decoding of exon splicing patterns in the human runx1–runx1t1

Upload: romana-masnikosa

Post on 09-Jan-2016

13 views

Category:

Documents


0 download

DESCRIPTION

decoding of exon splicing

TRANSCRIPT

  • 7/17/2019 Decoding of Exon Splicing Patterns in the Human RUNX1RUNX1T1

    1/11

    The International Journal of Biochemistry& Cell Biology 68 (2015) 4858

    Contents lists available at ScienceDirect

    The InternationalJournal ofBiochemistry& Cell Biology

    journa l homepage: www.elsevier .com/ locate /biocel

    Decoding ofexon splicing patterns in the human RUNX1RUNX1T1

    fusion gene

    Vasily V. Grineva,, Alexandr A. Migasb, Aksana D. Kirsanavaa, Olga A. Mishkovab,Natalia Siomava c, Tatiana V. Ramanouskaya a, Alina V. Vaitsiankova a, Ilia M. Ilyushonaka,Petr V. Nazarov d, Laurent Vallar d, Olga V. Aleinikovab

    a Department of Genetics, Faculty of Biology, Belarusian StateUniversity,Minsk, Belarusb Laboratory of the Genetic Biotechnology, Department of Research, Belarusian Research Center for Pediatric Oncology, Hematologyand Immunology,

    Minsk, Belarusc Department of Developmental Biology, University of Gttingen, Gttingen, Germanyd Genomics Research Unit, Luxembourg Institute of Health, Luxembourg

    a r t i c l e i n f o

    Article history:

    Received 1 May2015

    Received in revised form 12 August 2015

    Accepted 24 August 2015

    Available online29 August 2015

    Keywords:

    RUNX1RUNX1T1 fusion gene

    Alternative splicing

    Datamining

    Exons-hubs

    Power-lawbehavior

    a b s t r a c t

    The t(8;21) translocation isthemostwidespreadgenetic defect found in humanacutemyeloid leukemia.

    This translocation results in the RUNX1RUNX1T1fusion gene that produces awidevariety ofalternative

    transcripts andinfluences thecourse ofthedisease. Therules ofcombinatoricsandsplicingofexons in the

    RUNX1RUNX1T1transcripts are not known. To address this issue,wedevelopedan exongraphmodel of

    the fusion gene organization and evaluated its local exon combinatorics bythe exon combinatorial index

    (ECI). Herewe show that the local exoncombinatoricsofthe RUNX1RUNX1T1gene followsa power-law

    behavior and (i) the vast majority ofexons has a low ECI, (ii) only a small part is represented by exons-

    hubs ofsplicingwith very high ECI values, and (iii) it is scale-freeandvery sensitive to targeted skipping

    of exons-hubs. Stochasticity of the splicing machinery and preferred usage of exons in alternative

    splicing can explain such behavior ofthe system. Stochasticitymay explain up to 12% ofthe ECI variance

    and results in a number ofnon-coding and unproductive transcripts that can be considered as a noise.

    Half-life of these transcripts is increased due to the deregulation of some key genes of the nonsense-

    mediated decay system in leukemia cells. On the other hand, preferred usage ofexons may explain up

    to 75% of the ECI variability. Our analysis revealed a set of splicing-related cis-regulatory motifs that

    can explain attractiveness ofexons in alternative splicing but only when they are considered together.

    Cis-regulatorymotifs are guides for splicing trans-factors andwe observed a leukemia-specific profile of

    expression ofthe splicing genes in t(8;21)-positive blasts. Altogether, our results show that alternative

    splicing of the RUNX1RUNX1T1 transcripts follows strict rules and that the power-law component of

    the fusion gene organization confers a high flexibility to this process.

    2015 Elsevier Ltd. All rights reserved.

    1. Introduction

    Thet(8;21)translocation occursin 412%of adultand1230%of

    pediatriccasesof acutemyeloid leukemia(AML)and representsthe

    most common genetic abnormality in human leukemias (Mller

    et al., 2008). The main outcome of the translocation is the fusion

    gene RUNX1RUNX1T1, which produces a wide range of different

    transcripts (Era et al., 1995; Erickson et al., 1992; Kozu et al., 1993,

    Correspondingauthorat: Department ofGenetics,Facultyof Biology,Belarusian

    State University, Nezavisimosti Avenue 4, 220030Minsk, Belarus.

    E-mail address: grinev [email protected] (V.V. Grinev).

    2005; LaFiura et al., 2008; Lasa et al., 2002; Mannari et al., 2010;

    Miyoshi et al., 1993;Nissonet al., 1992;Saunderset al., 1996;Tighe

    and Calabi, 1994; Van de Locht et al., 1994; Yan et al., 2006; Zhang

    et al., 1997). One part of these transcripts is protein-coding, the

    other is non-coding. Both full-length and truncated isoformsof the

    fusionprotein were also found experimentally. These isoforms are

    transcriptional regulatorswithdifferent activity (Kozuet al., 2005;

    LaFiura et al., 2008; Mannari et al. , 2010; Yan et al., 2006). It is

    believed that RUNX1RUNX1T1 proteins play the critical role in

    the initiation and persistence of the t(8;21)-positive AML (Hatlen

    et al., 2012).

    A large diversity of the RUNX1RUNX1T1 transcripts raises a

    question if there is any rule of exon combination and splicing. To

    http://dx.doi.org/10.1016/j.biocel.2015.08.017

    1357-2725/2015 Elsevier Ltd. All rights reserved.

    http://localhost/var/www/apps/conversion/tmp/scratch_7/dx.doi.org/10.1016/j.biocel.2015.08.017http://www.sciencedirect.com/science/journal/13572725http://www.elsevier.com/locate/biocelmailto:[email protected]://localhost/var/www/apps/conversion/tmp/scratch_7/dx.doi.org/10.1016/j.biocel.2015.08.017http://localhost/var/www/apps/conversion/tmp/scratch_7/dx.doi.org/10.1016/j.biocel.2015.08.017mailto:[email protected]://crossmark.crossref.org/dialog/?doi=10.1016/j.biocel.2015.08.017&domain=pdfhttp://www.elsevier.com/locate/biocelhttp://www.sciencedirect.com/science/journal/13572725http://localhost/var/www/apps/conversion/tmp/scratch_7/dx.doi.org/10.1016/j.biocel.2015.08.017
  • 7/17/2019 Decoding of Exon Splicing Patterns in the Human RUNX1RUNX1T1

    2/11

    V.V. Grinev et al./ The International Journal of Biochemistry& Cell Biology 68 (2015) 4858 49

    date, only some elementsof this puzzleare known.Thus, Tigheand

    Calabi (1994) showed that thestructureof thebreakpoint regionof

    the fusion gene influences variety of its transcripts. LaFiura et al.

    (2008) found a connection between inclusion of cassette exons

    from this region and formation of premature termination codons

    (PTCs) in transcripts. At the same time, usage of some other alter-

    native exons does not lead to a PTC but produces active isoforms

    of the protein (Mannari et al., 2010; Yan et al., 2006). However,

    availabledata areinsufficientfor thefullunderstandingof thesplic-

    ingprinciplesof theRUNX1RUNX1T1transcripts.Meanwhile, this

    knowledge would allow us to clarify organization of the fusion

    gene, its properties and functional role in leukemogenesis.

