crane engineering valve engineering data

80
7/30/2019 Crane Engineering Valve Engineering Data http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 1/80 Engineering Data I CRANE.I © 1995 - Crane Valves All rights reserved. This publication is fully protected by copy right and nothing that appears in it may be reproduced, either wholly or in part, without special permission.

Upload: lokomundo

Post on 14-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 1/80

Engineering Data

ICRANE.I© 1995 - Crane Valves

All rights reserved. This publication is fully protected by copyright and nothing that appears in it may be reproduced, eitherwholly or in part, without special permission.

Page 2: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 2/80

( \\ )

Page 3: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 3/80

)

Table of Contents

Materials page

Nickel·Copper Alloys . . . . . . . . . . . . . . . . . . . . . , 9Copper Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . 5·6Irons; Cast, Malleable, and Alloy . . . . . . . . . . . , 4Steels, Ferritic . . . . . . . . . . . . . . . . . . . . . . . . . . , 7Steels, Austenitic . . . . . . . . . . . . . . . . . . . . . . . . 8Nickel Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . , 9Hardsurfacing (Hard Facing) Alloys . . . . . . . .. 9Packings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Gaskets . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . 11

Non·Metallic Valve Seats . . . . . . . . . . . . . . . . . . 12Bolting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14·18

Valves

Working Pressures, Hydrostatic . . . . . . . . . . . . 20Testing, Air and Non·Destructive . . . . . . . . . . . 19Shock, Effect on Valves . . . . . . . . . . . . . . . . . . . 20Increase in Pressure Due to

Liquid Expansion . . . . . . . . . . . . . . . . . . . . . . . 19Thermo·Piezo Effects of Oil . . . . . . . . . . . . . . . . 19Nominal Class Designations . . . . . . . . . . . . . . . 21Identifi cation and Markings. . . . . . . . . . . .. 21·23Pressure-Temperature Ratings . . . . . . . . . . 24·26Templates for Drilling:

Bronze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Corrosion·Resistant . . . . . . . . . . . . . . . . . . . . 27Iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28·29Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30·32

Flange Facings for Steel Valves:

Male, Female, Tongue and Groove . . . . . 33·34Ring Joint . . . . . . . . . . . . . . . . . . . . . . . . . 35·36Butt-Welding Ends for Steel Valves . . . . . . 37·38Taps and Drains . . . . . . . . . . . . . . . . . . . . . . . . . . 39By·Passes, Location . . . . . . . . . . . . . . . . . . . . . . 39Proper Sizing of Check and Foot Valves . . . . . 51Piping

Pipe Data:Carbon and Alloy Steel . . . . . . . . . . . . . . .40·43Stainless Steel . . . . . . . . . . . . . . . . . . . . . .40·43Red Brass and Copper . . . . . . . . . . . . . . . . . . 44

Copper Water Tube . . . . . . . . . . . . . . . . . . . . . . . 44Pipe Threads, ANSI Taper . . . . . . . . . . . . . . . . . 45Threaded Joints:

Standardized Threads . . . . . . . . . . . . . . . . . . . 46Assembling . . . . . . . . . . . . . . . . . . . . . . . . . . . 46Normal Engagement for Tight Joint . . . . . . . 46

Bolting:Material Specifications . . . . . . . . . . . . . . . . . . 14Torque and Loading . . . . . . . . . . . . . . . . . . . . 47

Flanged Joints, Assembly and Maintenance .. 48

Flow of Fluids throughValves, Fittings and Pipe page

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . .49Basic Theory:

Resistance Coefficient K . . . . . . . . . . . . . . . . 50Equivalent Length LID . . . . . . . . . . . . . . . . . . 50Flow Coefficient Cv . . . . . . . . . . . . . . . . . . . . 50Laminar Flow Conditions . . . . . . . . . . . . . . . . 51Reduced Seat Valves . . . . . . . . . . . . . . . . . . . 51

Proper Sizing of Check & Foot Valves . . . . . 51Representative ResistantCoefficients-(UK" Factor Table):

Pipe Friction Factors . . . . . . . . . . . . . . . . . . . 52Contraction and

Enlargement Formulas . . . . . . . . . . . . . . . . 52Reduced Port Valve Formulas . . . . . . . . . . . . 52Gate Valves . . . . . . . . . . . . . . . . . . . . . . . . . . .53Globe and Angle Valves . . . . . . . . . . . . . . . . . 53Check Valves . . . . . . . . . . . . . . . . . . . . . . . . . . 3Foot Valves . . . . . . . . . . . . . . . . . . . . . . . . . . .54Stop·Check Valves . . . . . . . . . . . . . . . . . . . . . . 54Ball Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . .54Butterfly Valves . . . . . . . . . . . . . . . . . . . . . . . .54Plug Valves and Cocks . . . . . . . . . . . . . . . . . . 55Bends and Fittings . . . . . . . . . . . . . . . . . . . . .55Pipe Entrance and Exit . . . . . . . . . . . . . . . . . . 55

Nomographs, Charts, and Tables:Friction Factors for Clean Pipe . . . . . . . . . . .56Weight Density, Ai r and Gases . . . . . . . . . . .57Physical Properties, Water . . . . . . . . . . . . . . . 58Viscosity, Steam and Water . . . . . . . . . . . . . .58Viscosity, Water and

Liquid Petroleum Products . . . . . . . . . . . . .58Viscosity, Gases and Vapors . . . . . . . . . . . . .59Flow of Water Thru Steel Pipe . . . . . . . . . . .60Flow of Air Thru Steel Pipe . . . . . . . . . . . . . . 1Compressible Fluids, Flow Formula . . . . 62·63Saturated Water and Steam,

Properties of . . . . . . . . . . . . . . . . . . . . . . 4·67Superheated Steam, Properties of . . . . . .68·70Compressed Water, Properties of . . . . . . . . . 71

Conversion and Equivalents

General Equivalents . . . . . . . . . . . . . . . . . . . . . .72Temperature Conversion . . . . . . . . . . . . . . . . . . . 73Linear Conversion . . . . . . . . . . . . . . . . . . . . . . 74·77Miscellaneous

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Page 4: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 4/80

ICRANE®I

Abbreviations

General

Aba . . . . . . . . Absolute

Btu . . . . . . . . British thermal unit

C . . . . . . . . . . Celsius or degrees Celsius

(or Centigrade)Ctr. to ct r . . . Center to centercfm . . . . . . . . cubic feet per minutechr . . . . . . . chromiumcm . . . . . . . . centimeterj:OS ........ cosine

cot . . . . . . . . cotangentcu . . . . . . . . . cubic

deg . . . . . . . . degreesdla . . . . . . . . diameter

F or Fahr . . . Fahrenheit or degrees FahrenheitF & 0 . . . . . . Faced and drilled

FD & SF '" . Faced, dr illed, and spot facedft . . . . . . . . . . oot or feetflgd . . . . . . . . langedFM . . . . . . . .

Symbol (or marking) indicatingproduct listed by Factory MutualLaboratories

galv . . . . . . . galvanizedgpm . . . . . . . gallons per minute

Hg . . . . . . . . . Symbol for Hydrargyrum(mercury)

hp . . . . . . . . . . HorsepowerHPT . . . . . . . Hose pipe thread

1.0. . . . . . . . . nside diameterimp. gal. . . . . mperial gallonin . . . . . . . . . nch or inchesIPS . . . . . . . . Iron pipe size

k . . . . . . . . . . kilo (one thousand)

kg . . . . . . . . . kilogramkm . . . . . . . . kilometerkN . . . . . . . . . kilo newtonksi . . . . . . . . . kip (1000 psi)

Ibs . . . . . . . . poundslog . . . . . . . . ogarithm (common)LP . . . . . . . . . iquid petroleum

m . . . . . . . . . metermax . . . . . . . maximum

min . . . . . . . . minimummm . . . . . . . . millimeterMPa . . . . . . . megapascal

Associations, Institutes, etc.AAR . . . . . . . Association of American RailroadsABS . . . . . . . American Bureau of ShippingAISI . . . . . . . American Iron and Steel InstituteANSI . . . . . . . American National Standards

InstituteAPI . . . . . . . . American Petroleum InstituteASME . . . . . . American Society of Mechanical

