deliverable 3.3 aquaspace tool to support msp€¦ · annex iii summarises experiences of using the...

68
AquaSpace 633476 D3.3 AQUASPACE Ecosystem Approach to making Space for Aquaculture EU Horizon 2020 project grant no. 633476 Deliverable 3.3 AquaSpace tool to support MSP Revised manual (2 nd edition) for AquaSpace tool (version 2) Lead Beneficiary Thünen Institute Deliverable authors A. Gimpel, S. Töpsch, V. Stelzenmüller (Thünen Institute), M. Gubbins, A.G. Murray, R. Watret (MSS), I. Galparsoro, A. Murillas, K. Pınarbaşı (AZTI), D. Miller (JHI), D. Brigolin, R. Pastres, E. Porporato (Bluefarm), G. Roca Carceller, N. Marba (CSIC), M. Moraitis, N. Papageorgiou (UoC) Deliverable version 1.0 Type of deliverable GIS AddIn & Manual Dissemination level Public Delivery date in DoW 2017/31/08 Actual delivery date 2018/30/04 Reviewed by Paul Tett (Coordinator) The research leading to these results has been undertaken as part of the AquaSpace project (Ecosystem Approach to making Space for Aquaculture, http://aquaspace-h2020.eu) and has received funding from the European Union's Horizon 2020 Framework Programme for Research and Innovation under grant agreement n° 633476. Horizon 2020

Upload: others

Post on 19-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • AquaSpace 633476 D3.3

    AQUASPACE Ecosystem Approach to making Space for Aquaculture

    EU Horizon 2020 project grant no. 633476

    Deliverable3.3AquaSpacetooltosupportMSP

    Revisedmanual(2ndedition)forAquaSpacetool(version2)

    Lead Beneficiary Thünen Institute Deliverable authors A. Gimpel, S. Töpsch, V. Stelzenmüller (Thünen

    Institute), M. Gubbins, A.G. Murray, R. Watret (MSS), I. Galparsoro, A. Murillas, K. Pınarbaşı

    (AZTI), D. Miller (JHI), D. Brigolin, R. Pastres, E. Porporato (Bluefarm), G. Roca Carceller, N. Marba

    (CSIC), M. Moraitis, N. Papageorgiou (UoC) Deliverable version 1.0

    Type of deliverable GIS AddIn & Manual Dissemination level Public

    Delivery date in DoW 2017/31/08 Actual delivery date 2018/30/04

    Reviewed by Paul Tett (Coordinator)

    The research leading to these results has been undertaken as part of the AquaSpace project (Ecosystem Approach to making Space for Aquaculture, http://aquaspace-h2020.eu)

    and has received funding from the European Union's Horizon 2020 Framework Programme for Research and Innovation under grant agreement n° 633476.

    Horizon 2020

  • AquaSpace 633476 D3.3

    Change log Version Date Author Reason for change 0.1 02/02/2017 AG Initial draft 0.2 08/31/2017 AG Revised based on input from co-authors 1.0 10/20/2017 AG Incorporates coordinator’s comments 1.0 04/30/2018 AG Revised based on project reviewer‘s comments

  • AquaSpace 633476 D3.3

    CONTENTS EXECUTIVESUMMARY.....................................................................................................................ISOFTWAREAVAILABILITYANDSYSTEMREQUIREMENTS...............................................................IICITATIONANDCOPYRIGHT............................................................................................................III1. MANUALUSERGUIDE........................................................................................................12. THEAQUASPACETOOL:RATIONALEANDBACKGROUND..................................................23. THEAQUASPACETOOL:CONCEPT,INDICATORSANDTERMINOLOGY..............................4

    3.1. AquaSpacetoolconcept..........................................................................................43.2. AquaSpacetoolindicators.......................................................................................5

    3.2.1. Generalsiteinformation.........................................................................................63.2.2. Indicators.................................................................................................................7

    3.2.2.1Inter-sectorialeffects.............................................................................................83.2.2.2Environmentaleffects..........................................................................................123.2.2.3Economiceffects..................................................................................................153.2.2.4Socio-culturaleffects............................................................................................19

    4. AQUASPACETOOLOUTPUTS............................................................................................215. USERMANUAL..................................................................................................................26

    5.1. TheAquaSpacetool:abriefinsight.......................................................................265.1.1. AquaSpacetoolcomponents.................................................................................265.1.2. Processview..........................................................................................................28

    5.2. Installationguide...................................................................................................295.2.1. Quickstartguide...................................................................................................305.2.2. InstalltheAquaSpacetoolfiles.............................................................................315.2.3. Clipyourdataset...................................................................................................325.2.4. Customizationoptions...........................................................................................33

    5.3. Toolapplication.....................................................................................................385.3.1. Createinteractionmatrix......................................................................................385.3.2. Addyoureconomicinput......................................................................................405.3.3. Performsiteassessment.......................................................................................415.3.4. Scenariobuilding...................................................................................................42

    REFERENCES..................................................................................................................................44ABBREVIATIONS............................................................................................................................47ACKNOWLEDGEMENTSANDDISCLAIMER....................................................................................48ANNEXIAQUASPACETOOLMETADATA.......................................................................................49ANNEXIICALCULATIONOFINPUT-OUTPUTTABLESUSINGTHELEONTIEFMODEL.....................54ANNEXIIICASESTUDYEXPERIENCES............................................................................................55

    Casestudyspecifications..........................................................................................................56Scenarioassessment.................................................................................................................59Overallcasestudyfindings.......................................................................................................60StrengthsandweaknessesoftheAquaSpacetool...................................................................61DevelopmentoftheAquaSpacetool:Lessonslearned............................................................62

  • AquaSpace 633476 D3.3

    I

    EXECUTIVESUMMARY

    AquaSpaceaimstodeliverthesciencebasetoidentifythepotentialforaquaculturetoexpandinEuropeandtosupportthecorrespondinglicensingprocessinthecontextofIntegratedCoastalZoneManagement(ICZM)orMarineSpatialPlanning(MSP).

    TheAquaSpacetoolisdesignedtoallowforaspatialrepresentationofopportunitiesandrisksofa proposed aquaculture activity at a specific marine location in a multi-use context. Specifically,opportunitiesrelatetosocio-economicassessmentsoftheaddedvalueofanactivity,foodsecurityorexpected revenues; while risks relate to an evaluation of combined environmental effects of theplannedactivityandtheadditionalpressurecontributionsofanewaquacultureactivitytotheoverallhumanpressuresinamanagementarea.

    TheAquaSpacetoolisoneofthefirstGeographicInformationSystem(GIS)-basedspatialplanningtoolsthatallowsforaspatialexplicitandintegratedassessmentofindicatorsreflectingtheeconomic,environmental, inter-sectorial and socio-cultural risk and opportunities for proposed aquaculturesystems, based on a bottom-up approach. Tool outputs (i.e. AquaSpace tool Assessment Report)comprisedetailedreportsandgraphicaloutputswhichcan facilitateplanningtrade-offdiscussionshenceallowingkeystakeholders(e.g.industry,marineplanners,licensingauthorities)toproactivelycommunicateeffectsofalternativescenariosandtakemoreinformed,evidence-baseddecisionsonproposedaquaculture.

    Suchatransparentvisualisationtechniquefacilitates i)aneffective implementationofMSPforaquaculture,enabledbyusingspatiallyexplicitmethodsandtools,ii)the implementationofaspatiallyexplicit (GIS-based)multi-usecontext,addressing the functionality forcumulative riskassessmentsandconflictanalysis,and iii) the implementationofanEcosystemApproach toAquaculture (EAA),explicitlyconsideringeconomicandmarketissues.Thisintegratedapproachwillsupportthelicensingprocessandfacilitateinvestments.

    ThisreportprovidesaguideforusersoftheAquaSpacetool.Introductorysections2-3explaintherationaleforthetoolandprovidethebackgroundknowledgeneededtouseit.Section4describesthetooloutputs.Section5isausermanual.AnnexIgivessourcesforinformationneededtousethetool.AnnexIIIsummarisesexperiencesofusingthetoolin6casestudies.

  • AquaSpace 633476 D3.3

    II

    SOFTWAREAVAILABILITYANDSYSTEMREQUIREMENTSNameofsoftware:AquaSpacetool-aGISAddInDevelopers:AntjeGimpel,SandraTöpsch,VanessaStelzenmüllerEmail:[email protected]:2017OperatingSystem:MicrosoftWindows7,Windows8/8.1(32or64bit)orWindows10Processor/CPU:2.7GHzIntelCorei5processororequivalent(4cores)(hardwarebelow/abovewill

    increase/decreasetoolruntimes)SystemRAM:4GBtotalminimum,16GBrecommendedWindowsFeature.NETFramework:.NET4.6FrameworkESRIArcGIS:ArcGISDesktopBasic,StandardorAdvanced+ExtensionSpatialAnalystPythonEnvironment:StandardPythonlibrary32bitofArcGISinstallation10.3andhigherProgramsize:1.7MB;GDB400MBAvailability:https://gdi.thuenen.de/geoserver/sf/www/aqspce.htmlCost:nil

  • AquaSpace 633476 D3.3

    III

    CITATIONANDCOPYRIGHTCopyright2017ThünenInstituteofSeaFisheriesRECOMMENDEDCITATION---------------------Gimpel,A.,Stelzenmüller,V.,Töpsch,S.,Brigolin,D.,Galparsoro,I.,Gubbins,M.,Marba,N.,Miller,D.,Moraitis,M.,Murillas,A.,Murray,A.G.,Papageorgiou,N.,Pastres,R.,Pinarbasi,K.,Porporato,E.,Roca,G.,andWatret,R.2017.AquaSpacetooltosupportMSP.ThünenInstitute,HamburgandAquaSpaceproject(H2020no.633476),Oban.Deliverable3.3.Pdfobtainablefromhttp://www.aquaspace-h2020.euGimpel,A.,Stelzenmüller,V.,Töpsch,S.,Galparsoro,I.,Gubbins,M.,Miller,D.,Murillas,A.,Murray,A.G.,Pinarbasi,K.,Roca,G.,andWatret,R.(2018).AGIS-basedtoolforanintegratedassessmentofspatialplanningtrade-offswithaquaculture. ScienceoftheTotalEnvironment,627:1644-1655.DOI:10.1016/j.scitotenv.2018.01.133ThistoolisaresultofAquaSpace(EcosystemApproachtomakingSpaceforSustainableAquaculture)project,fundedbytheEuropeanUnionundertheH2020Programme(grantagreementno.633476).LICENSE--------TheAquaSpacetoolisavailableviatheAquaSpaceRedminewebsite:http://free-redmine.saas-secure.com/projects/aqua.PermissionisgrantedbyregisteringfortheAquaSpaceRedminewebsite(https://gdi.thuenen.de/geoserver/sf/www/aqspce.html).TheAquaSpacetoolistobeusedforscientificpurposesonly.TheAquaSpacetoolisfreeofcharge.Redistributionisnotpermitted.Modificationinsourceandbinaryformsiscurrentlynotpermitted.Pleasecontactus,ifnecessary,forfutherinformationregardingthedevelopmentofthetool.DISCLAIMERofWARRANTY----------------------THISSOFTWAREISPROVIDEDBYTHECOPYRIGHTHOLDERSANDCONTRIBUTORS"ASIS"ANDANYEXPRESSORIMPLIEDWARRANTIES,INCLUDING,BUTNOTLIMITEDTO,THEIMPLIEDWARRANTIESOFMERCHANTABILITYANDFITNESSFORAPARTICULARPURPOSEAREDISCLAIMED.INNOEVENTSHALLTHECOPYRIGHTHOLDERORCONTRIBUTORSBELIABLEFORANYDIRECT,INDIRECT,INCIDENTAL,SPECIAL,EXEMPLARY,ORCONSEQUENTIALDAMAGES(INCLUDING,BUTNOTLIMITEDTO,PROCUREMENTOFSUBSTITUTEGOODSORSERVICES;LOSSOFUSE,DATA,ORPROFITS;ORBUSINESSINTERRUPTION)HOWEVERCAUSEDANDONANYTHEORYOFLIABILITY,WHETHERINCONTRACT,STRICTLIABILITY,ORTORT(INCLUDINGNEGLIGENCEOROTHERWISE)ARISINGINANYWAYOUTOFTHEUSEOFTHISSOFTWARE,EVENIFADVISEDOFTHEPOSSIBILITYOFSUCHDAMAGE.

