanjauli_450DI BISO-18 150

B_PostSanjauli_450DI BISO-19 150

B_PostSanjauli_450DI BISO-20 150

B_PostSanjauli_450DI BISO-21 150

B_PostSanjauli_450DI BISO-22 100 B_PostSanjauli_450DI BISO-23 300

B_PostSanjauli_450DI BISO-24 80

B_PostSanjauli_450DI BISO-25 80

B_PostSanjauli_450DI BISO-26 80

B_PostSanjauli_450DI BISO-27 80

B_PostSanjauli_450DI BISO-28 100

B_PostSanjauli_450DI BISO-29 80

B_PostSanjauli_450DI BISO-30 150

B_PostSanjauli_450DI BISO-31 150

B_PostSanjauli_450DI BISO-32 80

B_PostSanjauli_450DI BISO-33 80

B_PostSanjauli_450DI BISO-34 150

B_PostSanjauli_450DI BISO-35 100

B_PostSanjauli_450DI BISO-36 100

B_PostSanjauli_450DI BISO-37 80

B_PostSanjauli_450DI BISO-38 200

B_PostSanjauli_450DI BISO-39 200

B_PostSanjauli_450DI BISO-40 200

B_PostSanjauli_450DI BISO-41 200 B_PostSanjauli_450DI BISO-42 100

B_PostSanjauli_450DI BISO-43 80

B_PostSanjauli_450DI BISO-44 100

Page 249: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

249

ISO_Area Label Diameter

(Valve) (mm)

B_PostSanjauli_450DI BISO-45 80

B_PostSanjauli_450DI BISO-46 80

B_PostSanjauli_450DI BISO-47 150

B_PostSanjauli_450DI BISO-48 150

B_PostSanjauli_450DI BISO-49 80

B_PostSanjauli_450DI BISO-50 80

B_PostSanjauli_450DI BISO-51 80

B_PostSanjauli_450DI BISO-52 150

B_PostSanjauli_450DI BISO-53 100

B_PostSanjauli_450DI BISO-54 80 B_PostSanjauli_450DI BISO-55 80

B_PostSanjauli_450DI BISO-56 150

B_PostSanjauli_450DI BISO-57 80

B_PostSanjauli_450DI BISO-58 150

B_PostSanjauli_450DI BISO-59 100

B_PostSanjauli_450DI BISO-60 150

B_PostSanjauli_450DI BISO-61 100

B_PostSanjauli_450DI BISO-62 80

B_PostSanjauli_450DI BISO-63 150

B_PostSanjauli_450DI BISO-64 150

B_PostSanjauli_450DI BISO-65 80

B_PostSanjauli_450DI BISO-66 100

B_PostSanjauli_450DI BISO-67 100

B_PostSanjauli_450DI BISO-68 100

B_PostSanjauli_450DI BISO-69 100

B_PostSanjauli_450DI BISO-70 80

B_PostSanjauli_450DI BISO-71 80

B_PostSanjauli_450DI BISO-72 80

B_PostSanjauli_450DI BISO-73 80 B_PostSanjauli_450DI BISO-74 80

B_PostSanjauli_450DI BISO-75 150

B_PostSanjauli_450DI BISO-76 80

B_PostSanjauli_450DI BISO-77 150

B_PostSanjauli_450DI BISO-78 80

B_PostSanjauli_450DI BISO-79 80

B_PostSanjauli_450DI BISO-80 80

B_PostSanjauli_450DI BISO-81 80

B_PostSanjauli_450DI BISO-82 80

B_PostSanjauli_450DI BISO-83 80

B_PostSanjauli_450DI BISO-84 150

B_PostSanjauli_450DI BISO-85 150

B_PostSanjauli_450DI BISO-86 150

B_PostSanjauli_450DI BISO-87 150

B_PostSanjauli_450DI BISO-88 150

B_PostSanjauli_450DI BISO-89 150

B_PostSanjauli_450DI BISO-90 150

B_PostSanjauli_450DI BISO-91 100 B_PostSanjauli_450DI BISO-92 200

B_PostSanjauli_450DI BISO-93 200

B_PostSanjauli_450DI BISO-94 200

B_PostSanjauli_450DI BISO-95 200

Page 250: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

250

ISO_Area Label Diameter

(Valve) (mm)

B_PostSanjauli_450DI BISO-96 80

B_PostSanjauli_450DI BISO-97 80

B_PostSanjauli_450DI BISO-98 150

B_PostSanjauli_450DI BISO-99 150

B_PostSanjauli_450DI BISO-100 150

B_PostSanjauli_450DI BISO-101 200

B_PostSanjauli_450DI BISO-102 80

B_PostSanjauli_450DI BISO-103 300

B_PostSanjauli_450DI BISO-104 200

B_PostSanjauli_450DI BISO-105 200 B_PostSanjauli_450DI BISO-106 150

B_PostSanjauli_450DI BISO-107 300

B_PostSanjauli_450DI BISO-108 100

B_PostSanjauli_450DI BISO-109 200

B_PostSanjauli_450DI BISO-110 150

B_PostSanjauli_450DI BISO-111 200

B_PostSanjauli_450DI BISO-112 150

B_PostSanjauli_450DI BISO-113 250

B_PostSanjauli_450DI BISO-114 80

B_PostSanjauli_450DI BISO-115 80

B_PostSanjauli_450DI BISO-116 300

B_PostSanjauli_450DI BISO-117 300

B_PostSanjauli_450DI BISO-118 80

B_PostSanjauli_450DI BISO-119 150

B_PostSanjauli_450DI BISO-120 150

B_PostSanjauli_450DI BISO-121 150

B_PostSanjauli_450DI BISO-122 200

B_PostSanjauli_450DI BISO-123 80

B_PostSanjauli_450DI BISO-124 150 B_PostSanjauli_450DI BISO-125 80

B_PostSanjauli_450DI BISO-126 300

B_PostSanjauli_450DI BISO-127 150

B_PostSanjauli_450DI BISO-128 150

B_PostSanjauli_450DI BISO-129 80

B_PostSanjauli_450DI BISO-130 150

B_PostSanjauli_450DI BISO-131 150

B_PostSanjauli_450DI BISO-132 80

B_PostSanjauli_450DI BISO-133 150

B_PostSanjauli_450DI BISO-134 150

B_PostSanjauli_450DI BISO-135 200

B_PostSanjauli_450DI BISO-136 200

B_PostSanjauli_450DI BISO-137 200

B_PostSanjauli_450DI BISO-138 80

B_PostSanjauli_450DI BISO-139 100

B_PostSanjauli_450DI BISO-140 80

B_PostSanjauli_450DI BISO-141 100

B_PostSanjauli_450DI BISO-142 100 B_PostSanjauli_450DI BISO-143 200

B_PostSanjauli_450DI BISO-144 100

B_PostSanjauli_450DI BISO-145 100

B_PostSanjauli_450DI BISO-146 80

Page 251: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

251

ISO_Area Label Diameter

(Valve) (mm)

B_PostSanjauli_450DI BISO-147 100

B_PostSanjauli_450DI BISO-148 80

B_PostSanjauli_450DI BISO-149 80

B_PostSanjauli_450DI BISO-150 80

B_PostSanjauli_450DI BISO-151 80

B_PostSanjauli_450DI BISO-152 80

B_PostSanjauli_450DI BISO-153 80

B_PostSanjauli_450DI BISO-154 80

B_PostSanjauli_450DI BISO-155 80

B_PostSanjauli_450DI BISO-156 80 B_PostSanjauli_450DI BISO-157 80

B_PostSanjauli_450DI BISO-158 80

B_PostSanjauli_450DI BISO-159 150

B_PostSanjauli_450DI BISO-160 80

B_PostSanjauli_450DI BISO-161 80

B_PostSanjauli_450DI BISO-162 80

B_PostSanjauli_450DI BISO-163 80

B_PostSanjauli_450DI BISO-164 80

B_PostSanjauli_450DI BISO-165 80

B_PostSanjauli_450DI BISO-166 80

B_PostSanjauli_450DI BISO-167 80

B_PostSanjauli_450DI BISO-168 80

B_PostSanjauli_450DI BISO-169 150

B_PostSanjauli_450DI BISO-170 150

B_PostSanjauli_450DI BISO-171 150

B_PostSanjauli_450DI BISO-172 80

B_PostSanjauli_450DI BISO-173 80

B_PostSanjauli_450DI BISO-174 80

B_PostSanjauli_450DI BISO-175 150 B_PostSanjauli_450DI BISO-176 150

B_PostSanjauli_450DI BISO-177 80

B_PostSanjauli_450DI BISO-178 80

B_PostSanjauli_450DI BISO-179 80

B_PostSanjauli_450DI BISO-180 80

B_PostSanjauli_450DI BISO-181 150

B_PostSanjauli_450DI BISO-182 200

B_PostSanjauli_450DI BISO-183 150

B_PostSanjauli_450DI BISO-184 300

B_PostSanjauli_450DI BISO-185 300

B_PostSanjauli_450DI BISO-186 300

B_PostSanjauli_450DI BISO-187 300

B_PostSanjauli_450DI BISO-188 300

B_PostSanjauli_450DI BISO-189 150

B_PostSanjauli_450DI BISO-190 300

B_PostSanjauli_450DI BISO-191 150

B_PostSanjauli_450DI BISO-192 150

B_PostSanjauli_450DI BISO-193 150 B_PostSanjauli_450DI BISO-194 150

B_PostSanjauli_450DI BISO-195 200

B_PostSanjauli_450DI BISO-196 300

B_PostSanjauli_450DI BISO-197 200

Page 252: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

252

ISO_Area Label Diameter

(Valve) (mm)