    Our goalwas tofindoutwhether there isanypattern in the local

    exon combinatorics of thefusiongene. In this article, theterm local

    exon combinatorics refers to a set of alternative splicing events

    generating different mRNA isoforms from a given exon, whereas

    exon combinatorial index (ECI) is a quantitative measure of the

    localexoncombinatorics. Insteadof the conventional linearmodel,

    we used an exon graph model of the fusion gene inwhich the ECI

    is an equivalent of the topological index node degree and means a

    number of unique splicing events that involve an exon.

    Here we show that empirical distribution of ECI values of the

    RUNX1RUNX1T1 exons follows a power-law function and has

    some specific properties: the vast majority of exons has a low ECI

    while a small part is represented by exons-hubs of splicing with

    high ECI values, the distribution is scale-free and is sensitive to

    targeted skipping of exons-hubs. This distribution is formed by

    stochasticityof thesplicingmachineryandpreferredusageof exons

    in alternative splicing, where attractiveness of an exon is mostly

    determined by a set of sequence-related features. Altogether, our

    results show that alternative splicing of the RUNX1RUNX1T1

    transcripts follows strict rules and that the power-lawcomponent

    of the fusion gene organization confers a high flexibility to this

    process.

    2. Materials and methods

    2.1. Cell line, patients and healthy donors samples

    The t(8;21)-positive AML cell line Kasumi-1 (ATCC CRL-

    2724TM) was obtained from the ATCC (LGC Standards GmbH,

    Germany) and cultivated according to the standard protocol.

    Twelve young patients with t(8;21)-positive AML were

    diagnosed and treated at Belarusian Research Center for Pedi-

    atric Oncology, Hematology and Immunology (Minsk, Belarus).

    Mononuclear cellswere isolatedusingHistopaque (SigmaAldrich,

    StLouis,USA) frompatientsbonemarrowsamplesobtainedbefore

    the treatment and/or at the time of remission.

    Bonemarrowmononuclear cells(BMMNC)andperipheralblood

    mononuclear cells (PBMNC) were obtained from primary material

    of healthy donorsusingHistopaque (SigmaAldrich, St Louis,USA).

    CD34+ hematopoietic progenitor/stem cells (HPSC) were isolated

    from BMMNC of healthy individuals by magnetic separation with

    EasySepHumanCD34PositiveSelectionKit (StemCellTechnologies

    SARL,Grenoble,France).Forthefurther totalRNAisolation,weused

    only cell samples with purity of CD34+ HPSC99%.

    This studywasapproved by the institutional ethical committee

    andourresearch team followed theprinciples of theDeclaration of

    Helsinki for research involvinghuman subjects.

    2.2. cDNA synthesis, standard RT-PCR and real-time PCR

    Total cellular RNA was isolated from cells using a TRI Reagent

    (SigmaAldrich, St Louis, USA) according to the instruction of the

    manufacturer.

    For cDNA synthesis, we used 1g of total cellular RNA in the

    final reaction volume of 20l with Oligo-dT and SuperScript III

    Reverse Transcriptase Kit (Life Technologies, Carlsbad, USA). PCR

    was performedwith Platinum TaqDNAPolymerase Kit (Life Tech-

    nologies,Carlsbad,USA), 0.30.5Mofeachprimerand2l oftotal

    cDNA as a template. Real-time PCR was performed in duplicates

    on StepOnePlus Real-time PCR System (Life Technologies, Foster

    City, USA) using QuantiTect SYBR Green PCR Kit (Qiagen GmbH,

    Hilden, Germany) in 12.5l volume with 0.3

    M of each primer

    and 1l of diluted 1:2 total cDNA (final dilution 1:25) as a tem-

    plate. Abundance of target transcripts was normalized relative to

    the expression level of the TBP gene, coding a TATA box binding

    protein, as previously described (Migas et al., 2014) and quantified

    according to theRuijters approach (Ruijter et al., 2009).

    2.3. cDNA library

    Single stranded cDNA from leukemia blasts was converted

    into double-stranded cDNA and amplified by primers specific

    to annotated 5UTRs and 3UTRs of the RUNX1RUNX1T1 gene

    in standard PCR. PCR products were ligated into the pTZ57R/T

    cloning vector (ThermoScientific, Lithuania) that was used for the

    further transformation of XL1-Blue Escherichia coli strain. Recom-binant DNA was purified from the positive clones and sequenced.

    Obtainedsequenceswerealignedagainsthumanreferencegenome

    GRCh37/hg19 by BLAT (Karolchik et al., 2014), exon structure of

    transcriptswasdescribed,and newvariantsweredepositedin Gen-

    Bank (Supplementary Table 1).

    2.4. DNA gel-electrophoresis, purification and sequencing

    Amplicons were separated in 12% agarose gel and extracted

    withQIAquickGelExtraction Kit (QiagenGmbH,Hilden,Germany).

    Capillary DNA gel-electrophoresis was performed with Agilent

    2100 Bioanalyzer (Agilent Technologies, Santa Clara, USA) using

    DNA 7500 Kit according to the protocol of the manufacturer.

    Sequencing reaction was performed using BigDye v3.1 Ter-minator Cycle sequencing Kit (Applied Biosystems, Austin, USA).

    Products of the reaction were cleaned up with ethanol precipita-

    tion andanalyzedon 3130 Genetic Analyzer (Hitachi,Tokyo, Japan)

    according to the standard procedure.

    2.5. Exon graph reconstruction and manipulations

    Exon graph of the RUNX1RUNX1T1 gene was reconstructed

    according to the previously described approaches (Heber et al.,

    2002;Majoros etal., 2014). TheECIs,the shortestdistancesof exons

    in an exon graph, Kleinbergs authority scores and the assortativ-

    ity coefficient were calculated by R/Bioconductor package igraph

    v.0.6.5-2 (Csardi andNepusz, 2006).

    Kleinbergs authorityscore is a local topological index that indi-cateswhether there isa tendency forsplicingof exonswithhighECI

    values together (Kleinberg, 1999; Newman, 2003). Potential clus-

    tering of exons by Kleinbergs authority score was evaluated by

    k-meansmethod implemented in R.We used Akaike and Bayesian

    information criteria to identify theoptimal numberof clusters and

    R/Bioconductorpackage ConsensusClusterPlusv.1.22.0 (Wilkerson

    andWaltman, 2015) with 1000 subsamples to investigate thecon-

    sensus between the clusters.

    The assortativity coefficient is a global characteristic of an exon

    graph (Newman, 2002). If this coefficient is 1, the graph is per-

    fectly assortativeandexons stronglyprefer splicingwiththe similar

    exons (in terms of ECI values). Otherwise, when the coefficient is

    1, the graph is completely disassortative and exons with high

    ECI values are spliced with exons with low ECIs and vice versa.

  • 7/17/2019 Decoding of Exon Splicing Patterns in the Human RUNX1RUNX1T1

    3/11

    50 V.V. Grinev et al. / The International Journal of Biochemistry& Cell Biology 68 (2015) 4858

    Finally, in the absence of any preferences for splicing, the graph

    is non-assortative and the coefficient is 0.