  • AquaSpace 633476 D3.3

    1

    1. MANUALUSERGUIDE

    ItisthepurposeofthismanualtoguidetheuserthroughtheapplicationoftheAquaSpacetool.This document compliments the online support at https://free-redmine.saas-secure.com/projects/aquaandshouldthereforebeusedinconjunctionwiththewebsite.Whereastheonlinesupportprovidesaccess toallAquaSpacetool files, technicaldocumentsandmanuals/videoinstructionsfacilitatingtheinstallationandtestingoftheAquaSpacetool,thismanualprovidesfurtherinformation,explanationandkeyreferencestothetoolfunctionsincluded.Furthermore, itdescribesthepreparatorywork,sequenceofstepsandrelatedtaskstheusershouldundertaketoapplythetool.

    Thismanualaimstoprovideclearanduser-friendlyinstructionsabouttheterminologyused,theconceptoftheAquaSpacetool,andthetool’sfunctionsandindicatorsforaholisticecosystem-basedOpportunityandRiskAssessmentthatappliestheEAAtoMSP.Moreover,itincludessuggestionsforsuccessfulcompletionofsuchanassessment.

    It is highly recommended to read through the AquaSpace tool description and backgroundinformationBEFOREstartingwiththesetupofthetool.Belowissomeguidanceforusingthemanual:

    1. The rationale for thedevelopmentof theAquaSpace tool is given in THEAQUASPACETOOL:RATIONALEANDBACKGROUND.

    2. Theconcept,toolindicatorsandterminologyusedthroughoutthemanualisdescribedinTHEAQUASPACETOOL:CONCEPT,INDICATORSANDTERMINOLOGY.

    3. PotentialAquaSpacetooloutcomesandtheirinterpretationaredescribedinAQUASPACETOOLOUTPUTS.

    4. Technical guidelines, installation and update procedures, first test runs and scenariobuildingareexplainedinUSERMANUAL.

    5. DetailedinformationaboutthedataunderlyingtheAquaSpacetool,theiroriginandkeyreferencesaregiveninANNEXIAQUASPACETOOLMETADATA.

    6. The broader applicability of the AquaSpace tool (including first experiences) isdemonstratedinANNEXIIICASESTUDYEXPERIENCES.

    7. Wherelimiteddatamaymakeitdifficulttocompleteactionsdescribedinthemanual,itmay be helpful to complement desktop data collationwith expert and/or stakeholderworkshops.Thesecanbeusedtoobtaininformationthatmaynotbereadilyavailable,pool knowledgeandexpertiseanddiscusselementsof riskanduncertaintyassociatedwithanassessmentbasedonlimiteddata.

    8. Thetoolcanbeusediterativelytocompareasetofspatialmanagementscenarioswithaquaculture(e.g.varyingfarmlocations,speciesorproductionquantities).

  • AquaSpace 633476 D3.3

    2

    2. THEAQUASPACETOOL:RATIONALEANDBACKGROUND

    ThecentralgoaloftheEUHorizon2020projectAquaSpaceistoprovideincreasedspaceofhighwaterqualityforaquaculturebyadoptinganEcosystemApproachtoAquaculture(EAA)tosupportMarineSpatialPlanning(MSP)andtodeliverfoodsecurityandincreasedemploymentopportunitiesthrougheconomicgrowthwithalong-termview.

    AneffectiveimplementationofMSPforaquacultureisenabledbyusingspatiallyexplicitmethodsandtools.StudieswithintheAquaSpaceprojectrevealedaneedfortoolsallowing:

    • The implementationof anecosystemapproach incorporating the functionality required tosupportanEAAimplementationandexplicitlyconsideringeconomicandmarketissues.

    • TheimplementationofaspatiallyexplicitGeographicInformationSystem(GIS)-basedmulti-usecontext,addressingthefunctionalityforcumulativeriskassessmentsandconflictanalysis.

    • Theintuitivedesignoftheinterface,whichismeanttobeend-userdriven,allowingindustryandpolicy-makerstomakemoreinformed,evidence-based,decisions.

    OnepromisingsolutionidentifiedduringacomprehensivegapanalysisinGimpeletal.(2016)wastodevelopatoolthatcouldbeusedtosupportanOpportunityandRiskAssessment.Suchatoolwouldallowforaspatial representationofall risksandopportunitiesofaproposedaquaculturesite inamulti-usecontext(Fig.1).TheAquaSpacetoolwasdevelopedasaGISAddinunderArcGIStoallowuserstocomparerisksandopportunitiesoveranumberofpotentialsites.Itincludesfunctionsthatenable theuser to assess the spatially explicit performance (under different aquacultureplanningscenarios)ofinter-sectorial,environmental,economicandsocio-culturalindicators.

    Figure1:1stvisionoftheAquaSpacetool,visualisingopportunityandriskcategorieswhichshouldbeincludedwhenassessingspatialmanagementoptionsforaquaculture.

    Thus,riskindicatorsreflectforinstancethespatialconflictpotentialbetweenhumanuses,habitatvulnerabilities or combined environmental effects of proposed aquaculture activities, direct and

  • AquaSpace 633476 D3.3

    3

    indirecteconomiccostsorvisualimpacts.Incontrast,indicatorsreflectingopportunitiesofaplannedaquaculturesitecomprisetotalexpectedrevenuesorsynergypotentialwithothersectors(Gimpeletal.,2016).

    To promote tool exchange and its general applicability, theAquaSpace tool comeswith aGISGeodatabase(GDB)whichalreadyintegratesseveraldatasetsataEuropeanscale.Reflectingtheneedforspatialexplicitassessmentapproachestobeeasytoaccess,theAquaSpacetoolaimsfurthertofacilitatetheintegrationofspatiallayersgeneratedbyothermodelsandtools.Inotherwords,itcanbealsoregardedasanArcGISbasedplatformthatbringstogetherspatialoutputsfrommodels,whichcanproduceadataformatthatcanbeimportedintoArcGIS.

    Figure2:OpenGeospatialConsortiumWebFeatureServiceInterfaceStandard(WFS)provideaninterfaceallowingrequestsforgeographicalfeaturesacrossthewebusingplatform-independentcalls.Inthefuture,theAquaSpacetoolwilldirectlybelinkedtoWFStorequestrequiredgeodata.

    Inordertoholddownmaintenancecostsofgeodata,theAquaSpacetoolhasbeendevelopedintheGISenvironmenttobe linkedwithopenGeospatialConsortiumWebFeatureService InterfaceStandard(WFS)thatprovidesaninterfaceallowingrequestsforgeographicalfeaturesacrossthewebusingplatform-independent calls.Nevertheless,WFS requestor rather response still needs ahighamountoftimeloadingthedata,whichslowsdowntoolperformance.Infuture,dataexchangemightspeedup.Previously,theintegratedAquaSpacetoolGDBfillthosegaps.ItscontentisexplainedfromascientificviewinAquaSpacetoolindicatorsandfromatechnicalperspectiveinANNEX:AQUASPACETOOLMETADATA.

    TheAquaSpace tool isequippedwithanend-userdriven interfaceandan interactivemenu. Itallowsthevisualizationofareasofconstraint(e.g.priorityshipping lanes)andofpotentialsynergy(i.e.co-location),definedbyan interactionmatrixwhichcanbemodifiedaccordingtouserneeds.Further,thetoolenablestheusertoexplorearangeofoptionstoidentifypotentialsitesandassesstheopportunitiesandrisksofseveralscenariosatonce.Tooloutputscomprisedetailedreportsandgraphical outputs which should facilitate planning trade-off discussions hence allowing keystakeholders(e.g.industry,marineplanners,licensingauthorities)totakemoreinformed,evidence-baseddecisionsonproposedaquaculturedevelopmentsandtheassociatedrisksandopportunities.

    Thetool’ssocio-economicdimensionwillincreasetheacceptanceofthesenewdevelopmentsbylocalcommunitiesandsociety-at-large(Ramosetal.,2014;Stelzenmülleretal.,2017).Environmentalassessments will contribute to the implementation of the Integrated Maritime Strategy and itsenvironmentalpillar,theEUMarineStrategyFrameworkDirective(Gimpeletal.,2013;Stelzenmülleretal.,2014;Gimpeletal.,2016).Integratingindicators,supportingtheassessmentofinter-sectorial

  • AquaSpace 633476 D3.3

    4

    effects,enablesauthoritiestoaccountfortheprinciplesofgoodMSPpracticeasrequiredbytheEUMaritime Spatial Planning Directive (Gimpel et al., 2016). Ultimately, this integrated assessmentapproachcouldsupportthelicensingprocessandfacilitateinvestments(Stelzenmülleretal.,2017).

    3. THEAQUASPACETOOL:CONCEPT,INDICATORSAND

    TERMINOLOGY

    3.1. AquaSpacetoolconceptTheAquaSpacetoolcanbethoughtofasaspatiallyexplicitCost-BenefitAnalysis.Givenasetof

    planningalternatives,suchasdifferentfarmlocations,itwillallowtheassessmentofthestrengthsandweaknessesofeachalternative.ThetoolisusedtodetermineoptionsthatareinformedbytheEcosystem Approach to Aquaculture, and which allow achievement of opportunities (sustainabledevelopment)whilstpreventingrisks(totheenvironment).Thetoolisalsodefinedasasystematicprocess for calculatingandcomparingopportunitiesand risksofadecision,policy (withparticularregardtogovernmentpolicy)or(ingeneral)project(Davidetal.,2013).

    Broadly,aneconomicCostBenefitAnalysis(CBA)hastwomainpurposes:

    • Todetermineifaproposeddevelopmentisasoundinvestment(justification/feasibility).• Toseehowaparticulardevelopmentoption(orscenario)compareswithalternateprojects

    (ranking/priorityassignment)(CA.GOV,2017).

    IntheAquaSpacecontext,theAquaSpacetoolCBAalso:

    • Allows for a spatial representation of opportunities and risks (incl. environmental) of aproposedaquaculturesiteinamulti-usecontext(supportinganEAA).

    TheAquaSpacetoolisaGISAddInthatwasimplementedunderArcGIS10.3andwasdevelopedbycombiningtheGISmodelbuilderandpythonscripts.ItrunswithArcGIS10.3andnewerversions.Itcomprisesfunctionsthatenabletheusertoassessthespatialexplicitperformanceofinter-sectorial,environmental,economicandsocio-culturalindicatorsfordifferentaquacultureplanningscenarios.Therefore,theuser’sinputdefinesthestudyarea(country),theportfromwhichaquaculturebusinessshould be transacted, the culture species, the corresponding culture system, the compilation ofconstraining,conflictingorsynergistichumanusesandtheaquaculturelocationstobetested.Whiledoingso,theuserisdirectedtoactinasustainableway,beingawareofe.g.theecologicalfootprintofaspecificaquacultureoritsinteractionwithotherhumanactivities.Consequently,theAquaSpacetoolestimatesallopportunitiesandrisksbasedoninter-sectorial,environmental,economicandsocio-culturalindicators(Fig.3).Tooloutputs(i.e.AquaSpacetoolAssessmentReport)areprovidedinpdf-format.Theyofferatransparentsummaryofalltoolruns(i.e.scenarios)andtherespectiveindicatorvalues.Theygivegeneralsite information (e.g.species,waterdepth,waterquality), inter-sectorialeffects(e.g.spatialconflictpotential,diseasespread),environmentaleffects(e.g.degreeofexposure,cumulativepressures,distancetowastedisposalsites)andeconomicandmarket issues(economicperformance, effectiveness and efficiency). Further, the report includes mappings and graphics,enablingtheusertoproactivelycommunicateopportunitiesandrisks.Suchatransparentinformationpolicycanbuildstakeholderssupport,whichiscriticaltothesuccessfulestablishmentofaquacultureandongoingoperations.

  • AquaSpace 633476 D3.3

    5

    Figure3:AbriefinsightintheAquaSpacetool,(fromlefttoright)givinganoverviewabouti)allspeciesconsidered,ii)dataandinformationAquaSpacetoolassessmentsarebuiltonandiii)(additional)site-specific information received by applying the AquaSpace tool functions (Economic performance =Revenue,AddedValue(AV);Economiceffectiveness=ReturnonFixedTangibleAssets,Opportunitycosts; Economic efficiency = Net Present Value; Economic impact = (In)Direct impact on the AV,(In)Direct impactonemployment; IMTA= IntegratedMulti-TrophicAquaculture,UNCLOS=UnitedNationsConventionoftheLawOftheSea).

    3.2. AquaSpacetoolindicatorsThis sectionprovides further informationabout theAquaSpace tool indicators (i.e. countedor

    measuredvariables).Moreprecisely,itdescribeshowtheparameters,underlyingthetoolfunctionsanddefiningtheultimateindicatorvalues,weredetermined(incl.scientificbackgroundinformationrelatedtothis).Detailedinformationaboutthesourceofthedata(inraw,uninterpretedform),creditsandhowthedatahavebeenprocessedaregiveninANNEXIAQUASPACETOOLMETADATA.Mostofthedatasetsarealreadyimplementedinthetool(e.g.environmentaldata),othersaredependingontheuserinput(e.g.productioninkg,AnnexI).