B_PostSanjauli_450DI BISO-198 150

B_PostSanjauli_450DI BISO-199 150

B_PostSanjauli_450DI BISO-200 200

B_PostSanjauli_450DI BISO-201 150

B_PostSanjauli_450DI BISO-202 150

B_PostSanjauli_450DI BISO-203 150

B_PostSanjauli_450DI BISO-204 150

B_PostSanjauli_450DI BISO-205 150

C_Ridge CISO-1 80

C_Ridge CISO-2 150 C_Ridge CISO-3 150

C_Ridge CISO-4 80

C_Ridge CISO-5 80

C_Ridge CISO-6 100

C_Ridge CISO-7 80

C_Ridge CISO-8 100

C_Ridge CISO-9 150

C_Ridge CISO-10 150

C_Ridge CISO-11 80

C_Ridge CISO-12 150

C_Ridge CISO-13 150

C_Ridge CISO-14 150

C_Ridge CISO-15 150

C_Ridge CISO-16 200

C_Ridge CISO-17 200

C_Ridge CISO-18 80

C_Ridge CISO-19 100

C_Ridge CISO-20 80

C_Ridge CISO-21 100 C_Ridge CISO-22 80

C_Ridge CISO-23 80

C_Ridge CISO-24 150

C_Ridge CISO-25 150

C_Ridge CISO-26 150

C_Ridge CISO-27 150

C_Ridge CISO-28 150

C_Ridge CISO-29 150

C_Ridge CISO-30 80

C_Ridge CISO-31 80

C_Ridge CISO-32 150

C_Ridge CISO-33 100

C_Ridge CISO-34 100

C_Ridge CISO-35 80

C_Ridge CISO-36 150

C_Ridge CISO-37 100

C_Ridge CISO-38 200

C_Ridge CISO-39 200 C_Ridge CISO-40 200

C_Ridge CISO-41 150

C_Ridge CISO-42 80

C_Ridge CISO-43 150

Page 253: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

253

ISO_Area Label Diameter

(Valve) (mm)

C_Ridge CISO-44 80

C_Ridge CISO-45 100

C_Ridge CISO-46 150

C_Ridge CISO-47 150

C_Ridge CISO-48 100

C_Ridge CISO-49 150

C_Ridge CISO-50 100

C_Ridge CISO-51 80

C_Ridge CISO-52 100

C_Ridge CISO-53 100 C_Ridge CISO-54 100

C_Ridge CISO-55 80

C_Ridge CISO-56 80

C_Ridge CISO-57 100

C_Ridge CISO-58 150

C_Ridge CISO-59 80

C_Ridge CISO-60 150

C_Ridge CISO-61 150

C_Ridge CISO-62 150

C_Ridge CISO-63 300

C_Ridge CISO-64 150

C_Ridge CISO-65 150

C_Ridge CISO-66 100

C_Ridge CISO-67 100

C_Ridge CISO-68 100

C_Ridge CISO-69 80

C_Ridge CISO-70 150

C_Ridge CISO-71 300

D_PostRidge_400CI DISO-1 150 D_PostRidge_400CI DISO-2 300

D_PostRidge_400CI DISO-3 300

D_PostRidge_400CI DISO-4 150

D_PostRidge_400CI DISO-5 150

D_PostRidge_400CI DISO-6 150

D_PostRidge_400CI DISO-7 200

D_PostRidge_400CI DISO-8 150

D_PostRidge_400CI DISO-9 300

D_PostRidge_400CI DISO-10 150

D_PostRidge_400CI DISO-11 80

D_PostRidge_400CI DISO-12 80

D_PostRidge_400CI DISO-13 80

D_PostRidge_400CI DISO-14 100

D_PostRidge_400CI DISO-15 150

D_PostRidge_400CI DISO-16 100

D_PostRidge_400CI DISO-17 100

D_PostRidge_400CI DISO-18 80

D_PostRidge_400CI DISO-19 100 D_PostRidge_400CI DISO-20 100

D_PostRidge_400CI DISO-21 150

D_PostRidge_400CI DISO-22 150

D_PostRidge_400CI DISO-23 80

Page 254: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

254

ISO_Area Label Diameter

(Valve) (mm)

D_PostRidge_400CI DISO-24 80

B_PostSanjauli_450DI BISO-206 80

D_PostRidge_400CI DISO-25 150

D_PostRidge_400CI DISO-26 100

D_PostRidge_400CI DISO-27 100

D_PostRidge_400CI DISO-28 80

D_PostRidge_400CI DISO-29 80

D_PostRidge_400CI DISO-30 80

D_PostRidge_400CI DISO-31 150

D_PostRidge_400CI DISO-32 100 D_PostRidge_400CI DISO-33 150

D_PostRidge_400CI DISO-34 100

D_PostRidge_400CI DISO-35 100

D_PostRidge_400CI DISO-36 100

D_PostRidge_400CI DISO-37 150

D_PostRidge_400CI DISO-38 80

D_PostRidge_400CI DISO-39 80

D_PostRidge_400CI DISO-40 300

D_PostRidge_400CI DISO-41 100

D_PostRidge_400CI DISO-42 100

D_PostRidge_400CI DISO-43 80

D_PostRidge_400CI DISO-44 80

D_PostRidge_400CI DISO-45 80

D_PostRidge_400CI DISO-46 80

D_PostRidge_400CI DISO-47 80

D_PostRidge_400CI DISO-48 150

D_PostRidge_400CI DISO-49 150

D_PostRidge_400CI DISO-50 150

D_PostRidge_400CI DISO-51 80 D_PostRidge_400CI DISO-52 150

D_PostRidge_400CI DISO-53 150

D_PostRidge_400CI DISO-54 100

D_PostRidge_400CI DISO-55 150

D_PostRidge_400CI DISO-56 80

D_PostRidge_400CI DISO-57 80

D_PostRidge_400CI DISO-58 80

D_PostRidge_400CI DISO-59 80

D_PostRidge_400CI DISO-60 80

D_PostRidge_400CI DISO-61 300

D_PostRidge_400CI DISO-62 80

D_PostRidge_400CI DISO-63 100

D_PostRidge_400CI DISO-64 100

D_PostRidge_400CI DISO-65 80

D_PostRidge_400CI DISO-66 150

D_PostRidge_400CI DISO-67 80

D_PostRidge_400CI DISO-68 80

D_PostRidge_400CI DISO-69 150 D_PostRidge_400CI DISO-70 150

D_PostRidge_400CI DISO-71 80

D_PostRidge_400CI DISO-72 100

D_PostRidge_400CI DISO-73 200

Page 255: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

255

ISO_Area Label Diameter

(Valve) (mm)

D_PostRidge_400CI DISO-74 100

D_PostRidge_400CI DISO-75 200

D_PostRidge_400CI DISO-76 300

D_PostRidge_400CI DISO-77 100

D_PostRidge_400CI DISO-78 80

D_PostRidge_400CI DISO-79 80

D_PostRidge_400CI DISO-80 80

D_PostRidge_400CI DISO-81 80

D_PostRidge_400CI DISO-82 100

D_PostRidge_400CI DISO-83 100 D_PostRidge_400CI DISO-84 100

D_PostRidge_400CI DISO-85 100

D_PostRidge_400CI DISO-86 150

D_PostRidge_400CI DISO-87 200

D_PostRidge_400CI DISO-88 200

D_PostRidge_400CI DISO-89 150

D_PostRidge_400CI DISO-90 300

D_PostRidge_400CI DISO-91 80

D_PostRidge_400CI DISO-92 80

E_Mains_Field EISO-1 150

E_Mains_Field EISO-2 150

E_Mains_Field EISO-3 300

E_Mains_Field EISO-4 300

E_Mains_Field EISO-5 150

E_Mains_Field EISO-6 150

E_Mains_Field EISO-7 300

E_Mains_Field EISO-8 150

E_Mains_Field EISO-9 150

E_Mains_Field EISO-10 150 E_Mains_Field EISO-11 150

E_Mains_Field EISO-12 150

E_Mains_Field EISO-13 150

E_Mains_Field EISO-14 150

E_Mains_Field EISO-15 150

E_Mains_Field EISO-16 200

E_Mains_Field EISO-17 150

E_Mains_Field EISO-18 300

E_Mains_Field EISO-19 150

E_Mains_Field EISO-20 300

E_Mains_Field EISO-21 150

E_Mains_Field EISO-22 200

E_Mains_Field EISO-23 150

E_Mains_Field EISO-24 200

E_Mains_Field EISO-25 150

E_Mains_Field EISO-26 150

E_Mains_Field EISO-27 80

E_Mains_Field EISO-28 80 E_Mains_Field EISO-29 80

E_Mains_Field EISO-30 80

E_Mains_Field EISO-31 80

E_Mains_Field EISO-32 80

Page 256: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

256

ISO_Area Label Diameter

(Valve) (mm)

E_Mains_Field EISO-33 80

E_Mains_Field EISO-34 80

E_Mains_Field EISO-35 80

E_Mains_Field EISO-36 80

E_Mains_Field EISO-37 150

E_Mains_Field EISO-38 80

E_Mains_Field EISO-39 250

E_Mains_Field EISO-40 250

E_Mains_Field EISO-41 80

E_Mains_Field EISO-42 150 E_Mains_Field EISO-43 200

E_Mains_Field EISO-44 300

E_Mains_Field EISO-45 80

E_Mains_Field EISO-46 80

E_Mains_Field EISO-47 80

E_Mains_Field EISO-48 80

E_Mains_Field EISO-49 150

E_Mains_Field EISO-50 200

E_Mains_Field EISO-51 150

E_Mains_Field EISO-52 100

E_Mains_Field EISO-53 100

E_Mains_Field EISO-54 80

E_Mains_Field EISO-55 80

E_Mains_Field EISO-56 150

E_Mains_Field EISO-57 80

E_Mains_Field EISO-58 150

E_Mains_Field EISO-59 150

E_Mains_Field EISO-60 150

E_Mains_Field EISO-61 300 E_Mains_Field EISO-62 80

E_Mains_Field EISO-63 300

E_Mains_Field EISO-64 200

E_Mains_Field EISO-65 150

E_Mains_Field EISO-66 80

E_Mains_Field EISO-67 150

E_Mains_Field EISO-68 80

E_Mains_Field EISO-69 150

E_Mains_Field EISO-70 80

E_Mains_Field EISO-71 80

E_Mains_Field EISO-72 150

E_Mains_Field EISO-73 80

E_Mains_Field EISO-74 80

E_Mains_Field EISO-75 150

E_Mains_Field EISO-76 80

E_Mains_Field EISO-77 80

E_Mains_Field EISO-78 150

E_Mains_Field EISO-79 150 E_Mains_Field EISO-80 150

E_Mains_Field EISO-81 150

E_Mains_Field EISO-82 150

E_Mains_Field EISO-83 150

Page 257: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

257

ISO_Area Label Diameter

(Valve) (mm)