EngineersASTM . . . . . . American Society for Testing

MaterialsAWS . . . . . . . American Welding Society

N . . . . . . . . . . newtonNPSC . . . . . . Symbol indicating American

National Standard Straight PipeThread in pipe couplings

NPSL . . . . . . Symbol indicating AmericanNational Standard Straight PipeThread for locknuts and locknutpipe threads

NPSM . . . . . . Symbol indicating AmericanNational Standard Straight PipeThread for mechanical Joints

NPT . . . . . . . Symbol indicating AmericanNational Standard Taper PipeThread

N-RS . . . . . . non-rising stem

0.0. . . . . . . . outside diameterOS & y . . . . . outside screw and yoke

P.O. . . . . . . . Used in conjunction with threadsto indicate "Pitch Diameter"

psi . . . . . . . . Pounds per square inchpsia . . . . . . . pounds per square inch, absolutepsig . . . . . . . pounds per square inch, gauge

RF . . . . . . . . . Raised faceRed . . . . . . . . Reducingrpm . . . . . . . . Revolutions per minute

Sat . . . . . . . . SaturatedSched . . . . . . Schedule (pipe)Sec . . . . . . . . secondSin . . . . . . . . sineScrd . . . . . . . screwed

SP . . . . . . . . . When used in conjunction withreferences to "MSS", is theabbreviation for "StandardPractice" . . . thus . . .MSS Class150 Corrosion-Resistant CastFlanged Valve Standard No. SP-42.

SWP . . . . . . . When used in conjunction withworking pressure ratings indicates"steam working pressure"

T & G . . . . . . Tongue and GrooveTan . . . . . . . . angentTemp . . . . . . TemperatureThrd . . . . . . . hreaded

UL . . . . . . . . . Symbol (or marking) indicating

product listed by Underwriters'Laboratories, Inc.

AWWA . . . . . American WaterWorksAssociation

MSS . . . . . . . Manufacturers Standardization Societyof the Valve and Fittings Industry

NBS . . . . . . . National Bureau of StandardsNEMA . . . . . . National Electrical Manufacturers

AssociationNFPA . . . . . . National Fire Protection

Association

USCG . . . . . . U. S. Coast Guard

Nomenclature for "Flow of Fluids· Section . . . see page 49

()

/---)" ... -

Page 5: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 5/80

.

)-- /

CRANE MATERIALS

The selection of materials for components of Crane valves is based upon

expert metallurgical, engineering, foundry and fabrication knowledge, aswell as on many years of usage experience. Considerations affecting ma-terials of parts which come in contact with the conveyed fluid includepressure, temperature, and chemical composition of the fluid. The ma-terials of moving parts that are subject to rubbing contact are s e h ~ c t e d onthe basis of their resistance to wear, corrosion, seizing or galling, and ontheir frictional characteristics.

Utilization of materials to their full capability is assured by the use ofstress analysis techniques that include extensive laboratory testing as wellas the application of analytical theory. Stress levels for all materials usedare maintained within the levels established by applicable codes, standards

and specifications.

Conformance of chemical and physical properties of all materials is main-tained by a rigid and constantly enforced quality control program. The tableson pages 4 through 9 and below categorize materials used in Crane valves,in groupings that make it convenient for the user to readily identify theseproperties.

Page 6: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 6/80

CRANE CAST IRONS

CHEMICAL REQUIREMENTS(%) MECHANICAL PROPERTIES

Carbon Manga- Phos-

nese phorus

HI·STRENGTH CAST IRON

Min. I ... IMax. . . . . . 0.75

3% NICKEL IRON

Min.Max.

Sulfur

0.15

AUSTENITIC GRAY IRON . . (Ni·Resist)

Min.Max.

Silicon Nickel Chro- Copper Alloying Tensilemium Ele- Strength

mentsksiT MPa

UNS F12102

1 . . . I.... 1-". . ..

31 214

UNS F41002

CRANE CAST DUCTILE IRONS

AND MALLEABLE IRONS

Transverse TransverseTest Load Test Deflection

at Center

lbs. T kN in. I mm.

ASTM A126, Class B

3300

3.0

ASTM A436, Type 2

CHEMICAL REQUIREMENTS(%) MECHANICAL PROPERTIES

Carbon Manga- Phos- Silicon Nickel Chro- Tensile Yield Elongation

nese phorus mium Strength Strength inZ'

ksi I MPa ksi I MPa (50mm)

FERRITIC DUCTILE IRON UNS F32800 ASTM A395

Min. I 3.0 60 414 40 276 18%Max. 0.08 2.50

DUCTILE IRON· UNS F33100 ASTM A536, Grade 65·45·12

Min. 65 448 45 310 I 12%Max. . .

AUSTENITIC NODULAR IRON UNS F43000 ASTM A439, Type D·2

Min. 8%

Max.

FERRITIC MALLEABLE IRON· UNS F22200 (ASTM A47, Grade 32510)

Min. 50 345 32.5

1

224

1

10%

Max.

MA.LLEABLE IRON· UNS F22000 ASTM A197

Min. 40 276 30 207 5%

Max.

• Chemical requirements are subordinate to the mechanical properties.

i),----

Page 7: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 7/80

CRANE COPPER ALLOYS

CHEMICAL REQUIREMENTS(%)

Copper Tin Lead Iron

STEAM OR VALVE BRONZE CASTINGS

Min.Max.

COMPOSITION BRONZE CASTINGS

Min.Max.

COMPOSITION CAST BRONZE ROD

Min.

Max.

SEMI-RED BRASS CASTINGS

Min.Max.

SILICON BRONZE CASTINGS

Min.Max.

Nickel

LEADED MANGANESE BRONZE CASTINGS

Min. I 6.0 0.5 , 04 , . .. ,Max. 62.0 1.5 2.0 1.0

LEADED MANGANESE BRONZE CASTINGS

Min.Max.

ALUMINUM BRONZE CASTINGS

Min.

Max.

NAVAL BRASS ROD/BAR

Min. , 59.0Max. 62.0 I ,

NAVAL BRASS ROD/BAR

Min.Max.

FREE· CUTTING BRASS ROD/BAR

Min.

0.15

0.15

Max. 0.35

FORGING BRASS

Min. ! 58.0 ! 1.5

Max. 61.0 2.5 0.30

MANGANESE BRONZE ROD/BAR

Min.Max.

Min.Max .

• Also may Include maximum of 0.05% phosphorus.

Manga-nese

0.11.0

Alurn-inurn

0.51.5

~ A l s o may Include maximum of 0.25% antimony. 0.08% sulfur. and 0.02% phosphorus

•• Maximum percent of elements permissible other than those indicated.

Zinc

32.042.0

'Balancel

IBalance!

MECHANICAL PROPERTIES

Silicon Other Tensile Yield Elon-Strength Strength gation

ksi

l I MPa

in'}!'

MPa ksi (50rnm)

UNS C92200 ASTM B61, Alloy 922

24070

UNS C83600 ASTM B62, Alloy 836

205 14 200/0

ASTM B62, MODIFIED

14%

UNS C84800 ASTM B584, Alloy 848

16%

UNS C87600 ASTM B584, Alloy 876

30 16%

UNS C86400 ASTM B584, Alloy 864

414 15%

UNS C86700 ASTM B584, Alloy 867

552 32 15%

UNS C95400 ASTM B148, Alloy 954

205 12%

UNS C48200 ASTM B21, Alloy 482, Hard Temper

' o . i o ~ · 1 I I I IUNS C46400 ASTM B21, Alloy 464

I . i o ~ ' . I I IUNS C36000 ASTM B16, Alloy 360

:j: :j: :j:

UNS C37700 ASTM B124, Alloy 377

I . 5 0 ~ * I .:: I : I : I :: I : .UNS C67500 ASTM B124, Alloy 675

." IUNS C32000 ASTM B14O, Alloy 320

tMaximum of 2.6% silicon permissible providing sum of ali elements olherthan

copper. Iron. and sliicon does not exceed 0.3%.

;Depends on diameter or thickness (surface to surface) of material; dala on requesl.

Page 8: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 8/80

CRANE COPPER ALLOYS (continued)

CHEMICAL REQUIREMENTS(%)

Copper Tin Lead

COPPER SILICON ALLOY WIRE

Min.Max.