    2.6. Fitting of statistical models to empirical data

    Initially, we rejected those statistical models that clearly do

    not fit the empirical distribution and obtained five closest mod-

    els: power-law, power-lawwith exponential cut-off, exponential,

    stretchedexponential (orcomplementarycumulativeWeibull)andlog-normal distributions.Then,we fittedselectedstatisticalmodels

    to theempirical distributionaccording to xmin paradigm (Clauset

    et al., 2009). Finally, goodness-of-fit test, log-likelihood ratio test,

    KolmogorovSmirnov test and Akaike and Bayesian information

    criteriawereused toassessthe plausibilityof thestatisticalhypoth-

    esis and for the direct comparison of alternative statistical models

    (Clauset et al., 2009; Klaus et al., 2011; Vuong, 1989).

    2.7. Identification of the significant open reading frames (ORFs)

    and PTC in transcripts

    Primarily, all possible ATG-ORFswere identified in transcript(s)

    of interest. Next, for each empirical transcript, 100 random

    sequences with the same length were generated using a multi-nomial model (Ababneh et al., 2006). This new set of artificial

    transcripts was used to identify of ORFs. Finally, 99th percentile

    of the distribution formed by lengths of artificial ORFs was used

    as a threshold for identification of the true ORF(s) in the empiri-

    cal transcript. Transcripts with no significant ORFs were classified

    as non-coding. To identify PTCs, exonic structure and coordinates

    of ORF(s) in the transcript of interest were matched. A transcript

    wasannotatedasPTC-containing if theendof itsORFwaslocalized

    upstream of the last exonexon junction in the transcript.

    2.8. Development of a short-list of the most important

    nonsense-mediated decay (NMD) and splicing genes

    We used a three-step approach to select genes into a short-list.First, wedownloadedmicroarraydatafor t(8;21)-positiveAMLand

    normal hematopoietic cells (Supplementary Table 2) from NCBI

    GEO repository (Barrett et al., 2011). We used this set of microar-

    rays for two-classdifferentialgeneexpression analysiswith limma

    v.3.22.1 (Smyth, 2005) and selected genes with at least 2-fold sta-

    tistically significant difference in expression.Second, we useda set

    of differentially expressed genes from the first step and leukemia

    microarray data to reconstruct a gene regulatory network with

    ARACNE2 algorithm (Margolin et al., 2006). For genes from this

    network, we calculated combined centrality scores (del Rio et al.,

    2009). Finally,we functionallyannotatedtop-scoredgenesfromthe

    secondstep andselectedonly hub-like entities into thefinal short-

    list. This three-step approach allowed us to focus only on the most

    interesting NMD and splicing genes and to verify their differentialexpression by real-timePCR in limited clinical material.

    2.9. Data mining by regression random forests

    All important sequence features were selected with Boruta

    v.3.1.0 (Kursa and Rudnicki, 2010). Machine learning was carried

    outwith package randomForest v.4.6-7 (Breiman et al., 2013; Liaw

    and Wiener, 2002) in regression forests mode for nonlinear mul-

    tiple regression. Importance of each feature was determined via

    calculation of the mean decrease in accuracy of ECI value predic-

    tion after randompermutation of theoriginal valuesof thefeature.

    Accuracyof thepredictionwasevaluatedbySpearmans between

    empirical and predicted values of the ECI and by the coefficient of

    determination. For integrated representation of the complex data,

    an implementation of Circos plot in R package circlize v.0.2.5 was

    used (Gu, 2015; Krzywinski et al., 2009).

    2.10. Modeling of the exon skipping

    For this kindof analysis, weused a general approach developed

    by Trajanovski et al. (2013). Theoretically expected exon graph-

    generated transcripts were identified with the full crawl of the

    graph. In order to produce stable and reproducible results, 1000simulations weremade for each fraction of the skipped exons.

    3. Results

    3.1. The RUNX1RUNX1T1 gene is a source of unprecedented

    diversity of mRNA products

    Toreconstruct theexon graph,we created a comprehensive col-

    lection of transcripts of the fusion gene. We identified 102 unique

    full-lengthtranscriptsand8uniqueexpressedsequence tags(ESTs)

    of the gene of interest in PubMed, GenBank and ChimerDB 2.0

    databases(Bensonet al., 2013;Era et al., 1995;Ericksonet al., 1992;

    Kim et al., 2010; Kozu et al., 1993, 2005; LaFiura et al., 2008; Lasa

    et al., 2002; Mannari et al., 2010; Miyoshi et al., 1993; Nisson et al.,1992; Saunders et al., 1996; Sayers et al., 2012; Tighe and Calabi,

    1994; Van deLocht et al., 1994; Yan et al., 2006; Zhang et al., 1997).

    In these sources, exon structure of all transcripts was described,

    but the nucleotide sequence of some rare and unique exons was

    not published. Therefore, we were able to fully reconstruct the

    nucleotide sequence for 61.8% of full-length transcripts, and the

    sequence of remaining transcripts was restored only partially.

    To complete our collection, we created a cDNA library. The

    library is based on cDNA from bone marrow samples of 12 young

    patients with t(8;21)-positive AML(Supplementary Table 3) and

    Kasumi-1 cells. For cDNA amplification, we used forward primers

    directed to5UTR exons 1, 4a/4b, 7a/7c, 7d, 8a and 11a and reverse

    primers directed to 3UTR exons 12a, 15a, 17a and 17of the fusion

    gene. We also used primers specific to internal exons to amplifyrare andpoorly detected transcripts (Fig. 1; Supplementary Tables

    4 and 5).

    In our cDNA library, we identified 33 new full-length and 55

    short EST-like transcripts (Supplementary Table 1). This helped us

    to expand significantly the list of known transcripts of the fusion

    gene: current collection includes 135 full-length and 63 EST-like

    sequences. From 55 newly found ESTs, 30 sequences matched the

    full-length transcripts of the fusion gene only partially. It means

    that in t(8;21)-positive leukemia exists a subset of rare or hardly

    amplified full-length transcripts that were not identified so far.

    3.2. Power-law behavior of the local combinatorics of the

    RUNX1RUNX1T1 exons

    To find out the character of the local exon combinatorics, we

    developedan exongraphof thefusion gene organization. This exon

    graph is based on full-length transcripts and includes 99 exons

    connected by 163 splicing events (Fig. 2A).

    We quantified the exon usage in different alternative splicing

    events by the exon graph topology analysis and expressed this

    metric with ECI values. This index falls in the range from 1 to 34

    with high standard deviation of 5.1. Visual inspection of the ECI

    value distribution lead us to thehypothesis that this index follows

    a power-law function. To test this hypothesis, we used a three-

    step approach (Section 2) based on the mathematical formalism

    of (Clauset et al., 2009; Virkar and Clauset, 2012). Our statistical

    tests supported the power-law model y=x2.31 of the observed

    distribution (Fig. 2B).

  • 7/17/2019 Decoding of Exon Splicing Patterns in the Human RUNX1RUNX1T1

    4/11

    V.V. Grinev et al./ The International Journal of Biochemistry& Cell Biology 68 (2015) 4858 51

    Fig. 1. A set of primers specific forterminal or internal exons of human RUNX1 andRUNX1T1 geneswasused forthe RUNX1RUNX1T1 gene cDNA library construction.

    Analysis of the cumulative distribution shows that approxi-

    mately 80%of exons of theRUNX1RUNX1T1gene have a small ECI

    value 3. This exon group represents cassette (mainly UTR exons

    and exons from the breakpoint region) and constitutive (most of

    the exons from3-RUNX1T1part of the fusion gene) exons that arenot involved in alternative splicing.