    Thissection(3.2)isstructuredaroundtheAquaSpaceAssessmentReport(describedinsection4,AQUASPACETOOLOUTPUTS),whichguidestheuserthroughtheresultsofusingthetool.Thissectionalsoexplainshowtheresultswerecomputed.

  • AquaSpace 633476 D3.3

    6

    3.2.1. GeneralsiteinformationThefirstinformationgiveninthereportaretheuserIDandthedateofassessment.Thesitetested

    isprovidedwithasitenumber,whichisascendingthroughoutthetoolapplication.Allinformationislistedinthreecolumns:i)indicatorname,ii)indicatorvalueandiii)indicatordescription.

    The first part of the report includes general site information,which is crucial to get an initialoverviewofthesitetobetested,thespeciestobetested,theculturesystemandaquaculturerelatedinformationaboutthesurroundedarea/thetestsite’ssurroundingsuchaswaterdepthandquality.Indicatorsincludedreadasfollowed:

    • Sitespecificinformationo Ecosystem(country;marineorfreshwater)o Waterdepth(m)o Waterquality(levelofbackgroundpollution)

    • Managementinformationo UNCLOSareao Conservationarea

    • Aquaculturespecificinformationo Aquaculture(finfish,shellfishoralgae)o Speciestobecultivated(speciesname)o Culturesystem(cage,longline,bottom,trestles;culturesystemsizeinm³/ha)o Stockingdensity(perm³/ha)o Productioncycle(years)o Production(tons)

    Based on the user input a (case study) area is chosen, data sets are clipped (to improve theperformance of the tool) and a specific aquaculture site is zoomed in on. Further, the user inputpolygon is buffered by a species-specific environmental footprint. Assuming a precautionaryapproach,theenvironmentalfootprintofshellfish(longline)isdeterminedtobe50m(Chamberlainetal.,2001)whilethatforfinfishaquacultureissetat800m(Hall-Spenceretal.,2006;Marbàetal.,2006;Holmeretal.,2008;Sanz-Lázaroetal.,2011).

    Sitespecificinformationprovidedinthereportincludetheecosystemtobeassessed(currently,toolapplicationisrestrictedtothemarineenvironment),thewaterdepth(1*1kmrasterlayer)andthewater quality,which is basedondistance of the aquaculture site towaste disposal sites (e.g.coastaldischarge).Thewaterquality indicator isparameterizedbyexpertopinion,assumingthatadistance> 1.8km indicates a low risk of pollution and therefore ahighwater quality (3 = high), adistanceof<1.8kmindicatesmediumwaterqualityandadistanceof<100mindicatesalowlevelofwaterquality(1=low)(MaritimeSafetyQueensland,2017).

    Management information provided in the report includes information about various areas inwhichuseislimitedbytheUnitedNationsConventionontheLawoftheSea(UNCLOSarea).Specifiedforthislegalindicatorareanabbreviationofthecountrynameandtheareatobeassessed.Thoseincludei)‘internalwaters’,whichcoversallwaterandwaterwaysonthelandwardsideofthebaseline.Thecoastalstateisfreetosetlaws,regulateuse,anduseanyresource.Foreignvesselshavenorightofpassagewithininternalwaters;ii)‘territorialwaters’,whichareoutto12nauticalmilesfromthebaseline, thecoastal state is free to set laws, regulateuse,anduseany resource;or iii) ‘exclusiveeconomiczones’(EEZs),whichextendfromtheedgeoftheterritorialseaoutto200nauticalmilesfrom thebaseline.Within this area, the coastalnationhas soleexploitation rightsoverall naturalresources(UN,2017)).Informationaboutconservationareasindicate,iftheuserinputoverlapswithai)NationalPark,ii)Natura2000sites;oriii)OSPARMPAs(OSPAR,2017).

  • AquaSpace 633476 D3.3

    7

    Aquaculturespecificinformationprovidedinthereportincludetheoptiontheuserhaschosenregardingtheaquaculturetypetobeassessed(finfish,shellfishoralgae),thespeciestobecultivatedand the culture system (cage, longline, bottom, trestles). Here, further particulars can be madeaccordingtothecagesizeinm³,thestockingdensityperm³,theproductioncycletheuserwanttoassess inyearsandtheamountofproduction inkg/tons.Adetailedexample for theGermancasestudyisgiveninthesubsequentsub-sectiondealingwithindicators(EconomicEffects).

    Figure4:Exemplifiedassessmentanddeterminationoflocalwaterqualityclosetoaquaculturesite,which is defined based on background pollution. This information is derived using a distancecalculationintheGISlayer“wastedisposal”.

    3.2.2. IndicatorsThe second part of the report includes information about the intersectorial, environmental,

    economicandsocio-cultural indicators implemented,whicharecrucial toevaluatethetrade-offofsitestestedandtointerprettheresults.Indicatorsincludedreadasfollowed:

    • Inter-sectorialeffectso Spatialinteractionmatrix*o Spatialconflictpotential(highestconflictscorewithotherhumanuses)*o Spatialsynergypotential(highestsynergyscorewithotherhumanuses)*o Integrated Multi-Trophic Aquaculture potential (IMTA; Yes or No, recommended

    IMTAspecies)o Riskofdiseasespread(basedonminimumdistancebetweenaquaculturesites)

    • Environmentaleffectso Aquaculturesuitability(lowtohigh)o Waveheightspecificexposureofthesite(m)o Currentvelocity(m/s)o Sedimenttypeo Chlorophylla(mg/m³;surface)o Temperature(°C)o Salinity(PSU)o Nitrogen(mol/LNO3;surface)o Phosphorus(mol/LPO4;surface)o Cumulativepressure(1-8;8=highmagnitude)

  • AquaSpace 633476 D3.3

    8

    o Habitatvulnerability(1-3,3=highlyvulnerable)• Economiceffects

    o Economicperformance(revenue,addedvalue)o Economiceffectiveness(benefits,returnonfixedtangibleassets,opportunitycost)o Economicefficiency(netpresentvalue)o Economicimpact(inducedimpact,indirectimpact)

    • Socio-culturaleffectso VisualImpact(landscape,seascape,distancetopopulatedareas)o Culturalheritage(shipwrecks,archaeologicalsites,distancecalculation)o Tourism

    *in combination with Fisheries, Ocean energy, Platforms, Cables, Pipelines, Sediment extraction,Marinetraffic,Wastedisposal,MarineProtectedAreas(MPA).

    3.2.2.1Inter-sectorialeffectsThe calculation of spatial conflict potential and spatial synergy potential depends on user

    specifications.Theuserhascompletedaninteractionmatrixtodefinespatialconstraints(score6),conflicts(score2-5)andopportunities(i.e.spatialsynergypotentialduetoco-location;score1)beforetestingscenariosforaquacultureinawiderMSPcontext(LeeandStelzenmüller,2010;Gimpeletal.,2013). In order to incorporate the high variability of MSP implementation processes in differentregions, the input is kept flexible. Whereas sites designated for marine conservation (Boyd andService,2014)orwastedisposalmightconstituteaconstraint,incontrast,windenergydevelopmentcanofferapossibilityforspatialsynergieswithaquaculture(Gimpeletal.,2015).Also,theplanningfornewaquaculturesitesmightbeconstrainedby important fishinggrounds (Stelzenmülleretal.,2013).Thoseareasshouldbehighlightedasaconflict,wheremanagementmeasuresneedtobebasedon trade-off assessments (e.g. opportunity costs). The AquaSpace tool offers the opportunity todistinguish between high intensity fishing effort (‘Fisheries q3’) andmedium to low fishing effort(‘Fisheries’)percountrywhencompletingtheinteractionmatrix.Conflictscorescanbedefinedbasedonexpertknowledge,orextractedfromthe literature(LeeandStelzenmüller,2010;Gimpeletal.,2013).

    Table1:Interactionmatrixbasedonuserinputtodefineconstraints,conflictsandopportunities(i.e.synergies).ExamplefortheGermancasestudyaquaculturewithDicentrarchuslabrax.

    AquacultureFisheries(q3) 5Fisheries 2Oceanenergy 1Platforms 6Cables 5Pipelines 5Sedimentextraction 5Marinetraffic 6Wastedisposal 6MarineProtectedAreas(MPAs) 6Tourism 3

  • AquaSpace 633476 AquaSpace tool manual

    9

    Table2:MatrixofpotentialconflictsdevelopedbyLeeandStelzenmüller(2010).Noconflict=0;mutuallyexclusive=5.RedrawnfromGimpeletal.(2013).

    Aquaculture Fisheries Offshorewindfarm

    Platforms(oil,gas)

    Cables Pipelines Sedimentextraction

    Marinetraffic

    MPAs Wastedisposal

    Aquaculture - Fisheries 5 -

    OffshoreWindfarm 2 2 - Platforms(oil,gas) 4 5 5 -

    Cables 0 2 2 1 - Pipelines 0 2 3 2 4 -

    Sedimentextraction 5 1 5 5 5 5 - Marinetraffic 5 2 5 5 0 0 2 -

    MPAs 4 5 5 5 3 3 5 4 - Wastedisposal 5 3 5 5 2 2 5 1 5 -

  • AquaSpace 633476 AquaSpace tool manual

    10

    Further,thehighestconflictscoreofaquaculturewithotherhumanactivitiesisindicatedinthereportunderspatialconflictpotential.Conflictscorescanbedefinedbasedonexpertknowledge,orextractedfromtheliterature(LeeandStelzenmüller,2010;Gimpeletal.,2013)aspresentedintable2.Incontrast,thespatialsynergypotentialcanbedisplayed.Spatialco-locationsofmarineareasmightbecomeincreasinglyimportantinthefuture,inthelightofsustainabledevelopmentinthealreadyheavilyusedoffshoremarinerealm.InapplicationsoftheAquaSpacetool,differentspatialco-locationscenariosforthecouplingofoffshoreaquacultureswithe.g.windfarmscanbeevaluatedinordertosupportefficientandsustainablemarinespatialmanagementstrategies.Both,spatialconflictsandsynergiesaredefinedwiththeaidoftheinteractionmatrix,whichisexplainedintheUserManualsubsection:Createinteractionmatrix.

    Independentof this interactionmatrix, species-specific areas suitable for an IntegratedMulti-TrophicAquaculture(IMTA)potentialareindicated.IMTAsystemscombineaquaculturespeciestorecycleeffluentdissolvedandparticulatenutrientsfromahighertrophic-levelspecies(fish)tonourishextractive, lower trophic-level species, such as filter feeders (mussels, oysters), polychaetes, seacucumbersand/orseaweed (Neorietal.,2007;Gimpeletal.,2015;Troelletal., in review).Thesesystemsaimatbalancednutrientbudgetsandminimizethewasteproductionoriginatingfromfedaquaculturespeciesthroughthefilteringcapacityofotherextractivespeciesclearingthewater(Troelletal.,2009).Moreover,byusingnutrientlossesofhighertrophic-levelspeciesasfeedingproducts,IMTAcouldprovideadditionaleconomicbenefits(Neorietal.,2007;Gimpeletal.,2015).AccordingtoBrigolinetal.(2009),foreachtonoffarmedmusselharvestedperyear0.008tnitrogen(N;excretedindissolvedinorganicform)isimmediatelyavailableforphytoplanktonuptake:thisamountmorethancompensatestheNexportedasharvestedmussel(Tab.3).Suchbenefitscanbeusedbyco-locatingfinfishandshellfish farms.Therefore, theAquaSpace toolbufferspolygonsofexistingaquaculturesitesby200m,indicatingareasattractiveforsuchanapproach.

    Table 3: Estimated nutrient fluxes through an offshore mussel (Mytilus galloprovincialis) farm.Assumedare600tfarmedmusselsharvestedperyear.

    Nitrogen Phosphorusintroduced(atseeding) 0.8 0.07

    ingested 16 2removed(byharvesting) 3.36 0.3

    released(asexcretion,faecesandpseudo-faeces) 12 1.5inparticulateform 1.5

    indissolvedinorganicform 4.8

    Beingpartofinter-sectorialeffects,theriskofdiseasespreadshouldbeassessed.Riskofinfectiondecreases with distance from source, and modelled kernels of infection risk are widely used inmodellingspreadofbothterrestrial(Keelingetal.,2001)andaquaticanimaldiseases(Kristoffersenetal.,2009).PatternsofdeclineriskhavebeenassessedforInfectiousSalmonAnaemiaVirus(ISAV),CardiomyopathySyndrome(CMS)andPancreasDisease(PD)(Kristoffersenetal.,2009;Aldrinetal.,2010). Sea lice infestation pressure has been shown to declinewith distance aswell (Salama andMurray,2011;Middlemasetal.,2013;Shephardetal.,2016).Basedonthis,averagedistanceshavebeenextractedfortheAquaSpacetool.Precautionaryassumptionscapturethebasicnatureoftheriskinteraction,averagedoverdifferentsitesandseasons,andsocanbeusedforstrategicplanning.Thefactorsbehindriskarei)theamountofpathogenproduced,ii)therateofdecayofpathogensandiii) thedistancetheyaretransportedatagivenconcentrationgiventhisdecayrate (Murrayetal.,2005):

  • AquaSpace 633476 AquaSpace tool manual

    11

    AconcentrationCxofexponentiallydecayingpathogen(atratek)afteraspecifictimetcanbecalculatedas:

    !" = %&'( 1 ,

    whereBisthesizeofthepathogensourcenormalisedtoastandardsource.