COPPER·ZINC SILICON ALLOY ROD

Min.Max.

LEADED SEMI·RED BRASS

Min.Max.

Iron Nickel Manga- Alum-nese inurn

0.7 I·

Zinc

MECHANICAL PROPERTIES

Silicon Other Tensile Yield Elon-Strength Strength gation

ksi I MPa ksi I MPa

in 2"

(SOrnm)

UNS C65100 ASTM B99 Alloy 651, Eighth·Hard

20%

15070

UNS C84400 ASTM B584 Alloy 844

90 18%

)

)

Page 9: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 9/80

CRANE FERRITIC STEELS

CHEMICAL REQUI REMENTS(%)

Carbon Manga-

nese

CAST CARBON STEEL

Min.Max.

FORGED CARBON STEEL

Min.Max.

Phos- Sulfurphorus

CAST CARBON STEEL FOR LOW TEMPERATURES

Min.Max.

Silicon

CAST 2'h1% NICKEL STEEL FOR LOW TEMPERATURES

Min.

Max.

CAST 3W'Io NICKEL STEEL FOR LOW TEMPERATURES

Min.Max.

CAST 1'14% CR-'hI% MO ALLOY STEEL

Min.Max.

FORGED/ROLLED CR-'hI% MO ALLOY STEEL

Min.Max.

CAST CR-1% MO ALLOY STEEL

Min.

Max.

FORGED/ROLLED 2V4% CR-1% MO ALLOY STEEL

Min.Max.

CAST 4-6% CR ALLOY STEEL

Min.Max.

FORGED/ROLLED 4-6% CR ALLOY STEEL

Min.Max.

CAST 12·14% CR STAINLESS STEEL

Min.Max.

FORGED/ROLLED 12·14% CR STAINLESS STEEL

Min.Max.

FREE· MACHINING 12·14% STAINLESS STEEL BARS

Min. O.IS

Max.

RESULFURIZED STEEL BARS

Min.Max.

Nickel Chro- Molyb-

mium denum

MECHANICAL PROPERTIES

Tensile Yield Elon- Reduc-Strength Streng th gation tion

ksi I MPaksi

UNS J03002

UNS J03003

UNS J21890

lINS J42045

UNS J91150

(121 BHN)

IMPa

in ';:' of

(SOmm)Area

ASTM A216, Grade WCB

3S%

ASTMA10S

30%

ASTM A352, Grade LCB'

3S%

ASTM A352, Grade LC2"

3S%

ASTM A352, Grade LC3"

3S%

ASTM A217, Grade wce

3S%

ASTM A 162, Grade F11

30%

ASTM A217, Grade WC9

3S%

ASTM A182, Grade F22

300/0

ASTM A217, Grade C5

3S%

ASTM A182, Grade F5a

SO%

ASTM A217, Grade CA1S

30%

ASTM A182, Grade FSa Class 3

35010

60%t

SS%*

AISI Type C1117

47%

*Usual minimum service temperature: LCB at -SOF(-4S.6C) ... LC2at-lOOF(-73.3C) .. . LC3 at -IS0F( -1Ol.lC)

tAnnealed representive mechanical properties *Tempered representive mechanical properties.

Page 10: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 10/80

CRANE AUSTENITIC STEELS

CHEMICAL REQUIREMENTS (%) MECHANICAL PROPERTIES

Carbon Manga- Phos- Sulfur Silicon Nickel Chro- Molyb- Copper Tensile Yield Elon- Reduc-nese phorus mium denum and Strength Streng th gation tion

Colum- in21t

of

bium ksi 1 MPa ksi I MPa (50mm) Area

STAINLESS STEEL WITH MOLYBDENUM BAR UNS S31600 ASTM A276, Type 316

Min. *Max.

STAINLESS STEEL WITH MOLYBDENUM BAR UNS S31600 ASTM A479, Type 316

Min. 40Max.

CAST STAINLESS STEEL UNS J92600 ASTM A351, Gr.de CF8

Min.Max.

CAST STAINLESS STEEL UNS J92710 ASTM A351 ,Gr.de CF8C

Min.Max.

CAST STAINLESS STEEL WITH MOLYBDENUM UNS J92900 ASTM A351 ,Gr.de CF8M

Min.Max.

CAST LOW CARBON STAINLESS STEEL UNS J92500 ASTM A351 ,Gr.de CF3

Min.

Max.

CAST LOW CARBON STAINLESS STEEL WITH MOLYBDENUM UNS J92800 ASTM A351, Grade CF3M

')in.

Max./'

CAST ALLOY 20 STAINLESS STEEL UNS J95150 ASTM A351, Grade CIi17M

Min.

Max.

ALLOY 20 STAINLESS STEEL BAR UNS N08020 ASTM B473

Min. 50%

Max.

CAST STAINLESS STEEL WITH MOLYBDENUM AND COPPER UNS J93370 ASTM 351, Grade CD·4MCU

Min.

Max.

UNS S30300 ASTM A582, Type 303

8.00 17.00 j ... I... I I

.. .

I'" I

..10.00 19.00 .. . . . ... .. ...

ASTM A743. Grade CF16F

Page 11: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 11/80

1,?

CRANE NICKEL ALLOYS

CHEMICAL REQUIREMENTS(%)

Carbon Manga- Phos- Sulfur Silicon Nickelnese phorus

CAST NICKEL·MOLYBDENUM ALLOY (HASTELLOY B·)

Min.Max.

Chro-mium

CAST NICKEL· MOLYBDENUM-CHROMIUM ALLOY (HASTELLOY C·)

Min.Max.

CAST NICKEL

Min.Max.

CAST NICKEL-CHROMIUM-IRON ALLOY (Inconel··)

Min.Max.

·Hastelloy is a trademark of Cabot Corporation··Inconel is a trademark of International Nickel Company

Molyb-

denum Iron

MECHANICAL PROPERTIES

Tensile Yield Elon- Reduc-

Strength Strength gation tion

in 2" of

ksi I MPa Ibs. I kN (50 mm) Area

UNS N10001 ASTM A494, Grade N·12MV

ASTM A494, Grade CW·12MW

UNS N02100 ASTM A494, Grade CZ·100

UNS N06040 ASTM A494, Grade CY·40

CRANE NICKEL-COPPER ALLOYS

CHEMICAL REQUIREMENTS(%) MECHANICAL PROPERTIES

Copper Tin Iron Nickel Manga- Phos- Silicon Sulfur Carbon Tensile Yield Elon-

CAST MONEL·

Min.Max.

NICKEL COPPER ALLOY ROD

Min.Max.

nese phorus

*Monel is a registered tr ade mark of the International Nickel Company, Inc.

Strength Strength gation

ksi I MPa ksi I MPa

inZ'

(50mm)

ASTM A494 Grade M·35·1

25070

UNS N04405 ASTM B164 Class B

15070

CRANE HARDSURFACING ALLOYS

Hardsurfacing alloys are used on seating surfaces, discguides, and other wearing surfaces. The materials are

available in the form of bare rod, covered electrode, coils,and powder, and may be deposited by any of a number ofprocesses including Oxyacetylene, Shielded Metal-Arc,Gas Metal-Arc, Gas Tungsten-Arc, Submerged Arc, andPlasmarc. Hardsurfacing is also commonly referred to as"Hard Facing".

Hardsurfacing alloys are available in many compositionsfrom various suppliers, but the most commonly used for

valve applications is identified as "Co Cr An in AmericanWelding Society Specification AWS-A5.13. Other cobaltbase alloys are employed when more ductil ity is required.These alloys withstand corrosion and erosion unusuallywell and display excellent resistance to wear, seizure,galling, and abrasion.

9

Page 12: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 12/80

Endless Molded Ring Packingfor Small Size

Bronze and Iron Valves

Endless TFE Ringsfor Ball Valves

VALVE PACKINGS

Crane valve stem seals vary in material and design depending on fluid,pressure, and temperature conditions...

as well as the stuffing box construction of the valve.

Endless Molded Ring Packing

Many small size bronze and iron valves(usually 2-inch and smaller) are

equipped with endless molded ringpacking. The packing is formed of ahomogenous mixture of ingredients,especially selected for low friction andnon-adherence to stem' material aswell as longevity when subjected to abroad spectrum of fluids.