    At the same time, about 20% of the remaining exons have high

    combinatorial index 4. These exons form a heavy right tail of

    the empirical distribution. They are constitutive and are widely

    used in alternative splicing as the exons of this group account

    for about 80% of the total diversity of splicing events occurred in

    the fusion gene transcripts. Noteworthy, exons 5, 6, 8b, 9, 10 and

    11 are the most interesting: about 64% of the diversity of splic-

    ing events occurs involving these exons. Herewith, exons 5 and 6

    encode almost entire DNA binding Runt homology domain RHD

    of the RUNX1RUNX1T1 protein (Meyers et al., 1993) and exon 8

    encodes a polypeptide bridge that connects RUNX1 and RUNX1T1

    parts of the fusion protein. As for exons 9, 10 and 11, they encode

    the first conservative domainNHR1 from the RUNX1T1 part of the

    RUNX1RUNX1T1 protein (Davis et al., 2003).

    To clarify the relationship between the two groups of exons

    mentionedabove,weevaluatedsplicingpreferencesof theseexons

    byKleinbergs authority score and theassortativity coefficient.Wefoundthataccording totheauthorityscore allexonscanbegrouped

    into three stableclusterswith consensushigher than 0.95.Thefirst

    cluster includedexonswithextremelylowauthorityscorebetween

    4.4e18 and 5.4e2 (dark-green balls, Fig. 2C), the second clus-

    terwas composed of exonswith moderate authority score ranging

    from6.6e2 to0.3 (redballs, Fig. 2C) and, finally, theoutlyingexon

    8b was always considered as the third cluster (blue ball, Fig. 2C).

    Herewith, the second cluster is represented by exons with ECI val-

    ues ranging from 2 to 31 (mean 4.4) that is on average 2.1 times

    higher (p=0.0006, MannWhitney U test) than for exons of the

    first cluster withECI values ranging from1 to9 (mean 2.1). Despite

    this, theassortativity coefficient for thewhole exon graph is0.38,

    which is apparently duetoa significantpredominance of theexons

    Fig. 2. Thelocalcombinatorics of RUNX1RUNX1T1 exons follows a power-lawbehavior. (A)Exongraphof theRUNX1RUNX1T1gene.Exonswereclustered into 23 groups

    (E) based on the genomic origin and/or overlapping of sequences. For each group, a well-known reference exon is shown in parentheses. (B) The power-lawbehavior of

    the local combinatorics of RUNX1RUNX1T1 exons is supported by statistical tests on plausibility. The power-law function is good fitted (red dashed line) to the heavy

    right tailof empirical data (bluediamonds)and has the lowest KolmogorovSmirnovdistanceD and thehighest bootstrapp-value among competing statistical models (see

    Section 2). (C) Exons can be grouped into three stable clusters based on Kleinbergs authority score. However,most of exons have extremely lowor moderate values of the

    authority score.(For interpretation of thereferences to color in this figurelegend, thereader is referred to theweb version of this article.)

  • 7/17/2019 Decoding of Exon Splicing Patterns in the Human RUNX1RUNX1T1

    5/11

    52 V.V. Grinev et al. / The International Journal of Biochemistry& Cell Biology 68 (2015) 4858

    1.00.80.60.40.20.00.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Cum

    ulativeprobability

    Normalized ECI value

    1

    43

    2

    420-2-40

    10

    20

    30

    40

    ECIvalue

    Position of exon in transcripts

    A B

    Fig. 3. Stochastic noise in the splicing machinery and thepositional distribution of exons in transcripts make a minor contribution to the variance of ECI values. (A) There

    is a clear and significant difference between thecumulative curve of theempirical ECI values(line 1) and thetheoretical cumulative curve fora randomexon graph (line 2)

    (p=1.4108 , MannWhitneyU test). No significant difference was found between empirical andnon-coding (line 3) or unproductive (line 4) noise corrected cumulative

    distributions (p>0.05,MannWhitneyUtest). Distributionswerenormalized to theirmax values. (B)Exonswith high ECIvalues tend tooccupya position close to thecenter

    oftranscripts that include theexon of interest. In this figure, the corresponding position of an exon that is close to the5 end (left to thecenter, indicatedby 0) is displayed

    by a negative value,whilean exonclose to the 3 endis indicatedby a positive value.

    with a moderate or low authority score and low ECI values in the

    graph.

    3.3. Stochasticity makes a minor contribution to the variance ofECI values

    The power-law distribution cannot result only from random

    splicing of the RUNX1RUNX1T1 exons. Thus, cumulative dis-

    tribution of the empirical ECI values is clearly and significantly

    different from the theoretical curve for a random graph (Fig. 3A).

    Nevertheless, we evaluated contribution of randomness to the

    local combinatorics of the RUNX1RUNX1T1 exons because it is

    an important source of diversity of alternative splicing events in

    human transcriptome (Melamud and Moult, 2009; Pickrell et al.,

    2010).

    For this purpose, we first identified noise splicing events that

    lead to the formation of non-coding transcripts or unproductive

    transcripts with a PTC. These two categories of noise accountfor about 13% and 26% of the splicing events diversity in the

    RUNX1RUNX1T1 transcripts, respectively. However, the empiri-

    calcumulative distributionof ECIvaluesbecomes slightly different

    only after correction forunproductivesplicing butnot after correc-

    tion forsplicingeventsthat lead tonon-coding transcripts (Fig.3A).

    Additionally, we evaluated the relationship between position

    of an exon in transcripts and its ECI value. We performed this

    analysis because the fusion gene is characterized by a large vari-

    ety of cassette UTR exons and exons from the breakpoint region.

    We expected that such organization of the gene gives a chance to

    the nearest constitutive exons to get a high rank ECI. However,we

    foundonly amoderatecorrelation between thepositionaldistribu-

    tion of the exons and the distribution of their ECI values (=0.455,

    p=2.2106

    ; Fig. 3B).Froma random forests-based nonlinearmultiple regression,we

    found that the noise splicing and the positional chance explained

    not more than 12% of the ECI variance. Therefore, stochasticity is

    only a minor factor in formation of the ECI value.

    3.4. Deregulation of the NMDgenes in leukemia cells may explain

    a high abundance of unproductive RUNX1RUNX1T1 transcripts

    Inourdataset,about38%ofmRNAmolecules arePTC-containing

    transcripts. Although these transcripts are potential targets for

    NMD system, their expression remains at relatively high level.

    For example, inclusion of exon 15a as an internal exon (amplicon

    exons 15a-15, Fig. 4A) always leads to formation of transcripts

    with a PTC, which expression is comparable with that of some

    transcripts without PTC (for instance, mRNAs with termination in

    exon 17a; amplicon exons 16-17a, Fig. 4B).