    Table4:DecayrateexamplesfromSpanishandGermancasestudies.Decayratesarehereconsideredasfast(f),moderate(m)orsimplyunknown(?).Wheredecayisfastitmaybeapproximatedbyk=0.1,formediumk=0.05.Uncertainty(confidence)ishighforallcaseshere,butranksfrom1=highto3=veryhigh.

    Host Pathogen Decay ConfidenceGermany SeaBass

    DicentrarchuslabraxNodavirus form 2Vibrio f 1Pasturella f 1

    MusselsMytilussp.

    Marteiliamaurini m 2Picarnolikevirus form 2Vibrio f 1

    Spain OysterOstreaspp.Crassostreaspp.

    BonamiaOsterae,B.exitiosa m 2Marteiliarefringens m 2Perkinsusmarinus ? 3Microcytosmackiini ? 3OysterHerpesvirus f 1

    Aspecific timet’ foraparticularproportiontobereached(say10%ofan indexconcentrationwhereB=1)canbecalculatedas:

    +, = -.(!"%)/(−3)(2),

    Assumingatidalcurrentdisplacementisa12/p (Anon2000)andtheresidualcurrentvelocityisb,thedistancecanbecalculatedas:

    D, =t7

    π + bt,3 ,

    wheretxistheminimumoft’or12hours.

    Soforatidalamplitudea,aresidualcurrentb,andapathogendecayratekwecancalculatethetime required for pathogens to decay to a given proportion of their initial concentration that isconsidered to represent a level of risk of relevance to planning (Tab. 5). ACx of 0.1 indicates forinstancefarmsthatarehighlyinteracting,aCxof0.01indicatesadistancewhichshouldbekeptatfirebreakseparationfornotifiablediseasespread.Akof0.1indicatesarapiddecay,whilearateofk=0.01indicatedaslowdecay(Tab.5).Acurrentvelocityaindicatesshorttermcurrentsof50and25cms-1andthelongtermadvectionbvaluesof1oreven2.

    AfinalfactoristherelativesizeofthesourceofinfectionB,thefarmbiomass(SalamaandMurray,2011). In Scotland for instance median consented biomass of farms is about 900 tonnes so forsimplicityB=F/900,whereFistheconsentedfarmbiomassintonnes.Sheddingwillalsobealteredbyprevalenceof infectionandsheddingofpathogens(Urquhartetal.,2008;Gregoryetal.,2009),

  • AquaSpace 633476 AquaSpace tool manual

    12

    which can be included as variation in B if greater knowledge of specific pathogens dynamics isavailable.

    Table5:PathogenspecificdistancesatwhichconcentrationofexponentiallydecayingpathogenCx(atratek)existswithatidalcurrentdisplacementaandresidualcurrentvelocitydisplacementb.Fforconsentedfarmbiomassintonnes;F=0.5,1or2.

    Cx k a b F0.5 F1 F2 0.05 0.1 50 1 7.71 7.96 8.21 ISAV0.05 0.1 25 1 4.27 4.52 4.77 ISAV0.01 0.1 50 2 9.70 10.19 10.69 precautionaryISAV0.1 0.01 50 1 12.67 15.17 17.66 sealice0.1 0.01 25 1 9.23 11.73 14.22 sealice0.05 0.01 50 2 23.46 28.45 33.44 precautionarylice0.01 0.01 50 2 35.05 40.04 45.03 ultraprecautionary

    Allowing for these uncertainties a worked example is provided for German sea bass farms(expectedtobeover2000tonnesbiomass).Assuminga5%decayperhourfornodavirus(insteadofthe10%forISAV),thendistancesofinteractioncouldrangefrom4.1km(a=25,b=0.5ifbothresidualand tidal currents areweak andwith aCx = 0.05) to 14.5km (a = 25,b = 2 andCx = 0.01) for aprecautionarylimitunderstrongtidalandadvectioncurrents.ThemaindriverofuncertaintyistheappropriatecurrentregimeforthesouthernNorthSea.

    3.2.2.2EnvironmentaleffectsInformation about environmental effects provided in the report ismostly depending on data

    alreadyincorporatedintheAquaSpacetool.Datagivinginformationabouttheaquaculturesuitabilityof a site were extracted from theWATER tool (Where Can Aquaculture Thrive in Europe), whichspecifies the performance of key species, such asMediterraneanmussel or Atlantic salmon, as afunction of environmental data (i.e. sea surface temperature, dissolved oxygen, current speed,chlorophyllaconcentration,depth)(Boogertetal.,2017).

    Inorder toshowthedegreeofexposureata testedsite, thesignificantwaveheight (inm) isoutput. Further indicators include current velocity inmeters per second (m/s) and the sedimentsensitivity,classifiedonthebaseofthesedimenttype,i.e.rocks(5),mixedsediment(4),coarse&gravel (3), sand (2) andmud (1).Minimum,meanandmaximumvaluesaregivenpergrid cell forindicatorsusefultoassessthegrowthperformanceofaspecies, i.e.chlorophyllaconcentrationatsurface(mg/m³),temperature(°C)andsalinity(PSU),andforindicatorsusefultoassesstheimpactfrom/on the environment, i.e. nitrogen (mol/L) at surface, and phosphorus (mol/L) at surface.Unfortunately,adequatedataaboutplasticmarinedebrisorParticulateOrganicCarbon(POC)werenotavailableatEuropeanscale.

    For theoutcomeofanecosystem-basedMSPprocess tobesustainable,all currentand futurehumanactivitiestogetherwiththeirassociatedpressuresonkeyecosystemcomponentshavetobeincluded.Theassessmentofcumulativepressuresrequiresasoundknowledgebaseofthecomplexspatialandtemporalrelationshipsbetweenhumanactivitiesandthesensitivityoftheenvironment(Stelzenmüller,2008;Stelzenmülleretal.,2010;Stelzenmülleretal.,2018).Inordertoaccountforapotentialfutureshiftinsuchpressures(introducingaquaculturesitesontopofotherpressuresfromotherhumanactivities)theAquaSpacetoolaccountsforcumulativepressuresaffectingtheintegrityofthemarinehabitat.FollowingtheapproachdescribedinElliot(2002);UNEP/GRID-Arendal(2002);Gimpel et al. (2013) all human activities occurring on a large scale in European waters were

  • AquaSpace 633476 AquaSpace tool manual

    13

    categorised into generic pressure categories comprising abrasion (fisheries, aggregate mining),alteration (marine transport, aggregatemining, aquaculture finfish, aquaculture shellfish, tourism,waste disposal), contamination (pipelines, marine transport, platforms, tourism, waste disposal),enrichment(aquaculturefinfish,wastedisposal),extraction(fisheries,aggregatemining),obstruction(pipelines, platforms, windfarms), siltation (aggregate mining, tourism, waste disposal), andsmothering(pipelines,cables,platforms,windfarms).Assigningascoreof1toeachpressurecategory,the cumulativepressure indicator reflects a sumofpressure categories foundateach culture sitetested(1–8;8=highmagnitudeofpressure). Inaddition,weusedaDPSI (Driver-Pressure-State-Impact)conceptualmodelanddefinitions (Fig.5) to illustratethepathwaysofeffectsshowingthelinksbetweendriversofhumanactivities(Driver)andtheirrespectivenormalizedpressures(Pressure)occurringintheEuropeanwaters(Elliot,2002;UNEP/GRID-Arendal,2002).

    Figure 5: Driver Pressure State Impact (DPSI)model visualising the allocation of human activities(Drivers) topressurecategories (Pressure)havinganeffectonthestateof thestateof themarinehabitats(State)andthereforeanimpactontheecosystemassessed(Impact).RedrawnfromGimpeletal. (2013).*Wastedisposal includescoastaldischarge,dredgedumpingandmunitionsdumpingsites.

    Inorder toaccount forcumulativeenvironmentaleffectsand the riskof impactonecosystemcomponents, essential but highly sensitive benthic habitats were scored for their vulnerability toaquaculture (habitat vulnerability). Those scores (1- 3, 3 = highly vulnerable), combinedwith therespectiveEUNIScodeofthesehabitats,weremodifiedfromAlkizaetal.(2016)andincorporatedintheAquaSpacetoolassessment(Tab.6).Allofthosehabitatshavebeenratedbyexpertknowledgeasbeing incompatiblewithaquaculture.Asmentionedbefore, eachplanning site isbufferedbyaspeciesspecificenvironmentalfootprint.ThustheAquaSpacetoolhelpspreventthedestructionofhighlyvulnerablehabitats.

  • AquaSpace 633476 AquaSpace tool manual

    14

    Table6:Habitatvulnerabilitytoaquacultureactivity.ThehabitatsarealreadylinkedtoEUNIScoding.Vulnerabilityscoresrangefrom1-3,with3=highlyvulnerable.TablemodifiedfromAlkizaetal.(2016).

    Habitat EUNIScode

    Vulnerabilitytoaquaculture

    Infralittoralrockandotherhardsubstrata A3 2AtlanticandMediterraneanhighenergyinfralittoralrock A3.1 1Highenergyinfralittoralseabed 1Highenergyinfralittoralmixedhardsediments 1AtlanticandMediterraneanmoderateenergyinfralittoralrock A3.2 2Moderateenergyinfralittoralseabed 2Moderateenergyinfralittoralmixedhardsediments 2AtlanticandMediterraneanlowenergyinfralittoralrock A3.3 3Lowenergyinfralittoralseabed 3Lowenergyinfralittoralmixedhardsediments 3Siltedkelponlowenergyinfralittoralrockwithfullsalinity A3.31 3Circalittoralrockandotherhardsubstrata A4 2AtlanticandMediterraneanhighenergycircalittoralrock A4.1 2Highenergycircalittoralseabed 2Highenergycircalittoralmixedhardsediments 2Verytide-sweptfaunalcommunitiesoncircalittoralrockormixedfaunalturfcommunitiesoncircalittoralrock

    A4.11orA4.13

    3

    Spongecommunitiesondeepcircalittoralrock A4.12 2AtlanticandMediterraneanmoderateenergycircalittoralrock A4.2 2Moderateenergycircalittoralseabed 2Moderateenergycircalittoralmixedhardsediments 2Faunalcommunitiesondeepmoderateenergycircalittoralrock A4.27 2AtlanticandMediterraneanlowenergycircalittoralrock A4.3 2Lowenergycircalittoralseabed 2Lowenergycircalittoralmixedhardsediments 2Brachiopodandascidiancommunitiesoncircalittoralrock A4.31 2Faunalcommunitiesondeeplowenergycircalittoralrock A4.33 2Infralittoralcoarsesediment A5.13 2Circalittoralcoarsesediment A5.14 2Deepcircalittoralcoarsesediment A5.15 2DeepcircalittoralSeabed 2Infralittoralfinesandorinfralittoralmuddysand A5.23or

    A5.242

    Infralittoralfinesand A5.23 2Infralittoralmuddysand A5.24 2Circalittoralfinesandorcircalittoralmuddysand A5.25or

    A5.262

    Circalittoralfinesand A5.25 2Circalittoralmuddysand A5.26 2Deepcircalittoralsand A5.27 2Infralittoralsandymudorinfralittoralfinemud A5.33or

    A5.342

    Infralittoralsandymud A5.33 2Infralittoralfinemud A5.34 2

  • AquaSpace 633476 AquaSpace tool manual

    15

    Habitat EUNIScode

    Vulnerabilitytoaquaculture

    Circalittoralsandymudorcircalittoralfinemud A5.35orA5.36

    2

    Circalittoralsandymud A5.35 2Circalittoralfinemud A5.36 2Deepcircalittoralmud A5.37 2Infralittoralmixedsediments A5.43 2Circalittoralmixedsediments A5.44 2Deepcircalittoralmixedsediments A5.45 2Deepcircalittoralmixedhardsediments 2Seagrassbeds A5.53 3Posidoniabeds A5.535 3Seagrassbedsonlitoralsediments A2.61 3Maerlbeds A5.51 3

    3.2.2.3EconomiceffectsTheAquaSpacetoolprovidesageneraleconomicviewoftheaquacultureactivityaccordingtothe

    future productivity andmarket expectations. Economic analyses are conducted in different stepsproviding both direct assessment and economic impact assessment. The assessment procedure isexplainedandexemplifiedbelow.Directassessmentcomprisesaquantitativeassessmenttoevaluatethedirecteconomicperformanceofanaquacultureactivity,andaqualitative(i.e.rating)assessmentof its effectiveness and its efficiency. This rating stage is very relevant when trying to comparebetweentwoormoreaquacultureactivities.Indirectorinducedassessmentcomprisesanestimationoftheimpact(i.e.economy-wideeffects)onothersectors(relatedtoaquaculture)afterintroducingaproductionchange,i.e.anewproductionattachedtotheaquaculturesites.