Basic ingredients are fiberglass orKevlar and graphite for use up to 550'F.A suitable binder is used to providestability of molded parts. In addition,packings used with ferritic steel stemscontain a corrosion inhibitor to avoid pitting of the stem.

PTFE Packing Rings

The stuffing box of corrosion resistentvalves and some ball valves are furnished with endless PTFE packing rings.Small valves use a simple flat washertype while larger valves use a V or cupand cone type.

O-rings (not ill.)

In some butterfly valves, O-rings serveas the stem seal. The rings are usuallyBuna N but other rubber compoundsmay also be used depending upon ser-vice conditions.

Diagonally CutDie-Formed Ring Packing

This type of packing is used in many

valves having conventional stuffing boxconstruction. The rings are square orrectangular in cross section and areused in sets. The number per set de-pends on the depth of the valve stuffing box. Diagonal cuts on successiverings are staggered about 120 to 180degrees apart to minimize the probability of a continuous leak path ... andeach ring is individually tamped intoposition before installing the succeeding ring. This procedure is also recommended when valves using this type ofpacking are repacked in the field.

Rings for the larger size bronze and iron

valves (service temperatures up to 550'F) usually consist of a non-hardeningcore material with suitable binder,covered by a braided non-asbestos yarnjacket coated with flake graphite. Asuitable agent is included to inhibitstem corrosion.

Rings for steel valves (high temperature service) are similar in construction to those for bronze and iron valves,but have a lower weight loss at elevated temperatures, a minimum content of binder, and an inconel wireinsert in each strand of asbestos yarnused in the jacket. A suitable agent isincluded to inhibit stem corrosion.

Flexible Graphite Die-Formed Rings

Carbon Steel and Alloy Steel Ball, Gateand Globe Valves use flexible graphitepacking for critical applications. Pack-ing rings are die formed from cor-rugated flexible graphite ribbon. Depen-ding on valve size, braided carbon yarnend rings may be used to prevent extrusion of the flexible graphite. A suitableagent is included to inhibit stemcorrosion.

)

Page 13: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 13/80

Types of bonnet joint gaskets and thematerials from which they are madeare dictated by valve design and theintended end use of the valve.

Although it may be possible to reusesome gaskets and make up satisfactory joints a second or more times, it isnot recommended. Whenever a bonnetjoint must be reassembled after dismantling for maintenance or any otherreason, use of a new gasket will frequently avoid costly rework and system shut-downs.

Flat Gaskets

Many valves for low pressure serviceuse flat full face or ring gaskets. Fullface gaskets extend across the entire

bonnet flange face and are cut withholes to match the bolt holes in theflange.

Flat ring gaskets are installed on theflange face surface inside the bolts.They may be centered or positioned bythe bolts or located in a male and female joint.

Flat gaskets for most bronze and ironflanged bonnet joint gate, globe, angleand check valves are cut from compressed non-asbestos sheet packing comprised of synthetic fibers and fillers withsuitable elastomeric binder. This material

is suitable for temperatures up to 700°Fand pressure to 1200 psi.

Flat gaskets cut from sheet PTFE (tetrafluoroethylene) are used mainly on ballvalves and corrosion-resistant valves.

Flat gaskets of corrugated soft iron areused in Class 150 and 300 steel gate,globe, angle, and check valves.

Flat gaskets cut from sheet flexiblegraphite are used mainly on ball valvesand corrosion resistent valves where thetemperature limitations of PTFE areexceeded.

VALVE GASKETS

Spiral-Wound Gaskets

Spiral-wound gaskets for bonnet jointsare designed to accommodate thepressure requirements and bolt loading of each specific type of joint.

The gaskets are constructed by wraping alternate plies of a preformed metalstrip and a filler material. Corrugationsin the metal strip impart tension andresiliency when the gasket is undercompression. The edges of the stripcreate multiple barriers against leakage, and the soft filler material sealsminute imperfections in the flangefaces.

The metal strip is stainless steel whilethe filler material is a non-metallicmaterial such as flexible graphite orPTFE, depending upon end use

specifications.

Ring Joint Gaskets

Ring joint gaskets are made of softsteel and have an octagonal or ovalcross-section shape. The gasket seatson the tapered flanks of a speciallyprepared groove in each flange face.

Ring joint gaskets have proven to bevery effective in providing joint tightneSl? for long periods of time underdifficult service conditions.

Pressure-Seal Join t Gaskets

As the name implies, the load imposedupon the Pressure-Seal gasket to se-cure a seal against leakage is providedby the internal pressure in the valve.The seal is made by deformation of thetip of the gasket against the body bore,by the angular force of the bonnet simulating a piston acted upon by the internal pressure.

The gaskets are made of soft steel,silver-plated. The silver plating servesas a deterrent to galling as the gasketmoves against the body wall underload.

Flat Asbestos Gasket

Flat Metallic Gasket

Spiral-Wound Gasket

Octagonal Ring Joint Gasket

cP ; : •

Oval Ring Joint Gasket

Pressure-Seal Jo int Gasket

11

Page 14: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 14/8012

NON·METALIC VALVE SEATS

Composition Discs

Crane compositi on discs are made from high

quality materials compounded and cured for

recommended services. All are molded and

vulcanized.

No. 6 Disc: Synthetic base combined withother ingredients. Soft for tight seating on air

or gas, yet sufficiently stiff to withstand hot

water and frequent operation. Also for hydro·

carbons.

Service: For 600 psi water, air, gas,

oil or gasoline . . . . . . . . 200°F max.

Composition discs are used on Bronze check

valves for tight sealing with low pressure gas.

Otherwise PTFE is the preferred material.

PTFE Disc and Ball Valve Seat

PTFE (Tetrafluoroethylene) is a non-toxic,

chemically inert material used for chemical,liquid, gas and steam services. PTFE seats are

used on ball valves and globe or check valves

where a metal to metal seal is not acceptable.

Available in virgin or glass reinforced.

Service: Virgin PTFE-125 PSIG saturated

steam 353°F

400°F maximum temperature

Reinforced PTFE-150 PSIG

saturated steam 366°F

450°F maximum temperature

ELASTOMERIC SEATS

FOR BUTTERFLY VALVES

BunaN, NBR or Nitrile

Buna N is a copolymer of butadiene and

acryloni trile. Features excellent compression

.set properties, tear resistance and abrasion

resistance. A good general purpose elastomer

suitable for water, air, many chemicals andnon·aromatic oils·. limitations are its poor

ozone and weather resistance and moderate

heat resistance.

Service: -20°F to 180°F

EPT, EPDM, EP or Ethylene·Propylene

EPT is a compound of ethylene, propylene and

usually a third monomer. Features excellent

weather and chemical resistance with good

low temperature flexibility and heat resis

tance. Increasingly popular in commercial

HVAC and many industrial applications. EPT

is resistant to mi ld acids, alkalies, silicone oils

and greases, ketones and alcohols·. Limita·

tions are its poor resistance to petroleum oil

and solvents.

Service: -20°F to 275°F

ELASTOMERIC SEATS

FOR BUTTERFLY VALVES

Hypalon®, CSM or Chlorosulfonated

Polyethylene

Hypalon® Is a chlorosulfonated polyethylene

compound. Its resistant to most chemicals,greases, alcohols, alkalies, concentrated sui·

furic acid and aqueous salt solutions·. Limi·tations are Its poor tear, abrasion and compres·

sion set resistance. Hypalon® is not recom·

mended for gasoline, jet fuels, ketones or

chlorinated solvents.

Service: -20°F to 225°F

Viton®, Fluorel®, FKM or Fluorocarbon

Viton® is a fluorocarbon elastomer. Features

excellent chemical, heat and compression set

resistance. Limitations are its fair low temper

ature performance and its resistance in steam

and water applications.

Service: OOF to 275°F

Food Grade Neoprene

FDA approved Buna N material available in

black or white color. Properties equal to that

of standard Buna N.

Service: -2 0 0 F to 225 0 F

Hypolon® and Viton® are registered trade·

marks of E.I. DuPont. Fluorel® is a registered

trademark of 3M Company.

•Please refer to corrosion chart on page 14 for

more specific information regarding usage.

Page 15: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 15/80

CRANE BOLTING MATERIALS

DefinitionsA bolt is threaded on one end only, theother end being upset into the form of ahead.