    Highfrequencyof transcripts containingPTC suggests thatthere

    can be a dysfunction of the NMD system in t(8;21)-positive AML.To check this hypothesis, we developed a shortlist of the most

    important NMD genes that are responsible for different steps of

    decay of PTC-containing mRNA molecules. Real-time PCR con-

    firmed differential expression of some of these genes in leukemia

    cells comparing to the normal CD34+ HPSC, BMMNC and PBMNC

    (Fig. 4C). In particular, we found a disbalanced expression of

    some key components of the exon junction complexes (EJCs) in

    leukemia blasts: CASC3 gene was 3.23.9-fold downregulated,

    whereas MAGOH and RBM8A genes were from 1.6 to 3.3 times

    upregulated.Herewith,it wasshownthat theMAGOH-RBM8Ahet-

    erodimer through interaction withEJCs regulatorWIBG/PYMleads

    to the disassembly of EJCs in the cytoplasm and enhances trans-

    lation of EJCs-bearing spliced mRNAs by recruiting them to the

    ribosomal48Spreinitiationcomplex (Gehring et al., 2005). Anotherobservationwas that theexpression of SMG1 andUPF2 genes, cod-

    ing important components of the NMD machinery, is significantly

    reduced (on average 1.64.4 times) and the expression of UPF1

    gene, coding the key effector of the whole NMD process, tends to

    decrease with statistical significance observed only in the com-

    parison with BPMNC. There was also a 1.85.0-fold decrease in

    the expression of UPF3A (comparing to BMMNC and PBMNC) and

    GSPT1 (when compared to CD34+ HPSC and BMMNC) genes, cod-

    ing proteins responsible for the recruitment of UPF1 to ribosomes

    stalled on PTC-containing mRNAs. Similar decrease was found for

    SMG5, SMG6 and SMG7 genes, coding downstream effectors that

    are involved in degradation of transcriptsmarkedforNMD. Finally,

    expression of DCP1B (comparing only to CD34+ HPSC) and DCP2

    (comparing to all types of the normal hematopoietic cells) genes,coding core components of the mRNA decapping complex, was

    diminished from 2.4 to 6.5 times.

    In addition, we observed a significant correlation between the

    expression ofNMDgenesand someof mRNAisoformsof the fusion

    gene (Fig. 4D). Altogether, these results indicate that NMD genes

    fromdifferent steps of decayof PTC-containingmRNAshave a spe-

    cific expression profile in t(8;21)-positive AML that presumably

    contributes to the diversity of RUNX1RUNX1T1 transcripts.

    3.5. Different attractiveness of the RUNX1RUNX1T1 exons for

    alternative splicing is associatedwith sequence-related features

    The simplest explanation for the observed power-lawdistribu-

    tion is a preferential attachment (Albert and Barabasi, 2002). In

  • 7/17/2019 Decoding of Exon Splicing Patterns in the Human RUNX1RUNX1T1

    6/11

    V.V. Grinev et al./ The International Journal of Biochemistry& Cell Biology 68 (2015) 4858 53

    Fig. 4. Activity of the NMD system in children t(8;21)-positive AML cells is deregulated. (A) In NMD study, five different RUNX1RUNX1T1 cDNA-based ampliconswere

    quantified by real-timePCR. Quantity of theamplicon exons15a-15 indicatesthe expression level of transcripts comprising exon 15a as an internal exon.When exon 15a

    is used as an internal exon, it introduces a PTCin themature transcript. (B)According to real-timePCR andstatistical analysis,RUNX1RUNX1T1 mRNA isoforms containing

    exons 11-12a, 15a, 15a-15, 16-17a or 16-17 are differentially expressed in leukemia cells. Herewith, expression level of transcripts with internal exon 15a is similar to

    transcripts with exons 16-17a, which do not include a PTC (p=0.79, MannWhitney Utest). However, it is assumed that exon 15a can be not only an internal but also a

    3UTRexon. Inparticular,the overall expression level of transcripts containingexon 15a is significantlyhigher thanlevel of thePTC-containingtranscriptswithexons 15a-15

    (p

  • 7/17/2019 Decoding of Exon Splicing Patterns in the Human RUNX1RUNX1T1

    7/11

    54 V.V. Grinev et al. / The International Journal of Biochemistry& Cell Biology 68 (2015) 4858

    Fig. 6. Sequence features of humanRUNX1RUNX1T1 exons andflanking introns may determine the value of the ECI. (A) All sequence features were extracted from three

    classes of mRNA structure elements. The first class includes features of the target exon (exon of interest; STEE ) and its flanking 5 (STE

    51) and 3 (STE

    31) intronic sequences. The

    second class contains features of the upstream first neighboring exons (SUSEE ) and their flanking 5 (SUSE

    51) and 3 (SUSE

    31 ) intronic sequences. Finally, the third class includes

    features of the downstream first neighboring exons (SDSEE ) and corresponding flanking 5 (SDSE

    51) and 3 (SDSE

    31) intronic sequences. (B) Sequence features are not equal in

    importance for the prediction of the ECI value. The important features were ranked according to the mean decrease in the accuracy of the ECI value prediction after the

    random permutation of theoriginal feature values. An insertion of Venn diagram shows an overlap between the selected important features for the three types of the ECI.

    (C) A complex relationshipbetween thesequence features andthe ECIvalue. None of thesequence features can reliably predict theECI value. Such predictions canbe made

    on a compendium of features.The inner track of Circosplot includes sectors of combined set of features that were selected as significant in prediction of thevalueof thein-,

    out- and/ortotal-ECI.Widthof each sectoris proportionalto thestrengthof thecorrespondingfeature effecton theECI value.Positive ornegativecharacter of this effectwas

    inferred from thecorrelation analysis. Theouter track of theplot contains features of differentsubclasses.(D) Ourcompendium of thesequence features permits to predict

    the values of the ECI by regression random forests with a high accuracy. The line plot demonstrates a binned distribution of Spearmans between the real values of the

    ECI from the test subset of empirical data and thepredicted values. This plot is based on 1000 simulations of theoriginal and randomly permutated ECI values. Lines 1 and

    1 represent theoriginal andpermutated total-ECI, lines 2 and2 show the original and permutated in-ECI, and lines 3 and 3 indicate the original and permutatedout-ECI,

    respectively.

    Model experiments demonstrated that selected features per-

    mit to predict the ECI value with high accuracy. For instance, the

    median of Spearmans between values predicted by the trained

    algorithm and empirical values of the total-ECI is 0.86 (Fig. 6D),

    and the adjusted coefficient of determination equals to 0.75. We

    observed thesame results forin- andout-ECIs (Fig. 6D). Altogether,

    our data provide an evidence that sequence features and the ECI

    value of theRUNX1RUNX1T1 exons are closely interrelated.

    3.6. Differential expression of splicing genes correlates withabundance of the RUNX1RUNX1T1 isoforms

    It iswell known that cis-regulatorymotifs serve as guidemarks

    for splicing trans-factors (Wang et al., 2012). Therefore, theoreti-

    cally discovered interconnection between a sequence feature and

    an exon splicingmay be only a statistical phenomenon if cells lack

    the corresponding trans-acting protein. To verify some theoretical

    achievements from the above mentioned data mining, we devel-

    oped a short list of themost importantsplicinggenesandevaluated

    their expression by real-timePCR.

    The most interesting observation was related to the expres-

    sion of the RBFOX3 gene. This gene is not expressed or expressed

    under the threshold of the real-time PCR sensitivity in normal

    hematopoietic cells. However, both qualitative and quantitative

    analysesconfirmeditsexpressionin t(8;21)-positive leukemiacells

    (Fig. 7A and B). Moreover, we found RBFOX3binding sites in flank-

    ing introns of some RUNX1RUNX1T1 exons. Frequency of these

    sites was selected as an important feature by the regression ran-

    domforestsalgorithm(SupplementaryTable 7), andweobserveda

    significant correlationbetween expression of theRBFOX3geneand

    expression of somemRNA isoforms of the fusion gene in leukemia

    cells (Fig. 7D).