E_Mains_Field EISO-84 200

E_Mains_Field EISO-85 200

E_Mains_Field EISO-86 150

E_Mains_Field EISO-87 80

E_Mains_Field EISO-88 80

E_Mains_Field EISO-89 80

E_Mains_Field EISO-90 80

E_Mains_Field EISO-91 200

E_Mains_Field EISO-92 200

E_Mains_Field EISO-93 80 E_Mains_Field EISO-94 80

E_Mains_Field EISO-95 80

E_Mains_Field EISO-96 150

E_Mains_Field EISO-97 150

E_Mains_Field EISO-98 150

E_Mains_Field EISO-99 150

E_Mains_Field EISO-100 80

E_Mains_Field EISO-101 80

E_Mains_Field EISO-102 200

E_Mains_Field EISO-103 100

E_Mains_Field EISO-104 150

E_Mains_Field EISO-105 150

E_Mains_Field EISO-106 100

E_Mains_Field EISO-107 150

E_Mains_Field EISO-108 100

E_Mains_Field EISO-109 150

E_Mains_Field EISO-110 150

E_Mains_Field EISO-111 100

E_Mains_Field EISO-112 150 E_Mains_Field EISO-113 150

E_Mains_Field EISO-114 150

E_Mains_Field EISO-115 150

E_Mains_Field EISO-116 150

E_Mains_Field EISO-117 150

E_Mains_Field EISO-118 150

E_Mains_Field EISO-119 150

E_Mains_Field EISO-120 100

E_Mains_Field EISO-121 150

E_Mains_Field EISO-122 80

E_Mains_Field EISO-123 200

E_Mains_Field EISO-124 100

E_Mains_Field EISO-125 200

E_Mains_Field EISO-126 200

E_Mains_Field EISO-127 200

E_Mains_Field EISO-128 80

E_Mains_Field EISO-129 80

E_Mains_Field EISO-130 80 E_Mains_Field EISO-131 80

E_Mains_Field EISO-132 80

E_Mains_Field EISO-133 80

E_Mains_Field EISO-134 80

Page 258: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

258

ISO_Area Label Diameter

(Valve) (mm)

E_Mains_Field EISO-135 150

E_Mains_Field EISO-136 100

E_Mains_Field EISO-137 80

E_Mains_Field EISO-138 150

E_Mains_Field EISO-139 80

E_Mains_Field EISO-140 80

E_Mains_Field EISO-141 150

E_Mains_Field EISO-142 150

E_Mains_Field EISO-143 150

E_Mains_Field EISO-144 150 E_Mains_Field EISO-145 80

E_Mains_Field EISO-146 80

E_Mains_Field EISO-147 80

E_Mains_Field EISO-148 80

E_Mains_Field EISO-149 150

E_Mains_Field EISO-150 150

E_Mains_Field EISO-151 80

E_Mains_Field EISO-152 200

E_Mains_Field EISO-153 200

E_Mains_Field EISO-154 200

E_Mains_Field EISO-155 80

E_Mains_Field EISO-156 150

E_Mains_Field EISO-157 150

E_Mains_Field EISO-158 150

E_Mains_Field EISO-159 80

E_Mains_Field EISO-160 80

E_Mains_Field EISO-161 80

E_Mains_Field EISO-162 80

E_Mains_Field EISO-163 150 E_Mains_Field EISO-164 150

E_Mains_Field EISO-165 80

E_Mains_Field EISO-166 150

E_Mains_Field EISO-167 80

E_Mains_Field EISO-168 150

E_Mains_Field EISO-169 80

E_Mains_Field EISO-170 100

F_Dhingodevi FISO-1 150

F_Dhingodevi FISO-2 200

F_Dhingodevi FISO-3 150

F_Dhingodevi FISO-4 300

F_Dhingodevi FISO-5 150

F_Dhingodevi FISO-6 200

F_Dhingodevi FISO-7 150

F_Dhingodevi FISO-8 300

F_Dhingodevi FISO-9 150

F_Dhingodevi FISO-10 300

F_Dhingodevi FISO-11 150 F_Dhingodevi FISO-12 80

F_Dhingodevi FISO-13 150

F_Dhingodevi FISO-14 80

F_Dhingodevi FISO-15 80

Page 259: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

259

ISO_Area Label Diameter

(Valve) (mm)

F_Dhingodevi FISO-16 150

F_Dhingodevi FISO-17 150

F_Dhingodevi FISO-18 80

F_Dhingodevi FISO-19 80

F_Dhingodevi FISO-20 80

F_Dhingodevi FISO-21 150

F_Dhingodevi FISO-22 150

F_Dhingodevi FISO-23 80

F_Dhingodevi FISO-24 80

F_Dhingodevi FISO-25 80 F_Dhingodevi FISO-26 80

F_Dhingodevi FISO-27 150

F_Dhingodevi FISO-28 150

F_Dhingodevi FISO-29 80

F_Dhingodevi FISO-30 80

F_Dhingodevi FISO-31 80

F_Dhingodevi FISO-32 200

F_Dhingodevi FISO-33 150

F_Dhingodevi FISO-34 80

F_Dhingodevi FISO-35 80

F_Dhingodevi FISO-36 80

F_Dhingodevi FISO-37 80

F_Dhingodevi FISO-38 80

F_Dhingodevi FISO-39 80

F_Dhingodevi FISO-40 80

F_Dhingodevi FISO-41 80

F_Dhingodevi FISO-42 80

F_Dhingodevi FISO-43 80

F_Dhingodevi FISO-44 80 F_Dhingodevi FISO-45 80

F_Dhingodevi FISO-46 150

F_Dhingodevi FISO-47 80

F_Dhingodevi FISO-48 80

F_Dhingodevi FISO-49 80

F_Dhingodevi FISO-50 80

F_Dhingodevi FISO-51 80

F_Dhingodevi FISO-52 80

F_Dhingodevi FISO-53 80

F_Dhingodevi FISO-54 80

F_Dhingodevi FISO-55 80

F_Dhingodevi FISO-56 150

F_Dhingodevi FISO-57 80

F_Dhingodevi FISO-58 150

F_Dhingodevi FISO-59 80

F_Dhingodevi FISO-60 80

F_Dhingodevi FISO-61 80

F_Dhingodevi FISO-62 80 F_Dhingodevi FISO-63 80

F_Dhingodevi FISO-64 80

F_Dhingodevi FISO-65 150

F_Dhingodevi FISO-66 80

Page 260: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

260

ISO_Area Label Diameter

(Valve) (mm)

F_Dhingodevi FISO-67 150

F_Dhingodevi FISO-68 150

F_Dhingodevi FISO-69 150

F_Dhingodevi FISO-70 100

F_Dhingodevi FISO-71 100

F_Dhingodevi FISO-72 80

F_Dhingodevi FISO-73 100

F_Dhingodevi FISO-74 150

F_Dhingodevi FISO-75 150

F_Dhingodevi FISO-76 80 F_Dhingodevi FISO-77 150

F_Dhingodevi FISO-78 150

F_Dhingodevi FISO-79 200

F_Dhingodevi FISO-80 80

F_Dhingodevi FISO-81 80

F_Dhingodevi FISO-82 100

F_Dhingodevi FISO-83 80

F_Dhingodevi FISO-84 100

F_Dhingodevi FISO-85 80

F_Dhingodevi FISO-86 100

F_Dhingodevi FISO-87 150

F_Dhingodevi FISO-88 150

F_Dhingodevi FISO-89 80

F_Dhingodevi FISO-90 100

F_Dhingodevi FISO-91 200

F_Dhingodevi FISO-92 80

F_Dhingodevi FISO-93 200

F_Dhingodevi FISO-94 100

F_Dhingodevi FISO-95 80 F_Dhingodevi FISO-96 80

F_Dhingodevi FISO-97 150

F_Dhingodevi FISO-98 80

F_Dhingodevi FISO-99 80

F_Dhingodevi FISO-100 80

F_Dhingodevi FISO-101 80

F_Dhingodevi FISO-102 150

F_Dhingodevi FISO-103 150

F_Dhingodevi FISO-104 150

F_Dhingodevi FISO-105 80

G_Mashobra GISO-1 150

G_Mashobra GISO-2 300

G_Mashobra GISO-3 150

G_Mashobra GISO-4 100

G_Mashobra GISO-5 80

G_Mashobra GISO-6 150

G_Mashobra GISO-7 100

G_Mashobra GISO-8 100 G_Mashobra GISO-9 100

G_Mashobra GISO-10 200

G_Mashobra GISO-11 150

H_Craignaino HISO-1 150

Page 261: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

261

ISO_Area Label Diameter

(Valve) (mm)