Machine Bolt

Square HeadWith Hexagon Nut

) \ \ \ ' '\ \1\\ \ \ I \ 1\\ \ 1\ \ '

A stud is threaded on both ends, one endbeing oversize in diameter to fit tightly(wrench fit) in a tapped hole, the otherbeing to the standard diameter for a nutassembly.

Stud Bolt

Threaded on Both EndsWith Two Hexagon Nuts

StudThreaded Oversize on One End

Other End Threaded for Nut

A stud bolt is threaded to the standarddiameter, either on both ends or fulllength, for nut assembly on each end.

Stud Bolt

Threaded Entire LengthWith Two Hexagon Nuts

Materials and Specifications

Machine bolts used in the assembly of valves intendedfor temperatures up to 500 F are made from carbonsteel conforming to ASTM A307, Grade 8. Physical requirements for this material are:

Tensile strength . . . . . . . . . . . ksiTensile strength . . . . . . . . . . MPaElongation in 2" (50 mm) . . . . %

Minimum60

4141S

Maximum100690

Bolts have regular square or hexagon heads in accordance with ANSI 81S.2.1.

Threads on bolts are in accordance with ANSI 81.1Coarse Thread Series, Class 2A fit.

Studs and stud bolts used in the assembly of valves intended for temperatures up to 500 F are made from coldrolled steel conforming to ASTM A10S.

Threads on studs (nut ends only) and stud bolts (entire

length) are in accordance with ANSI 81.1, CoarseThread Series, Class 2A fit.

Alloy steel studs and stud bolts used in the assemblyof valves comply with ASTM A193, using materialgrades. suitable for the conditions and as required by

applicable Codes and Standards. Physical requirementsof the various grades are indicated in the table below.

Threads on alloy steel studs (nut ends only) and stud

bolts (entire length) are in accordance with ANSI 81.1,Coarse Thread Series on sizes 1-inch and smaller andS-Pitch Thread Series on sizes 1 Va-inch and larger . . .Class 2A fit.

Nuts regularly furnished with machine bolts and coldrolled steel studs and stud bolts are steel conformingto ASTM A307 . . . and are tapped in accordance withANSI 81.1, Coarse Thread Series, Class 28 fit.

Nuts regularly furnished with ferritic alloy steel studsand stud bolts per A ~ T M A193, Grades 87 and B16, areforged medium' carbon steel, oil-quenched conformingto ASTM A194, Grade 2H.

Nuts regularly furnished with austenitic alloy steel studs

and stud bolts per ASTM A193, Grades 8S and BSM areforged carbide solution treated alloy steel conforming

to ASTM A194, Grade Sor SF (Type 304 or 303).

Al l nuts are made to ANSI 81S.2.2 Heavy Semi-FinishedHexagon dimensions.

Alloy Steel Studs and Stud Bolts-Physical Requirements

Grade of Steel Diameter Tensile Strength Yield Strength Elon- Reduc- Thmp-(ASTM A193) (minimum) (minimum) gation tion of erature

Inches Millimetersin 2" area Range

Over I To Over To ksi MPa ksi MPa (50 mm) (min.)

87 Chromium0 2\12 0.0 63.5 125 862 105 724 16% 50% -20°F2\12 4 63.5 101.6 115 793 95 655 160/0 50% to

Molybdenum4\12 7 101.6 177.8 100 690 75 517 18% 50% + 1000°F

Ferritic0 2\12 0.0 63.5 125 862

816 Chromium105 724 18% 50% -20°F

2\12 4 63.5 101.6 110 759 95 655 17% 45% toMoly. Vanadium 4 7 101.6 177.8 100 690 85 586 16% 450/9 + llOO°F

0 % 0.0 19.05 125 862 100 690 12% 35%-325°F

88 Cl 2 % 1 19.05 25.4 115 793 80 552 15% 35%('TYpe 304) 1 114 25.4 31.8 105 724 65 448 20% 35% to

114 1\12 31.6 38.1 100 690 50 345 28% 45% +1000°F

Austenitic0 % 0.0 19.05 110 759 95 655 15% 45%

88MCl2 % I 19.05 25.4 100 690 80 552 20% 4$% -325°F

('TYpe 316) I 114 25.4 31.8 95 655 65 448 25% 4'5% to

114 I Y2 31.6 38.1 90 621 50 345 30% I i 45070+IOOO°F

88/B8MI -325°F

CLIA l l A l l 75 SIS 30 205 350/0' 50070 to

+1500°F

Bolting - Torque & Loading . .. see page 331

Page 16: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 16/80

CORROSION CHART FOR METALS, ELASTOMERS AND PACKINGS

The corrosion chart following is to be used only as a guide in theselection of materials and should not be considered as unqualifiedrecommendations for any particular operating condition. Many ofthe evaluations listed are based on published literature and opinionsof experienced personnel employed in various industrial fields. Con

sequently, Crane Co. cannot guarantee their accuracy nor assumeresponsibility for their use. Unless otherwise noted, all ratings arefor 70°F.

Choice of materials must take into consideration specific environmental conditions which often have a profound influence onthe nature of the corrosive service and, hence, on behavior ofmaterials.

Temperature, aeration, inhibiting or accelerating contaminates, andvelocities are examples of the factors often encountered. Wheresome of these factors are frequently encountered, and where theyhave a decided influence on the behavior of the materials, explanatory notes have been used to record this information.

CORROSION CHART

Concerning elastomers, some environmental conditions may causeswelling, softening, hardening, or shrinking, each of which may havean influence on the operation of the valve and its life expectancy.Hence, under certain conditions service tests may be advisable toestablish suitability.

The corrosion chart, although general in nature, can be a usefultool in evaluating suitability of materials in many services. Occasionally a user's experience, under identical or similar conditions,may indicate an exception to a recommendation in the chart. In sucha case further investigation is advised.

Notes:

1. Wet acetylene in contact with red bronze may beexplosive.

2. Rating for air·free fluid only.3. Rating for alkaline solution only.4. Check local Codes and Regulations for materials acceptable for

handling of food products and bevera-ges.

KEY: ASubstantial Resistance BModerate Resistance C nsatisfactory - No Data Available

I METALS' ELASTOMERS' PACKINGS'

MEDIA \ ~ \ \ , ~ ~ ~ \ \ \\\\\,\\cetaldehyde B A A A A A A A A A A B C B C A -

A c e t ~ Acid 1()% C B A B B A C C - A A B B A C A A

", Acetic ~ c i d 10% C C A B C A C C - A, A B C - C A A

, AcetiC Acid .50% Boiling C C A B C A C C - A A B C B C A AAcetic A c i ~ ' 5()% Boiling C C B B C A C C - A A B C B C A A

Acetic A c i ~ vapors (Hot) C C B B' C A B C A A A B' C B C A A

Acetic Anhydride, C C A B C C C C A A A A C B C A A

Acetone A A A A A' A A A A A A A C A C A A

Acetylene (Dry) A A A A A' A A A - - A - A A A A -Alcohol Amyl B B A A A A B B A - A - C A A A 'A

Alcohol Butyl B., A A A A A B A A A A A A A A' A - ,Alcohol Ethyl B' A A A A A B B A A A A A A C A -

Alcohol Methyl , Bl- A A A iA A B A B B B B A A A A -

Aluminum Chloride 'Sol.· C C C B' :c B C C B B A C B A A A A

Aluminum Hydroxide B A A A iA A B A B B B B A A A - -

Aluminum Sulfate (Alum) C C A B B' A C A A A A A B A A A A

Ammonia (Anhydrous) A A A B C A A A A B A A C A C A -

Ammonium Bicarbonate B B A B C A - - - - - - A - - A -Ammonium Bisulfite C C A C !C A - - - - - - B a - - A

Ammonium Carbonate B A A C !C A A B A B B A C A - A -Ammonium Chloride C A B A C A C C A A A A B A A A -

Ammonium Hydroxide B A A C ic A B A C A A A B A - A A

Ammonium Nitrate C C A C :C A C B C C B A A A C A -Ammonium Phosphate Mono Basic : C B A B C A - B - - - - B A C A -Ammonium Phosphate OI-Basic C B A B ;C A C B B B B A B A - A -