    The differential expression and the significant correlationwere

    confirmed for other splicing genes aswell, in particular, for SRSF6,

    RBM25, PTBP1 and TIA1genes (Fig. 7C andD). Therefore, a numberof splicing-related genes are differentially expressed in t(8;21)-

    positive leukemia cells. This fact may contribute to the diversity

    of mRNAproducts of the fusion gene.

    3.7. Exons with high ECI values are hot points of the

    RUNX1RUNX1T1 mRNA splicing

    Apower-lawgraph ishighlysensitiveto targetedattacksagainst

    important vertices (Iyer et al., 2013; Schneidera et al., 2011). The

    RUNX1RUNX1T1 exon graph has a power-law component and it

    mayhave thesameproperty.To check this hypothesis,wemodeled

    a skipping of exons by the splicing system and an outcome of such

    a skipwas evaluated with five metrics (Fig. 8).

  • 7/17/2019 Decoding of Exon Splicing Patterns in the Human RUNX1RUNX1T1

    8/11

    V.V. Grinev et al./ The International Journal of Biochemistry& Cell Biology 68 (2015) 4858 55

    Fig. 7. Genes of splicing factors differentially expressed in t(8;21)-positive AMLblasts. (A) TheRBFOX3gene is not expressedor expressedunderthe thresholdof detection

    by RT-PCR in normalhematopoietic cells butthis gene is expressed in leukemia cells.The lanes on theupperelectrophoregram:Fermentas GeneRulerTM 100bp DNALadder

    Plus (1), amplification of cDNA of the TBP gene from Kasumi-1 cells (2), amplification of cDNA of the RBFOX3 gene fromnormal PBMNC (3, 5), BMMNC (7, 9), CD34+ HPSC

    (11, 13) and from Kasumi-1 cells (15) and amplificationof cDNA of theRBFOX3gene from respective RT negative controls (4, 6, 8, 10, 12, 14, 16). The lanes on the bottom

    electrophoregram: Fermentas GeneRulerTM 100bp DNA Ladder Plus (1), amplification of cDNA of the RBFOX3 gene from the bonemarrow samples of nine children with

    t(8;21)-positive AML(2, 4,6, 8,10, 12, 14, 16, 18) and respectiveRT negative controls (3, 5, 7, 9, 11, 13, 15, 17, 19). (B) Real-timePCRconfirms thedifferential expression

    of the RBFOX3 gene in normal and malignant hematopoietic cells. Expression of the RBFOX3 gene was normalized relative to the expression of the TBP gene, and then

    re-normalized to theexpressionof this gene in Kasumi-1cells. Thepicture showsanaveragedexpression of theRBFOX3 gene in4 samples of normalCD34+HPSC, 5 samples

    ofnormal BMMNC,5 samples of normal PBMNC and9 bonemarrowsamples of childrenwith t(8;21)-positive AML. (C) There is a significant (according toMannWhitneyU

    test) differential expressionof thesplicing factors genes in leukemia cellsin comparison withnormal hematopoietic cells. (D) Correlation between expressionof the splicing

    factors genes andmRNA isoforms of theRUNX1RUNX1T1 gene.

    We found that targeted skipping of exons with the top ranked

    ECI values leads to a very rapid drop in values of all fivemetrics. At

    thesame time,weobserved a rather slow decline ofmetrics values

    when low ECI exons were skipped, and that was proportional to

    the fraction of excluded exons. Herewith, the above observations

    were applied to both experimentally detected and theoretically

    possible transcripts that canbe generatedby exon graph. Interest-

    ingly,a setof expectedtranscripts includes43,486entitiesof which

    experimentallyverified transcripts representonly0.3%. Altogether,

    these results indicate that the power-lawcomponent of the fusion

    gene organization confers a high flexibility to alternative splicing

    of RUNX1RUNX1T1 transcripts.

    4. Discussion

    In this work, we showed that local combinatorics of the

    RUNX1RUNX1T1 exons followa power-lawbehavior.This behav-

    ior is also typical for exons of normal RUNX1 and RUNX1T1 genes

    and for the whole set of exons of human transcriptome (data not

    shown).

    The observed power-law distribution has four key properties.

    First, the vast majority of exons has low values of the ECI. These

    exons aremostly represented by constitutive exons encoding con-

    served RUNX1T1 domains of the fusion protein, UTR exons and

    cassette exons from the breakpoint region. In fact, theNLS-NHR2-

    NHR3-NHR4 coding part of the fusion gene (from 3

    -end of exon

    11 to 5-end of exon 17) is the most constant in terms of splicing.

    This is consistent with the empirical data showing that RUNX1T1

    domains arevery importantfor thefusionprotein functionandany

    alternative splicingeventsin this areamay cardinally change activ-

    ity oftheprotein (Parket al.,2009;Sunetal.,2013;Yanetal., 2006).

    At the same time, a high diversity and a low individual abundance

    in transcripts may be the main reasons why UTR exons and exons

    from the breakpoint region are fallen in a group with low values of

    the ECI.

    Second, a small part of exons have high ECI values. This part

    includes constitutive exons-hubs that participate in different

    splicing mechanismsandmostly contribute to alternative splicing.Thus, about 80% of the splicing events with exon 5 use alternative

    5 splice sites of 5UTR exons. At the same time, about 70% of the

    splicing events involving exons 6 and 8b use alternative 5 or 3

    splice sites of cassette exons from the breakpoint region. Most of

    these exons were found by LaFiura et al. (2008), we identifiedonly

    twonewsequencesfromthebreakpoint region. Perhaps, this isdue

    to patient specificity and rarity of such exons.

    It is interesting tonote thatmostof the exonswithhighECI val-

    uesbelong tothesecondand thethirdclustersbasedon Kleinbergs

    authority score. Moreover, these exons encode Runt homology

    domain RHD, NHR1 domain and the polypeptide bridge, uniting

    RUNX1- and RUNX1T1-parts of the fusion protein. Herewith, the

    RHD domain is responsible for specific DNA binding and the NHR1

    domain provides heterodimerization of the fusion protein with

  • 7/17/2019 Decoding of Exon Splicing Patterns in the Human RUNX1RUNX1T1

    9/11

    56 V.V. Grinev et al. / The International Journal of Biochemistry& Cell Biology 68 (2015) 4858

    0

    20

    40

    60

    80 1000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Normalized

    valueofmetric

    Fraction of skipped exons0 20 40 60 80 100

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Normalized

    valueofmetric

    Fraction of skipped exons

    0 20 40 60 80 1000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Normalizedvalueofmetric

    Fraction of skipped exons0 20 40 60 80 100

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Normalizedvalueofmetric

    Fraction of skipped exons

    A B

    Legend:diversity of transcriptsaverage size (in number of exons) of transcriptsaverage length (in number of nucleotides) of transcriptsaverage length of ORFportion of transcripts containing PTC

    Fig. 8. In silicomodeling supports a strongsensitivity of splicing of RUNX1RUNX1T1 transcripts to skipping of exonswith high ECIvalues. (A) Skipping of exons that were

    listedin thedescending order of their ECI values: experimentally verified transcripts (onthe top), predictedtranscripts(on thebottom).(B) This picture is similar to (A), but

    exonswere excluded from splicing process in theascending order of values of their ECI.

    othertranscriptional regulators (HugandLazar,2004;Tahirovetal.,

    2001; Zhang et al., 2004). Consequently, intense alternative splic-

    ing of these exons can effect DNA-binding activity of the fusion

    protein(s), ways of RUNX1- and RUNX1T1-parts combination and

    ability to formmultimeric regulatory complexes.