H_Craignaino HISO-2 150

H_Craignaino HISO-3 80

H_Craignaino HISO-4 80

H_Craignaino HISO-5 150

I_Dhalli IISO-1 150

I_Dhalli IISO-2 100

I_Dhalli IISO-3 150

I_Dhalli IISO-4 300

I_Dhalli IISO-5 150

I_Dhalli IISO-6 80 I_Dhalli IISO-7 150

I_Dhalli IISO-8 80

I_Dhalli IISO-9 80

I_Dhalli IISO-10 80

I_Dhalli IISO-11 100

I_Dhalli IISO-12 100

I_Dhalli IISO-13 150

I_Dhalli IISO-14 80

I_Dhalli IISO-15 80

I_Dhalli IISO-16 100

I_Dhalli IISO-17 100

I_Dhalli IISO-18 200

I_Dhalli IISO-19 100

J_Kusumpti JISO-4 150

J_Kusumpti JISO-5 150

J_Kusumpti JISO-6 150

J_Kusumpti JISO-7 150

J_Kusumpti JISO-8 150

J_Kusumpti JISO-9 150 J_Kusumpti JISO-10 150

J_Kusumpti JISO-11 150

J_Kusumpti JISO-12 150

J_Kusumpti JISO-13 200

J_Kusumpti JISO-14 150

J_Kusumpti JISO-15 200

J_Kusumpti JISO-16 150

J_Kusumpti JISO-17 200

J_Kusumpti JISO-18 150

J_Kusumpti JISO-19 200

J_Kusumpti JISO-20 150

J_Kusumpti JISO-21 300

J_Kusumpti JISO-22 150

J_Kusumpti JISO-23 300

J_Kusumpti JISO-24 150

J_Kusumpti JISO-25 150

J_Kusumpti JISO-26 150

J_Kusumpti JISO-27 150 J_Kusumpti JISO-28 80

J_Kusumpti JISO-29 80

J_Kusumpti JISO-30 80

J_Kusumpti JISO-31 80

Page 262: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

262

ISO_Area Label Diameter

(Valve) (mm)

J_Kusumpti JISO-32 80

J_Kusumpti JISO-33 100

J_Kusumpti JISO-34 80

J_Kusumpti JISO-35 100

J_Kusumpti JISO-36 80

J_Kusumpti JISO-37 80

J_Kusumpti JISO-38 100

J_Kusumpti JISO-39 80

J_Kusumpti JISO-40 80

J_Kusumpti JISO-41 150 J_Kusumpti JISO-42 80

J_Kusumpti JISO-43 150

J_Kusumpti JISO-44 80

J_Kusumpti JISO-45 80

J_Kusumpti JISO-46 150

J_Kusumpti JISO-47 80

J_Kusumpti JISO-48 150

J_Kusumpti JISO-49 150

J_Kusumpti JISO-50 150

J_Kusumpti JISO-51 80

J_Kusumpti JISO-52 80

J_Kusumpti JISO-53 80

J_Kusumpti JISO-54 80

J_Kusumpti JISO-55 80

J_Kusumpti JISO-56 100

J_Kusumpti JISO-57 150

J_Kusumpti JISO-58 80

J_Kusumpti JISO-59 80

J_Kusumpti JISO-60 80 J_Kusumpti JISO-61 80

J_Kusumpti JISO-62 80

J_Kusumpti JISO-63 80

J_Kusumpti JISO-64 100

J_Kusumpti JISO-65 100

J_Kusumpti JISO-66 200

J_Kusumpti JISO-67 150

J_Kusumpti JISO-68 150

J_Kusumpti JISO-69 200

J_Kusumpti JISO-70 150

J_Kusumpti JISO-71 80

J_Kusumpti JISO-72 80

J_Kusumpti JISO-73 150

J_Kusumpti JISO-74 150

J_Kusumpti JISO-75 80

J_Kusumpti JISO-76 80

J_Kusumpti JISO-77 80

J_Kusumpti JISO-78 80 J_Kusumpti JISO-79 80

J_Kusumpti JISO-80 80

J_Kusumpti JISO-81 80

J_Kusumpti JISO-82 80

Page 263: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

263

ISO_Area Label Diameter

(Valve) (mm)

J_Kusumpti JISO-83 150

J_Kusumpti JISO-84 80

J_Kusumpti JISO-85 80

J_Kusumpti JISO-86 80

J_Kusumpti JISO-87 80

J_Kusumpti JISO-88 80

J_Kusumpti JISO-89 80

J_Kusumpti JISO-90 150

J_Kusumpti JISO-91 80

J_Kusumpti JISO-92 100 J_Kusumpti JISO-93 80

J_Kusumpti JISO-94 80

J_Kusumpti JISO-95 100

J_Kusumpti JISO-96 100

J_Kusumpti JISO-97 80

J_Kusumpti JISO-98 80

J_Kusumpti JISO-99 100

J_Kusumpti JISO-100 100

J_Kusumpti JISO-101 80

J_Kusumpti JISO-102 80

J_Kusumpti JISO-103 150

J_Kusumpti JISO-104 100

J_Kusumpti JISO-105 100

J_Kusumpti JISO-106 80

J_Kusumpti JISO-107 80

J_Kusumpti JISO-108 150

J_Kusumpti JISO-109 150

J_Kusumpti JISO-110 80

J_Kusumpti JISO-111 80 J_Kusumpti JISO-112 100

J_Kusumpti JISO-113 100

J_Kusumpti JISO-114 150

J_Kusumpti JISO-115 80

J_Kusumpti JISO-116 100

J_Kusumpti JISO-117 100

J_Kusumpti JISO-118 100

J_Kusumpti JISO-119 100

J_Kusumpti JISO-120 80

J_Kusumpti JISO-121 100

J_Kusumpti JISO-122 100

J_Kusumpti JISO-123 100

J_Kusumpti JISO-124 80

J_Kusumpti JISO-125 150

J_Kusumpti JISO-126 80

J_Kusumpti JISO-127 80

J_Kusumpti JISO-128 150

J_Kusumpti JISO-129 150 J_Kusumpti JISO-130 150

J_Kusumpti JISO-131 80

J_Kusumpti JISO-132 150

J_Kusumpti JISO-133 150

Page 264: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

264

ISO_Area Label Diameter

(Valve) (mm)

J_Kusumpti JISO-134 150

J_Kusumpti JISO-135 150

J_Kusumpti JISO-136 150

J_Kusumpti JISO-137 200

J_Kusumpti JISO-138 80

J_Kusumpti JISO-139 80

J_Kusumpti JISO-140 100

J_Kusumpti JISO-141 100

J_Kusumpti JISO-142 150

J_Kusumpti JISO-143 100 J_Kusumpti JISO-144 150

J_Kusumpti JISO-145 150

J_Kusumpti JISO-146 80

J_Kusumpti JISO-147 150

J_Kusumpti JISO-148 80

J_Kusumpti JISO-149 150

J_Kusumpti JISO-150 150

J_Kusumpti JISO-151 150

J_Kusumpti JISO-152 150

J_Kusumpti JISO-153 80

J_Kusumpti JISO-154 150

J_Kusumpti JISO-155 200

J_Kusumpti JISO-156 150

J_Kusumpti JISO-157 100

J_Kusumpti JISO-158 150

J_Kusumpti JISO-159 100

J_Kusumpti JISO-160 100

J_Kusumpti JISO-161 100

J_Kusumpti JISO-162 150 J_Kusumpti JISO-163 150

J_Kusumpti JISO-164 80

J_Kusumpti JISO-165 80

J_Kusumpti JISO-166 80

J_Kusumpti JISO-167 80

J_Kusumpti JISO-168 150

J_Kusumpti JISO-169 200

J_Kusumpti JISO-170 80

J_Kusumpti JISO-171 200

J_Kusumpti JISO-172 200

J_Kusumpti JISO-173 100

J_Kusumpti JISO-174 200

J_Kusumpti JISO-175 300

J_Kusumpti JISO-176 150

K_Jakhu KISO-3 150

K_Jakhu KISO-4 400

K_Jakhu KISO-5 150

K_Jakhu KISO-6 300 K_Jakhu KISO-7 150

K_Jakhu KISO-8 150

K_Jakhu KISO-9 80

K_Jakhu KISO-10 150

Page 265: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

265

ISO_Area Label Diameter

(Valve) (mm)

K_Jakhu KISO-11 150

K_Jakhu KISO-12 150

K_Jakhu KISO-13 80

K_Jakhu KISO-14 80

K_Jakhu KISO-15 80

K_Jakhu KISO-16 80

K_Jakhu KISO-17 150

K_Jakhu KISO-18 150

K_Jakhu KISO-19 150

K_Jakhu KISO-20 150 K_Jakhu KISO-21 150

K_Jakhu KISO-22 150

K_Jakhu KISO-23 80

K_Jakhu KISO-24 150

K_Jakhu KISO-25 150

K_Jakhu KISO-26 150

K_Jakhu KISO-27 150

K_Jakhu KISO-28 150

K_Jakhu KISO-29 150

K_Jakhu KISO-30 150

K_Jakhu KISO-31 150

K_Jakhu KISO-32 150

K_Jakhu KISO-33 80

K_Jakhu KISO-34 200

K_Jakhu KISO-35 80

K_Jakhu KISO-36 80

K_Jakhu KISO-37 150

K_Jakhu KISO-38 80

K_Jakhu KISO-39 80 K_Jakhu KISO-40 100

K_Jakhu KISO-41 200

K_Jakhu KISO-42 150

K_Jakhu KISO-43 200

K_Jakhu KISO-44 250

K_Jakhu KISO-45 200

K_Jakhu KISO-46 200

K_Jakhu KISO-47 150

K_Jakhu KISO-48 150

K_Jakhu KISO-49 200

K_Jakhu KISO-50 200

K_Jakhu KISO-51 150

L_North_Oak_1 LISO-2 150

L_North_Oak_1 LISO-3 200

L_North_Oak_1 LISO-4 150

L_North_Oak_1 LISO-5 80

L_North_Oak_1 LISO-6 100

L_North_Oak_1 LISO-7 80 L_North_Oak_1 LISO-8 80

L_North_Oak_1 LISO-9 100

L_North_Oak_1 LISO-10 80

L_North_Oak_1 LISO-11 80

Page 266: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

266

ISO_Area Label Diameter

(Valve) (mm)