Ammonium Phosphate Tri-Baslc B A A C IC A - - - - - - B A - A -

Ammonium Sulfate (Neutral) C B A A IC A C B A B B B A A A A A

Ammonium Sulfite C C A C 'c A C - C - - C C A - - -Aniline B B A B C A A B A B B A C B B A A

)

)

Page 17: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 17/80

CORROSION CHART (continued)

l METALS' ELASTOMERS' PACKINGS'

MEDIA \ ~ \ \ ~ \ \ \ ~ ~ \ \\\ ~ \romatic Hydrocarbons A A A A A A - A - - - - C C - - -Arsenic Acid C C A C C A C B A B B C B A B - A

Air B A A A A A B A A A A A A A A A -Barium Carbonate B B A A A A - B A B B A B A - A -

Barium Chloride B' B A A B A B - A B B A A A A A -Barium Hydroxide B' B A B C A A A A B B A ,.. A A A -

Barium Sulfate B B A A A' A A B A B A A A A A A -Barium Sulfide B B A C C A B B - - - - A A A A -Beer (Alcohol Ind.) B B A A A A B A A A A A A - A A -

Beer (Beverage Ind.) C C A A A A C A A A A A B A A A -Beet Sugar Liquor B A A A A A B B A - - A A A A A -Bensene (Benzol)

A A A A A A A A A B A A C C B A A

Black Liquor B B A B C A - B - - - - B B A A -Borax (Sodium Borate) B A A A B A A A A A A A B A A A -Boric Acid (Boracic Acid) C B A B' B' A B C A A A B A A A A A

Brine B B A A B A - - - - - - A A A A -Bromine Solution C C C C C C C C C A A C C C A A A

Bromine (Dry) C B C A B' B C C A A A A C C A A A

Butane A A A A A A A A A A A A A B A A -Butadiene A A A A A A A A - - - - B A A A -

Butanol B A A A A A - - - - - - A B - - -Butyl Acetate B B A A B A A A A A A A C C C A -

Butyl Alcohol B A A A A A - - - - - - A B A A A

Butyric Acid C C A B' B' A C B C A A B C C C A -

Calcium Bisulme C C A C C A C C C A A C B B A A -Calcium Carbonate

B B A B A A A A A B B A A AA

A - '.

Cal.cium Chloride B' A B A B' A B B A A A A A A A A -Calcium Hydroxide B A A A B A C A A B A A A A A A -Calcium Hypochlorite C C C C C C C C B A A B C A B A B

Calcium Sulfate B' A A B A A A A A B B A A A A A -Cane Sugar Liquor B A A A A A - A - - - - A A A A -

Carbolic Acid-Phenol B B A A B A - B - - - - C B B A A

Carbonated water C B A B B A - B - - - - A B - A -Carbon Dioxide (Dry) A A A A A A A A A A A A B B A A -

Carbon Dioxide (Wet) C B A B B A C A A A A A B B A - -Carbon Monoxide A A A A A A A A A A A A A B - A -Carbonic Acid C B A B B' A C B A A A A A A A A -

Carbon Bisulfide B A A - B A - - - - - - C C A A -Carbon Tetrachloride (Dry) C B A A A A B B A A A A C C A A -Carbon Tetrachloride (Wet) C

BB

AB A C B A A A A C C A

A -Caustic Soda B B B A C A B B A A B A B A - A -Caustic Potash B B A A C A C B A B B A A A - A -Chlorine (Wet) C C C C C C C C C A C C C C A A A

Chlorine (Dry) B B B B B' A B B A B A A C C A A A

Chromic Acid 50% C C B C C A C C C B B A C C A A -Citric Acid C C A B C A C C B A A B A A A A A

Citric Acid Solutions C C B B C A - C - - - - A A A A A

Copper Chloride (Dry) B B - B C - - B - - - - A 'A B - -Copper Nitrate C C A C C A C B C A B C A - - A -Copper Sulfate C C A C C A C B C A A C A A A A A

Copper Plating Solution C C A C C A - - - A A - A A - - -

1

Page 18: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 18/80

ICRANE®I

CORROSION CHART (continued)

I METALS' ELASTOMERS' PACKINGS'

MEDIA ~ , \ \ ~ ~ \ \ \ ~ ~ \\ \\\ \\/ )

Corn Oil See Vegetable Oils B A C B A -Cotton Seed Oil See Vegetable Oils B A A A - - - B B A A -Creosote (Crude) A A A A A A B A A - A A C C B A -Cyanide Plating Solution C A A C C A - - - - - - B - - A -

D1chloroethan (Ory) A A A A A A - A - - - - C C B A -

Disodium Phosphate B B A B B A - - - - - - A - - - -

Dowtherm C C A A B A A A - A A - C C A A A

Ethyl Alcohol B' A A A A A - - - - - - A A B A A

Ether B B A A A A A A A B B A C C - A -Ethyl Acetate B B A A A' A B B B A A B C C C A -

Ethyl Chloride (Dry) A A A B A A - A - - - - C C - B A

Ethylene Dichloride (Dry) B B A A B A B - - A A - C C A A A

Ethylene Glycol A A A A A A A A A A A A B A A A A

Ethylene Oxide B B A B C A B B - - - - C C C A A

Fatty AcidsC B A B C A C A A A A A B C A A A

Ferric Chloride C C C C C C C C A B A A A A A A A

Ferric Nitrate C C B C C A C C C A B B B A A A -

Ferric Sullate C C A C C A C - C A A A A - A A -Ferrous Chloride C C C C B' C C C C B B C A A A A A

Ferrous Sullate C B A C B' A C B A B B A B A A A A

Fluorine Gas (Dry) C C A A B A C A A B B A C C C .- -

Formaldehyde C B A B A A C B B B B B B B A A -Formic Acid C C A B' C A C B A A A A B B C A A

Freon Gas (Wet) Ft2 c B A B C A C B A A A B B B B A A )Freon Gas (Dry) F12 A A A A A A A A - A A - B B B A A

Fruit Juices C C A B B A - C - - - - B A - A -

Furfural B A A A A A B A B B B B C B C A -

Gallic Acid C B A A A A C B A B B A B A A A -Gasoline (Refined) A A A A A A A A A A A A B C A A A

Gasoline (Sour) B B A A C A B B - - - - B C A A A

Gas Natural A A A A A A A A - - - - A A A A -Glycerine or Glycerol A A A A A A A A A A A A A A A A A

Glycols A A A A A A A A A A A A B A A A -Green Liquors B A A B C A - - - - - - B A - A -Heptane A A A A A A A A - A A - B C A A -

Hexane C A A A A A A B - A A - A C A A -Hydrobromic Acid C C C C C C C C C B A C C - A A A

Hydrocarbons (Aromatic) A A A A A A - - - - - - C C - - -

Hydrochloric Acid C C C C C C C C C B A C C C A A A

Hydrocyanic Acid (Dry) B B A A B A B B A A A A A A A A -

Hydrofluoric Acid 80% C C C A C B C C B A A C C - B A A

Hydrofluoric Acid 80% C B C A C B C C C A A C C - B A A

Hydrogen Gas A A A A A A A A

-A A

-A A A A -

Hydrogen Peroxide C .C A B ·C A C C A C A A C B B A -Hydrogen Sulfide (Dry) A A A B B A A A A A A A C A C A -

Hydrogen Sulfide (Wet) C B A C C A C B A A A A C A C A A

Hypo (Sodium Thlosulphate) C - A - - A - A - - - - A A A A -Kerosene A A A A A A A A A A A A B C B A A

lactic Acid (Dilute) C C A C C A C C A A A C C B A A A

lactic Acid (Concentrated) C C A C B A C C A A A C C B - A A

Linoleic Acid C B A B C A C - - - - - B C A A -Linseed Oil See Vegetable Oils B A A A A A A A C A A -Lubricating Oil A A A A A A A A - A A - A C A A -Magnesium Chloride B A B A B' A B B A A A A A A A A -Magnesium Hydroxide A A A A B A A A A A A A A A A A -Magnesium Nitrate C - A B - A B A - A A A B B - A -

Magnesium Sulfate C B A AB'

A B B A A A A A A A A -

Page 19: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 19/80

I R A N E ~ JCORROSION CHART (continued)

j l METALS' ELAStOMERS' PACKINGS'