    Third,the ratiobetween thenumberofexonswith lowand high

    values of theECI is constant because thepower-lawdistribution is

    scale-free (Newman, 2005). In fact, this ratio did not change and

    exonsdidnot alter rankswhenweexpandedtheRUNX1RUNX1T1

    exongraphby ESTs( =0.99,p

  • 7/17/2019 Decoding of Exon Splicing Patterns in the Human RUNX1RUNX1T1

    10/11

    http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0195http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0195http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0195http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0195http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0195http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0195http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0195http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0195http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0195http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0195http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0195http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0195http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0195http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0195http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0195http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0195http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0195http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0195http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0190http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0185http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0185http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0185http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0185http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0185http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0185http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0185http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0185http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0185http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0185http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0185http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0185http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0180http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0180http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0180http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0180http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0180http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0180http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0180http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0180http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0180http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0180http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0175http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0170http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0170http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0170http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0170http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0170http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0170http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0170http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0170http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0170http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0170http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0170http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0170http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0165http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0165http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0165http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0165http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0165http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0165http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0165http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0165http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0165http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0165http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0165http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0165http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0165http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0165http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0165http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0160http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0160http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0160http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0160http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0160http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0160http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0160http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0160http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0160http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0160http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0160http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0155http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0155http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0155http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0155http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0155http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0155http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0155http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0155http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0155http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0155http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0155http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0155http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0155http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0155http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0155http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0155http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0150http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0145http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0145http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0145http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0145http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0145http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0145http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0145http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0145http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0145http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0145http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0145http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0145http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0145http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0140http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0140http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0140http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0140http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0140http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0140http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0140http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0140http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0140http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0140http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0140http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0140http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0135http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0135http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0135http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0135http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0135http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0135http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0135http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0135http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0135http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0135http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0135http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0135http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0135http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0135http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0135http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0135http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0135http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0135http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0135http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0135http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0135http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0135http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0135http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0130http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0125http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0125http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0125http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0125http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0125http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0125http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0125http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0125http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0125http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0125http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0125http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0125http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0120http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0120http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0120http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0120http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0120http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0120http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0120http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0120http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0120http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0120http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0120http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0120http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0120http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0120http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0115http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0115http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0115http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0115http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0115http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0115http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0115http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0115http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0115http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0115http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0115http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0115http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0115http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0115http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0110http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0110http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0110http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0110http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0110http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0110http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0110http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0110http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0110http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0110http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0110http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0110http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0110http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0110http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0110http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0110http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0105http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0100http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0100http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0100http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0100http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0100http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0100http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0100http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0100http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0100http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0100http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0100http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0100http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0100http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0100http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0100http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0100http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0095http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0095http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0095http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0095http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0095http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0095http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0095http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0095http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0095http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0095http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0095http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0090http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0090http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0090http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0090http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0090http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0090http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0090http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0085http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0085http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0085http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0085http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0085http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0085http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0085http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0085http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0085http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0085http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0085http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0085http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0085http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0085http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0080http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0080http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0080http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0080http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0080http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0080http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0080http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0080http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0080http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0080http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0080http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0075http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0075http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0075http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0075http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0075http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0075http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0075http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0075http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0075http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0075http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0075http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0075http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0075http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0075http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0075http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0075http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0075http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0075http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0075https://cran.r-project.org/web/packages/circlize/index.htmlhttps://cran.r-project.org/web/packages/circlize/index.htmlhttps://cran.r-project.org/web/packages/circlize/index.htmlhttps://cran.r-project.org/web/packages/circlize/index.htmlhttps://cran.r-project.org/web/packages/circlize/index.htmlhttps://cran.r-project.org/web/packages/circlize/index.htmlhttps://cran.r-project.org/web/packages/circlize/index.htmlhttps://cran.r-project.org/web/packages/circlize/index.htmlhttps://cran.r-project.org/web/packages/circlize/index.htmlhttps://cran.r-project.org/web/packages/circlize/index.htmlhttp://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0065http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0065http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0065http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0065http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0065http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0065http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0065http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0065http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0065http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0065http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0065http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0065http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0065http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0065http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0065http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0065http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0065http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0065http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0065http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0065http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0060http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0055http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0050http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0050http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0050http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0050http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0050http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0050http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0050http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0050http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0050http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0050http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0050http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0050http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0050http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0050http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0050http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0050http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0050http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0050http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0050http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0045http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0045http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0045http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0045http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0045http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0045http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0045http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0045http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0045http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0045http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0045http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0045http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0045http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0040http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0040http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0040http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0040http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0040http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0040http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0040http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0040http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0040http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0035http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0035http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0035http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0035http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0035http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0035http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0035http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0035http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0035http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0035http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0035http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0035http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0035http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0030http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0030http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0030http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0030http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0030http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0030http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0030http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0030http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0030http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0030https://cran.r-project.org/web/packages/randomForest/index.htmlhttps://cran.r-project.org/web/packages/randomForest/index.htmlhttps://cran.r-project.org/web/packages/randomForest/index.htmlhttps://cran.r-project.org/web/packages/randomForest/index.htmlhttps://cran.r-project.org/web/packages/randomForest/index.htmlhttps://cran.r-project.org/web/packages/randomForest/index.htmlhttps://cran.r-project.org/web/packages/randomForest/index.htmlhttps://cran.r-project.org/web/packages/randomForest/index.htmlhttps://cran.r-project.org/web/packages/randomForest/index.htmlhttps://cran.r-project.org/web/packages/randomForest/index.htmlhttp://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0020http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0020http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0020http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0020http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0020http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0020http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0020http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0020http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0015http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0015http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0015http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0015http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0015http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0015http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0015http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0015http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0015http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0015http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0015http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0015http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0015http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0015http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0015http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0015http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0015http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0015http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0015http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0010http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0010http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0010http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0010http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0010http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0010http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0010http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0010http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0010http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0010http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0010http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0010http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0005http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0005http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0005http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0005http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0005http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0005http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0005http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0005http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0005http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0005http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0005http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0005http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0005http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0005http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0005http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0005http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0005http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0005http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0005http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0005http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0005http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0005http://dx.doi.org/10.1016/j.biocel.2015.08.017http://dx.doi.org/10.1016/j.biocel.2015.08.017http://dx.doi.org/10.1016/j.biocel.2015.08.017http://dx.doi.org/10.1016/j.biocel.2015.08.017http://dx.doi.org/10.1016/j.biocel.2015.08.017http://dx.doi.org/10.1016/j.biocel.2015.08.017http://dx.doi.org/10.1016/j.biocel.2015.08.017http://dx.doi.org/10.1016/j.biocel.2015.08.017http://dx.doi.org/10.1016/j.biocel.2015.08.017http://dx.doi.org/10.1016/j.biocel.2015.08.017http://dx.doi.org/10.1016/j.biocel.2015.08.017
  • 7/17/2019 Decoding of Exon Splicing Patterns in the Human RUNX1RUNX1T1

    11/11

    58 V.V. Grinev et al. / The International Journal of Biochemistry& Cell Biology 68 (2015) 4858

    Miyoshi, P.,Kozu, T., Shimizu, K., Enomoto, K.,Maseki, N., Kaneko, Y., et al., 1993.Thet(8;21) translocation in acutemyeloid leukemia results in production of anAML1MTG8 fusiontranscript. EMBO J. 12, 27152721.