    Based on AquaSpace tool functions, the potential economic performance of the aquacultureactivity(i.e.thecontributionoftheplannedaquaculturesitetothelocaleconomy)isassessedintermsoftheeconomicviability.Theeconomicindicatorsare:

    =.?= = @ABC?D+EB. ∗ GHA3=+@AED=(4),

    JK = =.?= − E.+=AG=CEH+=H.CB@=AH+E.L=M@=.N=N(5),

    whereAVistheAddedValueandintermediateoroperatingcostsaree.g.fuelandfeedingcosts.

    Theeconomiceffectiveness(i.e.theextenttowhichthespecificeconomicobjectivessettledforthisactivityareachieved) ismeasured (basedonAquaSpace tool functions) through the followingindicators:

    =N+G=.+(6),

    whereROFTAistheReturnonFixedTangibleAssets(aquacultureattractivenessorreturnoftheinvestmentinaquaculture)andProfitisexpressedas:

    RABSE+ = JK − A=GHE.E.LDBN+N(7),

    withremainingcostsase.g.salariesandwages.

    W@@BA+?.E+XDBN+ = JY< −

  • AquaSpace 633476 AquaSpace tool manual

    16

    whereAER is the Annual Equivalent Rate of a potential investment (potential revenue that isforfeitedbynotdevelopinganalternativetotheaquacultureactivity).

    FurthertheeconomicefficiencyisrepresentedbytheNetPresentValue(NPV)andaccountsfortheresourcesemployedandresultsachievedwithatimehorizonof5and10years(assessedbasedonanAquaSpacetoolfunctions):

    [RK = JK 9 ,(]^

    (]_

    whereTisthenumberofyearstoconsiderwhencalculatingtheNPV.IfNPV>0,theaquacultureisconsideredasprofitableactivity.

    Finally,thesocio-economicinduced(directandindirect)impactontheproductionandtheAVisassessedusingregionalinput-outputmultiplierswhichaccountforthecommoditiesproducedbyeachindustryandtheuseofthesebyotherindustriesandusers(basedonAquaSpacetoolfunctions).Whilethe calculation of Input – Output Tables using the Leontief model is described in Annex II, theindicatorsarelistedbelow:

    T.C?D=CCEA=D+EG@HD+B.@ABC?D+EB. = J ∗ `T(10),

    T.C?D=CE.CEA=D+EG@HD+B.@ABC?D+EB. = J T − J &_ − T ∗ `T(11),

    T.C?D=CCEA=D+EG@HD+B.+ℎ=JK= `EHLB.H-cH+AEMdE+ℎAH+EBJK/RABC?D+EB. ∗ J ∗ `T(12),

    T.C?D=CE.CEA=D+EG@HD+B.+ℎ=JK= `EHLB.H-cH+AEMdE+ℎAH+EBJK/RABC?D+EB. J T − J &_ − T ∗ `T 13 ,

    whereJisthetechnicalcoefficientsmatrix,`Tthedirectimpact(e.g.revenues),and(T − J)&_theLeontiefinversematrix.

    Table 7: Input for a production increase per region, based on regional input-output models andexemplifiedforGermany,Greece,Italy,SpainandUk.Inputparameterswillbeofferedbyrequest.

    INTERESTRATES

    INDUCEDDIRECTIMPACTONPRODUCTION

    INDUCEDINDIRECTIMPACTONPRODUCTION

    TOTALIMPACT

    INDUCEDDIRECTIMPACTONADDEDVALUE

    INDUCEDINDIRECTIMPACTONADDEDVALUE

    GERMANY 0.07 0.26 0.45 1.45 0.16 0.27GREECE -0.02 0.24 0.35 1.35 0.15 0.22ITALY 1.71 0.35 0.67 1.67 0.19 0.36SPAIN 0.00 0.49 0.9 1.94 0.21 0.39UK 0.32 0.56 0.98 1.98 0.12 0.21

  • AquaSpace 633476 AquaSpace tool manual

    17

    Table8:Economic(Impact)AnalysisexemplifiedbyaplannedaquaculturewithEuropeanSeabassinGermany.Detailsspecifiedasfollowed:1Investmentonequipment(percage/trestle/longline);

    2Otherinvestments(excl.Equipment,landfacilitiesandproperties);

    3Investmentonlandfacilities;

    4Investment

    onproperties;5Marketvalueculturespeciesperton;

    6Averageno.ofdaysatsea/culturesite;

    7AveragefuelcostsEuro/km;

    8Annualexpenditureon

    wages/salaries;9Intermediatecostsvariable(e.g.juveniles/seeds/food);

    10Othercosts(variable);

    11Annualrateoncapitalresources(%);

    12Intermediate

    costsfixed(e.g.insurance/maintenanceandrepairship);13Othercosts(fixed).Aquaculture-specificinformationmodifiedfromEbeling(2016).Interest

    ratesforGermanytakenfromIMF(2017).

    Description Unit Quantity Price/Unit Totalvalue

    Productioncycle years 1

    Productiondensity tons/m³orha 0.01255

    Cagesize/area m³/ha 8960

    Productionquantity tons 4000

    Distance(example) km 31.48

    Numbercages/longlines quantity 36

    Investmentcages/longlines1 Euro 1173000 42,228,000.00€

    Otherinvestments2 Euro 19000000 19,000,000.00€

    Costs/landfacilities3 Euro 1500000 1,500,000.00€

    Costs/property4 Euro 1272452.5 1,272,452.50€

    Revenues

    Grossrevenue5 tons 4000 5500 22,000,000.00€

    Variablecosts

    Fuel(0.55Euro/litre;4.58Euro/km)6,7 daysatsea/y 53 15284.85232 15,284.85€

    fuelcostsEuro/km 4.58

    Wages8 Euro 399960 399,960.00€

    Intermediatecosts(e.g.juveniles/seeds/food)9 Euro/ton 2070.00 8,280,000.00€

    Othercosts(variable)10 Euro 481428.75 481,428.75€

    Interestonoperatingcapital(in%)11 % 9176673.60 0.07 642,367.15€

    Totalvariablecosts 9,819,040.75€

  • AquaSpace 633476 AquaSpace tool manual

    18

    Description Unit Quantity Price/Unit Totalvalue

    Fixedcosts

    Intermediatecosts(e.g.insurance/maintenanceandrepairship)12 Euro 48125 48,125.00€

    Othercosts(fixed)13 Euro 3482352.5 3,482,352.50€

    Interestonproperty 1272452.5 0.07 89,071.68€

    Interestonfixedcapital(withoutproperty) 3530477.50 0.07 247,133.43€

    Totalfixedcosts 3,866,682.60€

    Totalcosts 13,685,723.35€Netreturn 8,314,276.65€

    ECONOMICASSESSMENT

    Revenue Euro 22,000,000.00€Profit Euro 8,314,276.65€

    Addedvalue Euro 13,671,875.00€RoFTA(ReturnonFixedTangibleAssets) % 0.13

    Opportunitycost % 0.05NPV(NetPresentValue) Euro -9,643,842.66€

    ECONOMICIMPACT

    Induceddirectimpactonproduction Euro 5,829,059.83€Inducedindirectimpactonproduction Euro 2,631,102.56€

    Totalimpact Euro 31,930,800.00€Induceddirectimpactonaddedvalue Euro 3,470,864.68€

    Inducedindirectimpactonaddedvalue Euro 5,912,907.91€

  • AquaSpace 633476 AquaSpace tool manual

    19

    3.2.2.4Socio-culturaleffects

    Toaccountforspatialexpressionsofsomesocio-culturaleffectsandimpactsofaquaculture,the

    AquaSpace tool enables inputs relating tovisual impacts. In particular, theeffects consideredarethose relating to the visibility of aquaculture sites and infrastructure, and its contribution to the

    characteristicsofthelandscapes/seascapes.

    The analysis of visibility of aquaculture sites is a requirement in best practice for assessing

    potentialvisualimpactsonlandscapesandseascapesinseveralcountries(e.g.UK;ScottishNatural

    Heritage (2011)).Theoutput fromtheanalysisenables thedeterminationof theextentof surface

    featuresvisibletoone,orasetofobservers.Suchfeaturescanbeindividualfishcages,infrastructure

    (e.g.feedersystems),individualaquaculturesites,orthecumulativeeffectsofmultipleaquaculture

    sites.

    Theoutputsarereportedas:

    i. mapsofvisibilityoffeatures,andestimatesofthenumberoffeaturesvisiblefromanygivenpointinapre-selectedviewingdistance(e.g.numberoffishcagesoraquaculture

    sitesvisiblefromanyspecifiedlocation);

    ii. estimatesoftheextentoftheareafromwhichsuchfeaturesarevisible.

    TheinputdatafortheAquaSpacetoolcanbeusedtotakeaccountof:

    i. the geographic extent of views of individual ormultiple fish cages, at the level of theindividualcagesoraquaculturesiteasawhole;

    ii. theproportionsofviewsoccupiedbyindividualaquaculturesites,fromspecificsitesofimportance (e.g. designated viewpoints, visitor attractions, sites of significant cultural

    heritage).

    Thesedataenableconsiderationofthepotentialsignificanceonthelandscapeofexpanding,or

    reducing, theextentofaquaculture,andwithrespecttootherspatiallyrepresenteddata,suchas:

    designatedareas,existing landuses, landscapecharacter,andvisual receptors (i.e. fromwhatand

    wherearepeopleexposedtofeaturesinaview),suchasviewpoints,transportroutes,settlements,

    andprominenttopographicfeatures.

    Itisimportanttodistinguishbetween:(i)Thevisibilityofparticularsitesfromspecifiedlocations

    (e.g.properties,settlements,transportroutes,viewpoints),includingoffshoreroutesifappropriate.

    (ii)Therelativevisibilityofseascapesfrom'all'locations(inrealityasubset)bothonshoreandoffshore

    whichprovidesameansofconsideringwherethereare'hotspots'andgapsfromwherefeaturesmay

    bevisible.

    Thevariablesinthevisibilityanalysiscanbesettorepresentthedetailsofthedimensionsand

    typesofaquacultureinfrastructurewhichwouldbeappropriatetodevelopmentsconsistentwiththe

    useoftheAquaSpaceTool.Suchvariablesaretheviewingdistanceandtheheightofthestructures,

    guidesforwhichareprovidedintable9.

    Outputs fromdata layer canalsobe imported into theAquaSpaceVirtualReality toolset. This

    enablespolicy,industryandpublicstakeholderstointerpretaquaculturedevelopmentswithrespect

    to visual indicators of landscapes, or site landscape and seascape features (e.g. aquaculture,

    renewableenergy,leisure,transport)(SeeAquaSpacefactsheetonVirtualSeascapes).

  • AquaSpace 633476 AquaSpace tool manual

    20

    Table9:Examplesofvisibledistancetothehorizonfordifferentheightsofobjectorobserver(MillerandMorrice,2002).Inthethreelastrows,theobserverissupposedtobeinWales.

    Heightofobserver(m)

    Heightofobject(m)

    Distance(nm) Distance(km) Example

    1.8 100 25.1 46.4 Man-madestructure1.8 50 18.6 34.4 Man-madestructure1.8 1.8 5.9 10.9 Twoobserversofequal

    heightandelevation

    1.8 0 3 5.5 Observeronbeach1085 0 72.8 134.9 TopofMt.Snowdon892 0 66 122.3 TopofCadairIdris311 0 39 72.2 TopofMynyddCaregog

    Informationisalsoprovidedonsitesofinterestfortheirsignificanceorcontributiontoculturalheritage.Thesesites,suchasshipwrecks,areanalysedusingadistance-basedfunctionsimplementedintheAquaSpacetool.

    Anotherindicatorwhichreflectssocio-culturalimpactsisbasedonspatiallyexplicitinformation

    about areas used for recreational activities. The ‘tourism’ indicator is parameterised using thedistancetoall featuresrelatedtorecreation(i.e.shortdistance=high impact, longdistance= low

    impact).TheAquaSpacetoolispre-populatedwithdataaboutbathingsites,withflexibilitytoinclude

    otherdatawhichareofimportanceatacasestudylevelcanbeincorporated(seeUserManualsection

    onCustomizationoptions).Suchdataisnotavailableformanyareas(e.g.theGermancasestudy),but

    isextensiveinothers(e.g.forScotlandavailabledataincludedivesites,historicMPAs,sailingareas

    forcruising,racing,andsailing,andanchoragesites).