MEDIA ~ ~ \ \ \ ~ \ \ \ \ ~ \ \\ \ \ \ \ \aleic Acid

C C A B B A C C A B B A B C A A -

Mercury A A A C C A A A C A A A A A A A -Methyl Alcohol B' A A A A A A A A A A A A A C A A

Methyl Chloride (Dry) B B A B A A B B A B A A C B B A -

Methyl Ethyl Ketone A A A A A A A A - A A - C C C A -Monochloroacetic Acid C C C B C B C C B B B B C - - A A

Monochlorobenzene (Dry) A A A A A A A A A A A A C C B A A

Muriatic Acid C C C C C C - C - - - - B B - A -Naptha B B A A A A B A A B A A B C A A -Natural Gas A A A A A A - A - - - - A C A A -Nickel Chloride C C B B C B C C B A A B B A A A A

Nickel Nitrate C - A B C A C B B B B C B B - A -

Nickel Sulfate C B A B' B' A C B A B B A B A A A A

Nitric Acid (Dilute) C C A C C A C C C A A B C B A A A

Nitric Acid (Concentrated) C C A C C A C C A A A A C C A A B

Nitrobenzene A A A B B A A A - B B - C A B A -OleiC Acid B A A A C A B B A A A A B C B A A

Oxalic Acid C C B B' B' A C C B B B B C B B A A

Oxygen A A A A A A A A - - - - B A - A -

Palmitic Acid B B A B B A B B A - - - B A A A -

Pentane A A A A A A A A - - - - A C - A -Perchlorethylene A A A A A A A A A A A A C C A A -

j Phenol B B A A B A B B - - - - C B B A -./ Phosphoric Acid 25% C C A B C A C C A A A A B A A A A

Phosphoric Acid 25% C C A B C A C C A A A A B B A A B

Picric Acid (Aqueous) C C A C C A C B C A B C C B A A -Potassium Bicarbonate B A A A A A A A - B B - B A - A -

Potassium Bisulfite C C A C B A - - - - - - A A - A -

Potassium Carbonate B A A A B' A A B A A A A A A A A -Potassiu, Chlorate B' A A C B A - B B A B A B A A A -

Potassium Chloride C A B A B B C B B A A A A A A A -

Potassium Chromate A A A A A A B B - A A - B A - A -

Potassium Dichromate B B A B B A B B A B B A B B A A -

Potassium Hydroxide 50% B B A A C A B B A B B A B A A A -

Potassium Phosphate C B A B C A - - - - - - B A A A -Potassium Sulfate C A A A A A B B B B B B A A A A -

Potassium Triphosphate B A A A B A - - - - - - B - - A -

Propane Gas A A A A A A A A A - A A A C B A -Pyrogallic Acid C C A A B A B B A B B B - B - A -Sea Water B A A A A A C C A A A A A A A A -Silver Nitrate C C B C C A C B C A A A B A A A -

Sodium Acetate B' B A A A A C B B A A B B A C A -

Sodium Aluminate B A A A B A A - - - B - A A A A -Sodium Bicarbonate B A A A B A A A A A A A A A A A -Sodium Bisulfite C C A B B A C B - B B - B A A A -Sodium Borate B A A A B A A A - A A - B A - A -Sodium Bromide (10%) C B B B B B C C B B B B B B - A -Sodium Carbonate (Soda Ash) B A A A C A B B A A A A A A A A -Sodium Chlorate B B A C C A - B - A B A B B A A -

Sodium Chloride (Brine) B A B A B A C B A A A A A A A A A

Sodium Dichromate B B A - C A A - - - A - ! C - A - -

Sodium Fluoride C B B A A A C C A A - A \ A A - A -

Sodium Hydroxide 50% B A A A C A B B A C B A \ B B C A A

Sodium Hydroxide (50 to 70%) C C B A C B C C A C B A C B C A A

Sodium Hypochlorite C C C C C C C C C A A C C A B A C

17

Page 20: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 20/80

ICRANE®I

CORROSION CHART (continued)

I METALS' ELASTOMERS' PACKINGS'

MEDIA \ , \ \ ~ ~ ~ \ ~ ~ \\

\ \\

~\

odium Nttrate B B A B B A B B A A B A B A B A -Sodium Nttrite B' A A A A A A A 8 - - B A - - A -

Sodium Peroxide Solution 8 A A A C A 8 8 8 C - A 8 A A A -Sodium Phosphate Mono Basic C 8 A B' 8' A B 8 A A A A A A A A -Sodium Phosphate Di-Basic C 8 A B 8 A B B A A A A A A - A -Sodium Phosphate Tri-Basic B A A A B A 8 8 A A A A A A - A -

Sodium Silicate A A A A B A A A 8 8 B A A A A A -

Sodium Sulfate (Salt Cake) B' 8 A A A A B B 8 B B B A A A A -

Sodium Sulfide C B A A C A B B A 8 B A A A A A -

Sodium Sulfite C B A B B A B - A C B A A A A A -Sodium Thiosulfate (Hypo) C - A A C A C A 8 - A B B A A A -Stannic Chklride C C C C C C C C 8 B A C B A A A A

Stannous Chloride C C A C C A C - A 8 B B B A - A -Starch A A A A A A A A - - - - A A A A -Steam B A A A A A A A A A A A C A C A A

Stearic Acid C C A C C A A B A 8 B A B - A A A

Steep water (Corn Products) C 8 A A B A - - - - - - B B - - -

Sulfur A B A B C A A 8 B - B A C A 8 A -Sulfur DioXide (Dry) A A A A A A A A B B B B C A C A A

Sulfur Dioxide (Wet) C C A C C A C C C C A C C B C A A

Sulfuric Acid 10% (70'F) C B B C C A C C A A A A B 8 A A A

Sulfuric Acid 10% to 80% C C C B C A C C C A C C C C A A A

Sulfuric Acid 80% to 95% B B B C C A B C C 8 B C C C B A B

SulfuriC Acid 95% to 100% B B A C C A 8 C C 8 A C C C 8 A C)

Sulfuric Acid 100% & Over C C A C C A B C C B A C C C - A C

Sulfurous Acid C C A C C A C C C B B C C B A A A

Tannic Acid (Tannin) B - A A B' A 8 B A 8 B A A A A A -

Tartaric Acid C B A B C A C 8 B B B A C 8 A A A

Toluol or Toluene A A A A A A A A A A A A C C B A -

Trichklroethylerie 8 B 8 A B A B B A 8 B A C C B A A

Triethanol Amine B B A B C A - B - A A - C A C A -Turpentine B A A A A A B 8 A A A A B C A A -

Urea C C A 8 B A 8 - A A B - A A A A -

Urea Ammonia Liquor C - A C C A - - - - - - C - - - -Varnish 8 B A A A A B A A A - A C C B A -

Vegetable Oils (Containing Acid) C 8 A A C A - - - - - - B - A -

Vegetable Oils (Acid Free) B B A A B A - - - - - - B - A -Vinegar C C A 8 B A C - A A A A B A A A -

Vinyl Chloride C - A 8 C A A A A A A A C C A -water, Acidmine Containing OXidizing Salts C B A C C A C - C A A A B B A A -water, Acidmine No OXidizing Salts B A C A B B C - C A A A B 8 A A -

water, Fresh A A A A A A A A A A A A A A A A -water, Fresh Boiler Feed B A A A A A A A - - - - A A A A -

water, 8rackish B A A A A A - A - - - A A - A A -water, Distilled Laboratory Grade C C A A B A C - A A A A A A A A -Water, Distilled Return Condensate B A A A A A A A A A A A A A A A -water, Salt Sea water 8 A A A A A C B B A A B A A A A -Whiskey & Wines C 8 A A 8 A C C A - - B C A A A -White Liquor B A A 8 C A 8 - - - A - 8 A A A -Xylene B - A - - A A A A A A A C C B A A

Zinc Chloride C C 8 8' C A C C C B A C B A A A A

Zinc Sulfate C 8 A B' B' A C B B A A A 8 A A A A

Page 21: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 21/80

CRANE TESTS AND WORKING PRESSURES

VALVE TESTING

All Crane valves are tested for shell and seattightness in accordance with applicable in

dustry standards. The following standards areused in the manufacture and testing of Crane

valves.