    Mller, A.M.S., Duque,J., Shizuru, J.A., Lbbert, M., 2008. Complementingmutationsin core binding factor leukemias: frommousemodels to clinicalapplications. Oncogene 27, 57595773.

    Newman,M.E.J., 2002. Assortativemixingin networks. Phys. Rev. Lett. 89, 208701.Newman,M.E.J., 2003. Thestructure andfunctionof complex networks. SIAM Rev.

    45, 167256.Newman,M.E.J., 2005. Power laws,Pareto distributions and Zipfs law. Contemp.

    Phys. 46, 323351.

    Nicholson, P., Yepiskoposyan, H.,Metze, S., Zamudio Orozco, R., Kleinschmidt, N.,Mhlemann, O., 2010.Nonsense-mediatedmRNAdecay in human cells:mechanistic insights, functions beyond quality control and the double-life ofNMD factors. Cell. Mol. Life Sci. 67, 677700.

    Nisson, P.E.,Watkins, P.C., Sacchi, N., 1992. Transcriptionally activechimeric genederived fromthe fusionof the AML1 geneand a novel gene onchromosome8in t(8;21) leukemic cells. CancerGenet. Cytogenet. 63, 8188.

    Nykter, M., Price,N.D., Larjo, A.,Aho, T., Kauffman, S.A., Yli-Harja, O., et al., 2008.Critical networks exhibit maximal information diversity instructuredynamics relationships. Phys. Rev. Lett. 100, 058702.

    Park, S.,Chen, W.,Cierpicki, T., Tonelli, M., Cai, X.,Speck, N.C., et al., 2009. StructureoftheAML1ETOeTAFHdomain-HEB peptide complex and itscontribution toAML1-ETO activity. Blood 113, 35583567.

    Pickrell, J.K., Pai, A.A., Gilad, Y., Pritchard, J.K., 2010. Noisysplicing drives mRNAisoform diversity in humancells. PLoS Genet. 6, e1001236.

    Saunders,M.J., Tobal, K.,Keeney, S.,Liu Yin, J.A., 1996. Expressionof diverseAML1/MTG8transcripts is a consistent feature in acutemyeloid leukemia witht(8;21) irrespectiveof disease phase.Leukemia10, 11391142.

    Sayers, E.W., Barrett, T., Benson, D.A., Bolton, E.,Bryant, S.H., Canese, K.,et al., 2012.

    Database resources of theNational Center for Biotechnology Information.Nucleic Acids Res. 40,D13D25.

    Schneidera, C.M.,Moreirab, A.A., Andrade, J.S.,Havlin, J.S., Herrmanna, H.J., 2011.Mitigation ofmaliciousattacks on networks. Proc. Natl. Acad. Sci. U. S. A. 108,38383841.

    Smyth, G.K., 2005. Limma: linearmodelsfor microarray data. In:Gentleman, R.,Carey,V., Dudoit, S.,Irizarry, R., Huber, W. (Eds.), Bioinformatics andComputational Biology Solutionsusing R and Bioconductor. Springer,NewYork, pp. 397420.

    Ruijter, J.M., Ramakers,C., Hoogaars, W.M.H., Karlen, Y., Bakker, O., vanden Hoff,M.J.B., et al., 2009. Amplification efficiency: linking baseline andbias in the

    analysis of quantitativePCR data. Nucleic Acids Res. 37 (6), e45, http://dx.doi.org/10.1093/nar/gkp045.

    Stauffer, D., 2012. Phase transitions on fractals networks. In:Meyers, R.A. (Ed.),Mathematicsof complexityand dynamical systems. SpringerScience+BusinessMedia, LLC, NewYork, pp. 14001406.

    Sun, X.J., Wang, Z.,Wang, L., Jiang,Y., Kost, N., Soong,T.D., et al., 2013. A stabletranscription factor complex nucleatedby oligomeric AML1ETO controlsleukaemogenesis. Nature 500, 9398.

    Tahirov, T.H., Inoue-Bungo, T.,Morii, H., Fujikawa, A., Sasaki, M., Kimura, K., et al.,2001. Structural analyses of DNA recognition by theAML1/Runx-1Runtdomain and its allosteric control by CBFbeta. Cell 104, 755767.

    Tighe,J.E., Calabi, F.,1994. Alternative, out-of-frame runt/MTG8transcripts areencoded by thederivative (8) chromosome in thet(8;21) of acutemyeloidleukemiaM2. Blood 84, 21152121.

    Trajanovski, S., Martin-Hernandez, J., Winterbach, W., VanMieghem, P.,2013.Robustness envelopes of networks. J. Complex Netw. 1, 4462.

    Vande Locht, L.T., Smetsers,T.F.,Wittebol, S.,Raymakers, R.A., Mensink, E.J., 1994.Molecular diversity in AML1/ETO fusion transcripts in patients with t(8;21)positive acutemyeloid leukaemia. Leukemia 8, 17801784.

    Virkar, Y., Clauset, A.,2012. Power-lawdistributions in binned empirical data. Ann.Appl. Stat., 133.

    Vuong, Q.H., 1989. Likelihood ratio tests formodel selection and non-nestedhypotheses. Econometrica 57, 307333.

    Wang, Y.,Ma,M., Xiao, X.,Wang, Z.,2012. Intronic splicing enhancers, cognatesplicing factors andcontext dependentregulation rules. Nat. Struct. Mol. Biol.19, 10441052.

    Wilkerson, M.,Waltman, P., Package ConsensusClusterPlus. Version 1.22.0.http://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html (accessed13.07.15).

    Yan, M., Kanbe, E.,Peterson, L.F., Boyapati, A.,Miao, Y.,Wang, Y., et al., 2006. A

    previously unidentified alternatively spliced isoform of t(8;21) transcriptpromotes leukemogenesis. Nat.Med. 12, 945949.

    Zhang,J., Kalkum, M., Yamamura, S.,Chait, B.T., Roeder, R.G., 2004. E proteinsilencing by the leukemogenic AML1-ETO fusion protein. Science 305,12861289.

    Zhang,Y.W., Bae, S.C., Huang,G., Lu, J., Ahn,M.Y., Kanno,Y., et al., 1997. A noveltranscript encoding an N-terminally truncatedAML1/PEBP2 alphaB proteininterferes with transactivation and blocks granulocytic differentiationof32Dcl3myeloid cells.Mol. Cell. Biol. 17, 41334145.

    http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0200http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0200http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0200http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0200http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0205http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0205http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0205http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0205http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0210http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0215http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0215http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0215http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0215http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0220http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0220http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0220http://refhub.elsevier.com/S1357-2725(15)30013-3/sbref0225http://refhub.elsevier.com/S1357-2725(15)30013-3