  • AquaSpace 633476 AquaSpace tool manual

    21

    4. AQUASPACETOOLOUTPUTS

    Thevisualisationoftooloutputsisprovidedbyapdf-formattedreport,generatedforeachtool

    run(Fig.6),whichcontainschartsfacilitatingthecomparisonofdifferentscenariosassessed(Fig.7)

    atspecificsites(Fig.8).

    Figure6:ExtractoftheAquaSpaceAssessmentReport(Bluemussel,scenario16). Thevisualisationoftooloutputsisensuredonthebasisofapdf-formattedreport,generatedforeachtoolrun,provided

    withcharts(Fig.7)andamap(Fig.8).

    Inordertodescribeselectedtooloutcomes,figure7visualisesgraphsshowingtheenvironmental

    indicatorsAquacultureSuitability,WaterDepth,andWaveHeightspecificExposureofthesite,whichmightgetrelevantforstakeholdersrequiringspatialexplicitinformationinsearchofsuitablesitesfor

    their culturing speciesaswell as for theiraquaculture type-specificequipment.Whileaquaculture

    suitabilitywashighestinthe2ndscenarioassessed,ashallowwaterdepthmightbepreferredasgiven

    in the5th scenarioassessed.Moreover, theslightestwaveheightspecificexposureof thesitewas

    giveninthe3rdand5

    thscenarioassessed.

  • AquaSpace 633476 AquaSpace tool manual

    22

    Figure7:VisualisationofselectedenvironmentalindicatorsAquacultureSuitability,WaterDepth,andWaveHeightExposureforeachof5sites,whichcouldhelpstakeholdersassessingequipmentneededforaquacultureateachsites.

    Thereportmapcanbedesignedindividually.Inordertodefinethebackgroundlayer,theusercan

    choosefromallmaplayersavailable.Figure8presentsanexample,whereacumulativepressurelayer

    wasselected.Thenumberofscenarioswhichcanbeassessedisnotlimited.Nevertheless,incaseof

    calculatingmorethanfivescenariossimultaneously,thetooloutputsacsvfile(Tab.10).Asshown

    below,10scenarioswerecalculatedfordemonstrationpurposeinapplicationoftheAquaSpacetool.

    Allindicatorswhichcanvaryinbetweenthosescenarioswillbelisted.

    Suchatransparentvisualisationtechniquefacilitates i)aneffective implementationofMSPfor

    aquaculture,enabledbyusingspatiallyexplicitmethodsandtools,ii)the implementationofaspatiallyexplicit (GIS-based)multi-usecontext,addressing the functionality forcumulative riskassessments

    and conflict analysis, and iii) the implementationof an ecosystemapproach, explicitly considering

    economicandmarketissues.Thelatterallowsformoreinformed,evidence-baseddecisions,which

    gainsonsignificance,especiallyforindustry:

    Aquaculturecompaniesfaceconsiderablechallengesandtakeonconsiderableriskinestablishing

    andoperatinganaquaculturesite.Gainingandmaintainingstakeholdersupportbydemonstrating

    economicbenefitsonaproactiveandperiodicbasiscanhelplimitoverallprojectrisks(Plumstead,

    2012). Outputs of an economic impact analysis are typically used to demonstrate the economic

    importanceofaquacultureoperationsto:

    • Decisionmakersthatgenerallyapproveaquacultureoperations.• Communitystakeholdersthatcancontrolandapprovetheissuanceofpermits.• OtherstakeholderssuchasNGOs(andothernon-profitorganizations)thatwanttoensure

    thataquacultureoperationsbenefitlocalcommunities.

  • AquaSpace 633476 AquaSpace tool manual

    23

    Figure 8: AquaSpace tool outputmap for bluemussel (scenarios 15 – 30), the case-specific portselected(Hörnum/Sylt),areasofconstraint,synergyandconflict,managementboundaries,areasof

    aquacultureproductionandacumulativepressuremap,selectedmanuallyasbackgroundmapforthe

    AquaSpacetoolmapoutput.TheAquaSpacetoolcanbeappliedforanunlimitedamountofscenarios.

  • AquaSpace 633476 AquaSpace tool manual

    24

    Table10a:ExemplifiedoutputfileinCSVformatgivinganoverviewaboutindicatorsassessedduringAquaSpacetoolapplication(part1).Indicatorsusefultoassessthegrowthperformanceofaspecies(i.e.chlorophyllaconcentrationatsurface,temperatureandsalinity)arenotincluded(AV=AddedValue,IMTA

    =IntegratedMulti-TrophicAquaculture,NPV=NetPresentValue,RoFTA=ReturnonFixedTangibleAssets).

    Scenario(site

    number)

    IMTApotential

    Riskofdiseasespread

    Spatialconflict

    Spatialsynergy

    Aquaculturesuitability

    Cumulativepressure

    Currentvelocity

    Habitatvulnerability

    Nitrogen Phosphorus Sedimentsensitivity

    Waterdepth

    Waterquality

    Waveheightexposure

    1 0 1 5 0 5 2 0.19 2.08 0.1 2 -23.11 3 1.17

    2 0 1 2 1 5 4 0.25 1.71 0.1 2 -21.83 3 1.95

    3 0 1 2 1 5 4 0.16 0.43 0.1 2 -22.22 3 2.01

    4 0 1 5 1 5 4 0.15 0.32 0.1 2 -29.53 3 2.01

    5 0 1 5 1 5 4 0.18 0.15 0.08 2 -42.2 3 1.98

    6 0 1 5 1 5 4 0.16 0.2 0.07 2 -45.38 3 1.87

    7 0 1 5 1 4 4 0.6 0.2 0.07 1 -41.71 3 1.84

    8 0 1 5 1 4 4 0.21 0.18 0.18 1 -41.39 3 1.8

    9 0 1 5 1 5 4 0.19 0.16 0.31 2 -42.33 3 1.81

    10 0 1 5 1 5 4 0.6 0.17 0.05 2 -39.65 3 1.91

    11 0 2 5 1 5 4 0.37 0.1 0.05 1 -41.41 3 1.85

    12 0 1 2 1 5 4 0.24 0.1 0.05 2 -39.26 3 1.78

    13 0 3 2 1 5 4 0.17 0.32 0.1 2 -38.83 3 1.82

    14 0 1 2 1 5 4 0.17 0.69 0.1 2 -30.48 3 1.86

    15 0 1 2 1 5 4 0.15 1.17 0.1 2 -33.08 3 1.88

  • AquaSpace 633476 AquaSpace tool manual

    25

    Table10b:ExemplifiedCSVfilegivinganoverviewaboutindicatorsassessedduringAquaSpacetoolapplication(part2).Indicatorsusefultoassessthegrowthperformanceofaspecies(i.e.chlorophyllaconcentrationatsurface,temperatureandsalinity)arenotincluded(AV=AddedValue,IMTA=IntegratedMulti-

    TrophicAquaculture,NPV=NetPresentValue,RoFTA=ReturnonFixedTangibleAssets).

    Scenario(site

    number)

    AV(inmio)

    Induceddirectimpactonproduction(inmio)

    Inducedindirectimpactonproduction(inmio)

    InduceddirectimpactonAV(inmio)

    InducedindirectimpactonAV(inmio)

    NPV Opportunitycosts

    Profit(inmio)

    Revenue(inmio)

    RoFTA Culturalheritage

    Tourism Visualimpact

    1 13.67 5.72 2.57 3.52 5.94 -29.62 0.0545 8.32 22.00 0.1299 132 0

    2 13.67 5.72 2.57 3.52 5.94 -29.62 0.0544 8.31 22.00 0.1298 139 0

    3 13.67 5.72 2.57 3.52 5.94 -29.62 0.0537 8.27 22.00 0.1292 210 0

    4 13.67 5.72 2.57 3.52 5.94 -29.62 0.0537 8.26 22.00 0.1291 208 0

    5 13.67 5.72 2.57 3.52 5.94 -29.62 0.0536 8.26 22.00 0.1290 204 0

    6 13.67 5.72 2.57 3.52 5.94 -29.62 0.0533 8.24 22.00 0.1287 226 0

    7 13.67 5.72 2.57 3.52 5.94 -29.62 0.0531 8.23 22.00 0.1286 234 0

    8 13.67 5.72 2.57 3.52 5.94 -29.62 0.0530 8.22 22.00 0.1284 245 0

    9 13.67 5.72 2.57 3.52 5.94 -29.62 0.0532 8.24 22.00 0.1287 204 0

    10 13.67 5.72 2.57 3.52 5.94 -29.62 0.0538 8.27 22.00 0.1292 162 0

    11 13.67 5.72 2.57 3.52 5.94 -29.62 0.0536 8.26 22.00 0.1291 158 0

    12 13.67 5.72 2.57 3.52 5.94 -29.62 0.0536 8.26 22.00 0.1291 134 0

    13 13.67 5.72 2.57 3.52 5.94 -29.62 0.0538 8.27 22.00 0.1293 120 0

    14 13.67 5.72 2.57 3.52 5.94 -29.62 0.0540 8.28 22.00 0.1294 89 0

    15 13.67 5.72 2.57 3.52 5.94 -29.62 0.0542 8.30 22.00 0.1297 81 0

  • AquaSpace 633476 AquaSpace tool manual

    26

    5. USERMANUAL

    Thisusermanualdescribesthepreparatorywork,sequenceofstepsandrelatedtasksthatthe

    user should undertake to apply theAquaSpace tool. It assumes a knowledgeof the tool concept,

    functionalityandoutputsdescribed inprecedingsections.Themanualdescribeshowto install the

    toolandhowtouseit.

    5.1. TheAquaSpacetool:abriefinsightThe AquaSpace tool enables the user to assess individual marine site locations planned for

    aquaculture in termsof essential biological, ecological, economic,physical and social aspects. It is

    implementedasanAddInforArcGISDesktop(from10.3.1andArcGISBasicwithSpatialAnalyst).The

    initial installation of the AquaSpace tool is a manual process of copying/pasting of file packages

    provided.Allstepsarepreciselydescribedunder=>InstalltheAquaSpacetoolfiles.

    ImportanttomentionisthattheAquaSpacetoolcomesinitiallywithanEU-widedatapackage,

    providedasfileGDB10.3.ImplementedarebasicsettingsfortestrunsatGermancasestudylevel,

    allowingthecheckiftheinstallationprocedurewasperformedproperly.Ensuingfromthat,theuser

    can customise the tool settings individually and even replace datasets. Those procedures are

    explainedunder=>CustomizationoptionsbutrequireaminimumofArcGISusageskills.Registervia

    https://gdi.thuenen.de/geoserver/sf/www/aqspce.html) to get access to comprehensive video

    instructionsforinstallationprocessandusageofthetool-providedonline(https://free-redmine.saas-

    secure.com/projects/aqua).

    5.1.1. AquaSpacetoolcomponentsThe user receives via => https://gdi.thuenen.de/geoserver/sf/www/aqspce.html access to the

    AquaSpaceRedminewebsite,whereallAquaSpacetool files, technicaldocumentsaswellasvideo

    instructionsareprovided,facilitatingtheinstallationandtestingoftheAquaSpacetool.Thecurrent

    statusoftechnicaldocumentationcanbefoundunder=>Documents.Inaddition,userrequests(in

    particularregardingtoolbugs,datahintsorsupportrequests)canbeplacedunder=>NewIssue.

    Thetooliscomposedof:

    • Themxd(ArcGISformat)project• Thetoolbar• TheGeodatabase(GDB)

    TheArcGISmxdfilevisualisesthespatialextentofthetoolintermsofabackgroundmap(esribg

    map),alldatasetsrequiredtorunthetoolandtherespectivesymbology(Fig.9).Therefore,itensures

    thecorrectsymbolisationandpaths’availabilitywhenusingthetool.

  • AquaSpace 633476 AquaSpace tool manual

    27

    Figure 9: The AquaSpacemxd, including the table of contents (left), the AquaSpace toolbar (top,highlightedinyellow)andtheArcGIScatalogwindow(right),showingtheAquaSpaceGeodatabase

    (GDB). TheAquaSpace siting tool (highlighted in yellow at the bottom right) is available from the

    AquaSpacetoolbarandfacilitatesthesiteselection.