L_North_Oak_1 LISO-12 150

L_North_Oak_1 LISO-13 150

L_North_Oak_1 LISO-14 150

L_North_Oak_1 LISO-15 150

L_North_Oak_1 LISO-16 150

L_North_Oak_1 LISO-17 150

L_North_Oak_1 LISO-18 150

L_North_Oak_1 LISO-19 150

L_North_Oak_1 LISO-20 100

L_North_Oak_1 LISO-21 200 L_North_Oak_1 LISO-22 200

L_North_Oak_1 LISO-23 150

M_Shoghi MISO-2 150

M_Shoghi MISO-3 200

M_Shoghi MISO-4 100

M_Shoghi MISO-5 100

M_Shoghi MISO-6 100

M_Shoghi MISO-7 100

M_Shoghi MISO-8 100

M_Shoghi MISO-9 100

M_Shoghi MISO-10 100

M_Shoghi MISO-11 150

M_Shoghi MISO-12 150

M_Shoghi MISO-13 200

M_Shoghi MISO-14 200

B_PostSanjauli_450DI BISO-207 150

E_Mains_Field EISO-171 80

B_PostSanjauli_450DI BISO-208 200

B_PostSanjauli_450DI BISO-209 200 B_PostSanjauli_450DI BISO-210 200

B_PostSanjauli_450DI BISO-211 150

B_PostSanjauli_450DI BISO-212 100

B_PostSanjauli_450DI BISO-213 250

B_PostSanjauli_450DI BISO-214 200

B_PostSanjauli_450DI BISO-215 300

B_PostSanjauli_450DI BISO-216 150

C_Ridge CISO-72 200

C_Ridge CISO-73 250

D_PostRidge_400CI DISO-93 200

D_PostRidge_400CI DISO-94 300

D_PostRidge_400CI DISO-95 150

D_PostRidge_400CI DISO-96 200

E_Mains_Field EISO-172 200

F_Dhingodevi FISO-106 200

F_Dhingodevi FISO-107 200

F_Dhingodevi FISO-108 150

J_Kusumpti JISO-1 150 J_Kusumpti JISO-2 150

J_Kusumpti JISO-3 200

K_Jakhu KISO-1 250

K_Jakhu KISO-2 250

Page 267: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

267

ISO_Area Label Diameter

(Valve) (mm)

L_North_Oak_1 LISO-1 200

M_Shoghi MISO-1 150

B_PostSanjauli_450DI BISO-217 80

B_PostSanjauli_450DI BISO-218 150

B_PostSanjauli_450DI BISO-219 80

B_PostSanjauli_450DI BISO-220 80

B_PostSanjauli_450DI BISO-221 80

B_PostSanjauli_450DI BISO-222 80

B_PostSanjauli_450DI BISO-223 80

B_PostSanjauli_450DI BISO-224 80 B_PostSanjauli_450DI BISO-225 100

B_PostSanjauli_450DI BISO-226 80

B_PostSanjauli_450DI BISO-227 100

B_PostSanjauli_450DI BISO-228 200

F_Dhingodevi FISO-110 100

F_Dhingodevi FISO-111 80

F_Dhingodevi FISO-112 80

F_Dhingodevi FISO-113 100

F_Dhingodevi FISO-114 100

F_Dhingodevi FISO-115 80

F_Dhingodevi FISO-116 150

F_Dhingodevi FISO-117 150

F_Dhingodevi FISO-118 150

F_Dhingodevi FISO-119 100

J_Kusumpti BISO-229 100

J_Kusumpti BISO-230 80

J_Kusumpti JISO-177 200

J_Kusumpti JISO-178 150

J_Kusumpti JISO-179 150 J_Kusumpti JISO-180 150

Page 268: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

268

APPENDIX-L SEGMENTS

Various Shimla area are shown in Table 6.1 which are listed as follows:

1. A_Demo_Area 2. B_PostSanjauli_450DI 3. C_Ridge 4. D_PostRidge_400CI 5. E_Mains_Field 6. F_Dhingodevi 7. G_Mashobra 8. H_Craignaino 9. I_Dhalli 10. J_Kusumpti 11. I_Jakhu 12. J_North_Oak_1 13. K_Shoghi

1. A_Demo_Area

Segments in Demo zones are already incorporated into the Design Report of the Demo zone which is already submitted. 2. B_PostSanjauli_450DI (a)Kolestone1 Segments: Segments formed due to isolation valves in this zone are shown in Figure L1.

Figure L1: Segments in zone of Kolestone1 Details of the isolation valves operations (closing/ opening) are shown in Table L1.

Page 269: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

269

Table L1: Details of the isolation valves operations (closing/ opening)

(b)Kolestone2/Bharari Segments: Segments formed due to isolation valves in this zone are shown in Figure L2.

Figure L2: Segments in zone of Kolestone2

Segment Label Segment Label Segment Label

Segment - 1 BISO-205 Segment - 10BISO-20 Segment - 17BISO-4

Segment - 1 BISO-187 Segment - 10BISO-19 Segment - 17BISO-1

Segment - 2 BISO-22 Segment - 11BISO-16 Segment - 17BISO-2

Segment - 2 BISO-21 Segment - 11BISO-15 Segment - 17BISO-3

Segment - 2 BISO-23 Segment - 11BISO-14 Segment - 17BISO-5

Segment - 2 BISO-187 Segment - 12BISO-14 Segment - 18BISO-3

Segment - 3 BISO-16 Segment - 12BISO-11 Segment - 19BISO-2

Segment - 4 BISO-15 Segment - 12BISO-18 Segment - 20BISO-1

Segment - 5 BISO-17 Segment - 12BISO-12 Segment - 21BISO-5

Segment - 5 BISO-20 Segment - 13BISO-11 Segment - 21BISO-7

Segment - 6 BISO-19 Segment - 14BISO-12 Segment - 21BISO-6

Segment - 7 BISO-4 Segment - 14BISO-13 Segment - 21BISO-8

Segment - 8 BISO-23 Segment - 14BISO-10 Segment - 21BISO-9

Segment - 8 BISO-9 Segment - 15BISO-13 Segment - 22BISO-7

Segment - 8 BISO-10 Segment - 16BISO-17 Segment - 23BISO-21

Segment - 9 BISO-6 Segment - 16BISO-18 Segment - 24BISO-22

Segment - 25BISO-8

Segment - 31BISO-205

Page 270: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

270

Details of the isolation valves operations (closing/ opening) are shown in Table L2. Table L2: Details of the isolation valves operations (closing/ opening)

(c) Fingask_1 Segments: Segments formed due to isolation valves in this zone are shown in Figure L3.

Figure L3: Segments in zone of Fingask_1

Details of the isolation valves operations (closing/ opening) are shown in Table L3.

Page 271: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

271

Table L3: Details of the isolation valves operations (closing/ opening)

(d) Fingask_2 Segments: Segments formed due to isolation valves in this zone are shown in Figure L4.

Figure L4: Segments in zone of Fingask_2 Details of the isolation valves operations (closing/ opening) are shown in Table L4.

Page 272: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

272

Table L4: Details of the isolation valves operations (closing/ opening)

(e) Tutikandi_1 Segments: Segments formed due to isolation valves in this zone are shown in Figure L5.

Figure L5: Segments in zone of Tutikandi_1

Details of the isolation valves operations (closing/ opening) are shown in Table L5.

Page 273: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

273

Table L5: Details of the isolation valves operations (closing/ opening)

(f) Tutikandi_2 Segments: Segments formed due to isolation valves in this zone are shown in Figure L6.

Figure L6: Segments in zone of Tutikandi_2 Details of the isolation valves operations (closing/ opening) are shown in Table L6.

Page 274: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

274

Table L6: Details of the isolation valves operations (closing/ opening)

(g) Z7_Tutikandi_1_PH Segments: Segments formed due to isolation valves in this zone are shown in Figure L7.

Figure L7: Segments in zone of Z7_Tutikandi_1_PH

Details of the isolation valves operations (closing/ opening) are shown in Table L7. Table L7: Details of the isolation valves operations (closing/ opening)

Page 275: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

275

(h) Advance_Study_Steel_Tank Segments: Segments formed due to isolation valves in this zone are shown in Figure L8.

Figure L8: Segments in zone of Advance_Study_Steel_Tank Details of the isolation valves operations (closing/ opening) are shown in Table L8. Table L8: Details of the isolation valves operations (closing/ opening)

Page 276: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

276

(i) IIAS_Summerhill Segments: Segments formed due to isolation valves in this zone are shown in Figure L9.

Figure L9: Segments in zone of IIAS_Summerhill

Details of the isolation valves operations (closing/ opening) are shown in Table L9. Table L9: Details of the isolation valves operations (closing/ opening)

Page 277: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

277

(j) Z6_Baluganj_HarinagarSegments: Segments formed due to isolation valves in this zone are shown in Figure L10.

Figure L10: Segments in zone of Z6_Baluganj_HarinagarSegments Details of the isolation valves operations (closing/ opening) are shown in Table L10. Table L10: Details of the isolation valves operations (closing/ opening)

Page 278: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

278

(k) Chakkar/Sandal Segments: Segments formed due to isolation valves in this zone are shown in Figure L11.

Figure L11: Segments in zone of Chakkar/Sandal Details of the isolation valves operations (closing/ opening) are shown in Table L11. Table L11: Details of the isolation valves operations (closing/ opening)

Page 279: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

279

(l) Kamnadevi_Temple Segments: Segments formed due to isolation valves in this zone are shown in Figure L12.

Figure L12: Segments in zone of Kamnadevi_Temple

Details of the isolation valves operations (closing/ opening) are shown in Table L12. Table L12: Details of the isolation valves operations (closing/ opening)

Page 280: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

280

(m) Ridge_direct_from Sanjauli Segments: Segments formed due to isolation valves in this zone are shown in Figure L13.

Figure L13: Segments in zone of Ridge_direct_from Sanjauli

Details of the isolation valves operations (closing/ opening) are shown in Table L13. Table L13: Details of the isolation valves operations (closing/ opening)

Page 281: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

281

3. C_Ridge (m) Ridge_direct_from Sanjauli Segments: Segments formed due to isolation valves in this zone are shown in Figure L14.

Figure L14: Segments in zone of Ridge_direct_from Sanjauli Details of the isolation valves operations (closing/ opening) are shown in Table L14.

Page 282: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

282

Table L14: Details of the isolation valves operations (closing/ opening)

Page 283: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

283

4. D_PostRidge_400CI (a) Taramata_Hall Segments: Segments formed due to isolation valves in this zone are shown in Figure L15.