    TheArcGIStoolbarallowstheusertoselectthecountrytobestudied,whichlimitsthespatial

    extentofthedataprocessedandspeedsuptheassessmentprocess.Iftheuserfavoursanotherextent

    thantheoneoncountrylevel,hecandefineitmanually(byzoominginorout)usingtheblue‘Transfer

    extent’buttonwhenthedesiredextentisadjusted.Next,theuserhastodefineaportfromwhich

    location the aquaculture site should bemanaged and supplied. Theport is used as a baseline for

    economic, distance-based calculations. The species can be chosen subsequently and forms the

    baselineintermsofsuitableareatobeassessed.Inordertodefinethatlayer,whichshouldbevisible

    inthefinalresultmapasbackgroundlayer,theusercanchooseoneofallmaplayersavailable.Finally,

    theusercanstartselectingtheparticularlocationsthatwillbeconsideredinthecalculationsforthe

    aquaculturespecieshewantstoassess.Ifdifferentinteractionscombinationsshallbeevaluatedper

    modelrun,theusercandefinevaryingscoringsbyusingthepurplebuttonopeninguptheinteraction

    matrixtool(Fig.10).

    Figure10:TheAquaSpacetoolbar,simplifyingtheselectionoftheextent(Country),theharbourfromwhichtheaquaculturesitewillbesupplied(Port),theaquaculturespeciestobeassessed(Species),

    thebackgroundlayerwhichshallbehighlightedintheresultmap(MapLayer),themanuallydefined

    extent (bluebutton), the siting tool (SiteLocation)and the Interactionmatrix tool (purplebutton)

    (fromlefttoright).

    TheGDBtemplatecontainsalltherequiredfeatureclasseswithtableschemesasimplemented

    andappliedbytheAquaSpacetool.ForeachGDBitemmetadatahavebeenacquiredthatdescribe

    the item itself (featureclassorGDBtable)aswellas thecontentofeachfieldof tablescheme. In

  • AquaSpace 633476 AquaSpace tool manual

    28

    ArcGIS themetadatacanbeviewedvia theuser interfaceby selecting=> Itemdescription froma

    layer’s => propertiesmenu. It can also be accessed from ArcMap, CatalogWindow => right click

    desiredfeatureclass=>Itemdescription(Fig.11).

    Figure 11: Arc Map catalog window with the AquaSpace Geodatabase (left). Metadata can beexaminedviatheitemdescription,hereexemplifiedbythecumulativepressureslayer(right).

    5.1.2. ProcessviewEachtoolsection(e.g.UserInput)addressesonespecificprocessstepasshowninfigure12.The

    users inputdefines the studyarea (country), theport fromwhichaquaculturebusiness shouldbe

    transacted, theculturespecies, thecorrespondingculturesystem,thecompilationofconstraining,

    conflictingorsynergistichumanusesandtheaquaculturelocationstobetested.Whiledoingso,the

    userisdirectedtoactinasustainableway,beingawareofe.g.theecologicalfootprintofaspecific

    aquaculture or its interaction with other human activities. Consequently, the AquaSpace tool

    estimatesall opportunities and risksbasedon inter-sectorial, environmental, economicand socio-

    culturalindicators.Tooloutputs(i.e.AquaSpacetoolAssessmentReport)areprovidedinpdf-format,

    whosedesignofferatransparentsummaryofalltoolruns(i.e.scenarios)andtherespectiveindicator

    values.Givenaregeneralsite information(e.g.species,waterdepth,waterquality), inter-sectorial

    effects(e.g.spatialconflictpotential,diseasespread),environmentaleffects(e.g.degreeofexposure,

    cumulativepressures,distancetowastedisposalsites)andeconomicandmarket issues(economic

    performance, effectiveness and efficiency). Further, the report is equipped with visualisation

    techniques likemappingandgraphics,enablingtheusertoproactivelycommunicateopportunities

    and risks. A transparent information policy builds stakeholders support, which is critical to the

    successfulestablishmentofaquacultureandongoingoperations.

  • AquaSpace 633476 AquaSpace tool manual

    29

    Figure12:AquaSpacetoolconceptualoverview.Theusersinputdefinesthestudyarea(e.g.country),the port from which aquaculture business should be transacted, the culture species, the

    correspondingculturesystem,thecompilationofconstraining,conflictingorsynergistichumanuses

    and the aquaculture locations to be tested.Next to general input data (e.g.management areaor

    culturesystemtobeassessed),inter-sectorial,environmental,economicandsocio-culturaldataare

    processed.

    5.2. InstallationguideAquickstartguidetoinstallthescripts,addtheGDBandconnectalltherequiredprocessingand

    storagepathsfortheAquaSpacetooltoworkcorrectly isgivenunderQuickstart.Subsequently,a

    detailedworkflowisgivenwithsupporttoinstallallfilesneededtorunthetool(InstalltheAquaSpace

    toolfiles),clippingcasestudydatasets(Clipyourdataset)customisationprocedures(Customization

    options),createaninteractionmatrix(Createinteractionmatrix),addyoureconomicinputdata(Add

    your economic input) and how to perform the site assessment (Perform site assessment) with

    differentscenarioevaluations(Scenariobuilding)(Fig.13).

  • AquaSpace 633476 AquaSpace tool manual

    30

    Figure13:VisualisationoftheAquaSpacetoolinstallationandapplicationprocess.

    5.2.1. Quickstartguide

    1.PartofAquaSpacetoolInstallation

    • Check the AquaSpace tool system requirements carefully, see [[http://free-redmine.saas-secure.com/documents/83]]

    • Watch the video of installation process, see [[http://free-redmine.saas-secure.com/documents/85]]

    • Get the latest version under => News, consider your ArcGIS version and follow theinstallation/updateinstructionscarefully,incaseyouhavequestionspleasedonothesitate

    toplaceyoursupportrequestunder=>Newissue• Watch the video for AquaSpace tool usage, see [[https://free-redmine.saas-

    secure.com/documents/91]]

    • TestyourlocalinstallationbyatestrunusingthedefaultGDB(Germancasestudy)simplybystartingtheAquaspace_pro.mxdfileunder=>C:\arcgis_addin\AquaSpace\Data,ifyougetanerror or warning, please check the track list under issues [[https://free-redmine.saas-

    secure.com/projects/aqua/issues]]andplaceanewissuehereincaseyoucouldnotfindthe

    supportyouneed

    2.PartofGDBDataAdjustmentsforyourAquaSpacecasestudyarea

    • Clipyourcountrydataset/casestudyarea:thisstepisrecommendedincasethereisnocase study area listed under prepared country datasets, see: [[https://free-redmine.saas-

    secure.com/news/46]]. In this context, by offering an EU-wide data package we aim to

    minimizetheusereffortofdataharmonizationanddataadding.ButforArcGISperformance

    issues it is highly recommended to clip your country/ case study data set, see video

    instructions [[http://free-redmine.saas-secure.com/documents/82]]. This step is completed

    assoonasyourclipresultisstoredunder=>C:\arcgis_addin\AquaSpace\Dataandisrenamed

    bythestandardecba_tool_data0.gdb• Add your own data to the AquaSpace GDB, see [[https://free-redmine.saas-

    secure.com/documents/92]]

    • Createyourindividualinteractionconflictmatrix,seeToolusecase:createinteractionmatrix• Now you are ready for using the AquaSpace Tool for your case study, please go to Tool

    application

  • AquaSpace 633476 AquaSpace tool manual

    31

    5.2.2. InstalltheAquaSpacetoolfiles

    1.StorethedownloadedfilesonyourPC

    • AquaSpaceToolexpectsthefollowingstoragepath=>C:\arcgis_addin\AquaSpace.Differentstoragepathswouldrequiremoreadjustingconfigurationworkatthetoolinstallation.

    • Go to => C:\arcgis_addin\AquaSpace\AquaSpaceTool anddouble-click the “AquaSpaceToolEsriAddinfile”

    2.AdjustthePCPythonLibrary

    • BackupthecurrentPythonInstallation=>C:\Python27\ArcGIS10.3–copyfolder(thisavoidslosingtheoriginalscriptsthatcomewithArcGIS)andnameitArcGIS10.3_ESRI

    • In C:\Python27 overwrite the ArcGIS10.3 folder with the new folder “ArcGIS10.3” PLEASENOTE both installation procedures for python library transfer – one for ArcGIS 10.3 and

    anotherforArcGIS10.4-dependingonyourlocalArcGISversion

    3.AdjustArcGISMapStyle

    • TransfertheLegendItem“IMTA“fromthesourcefile=>ArcGISMapStyleToCopy_IMTA.style(“Style Manager“: „Styles“ / “Add Style to list“) to your personalized ArcMap Style =>

    C:\Users\\AppData\Roaming\ESRI\Desktop10.3\ArcMapwith copy&pasteby

    usingtheArcMapStyleManager(menu“Customize“=>“StyleManager“)(Fig.14)

    4.AddtheAquaSpacetoolbartoyourmxd

    • Open “Aquaspace_pro_raster.mxd”. The layer data sourceswill be invalid for Constraints,ConflictsandSynergies(Fig.15;thosewillre-connectedunderCreateinteractionmatrix)

    • Choosethetoolbarvia=>Customize=>Toolbars=>“AquaSpace”• Draganddropthetoolbaronthetopofyourmxd

    Figure14:VisualisationoftheAquaSpacetoolinstallationfolders.

  • AquaSpace 633476 AquaSpace tool manual

    32

    Figure15: TheAquaSpacemxdwith invalidConstraints,ConflictsandSynergies-layers (back),mxdwithvalidlayersdefinedmanuallyatcasestudylevel(front).

    5.2.3. ClipyourdatasetItishighlyrecommendedtoclipyourindividualcountry’sdataset(ifitisnotprovidedonlineyet)

    inordertomaximisethetool’sprocessingefficiencyoftherelevantoutcomesandguaranteethetool

    runiscomplete.

    1.GotoC:\arcgis_addin\AquaSpace\Data

    • Openthemxdfile,pickacountrylistedbytheAquaSpaceTool,closemxd(thechosenspatialextent iswritten to theGDB). Inorder for this process towork andnoerrormessages to

    appeartheusermustmakesurethatallESRIproductsthatcouldpossiblyaccessfilecontent

    oftheAquaSpaceGDBareclosedinordertoavoiddatalocks.

    2.GotoC:\arcgis_addin\AquaSpace\AquaSpaceTool\Install

    • Double-clickthe„clip.py“pythonscript,afterafewsecondsyouwillbepromptedtoinputanamefortheGDBcopyyouwillbecreatingbyapplyingthepythonscript.Thescriptruntakes

    some time to run fully. The processing duration depends on the size of the EEZ area, for

    exampleGDBorSpaintakesmorethan30minutestogetclipped.

    3.GobacktoC:\arcgis_addin\AquaSpace\Data

    • SaveacopyofC:\arcgis_addin\AquaSpace\Data\ecba_tool_data0.gdb intotothe„backup“folder C:\arcgis_addin\AquaSpace\Data\backup (the copy remains there as your recovery

    dataset;also,usethisfolderforfutureGDBupdatesbyWP3)

    • DeleteC:\arcgis_addin\AquaSpace\Data\ecba_tool_data0.gdb• RenameyourGDB inArcCatalog (copycreatedbyclip.py) into„ecba_tool_data0.gdb“ (the

    mxdfileandthetoolfunctionsexpectthisGDBname)

  • AquaSpace 633476 AquaSpace tool manual

    33

    5.2.4. CustomizationoptionsWP3deployedtheAquaSpacetoolwithanEUwidevectordatasetinESRIFileGDB10.3format.

    The aquaculture suitability layer already implemented are coming from two different sources: i)

    suitabilityvectorlayerforthetestrunsatGermancasestudyscaleandii)suitabilityrasterlayerat

    Europeanscale (identified inWP2 inapplicationof theWATER tool) for individual casestudy runs

    (Boogertetal.,2017).Ifbothdatasetsavailableareconsideredtobeinsufficient,itispossibletoadd

    iii)yourownsuitabilitylayers.

    Thefollowingtableprovidestheoverviewwhereandtowhatextentthetoolcanbecustomised.

    Datadeliveredcanbeexchanged,butpleasebeawarethatare-projectionofraster,datarenaming

    and GDB-import needs to be done according to the instructions listed subsequently and the

    preconditionsdefinedintable12.

    Table11:Overviewwhereandtowhatextentthetoolcanbecustomised.

    Dos Don’ts GDB Renamedatasetsorfeatureclasses

    mxd mxdAddindividualfisheryclassifications Renamealayerasprovidedwiththe

    AquaSpacetoolAddindividualtourismpolygons Changethepositionofalayerbeyond

    thelayergroup

    Addindividualsuitabilityrasterlayers Addfurtherlayers(notvisibleinthereport)

    Changethepositionofalayer(butstaywithinthelayergroup)

    Changethesymbologyofalayer(willinfluencetheproperoutputofthereportmap/legend)

    Customizedisplayeddefaultvaluesofeconomicinputparameters(useofmodelbuilderrequired)

    1.Addindividualfisheryclassifications

    • Open “Aquaspace_pro_raster.mxd”. The layer data sourceswill be invalid for Constraints,ConflictsandSynergies(Fig.15;thosewillre-connectedunderCreateinteractionmatrix)

    • IntheTableofContents(LayerGroup“Intersectorial”),doubleclickthelayer=>“Fisheries”inordertoopentheLayerProperties.Choosethetab“Symbology”

    • SelectShow:“Quantities”andchoosetheValue:“EU_landing”underFields• Select“Classify”andchooseMethod:“Quantile”andClasses:“4”(Fig.16)• Please take down the value of the 3rd quantil (highlighted in blue in Fig. 16), close the

    Classificationwith“Ok”andclosetheLayerPropertieswith“Ok”

  • AquaSpace 633476 AquaSpace tool manual

    34

    Figure16:VisualisationoftheLayerPropertiestab“Symbology”andtheClassificationschemetobeselectedfor“Fisheries”.

    • IntheTableofContents(LayerGroup“Intersectorial”),doubleclickthelayer=>“Fisheriesq3”inordertoopentheLayerProperties.Choosethetab“Definitionquery”

    • PleasetypeinDefinitionQuery:“EU_landing>=yourq3value”(examplehighlightedinblueinFig.16)andclosetheLayerPropertieswith“Ok”

    • Nowtwolayershavebeencreatedforfisheries:ahighintensityfisherieslayer(fisheriesq3)andalayerintegratingtheremainingfishingintensity.Thosecanbeindividuallyscoredinthe

    interactionmatrix.

    • Please note, that provided fisheries data can be replacedwith individual fisheries data (ifavailable)

    o Consult the data scope und GDB Scheme for whether/ how your data cover theAquaSpacedatamodelrequirements

    o MatchyourdatatoAquaSpacetooldataentities,plan&preparethedataimporttotheAquaSpaceGDBregardingnecessaryfields,fieldvalues,GeographicCoordinate

    System(GCS)

    o Integrate your individual fisheries polygon in the tool application step Createinteractionmatrix

    2.Addyourownlayersto(e.g.totheTourism-layer)oftheAquaSpacetool

    • ConsultthedatascopeundGDBSchemeforwhether/howyourdatacovertheAquaSpacedatamodelrequirements

    • MatchyourdatatoAquaSpacetooldataentities,plan&preparethedataimportregardingnecessaryfields,fieldvalues,GCS

    o TheTourismlayerrequiresforinstancetheGCS:“WGS84”,theFields:“T_name”and“T_description”andtheFieldvalues:

    • UsetheArcGIStoolboxtool“Append“(Fig.17)toloadthedataandfilltheGeodatabase(GDB)template. For more information on this tool read the online documentation resource:

    http://help.arcgis.com/EN/arcgisdesktop/10.0/help/index.html#//001700000050000000

  • AquaSpace 633476 AquaSpace tool manual

    35

    Figure17:TheArcGIStool“Append”(under=>Toolbox,DataManagementTools,General)appliedtoincludecasestudy-specifictourismdata.

    3.AddyourownsuitabilityrasterlayerstotheAquaSpacetool

    • ChecktheAquaSpacetooldatarequirementscarefully,seetable12• BackupyourlatestGDBifnecessary(noneedtobackupthetool)• DeletethecurrentsuitabilitymaprastersintheGDB• Open“Aquaspace_pro_raster.mxd”• AddtheGCS“ETRS_1989_LAEA”toArcMap’sfavouriteslist

    o Tableof contents:open thedata framepropertiesby context-menu (mouse right-click)on“Layers”(upmostitem)

    o RegistertabCoordinateSystemo Viathelistedfolder“Layers”expanded,clickon“ETRS_1989_LAEA”andusebutton

    “AddtoFavorites”(Fig.18)

    Table12:Overviewofdataaspectsrequiredandadjustedasprecondition.

    Rasterdata ToolexpectationGeographicCoordinateSystem(GCS) ETRS_1989_LAEA,WKID:3035

    NamingofrastersintheGDB

    ImporttherasterdataintoGDBwith:

    • spec_blue_mussel• spec_european_oyster• spec_atlantic_salmon• spec_european_seabass• spec_mediterranean_mussel• spec_pacific_oyster

  • AquaSpace 633476 AquaSpace tool manual

    36

    Figure18:Visualisationofthere-projectionoftheAquaSpacemxdproject.

    • SwitchovertoArcToolboxandopenTool“ProjectRaster”(location:DataManagementTools:ProjectionsandTransformation:Raster; this toolenablesre-projection, renaminganddata

    loadingatonce;Fig.19)

    • Fillthetoolaccordingtothepicture,forthe“OutputCoordinateSystem”neededyouhavenowaccesstoyourGCSfavorites:“ETRS_1989_LAEA”;thesuitabletransformationalgorithm

    fromsourceprojectiontotargetprojectionwillbechosenautomaticallybyArcMap

    • CloseArcMapwithoutsaving

  • AquaSpace 633476 AquaSpace tool manual

    37

    Figure19:Visualisationofthetool“Projectraster”,appliedtore-projectaraster.

    • Alternatively,thebatchmodusisoffered,seeArcGISdocumentationforthe‘Projectraster’tool(Fig.20)

    • Re-open“Aquaspace_pro_raster.mxd”inordertocheck/replace/repairbrokenrasterdatasources

    Figure20:Preconditionsdefinedforthere-projectionofarasterusingthebatchmodusofthe‘ProjectRaster’tool.

  • AquaSpace 633476 AquaSpace tool manual

    38

    5.3. Toolapplication

    5.3.1. Createinteractionmatrix

    • Openthemxd:ThelayerdatasourceswillbeinvalidforConstraints,ConflictsandSynergies(Fig.15;wewillre-connectthesenow)

    • Change the view of the table of contents to “list by source”, right click on the“conflictmatrix_table”andchoose=>Editfeatures=>StartEditing

    • Chooseyourindividualinteractionscoringincolumn=>CONFLICT_SCORE

    o AnexamplefromtheliteratureisgiveninIndicators=>Inter-sectorialeffects=>Table1

    o Two layers are provided for interactions with fisheries: high intensity fisheries“Fisheriesq3”,andtheremainingfishingintensity“Fisheries”

    o Ifyouprovideindividualfisheriesdatatodefinespatialconstraintsforhighintensityfisheries,setthetablecolumnfor“Fisheriesq3”onvalue

    o If you provide individual fisheries data to define spatial conflicts for fisheries ingeneral,setthetablecolumnfor“Fisheries”onvalue

    • Stopediting=>StopEditing,saveyourchangesmadetotheinteractionmatrixandclosetheeditor

    • Usethepurplebutton(figuredastoothedwheel)intheAquaSpacetoolbar(Fig.10)toopentheInteractionmatrixmodel(Fig.21).Choosea=>ModelRunID(e.g.yourname)andload

    the=>conflictmatrixtableasedited

    Figure21:AquaSpace“CreateInteractionMatrix”model.

  • AquaSpace 633476 AquaSpace tool manual

    39

    • If individualfisheriesdataareavailable(see=>Customizationoptions),thepolygoncanbeselectedunder=>SpatialConstraintsFisheries

    • Please insert a conflict score for your individual fishery layer under => CSFishPolygon(Remember:spatialconstraints/mutuallyexclusive=score6, lowtoveryhigh likelihoodof

    conflict=score2-5andsynergypotential=score1). IFNOT,pleaseleavethisrowasit is

    (C:\arcgis_addin\AquaSpace\Data\ecba_tool_data0.gdb\Fisheries_empty)

    • Push“Ok”tocreateyourpersonalInteractionmatrix(Fig.22

    Figure22:PersonalInteractionMatrixsuccessfullyinstalled.

    • Repairbrokenlinks(invalidforConstraints,ConflictsandSynergies;Fig.15)byreferencingtoyourgenerateddatavialayerpropertiesasnowtherewillbearelevantdatasourcetolinkto

    (Fig.23)

    o Rightclickon“Constraints”intheTableofcontents,=Properties,=>Sourceo SetData Sourceanddirect the link to yourpersonally createdandnamedconflict

    matrix

    o Clickok.PleaserepeatthesameforConflictsandSynergies.

  • AquaSpace 633476 AquaSpace tool manual

    40

    Figure 23: Adjust the layer properties of Conflicts, Constraints and Synergies by pointing to yourpersonallycreatedInteractionmatrix.

    5.3.2. Addyoureconomicinput

    • Openthemxdtodefinegeneraleconomicvaluesforyourcasestudytobetested• Changetheviewofthetableofcontentsto“listbysource”,rightclickonthe

    “economic_input_figures”(Fig.24)andchoose=>Editfeatures=>StartEditing

    • Putitthevaluesrequestedincolumn=>VALUE

    o Anexampleforallinputvalues(inEuro)canbefoundunderIndicators=>Economiceffects=>Table8

    o Inputvaluesnotavailable(suchasInvestments)requireavalueof0o Inputfactorsandquantifier(in%)canbefoundunderIndicators=>Economiceffects

    =>Table7

    • Stopediting=>StopEditing,saveyourchangesmadetotheinteractionmatrixandclosetheeditor

  • AquaSpace 633476 AquaSpace tool manual

    41

    Figure24:TheAquaSpaceEconomicinputtable.ValuestakenfromtheGermancasestudy.

    5.3.3. PerformsiteassessmentTheAquaSpaceAquaSpace toolbar simplifies toperforma siteassessment. Follow the toolbar

    inputsfromlefttoright(excl.thepurplebutton‘createinteractionmatrix’,thiswasdoneinchapter

    5.3.1)andmakeyourchoices(whichneedtoberenewedforeachtoolrun)regarding:

    • Theselectionoftheextent(Country)=>selectionisoptional,youcanalsozoomintothemxdtochooseyourfavouredsite

    • Theharbourfromwhichtheaquaculturesitewillbesupplied(Port)=>selectionrequired• Theaquaculturespeciesyouwanttoassess(Species)=>selectionrequired• Thebackgroundlayerwhichshallbehighlightedintheresultmap(MapLayer)=>selection

    optional

    • Theextentdefinedfortheassessment(bluebutton)=>selectionrequired• Theprovisionofsitestobeassessedusingthesitingtool(SiteLocation;Fig.25)

    o Choosea=>ModelRunID(e.g.yourname)o Choosea=>Productioncycle(years)o Choosea=>Productiondensity(tons/m³ortons/ha)o Choosea=>Cagesize(m³)orArea(ha)o Choosea=>Productionquantity(tons)o Clickonthefeaturesetofthespeciesyouwanttoassessandclickapointonthemap

    todefinethesitetobeassessed

    o Click“Ok”

  • AquaSpace 633476 AquaSpace tool manual

    42

    Figure25:TheAquaSpacesitingtool(SiteLocation),availablefromtheAquaSpacetoolbar(Fig.10)facilitatesthesiteassessmentusingtheAquaSpacetool.

    5.3.4. ScenariobuildingAsmentionedinsection4,thenumberofscenarioswhichcanbeassessedisnotlimited.Instead

    ofclickingonepointonthemap,theuserdefinesseveralpoints(Fig.8).

    Thevisualisationoftooloutputsforuptofivescenariosisensuredonthebasisofapdf-formatted

    report,generatedforeachtoolrun(Fig.6),whichisprovidedwithadditionalchartsfacilitatingthe

    comparisonofdifferentscenariosassessed(Fig.7)atspecificsites(Fig.8).Incaseofcalculatingmore

    thanfivescenariossimultaneously,thetoolemitsacsvfile(Tab.10).Basedonthis,scenarioscanbe

    comparedindividually(Fig.26).

  • AquaSpace 633476 AquaSpace tool manual

    43

    Figure 26: Spatially explicit performance of inter-sectorial, environmental, economic and socio-culturalindicatorsfor15differentaquacultureplanningscenarioswithM.edulis.Shownarepotentialtrade-offsinbetweentheAquaSpacetoolindicatorsbycomparingdatanormalisedinapplicationofa

    z-transformation. Indicators required merely to assess the growth performance of a species (i.e.

    chlorophyllaconcentrationatsurface,temperatureandsalinity)arenotincluded(AV=AddedValue,

    IMTA= IntegratedMulti-TrophicAquaculture,NPV=Net PresentValue, RoFTA=Returnon Fixed

    TangibleAssets).

  • AquaSpace 633476 AquaSpace tool manual

    44

    REFERENCES Aldrin,M.,Storvik,B.,Frigessi,A.,Viljugrein,H.,andJansen,P.A.2010.Astochasticmodelforthe

    assessmentoftransmissionpathwaysofheartandskeletonmuscleinflammation,pancreas

    diseaseandinfectioussalmonanaemiainmarinefishfarmsinNorway.Preventive

    VeterinaryMedicine,93:51-61.

    Alkiza,M.,Galparsoro,I.,Uyarra,M.C.,Muxika,I.,andB