Figure L15: Segments in zone of Kolestone2

Details of the isolation valves operations (closing/ opening) are shown in Table L15. Table L15: Details of the isolation valves operations (closing/ opening)

Page 284: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

284

(b) Phagali Segments: Segments formed due to isolation valves in this zone are shown in Figure L16.

Figure L16: Segments in zone of Phagali

Details of the isolation valves operations (closing/ opening) are shown in Table L16. Table L16: Details of the isolation valves operations (closing/ opening)

Page 285: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

285

(c) Summerhill Segments: Segments formed due to isolation valves in this zone are shown in Figure L17.

Figure L17: Segments in zone of Summerhill

Details of the isolation valves operations (closing/ opening) are shown in Table L17. Table L17: Details of the isolation valves operations (closing/ opening)

Page 286: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

286

(d) HP_University Segments: Segments formed due to isolation valves in this zone are shown in Figure L18.

Figure L18: Segments in zone of HP_University

Details of the isolation valves operations (closing/ opening) are shown in Table L. Table L18: Details of the isolation valves operations (closing/ opening)

Page 287: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

287

(e) Z4_New1 Segments: Segments formed due to isolation valves in this zone are shown in Figure L19.

Figure L19: Z4_New1 Details of the isolation valves operations (closing/ opening) are shown in Table L19. Table L19: Details of the isolation valves operations (closing/ opening)

Page 288: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

288

5. E_Mains_Field (a) Mains_Field1 Segments: Segments formed due to isolation valves in this zone are shown in Figure L20.

Figure L20: Segments in zone of Mains_Field1

Details of the isolation valves operations (closing/ opening) are shown in Table L20. Table L20: Details of the isolation valves operations (closing/ opening)

Page 289: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

289

(b) Mains_Field2 Segments: Segments formed due to isolation valves in this zone are shown in Figure L21.

Figure L21: Segments in zone of Mains_Field2

Details of the isolation valves operations (closing/ opening) are shown in Table L21. Table L21: Details of the isolation valves operations (closing/ opening)

Page 290: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

290

(c) Shivpuri Segments: Segments formed due to isolation valves in this zone are shown in Figure L22.

Figure L22: Segments in zone of Shivpuri

Details of the isolation valves operations (closing/ opening) are shown in Table L22. Table L22: Details of the isolation valves operations (closing/ opening)

Page 291: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

291

(d) Khalini_Forest_Steel_Tank Segments: Segments formed due to isolation valves in this zone are shown in Figure L23.

Figure L23: Segments in zone of Khalini_Forest_Steel_Tank Details of the isolation valves operations (closing/ opening) are shown in Table L23. Table L23: Details of the isolation valves operations (closing/ opening)

Page 292: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

292

(e) Z3_Knolls_Wood Segments: Segments formed due to isolation valves in this zone are shown in Figure L24.

Figure L24: Segments in zone of Z3_Knolls_Wood Details of the isolation valves operations (closing/ opening) are shown in Table L24. Table L24: Details of the isolation valves operations (closing/ opening)

Page 293: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

293

(f) SDA_Complex Segments: Segments formed due to isolation valves in this zone are shown in Figure L25.

Figure L25: Segments in zone of SDA_Complex Details of the isolation valves operations (closing/ opening) are shown in Table L25. Table L25: Details of the isolation valves operations (closing/ opening)

Page 294: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

294

(g) Knolls_Wood Segments: Segments formed due to isolation valves in this zone are shown in Figure L26.

Figure L26: Segments in zone of Knolls_Wood Details of the isolation valves operations (closing/ opening) are shown in Table L26. Table L26: Details of the isolation valves operations (closing/ opening)

Page 295: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

295

(h) Taramata_Temple_Sector1 Segments: Segments formed due to isolation valves in this zone are shown in Figure L27.

Figure L27: Segments in zone of Taramata_Temple_Sector1 Details of the isolation valves operations (closing/ opening) are shown in Table L27. Table L27: Details of the isolation valves operations (closing/ opening)

Page 296: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

296

(i) New_Shimla_Sector2 Segments: Segments formed due to isolation valves in this zone are shown in Figure L28.

Figure L28: Segments in zone of New_Shimla_Sector28 Details of the isolation valves operations (closing/ opening) are shown in Table L28. Table L28: Details of the isolation valves operations (closing/ opening)

Page 297: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

297

(j) New_Shimla_Sector3A Segments: Segments formed due to isolation valves in this zone are shown in Figure L29.

Figure L29: Segments in zone of New_Shimla_Sector3A Details of the isolation valves operations (closing/ opening) are shown in Table L29. Table L29: Details of the isolation valves operations (closing/ opening)

Page 298: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

298

(k) New_Shimla_Sector4 Segments: Segments formed due to isolation valves in this zone are shown in Figure L30.

Figure L30: Segments in zone of New_Shimla_Sector4 Details of the isolation valves operations (closing/ opening) are shown in Table L30. Table L30: Details of the isolation valves operations (closing/ opening)

Page 299: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

299

(l) New_Shimla_Sector3 Segments: Segments formed due to isolation valves in this zone are shown in Figure L31.

Figure L31: Segments in zone of New_Shimla_Sector3 Details of the isolation valves operations (closing/ opening) are shown in Table L31. Table L31: Details of the isolation valves operations (closing/ opening)

Page 300: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

300

6. F_Dhingodevi (a) Z8_Dhingo5 Segments: Segments formed due to isolation valves in this zone are shown in Figure L32.

Figure L33: Segments in zone of Z8_Dhingo5 Details of the isolation valves operations (closing/ opening) are shown in Table L32. Table L32: Details of the isolation valves operations (closing/ opening)

Page 301: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

301

(b) Z5_Dhingodevi4 Segments: Segments formed due to isolation valves in this zone are shown in Figure L33.

Figure L33: Segments in zone of Z5_Dhingodevi4 Details of the isolation valves operations (closing/ opening) are shown in Table L33. Table L33: Details of the isolation valves operations (closing/ opening)

(c) Dhingodevi1 Segments: Segments formed due to isolation valves in this zone are shown in Figure L34.

Page 302: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

302

Figure L34: Segments in zone of Dhingodevi1

Details of the isolation valves operations (closing/ opening) are shown in Table L34. Table L34: Details of the isolation valves operations (closing/ opening)

(d) Dhingodevi2 Segments: Segments formed due to isolation valves in this zone are shown in Figure L35.

Page 303: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

303

Figure L35: Segments in zone of Dhingodevi2 Details of the isolation valves operations (closing/ opening) are shown in Table L35. Table L35: Details of the isolation valves operations (closing/ opening)

(e) Z1_Dhingodevi3 Segments: Segments formed due to isolation valves in this zone are shown in Figure L36.

Figure L36: Segments in zone of Z1_Dhingodevi3

Page 304: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

304

Details of the isolation valves operations (closing/ opening) are shown in Table L36. Table L36: Details of the isolation valves operations (closing/ opening)

7. G_Mashobra (a) Mashobra Segments: Segments formed due to isolation valves in this zone are shown in Figure L37.

Figure L37: Segments in zone of G_Mashobra Details of the isolation valves operations (closing/ opening) are shown in Table L36.

Page 305: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

305

Table L37: Details of the isolation valves operations (closing/ opening)

8. H_Craignaino (a) Craignaino Segments: Segments formed due to isolation valves in this zone are shown in Figure L38.

Figure L38: Segments in zone of Craignaino Details of the isolation valves operations (closing/ opening) are shown in Table L38. Table L38: Details of the isolation valves operations (closing/ opening)

Page 306: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

306

9. I_Dhalli (a) Dhalli1 Segments: Segments formed due to isolation valves in this zone are shown in Figure L39.

Figure L39: Segments in zone of Dhalli Details of the isolation valves operations (closing/ opening) are shown in Table L39. Table L39: Details of the isolation valves operations (closing/ opening)

Page 307: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

307

(b) Dhalli2 Segments: Segments formed due to isolation valves in this zone are shown in Figure L40.

Figure L40: Segments in zone of Dhalli2

Details of the isolation valves operations (closing/ opening) are shown in Table L40. Table L40: Details of the isolation valves operations (closing/ opening)

Page 308: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

308

10. J_Kusumpti (a) Scrala Segments: Segments formed due to isolation valves in this zone are shown in Figure L41.

Figure L41: Segments in zone of Scrala Details of the isolation valves operations (closing/ opening) are shown in Table L41. Table L41: Details of the isolation valves operations (closing/ opening)

Page 309: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

309

(b) Z10_Tibti_Panthaghati

Segments: Segments formed due to isolation valves in this zone are shown in Figure L42.

Figure L42: Segments in zone of Z10_Tibti_Panthaghati Details of the isolation valves operations (closing/ opening) are shown in Table L42. Table L42: Details of the isolation valves operations (closing/ opening)

Page 310: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

310

(c) Basant_Vihar

Segments: Segments formed due to isolation valves in this zone are shown in Figure L43.

Figure L43: Segments in zone of Basant_Vihar Details of the isolation valves operations (closing/ opening) are shown in Table L43. Table L43: Details of the isolation valves operations (closing/ opening)

Page 311: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

311

(d) Phase_2_New_Shimla_Sector_6

Segments: Segments formed due to isolation valves in this zone are shown in Figure L44.

Figure L44: Segments in zone of Phase_2_New_Shimla_Sector_6 Details of the isolation valves operations (closing/ opening) are shown in Table L44. Table L44: Details of the isolation valves operations (closing/ opening)

Page 312: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

312

(e) Phase_2_New_Shimla

Segments: Segments formed due to isolation valves in this zone are shown in Figure L45.

Figure L45: Segments in zone of Phase_2_New_Shimla Details of the isolation valves operations (closing/ opening) are shown in Table L45. Table L45: Details of the isolation valves operations (closing/ opening)

Page 313: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

313

(f) Vikasnagar

Segments: Segments formed due to isolation valves in this zone are shown in Figure L46.

Figure L46: Segments in zone of Vikasnagar Details of the isolation valves operations (closing/ opening) are shown in Table L46. Table L46: Details of the isolation valves operations (closing/ opening)

Page 314: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

314

(g) Z11_Sargeen_Chowk_New

Segments: Segments formed due to isolation valves in this zone are shown in Figure L47.

Figure L47: Segments in zone of Z11_Sargeen_Chowk_New Details of the isolation valves operations (closing/ opening) are shown in Table L47. Table L47: Details of the isolation valves operations (closing/ opening)

Page 315: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

315

(h) IAS_Colony1

Segments: Segments formed due to isolation valves in this zone are shown in Figure L48.

Figure L48: Segments in zone of IAS_Colony1 Details of the isolation valves operations (closing/ opening) are shown in Table L48. Table L48: Details of the isolation valves operations (closing/ opening)

Page 316: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

316

(i) IAS_Colony2

Segments: Segments formed due to isolation valves in this zone are shown in Figure L49.

Figure L49: Segments in zone of IAS_Colony2 Details of the isolation valves operations (closing/ opening) are shown in Table L49. Table L49: Details of the isolation valves operations (closing/ opening)

Page 317: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

317

(j) IAS_Colony3

Segments: Segments formed due to isolation valves in this zone are shown in Figure L50.

Figure L50: Segments in zone of IAS_Colony3

Details of the isolation valves operations (closing/ opening) are shown in Table L50. Table L50: Details of the isolation valves operations (closing/ opening)

Page 318: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

318

(k) Kusumpti

Segments: Segments formed due to isolation valves in this zone are shown in Figure L51.

Figure L51: Segments in zone of Kusumpti Details of the isolation valves operations (closing/ opening) are shown in Table L51. Table L51: Details of the isolation valves operations (closing/ opening)

Page 319: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

319

(l) HP_PWD_Near_Kusumpti

Segments: Segments formed due to isolation valves in this zone are shown in Figure L52.

Figure L52: Segments in zone of HP_PWD_Near_Kusumpti Details of the isolation valves operations (closing/ opening) are shown in Table L52. Table L52: Details of the isolation valves operations (closing/ opening)

Page 320: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

320

11. I_Jakhu (a) Jakhu

Segments: Segments formed due to isolation valves in this zone are shown in Figure L53.

Figure L53: Segments in zone of Jakhu Details of the isolation valves operations (closing/ opening) are shown in Table L53. Table L53: Details of the isolation valves operations (closing/ opening)

Page 321: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

321

(b) Z2_Jakhu2

Segments: Segments formed due to isolation valves in this zone are shown in Figure L54.

Figure 4 Segments in zone of Z2_Jakhu2 Details of the isolation valves operations (closing/ opening) are shown in Table L54. Table L54: Details of the isolation valves operations (closing/ opening)

Page 322: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

322

12. J_North_Oak_1 (a) North_Oak_1

Segments: Segments formed due to isolation valves in this zone are shown in Figure L55.

Figure L55: Segments in zone of North_Oak_1

Details of the isolation valves operations (closing/ opening) are shown in Table L55. Table L55: Details of the isolation valves operations (closing/ opening)

Page 323: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

323

13.K_Shoghi (a) Shoghi

Segments: Segments formed due to isolation valves in this zone are shown in Figure L56.

Figure L56: Segments in zone of Shoghi

Details of the isolation valves operations (closing/ opening) are shown in Table L52. Table L52: Details of the isolation valves operations (closing/ opening)

Page 324: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

324

APPENDIX-M Details of Scour Valves

Table L1: Scour valves

SN SV_Area Label Elevation (m) SV_DIA

1 F_Dhingodevi FSV-1 2,203.30 80

2 F_Dhingodevi FSV-2 2,190.50 80

3 F_Dhingodevi FSV-3 2,129.80 80

4 F_Dhingodevi FSV-4 2,149.60 80

5 F_Dhingodevi FSV-5 2,178.10 80

6 F_Dhingodevi FSV-6 2,169.30 80

7 F_Dhingodevi FSV-7 2,147.50 80

8 B_PostSanjauli_450DI BSV-2 2,064.70 80

9 B_PostSanjauli_450DI BSV-3 2,051.60 80

10 B_PostSanjauli_450DI BSV-4 2,057.70 80

11 B_PostSanjauli_450DI BSV-5 1,931.50 80

12 B_PostSanjauli_450DI BSV-6 1,896.60 80

13 B_PostSanjauli_450DI BSV-7 1,907.50 80

14 B_PostSanjauli_450DI BSV-8 1,910.40 80

15 B_PostSanjauli_450DI BSV-9 1,847.50 150

16 B_PostSanjauli_450DI BSV-10 1,937.70 80

17 B_PostSanjauli_450DI BSV-11 1,922.90 80

18 B_PostSanjauli_450DI BSV-12 2,117.20 80

19 B_PostSanjauli_450DI BSV-13 2,088.80 80

20 B_PostSanjauli_450DI BSV-14 2,112.30 80

21 B_PostSanjauli_450DI BSV-15 2,175.30 80

22 B_PostSanjauli_450DI BSV-16 2,101.90 80

23 B_PostSanjauli_450DI BSV-17 2,104.60 80

24 B_PostSanjauli_450DI BSV-18 2,112.90 80

25 B_PostSanjauli_450DI BSV-19 2,125.90 80

26 B_PostSanjauli_450DI BSV-20 2,061.30 80

27 B_PostSanjauli_450DI BSV-21 2,113.40 80

28 B_PostSanjauli_450DI BSV-22 2,102.70 80

29 B_PostSanjauli_450DI BSV-23 2,024.90 80

30 B_PostSanjauli_450DI BSV-24 2,045.40 80

31 B_PostSanjauli_450DI BSV-25 2,122.60 80

32 B_PostSanjauli_450DI BSV-26 1,993.70 80

33 B_PostSanjauli_450DI BSV-27 1,996.80 80

34 B_PostSanjauli_450DI BSV-28 2,034.60 80

35 B_PostSanjauli_450DI BSV-29 2,001.50 80

36 B_PostSanjauli_450DI BSV-30 1,745.00 150

37 B_PostSanjauli_450DI BSV-31 1,752.90 80

38 B_PostSanjauli_450DI BSV-32 1,827.70 150

39 B_PostSanjauli_450DI BSV-33 1,876.40 80

40 B_PostSanjauli_450DI BSV-34 1,867.70 100

41 B_PostSanjauli_450DI BSV-35 1,966.10 80

42 B_PostSanjauli_450DI BSV-36 1,804.00 80

43 B_PostSanjauli_450DI BSV-37 1,892.20 80

44 B_PostSanjauli_450DI BSV-38 1,922.70 80

45 B_PostSanjauli_450DI BSV-39 2,029.20 80

46 B_PostSanjauli_450DI BSV-40 1,868.00 80

47 B_PostSanjauli_450DI BSV-41 1,727.00 80

48 B_PostSanjauli_450DI BSV-42 1,752.10 80

49 B_PostSanjauli_450DI BSV-43 1,785.00 80

50 B_PostSanjauli_450DI BSV-44 1,866.60 80

51 B_PostSanjauli_450DI BSV-45 1,905.80 80

52 B_PostSanjauli_450DI BSV-46 2,014.40 80

53 B_PostSanjauli_450DI BSV-47 2,055.00 80

Page 325: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

325

SN SV_Area Label Elevation (m) SV_DIA

54 B_PostSanjauli_450DI BSV-48 1,878.70 100

55 B_PostSanjauli_450DI BSV-49 1,712.20 80

56 B_PostSanjauli_450DI BSV-50 1,785.00 80

57 B_PostSanjauli_450DI BSV-51 1,823.80 80

58 B_PostSanjauli_450DI BSV-52 2,096.00 80

59 B_PostSanjauli_450DI BSV-53 2,049.50 80

60 B_PostSanjauli_450DI BSV-54 2,065.90 80

61 B_PostSanjauli_450DI BSV-55 1,998.00 80

62 B_PostSanjauli_450DI BSV-56 2,046.30 80

63 C_Ridge CSV-1 1,954.80 80

64 C_Ridge CSV-2 2,015.30 80

65 C_Ridge CSV-3 2,014.60 80

66 C_Ridge CSV-4 1,958.50 100

67 C_Ridge CSV-5 1,949.80 80

68 C_Ridge CSV-6 1,969.30 80

69 C_Ridge CSV-7 2,048.10 80

70 C_Ridge CSV-8 2,052.40 80

71 C_Ridge CSV-9 2,049.80 80

72 C_Ridge CSV-10 2,066.00 80

73 C_Ridge CSV-11 2,159.10 80

74 C_Ridge CSV-12 2,014.60 80

75 D_PostRidge_400CI DSV-2 1,820.70 80

76 D_PostRidge_400CI DSV-3 1,859.70 80

77 D_PostRidge_400CI DSV-4 1,908.70 80

78 D_PostRidge_400CI DSV-5 1,831.50 80

79 D_PostRidge_400CI DSV-6 1,841.80 80

80 D_PostRidge_400CI DSV-7 1,894.80 80

81 D_PostRidge_400CI DSV-8 1,950.50 80

82 D_PostRidge_400CI DSV-9 1,878.40 80

83 D_PostRidge_400CI DSV-10 1,873.30 80

84 D_PostRidge_400CI DSV-11 1,984.90 100

85 D_PostRidge_400CI DSV-12 1,975.30 80

86 D_PostRidge_400CI DSV-13 1,965.30 80

87 D_PostRidge_400CI DSV-14 2,002.70 80

88 D_PostRidge_400CI DSV-15 1,904.70 150

89 D_PostRidge_400CI DSV-16 1,853.90 80

90 D_PostRidge_400CI DSV-17 1,921.50 80

91 D_PostRidge_400CI DSV-18 1,927.80 80

92 D_PostRidge_400CI DSV-19 1,962.90 80

93 D_PostRidge_400CI DSV-20 2,042.60 80

94 D_PostRidge_400CI DSV-21 2,050.50 80

95 D_PostRidge_400CI DSV-22 2,078.80 100

96 D_PostRidge_400CI DSV-23 2,011.90 80

97 D_PostRidge_400CI DSV-24 2,042.20 80

98 D_PostRidge_400CI DSV-25 2,043.60 80

99 D_PostRidge_400CI DSV-26 2,042.80 80

100 D_PostRidge_400CI DSV-27 2,039.80 80

101 D_PostRidge_400CI DSV-28 1,913.70 80

102 D_PostRidge_400CI DSV-29 1,923.10 80

103 D_PostRidge_400CI DSV-30 1,870.50 80

104 D_PostRidge_400CI DSV-31 1,894.40 80

105 D_PostRidge_400CI DSV-32 1,945.60 80

106 D_PostRidge_400CI DSV-33 1,948.60 80

107 E_Mains_Field ESV-2 1,887.60 80

108 E_Mains_Field ESV-3 1,869.80 80

109 E_Mains_Field ESV-4 1,828.00 80

110 E_Mains_Field ESV-5 1,962.80 80

111 E_Mains_Field ESV-6 1,904.80 80

112 E_Mains_Field ESV-7 1,944.30 80

113 E_Mains_Field ESV-8 2,006.50 80

114 E_Mains_Field ESV-9 2,011.20 80

115 E_Mains_Field ESV-10 1,956.80 100

Page 326: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

326

SN SV_Area Label Elevation (m) SV_DIA

116 E_Mains_Field ESV-11 1,701.40 80

117 E_Mains_Field ESV-12 1,786.10 80

118 E_Mains_Field ESV-13 1,828.70 80

119 E_Mains_Field ESV-14 1,863.50 80

120 E_Mains_Field ESV-15 1,871.60 80

121 E_Mains_Field ESV-16 1,884.70 80

122 E_Mains_Field ESV-17 1,931.20 80

123 E_Mains_Field ESV-18 1,899.60 80

124 E_Mains_Field ESV-19 1,815.00 150

125 E_Mains_Field ESV-20 1,750.00 80

126 E_Mains_Field ESV-21 1,758.60 80

127 E_Mains_Field ESV-22 1,929.00 80

128 E_Mains_Field ESV-23 1,855.70 80

129 E_Mains_Field ESV-24 1,927.90 150

130 E_Mains_Field ESV-25 1,930.30 80

131 E_Mains_Field ESV-26 1,937.40 80

132 E_Mains_Field ESV-27 1,868.70 80

133 E_Mains_Field ESV-28 1,893.40 80

134 E_Mains_Field ESV-29 1,992.20 80

135 E_Mains_Field ESV-30 1,936.50 80

136 E_Mains_Field ESV-31 1,943.10 80

137 E_Mains_Field ESV-32 1,981.20 80

138 E_Mains_Field ESV-33 1,971.10 80

139 E_Mains_Field ESV-34 1,997.90 80

140 E_Mains_Field ESV-35 1,940.20 80

141 E_Mains_Field ESV-36 1,725.60 100

142 F_Dhingodevi FSV-8 2,065.50 80

143 F_Dhingodevi FSV-9 2,044.60 80

144 F_Dhingodevi FSV-10 2,135.00 80

145 F_Dhingodevi FSV-11 2,087.00 80

146 F_Dhingodevi FSV-12 2,062.50 80

147 F_Dhingodevi FSV-13 2,051.30 80

148 F_Dhingodevi FSV-14 2,074.60 80

149 F_Dhingodevi FSV-15 1,941.00 80

150 F_Dhingodevi FSV-16 2,127.60 80

151 F_Dhingodevi FSV-17 2,067.90 80

152 F_Dhingodevi FSV-18 2,254.10 80

153 F_Dhingodevi FSV-19 2,150.00 80

154 F_Dhingodevi FSV-20 2,114.50 80

155 F_Dhingodevi FSV-21 2,047.40 80

156 F_Dhingodevi FSV-22 2,044.60 80

157 F_Dhingodevi FSV-23 2,122.50 80

158 F_Dhingodevi FSV-24 2,132.20 80

159 F_Dhingodevi FSV-25 2,154.90 80

160 F_Dhingodevi FSV-26 2,224.80 80

161 F_Dhingodevi FSV-27 2,276.20 200

162 F_Dhingodevi FSV-28 2,218.20 80

163 F_Dhingodevi FSV-29 2,243.40 80

164 F_Dhingodevi FSV-30 2,271.60 80

165 F_Dhingodevi FSV-31 2,216.10 80

166 F_Dhingodevi FSV-32 2,234.50 80

167 F_Dhingodevi FSV-33 2,182.50 80

168 F_Dhingodevi FSV-34 2,222.90 80

169 F_Dhingodevi FSV-35 2,182.60 80

170 F_Dhingodevi FSV-36 2,273.50 80

171 F_Dhingodevi FSV-37 2,269.20 80

172 F_Dhingodevi FSV-38 2,165.00 80

173 F_Dhingodevi FSV-39 2,286.70 80

174 G_Mashobra GSV-1 2,307.90 80

175 G_Mashobra GSV-2 2,293.10 80

176 G_Mashobra GSV-3 2,339.90 80

177 G_Mashobra GSV-4 2,297.90 80

Page 327: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

327

SN SV_Area Label Elevation (m) SV_DIA

178 I_Dhalli ISV-1 2,112.40 80

179 I_Dhalli ISV-2 2,227.00 80

180 I_Dhalli ISV-3 2,186.40 80

181 I_Dhalli ISV-4 2,193.40 80

182 I_Dhalli ISV-5 2,211.50 80

183 I_Dhalli ISV-6 2,122.40 80

184 I_Dhalli ISV-7 2,179.10 80

185 J_Kusumpti JSV-3 1,819.20 80

186 J_Kusumpti JSV-4 1,733.00 80

187 J_Kusumpti JSV-5 1,902.70 80

188 J_Kusumpti JSV-6 1,772.10 80

189 J_Kusumpti JSV-7 1,546.30 80

190 J_Kusumpti JSV-8 1,659.60 80

191 J_Kusumpti JSV-9 1,878.70 80

192 J_Kusumpti JSV-10 1,703.70 80

193 J_Kusumpti JSV-11 1,733.30 80

194 J_Kusumpti JSV-12 1,797.60 80

195 J_Kusumpti JSV-13 1,812.60 80

196 J_Kusumpti JSV-14 1,826.00 80

197 J_Kusumpti JSV-15 1,824.10 80

198 J_Kusumpti JSV-16 1,647.00 80

199 J_Kusumpti JSV-17 1,781.90 80

200 J_Kusumpti JSV-18 1,878.70 80

201 J_Kusumpti JSV-19 1,849.20 80

202 J_Kusumpti JSV-20 1,964.60 80

203 J_Kusumpti JSV-21 1,950.10 80

204 J_Kusumpti JSV-22 1,940.00 80

205 J_Kusumpti JSV-23 1,831.90 80

206 J_Kusumpti JSV-24 1,812.10 80

207 J_Kusumpti JSV-25 1,804.80 80

208 J_Kusumpti JSV-26 1,846.40 80

209 J_Kusumpti JSV-27 1,660.30 80

210 J_Kusumpti JSV-28 1,753.20 80

211 J_Kusumpti JSV-29 1,844.20 80

212 J_Kusumpti JSV-30 1,780.80 80

213 J_Kusumpti JSV-31 1,971.00 80

214 J_Kusumpti JSV-32 1,711.50 80

215 J_Kusumpti JSV-33 1,991.80 80

216 K_Jakhu KSV-1 2,071.00 80

217 K_Jakhu KSV-2 2,199.60 100

218 K_Jakhu KSV-3 2,183.40 80

219 K_Jakhu KSV-4 1,960.40 80

220 K_Jakhu KSV-5 2,045.50 80

221 K_Jakhu KSV-6 2,033.90 80

222 K_Jakhu KSV-7 2,043.80 80

223 K_Jakhu KSV-8 2,044.80 80

224 K_Jakhu KSV-9 2,082.60 80

225 K_Jakhu KSV-10 2,184.20 80

226 K_Jakhu KSV-11 2,221.70 80

227 K_Jakhu KSV-12 2,189.90 80

228 K_Jakhu KSV-13 2,203.50 80

229 K_Jakhu KSV-14 2,144.10 80

230 K_Jakhu KSV-15 2,272.00 80

231 L_North_Oak_1 LSV-1 2,204.50 80

232 L_North_Oak_1 LSV-2 2,211.00 80

233 L_North_Oak_1 LSV-3 2,220.50 80

234 L_North_Oak_1 LSV-4 2,192.20 80

235 L_North_Oak_1 LSV-5 2,202.60 80

236 L_North_Oak_1 LSV-6 2,186.90 80

237 L_North_Oak_1 LSV-7 2,183.90 80

238 L_North_Oak_1 LSV-8 2,148.30 80

239 L_North_Oak_1 LSV-9 2,188.70 80

Page 328: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

328

SN SV_Area Label Elevation (m) SV_DIA

240 L_North_Oak_1 LSV-10 2,233.10 80

241 M_Shoghi MSV-1 1,560.80 80

242 M_Shoghi MSV-2 1,654.10 80

243 M_Shoghi MSV-3 1,829.20 80

244 H_Craignaino HSV-1 2,235.50 80

245 E_Mains_Field ESV-1 1,903.30 80

246 B_PostSanjauli_450DI BSV-1 2,102.50 80

247 D_PostRidge_400CI DSV-1 1,904.70 80

248 J_Kusumpti JSV-1 1,844.70 80

249 J_Kusumpti JSV-2 1,919.40 80

Page 329: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

329

APPENDIX-N Economic Diameters of Pumping Mains of Dingodevi

Table N1: Sump to tanks on Temple side

Page 330: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

330

Page 331: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

331

Table N2: Sump to tanks on Down side

Page 332: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

332

Page 333: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

333

Table N3: Sump to HP_PWD tank

Page 334: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

334

Table N4: Sump to HP_PWD tank

Page 335: Detailed Design Report - SJPNL · Detailed Design Report Hydraulic Design & Network modelling for Shimla Water Supply, World Bank Program Volume I: Design Report for Distribution

335