Bronze

Gate, Globe, Angle &Check Valve

Globe, Angle & Check Valves

Gate Valves

Ball Valves

Iron

Gate Valves

Check Valves

Globe and Angle ValvesButterfly Valves

Cast Steel

Gate Valves

Globe &Check Valves

MSS-SP-BO

WW-V-51

WW-V-54WW-V-35

MSS-SP-70

WW-V-58MSS-SP-71

MSS-SP-85MSS-SP-67

API-609

ANSI B16. 34,

API 600,

API 598,MSS-SP-61ANSI 816.34,API 600·,

MSS-SP-61

API 598

·Wall thickness and stem diameter only.

Ball Valves

Forged Steel

Gate Valves

Globe &Check Valves

MSS-SP-72,WW-V-35,

ANSI 816.34

API 602,ANSI B16.34,

API 598,

MSS-SP-61

API 602·,

ANSI B16.34,

MSS-SP-61

·Wall thicknessand

stem diameteronly.

Air Testing

Corrosion Resistant

Gate Valves

Globe &Check Valves

Ball Valves

API 603,API 598,

ANSI 816.34,MSS-SP-61

ANSI 816.34,MSS-SP-61

MSS-SP-72,

ANSI 816.34

The fact that many Crane products are recommendedfor water, oil, gas, and air does not necessarily indicate that all are air tested. It has been found commercially that our regular stock valves have proven quitesatisfactory for air or gas service without an air test;therefore, if an air test is required, it must be definitely

specified.

In addition, any valve intended for air, gas, or veryvolatile fluids, where absolute tightness is essential,should be ordered air tested unless the catalog specifically states it is regularly air tested.

When iron or steel gate valves are to be used in pipelines on natural dry gas service, orders should saspecify, so that they can be suitably packed.

Non-Destructive Testing

All castings used in Crane valves are visually inspected.Steel and corrosion resistant alloys are inspected in

accordance with MSS-SP-55.

Crane steel pressure containing castings may be qualified by non-destructive examinations on a specialorder basis when specified.

10

Page 22: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 22/80

CRANE TESTS AND WORKING PRESSURES

Hydrostatic and Shock Working Pressures

Crane valves are suitable for liquid working pressuresspecified on catalog pages only when used in hy-draulic installations in which shock is absent or negligible. Sudden closure of a valve in a hydraulic systemcauses the body of liquid, which may be moving at arate generally in excess of one foot per second, tostop instantaneously. As liquids are relatively incompressible, the sudden cessation of flow effects a risein pressure considerably greater than the static workin g pressure; this pressure increase is termed"SHOCK" and may, in some cases, be sufficient tocause valves or piping to fail.

Pressure increase due to shock is not dependent uponthe working pressure in the system but upon thevelocity at which the liquid is flowing. This pressuresurge, or shock, severely limits design velocities . . .a fact readily understandable if it is remembered thatpressure rise resulting from arrest of flow may be ashigh as 60 psi for each foot per second initial velocity.

Increase in Pressure Due to

Expansion of Liquids

If a vessel is filled with liquid so that no space remains forvolumetric expansion, any rise in temperature of the liquidwill cause an increase in internal pressure; this is due tothe tendency of liquids to change in volume and, as liquidsare relatively incompressible, th e pressure builds up rapidlywith only a slight temperature rise. The increase may bedue to the sun's rays or to atmospheric conditions.

Crane tests indicate that when vessels are completely filledwith 33° API fuel oil, a rise of 1°F causes an increase ininternal pressure of about 75 psi; see chart at right.

In the first test, the 31 °increase (from sr to I \3 0) causeda total pressure increase of 2250 psi (from 250 to 2500 psi)or about a 73 psi per degree average. In the second test,th e 19° increase (from 76° to 95°) caused a total pressure increase of 1425 psi (from 150 to 1575 psi) or about a 75 psi perdegree average. While results may vary slightly under

actual service conditions, depending upon the kind of oil, itscubical coefficient of expansion, th e fleXibility, if any, of thevessel, the presence of air in the oil, and other variables, thetests prove conclusively that dangerously high pressures canbuild up in an oil-containing vessel with only moderatetemperature increase.

For example, installations of 100 psi and 1000 psiworking pressures, with the same initial velocity of 10feet per second, will be subject to the same increasein pressure (approximately 600 psi) due to instantaneous closure of a valve.

Shock generally prevails in lines equipped with checkor quick-closing valves, or in lines supplied by re-ciprocating pumps. It may also be produced, to alesser degree, by rapid closure of gate and globevalves. Therefore, care should be exercised whenclosing valves installed in liquid lines.

Where shock is likely to occur, the maximum shockpressure should be added to the working pressure ofthe line to determine working pressure of products

in the line . . . also, hydraulic installations should beequipped with air chambers or other types of shockabsorbers to eliminate, as much as possible, increasein pressure due to shock.

Thermo-Piezo Effects of Oil at Constant Volume

1/I?

v

\ ~ " , , ,(!,;;

/r

1/

Y Results Using Fuel Oil-t...- J? 170 r'--I- ,-_33

0

A.P.I.. )1 . 5 

Baume,-

0

0.8015 Specific Gravity)

I I

400 800 1200 1600 2000 2400

Pressure-Pounds pe r Square Inch

It is recommended, therefore, on valves installed in liquidlines (particularly oil), that some means be taken to prevententrapment of liqUid in the talve bonnet so as to eliminatepossible pressure build-up due to rising temperature.

.

Page 23: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 23/80

2CRANE

1255200CWP

valves are marked withsize, the name "CRANE;'

class desig·valve markings

Include the cold rating.

2CRANE

CLB1255

200 CWPIron Md alloy Iron valves

In this case, the

CLB and the valve bearse nominal class desig·

e non·shock coldoil, and gas ONP rating.

6CRANESTEELWCB150

for a carbonsteel valve.

1CRANE

A105800

Typical markings for a forgedcarbon steel valve.

6ALOYCO

CF8M150

Stainless steel valves have amaterial symbol marking suchas CF8M, CN7M (Alloy 20),etc.

IDENTIFICATION OF CRANE PRODUCTS

MSS Standard

Marking and identification of Crane products conform to the Manufacturers Standardization Society Standard Marking

System for Valves, Fittings, Flanges, andUnions (MSS SP-25).

General

All Crane products are marked for identification with the name "CRANE," the letter "C," or the letters "CC," dependingon the type and size of product as well asthe method of manufacture.

In addition, v ~ l v e s listed by the Under

writers' Laboratories, Inc., are marked"UL" . . . . and valves listed by the FactoryMutual Laboratories are marked "FM."

Bronze and Iron

Bronze products, readily distinguished bythe color, bear no material marking.

Crane Hi-Strength Cast Iron and alloy ironsare marked with appropriate material symbols; see table on page 23. Malleable ironproducts bear the marking "MI" or "MALL:'

Steel

Cast Steel products are marked "Steel" andalso include the appropriate alloy symbol;see table on page 23. Pressure containingparts also have the heat number stampedon raised pad.

Forged Steel products are marked with theappropriate alloy symbol and also have theheat number marked for pressure containing parts.

Corrosion-resistant alloy products such as316 Stainless, Alloy 20, etc., are marked withappropriate material symbols; see table onpage 23.

Nominal Class DesignationsThe general or nominal designations forCrane valves, such as Class 125, Class300, Class 900, etc., are as defined in thevarious applicable standards includingMSS SP-25, Standard Marking System forValves, Fittings, Flanges and Unions.

The designations are descriptive of a general product class and are not to be construed' as a recommendation for use ofthe product at pressures represented bythe numbers in the designations.

The recommended pressure-temperature

.ratings for each category of Crane valvesare specified in those sections of the catalog pertaining to the product.

Identification of Crane Valve Trims

TrimCrane Catalog No. Marking on

MaterialDesignation Suffix IdentificationFor Material (when used) Plate

METALLIC

Bronze Bronze H B

Carbon Steel Carbon Steel ... WCB

Hardened Stainless Steel AISI Type 420-5 ... . .Hard Facing Cobalt Base Alloy U HF

MonelMonel A NICU

13% Chromium Steel 13% Chromium Steel X CRI3

18-8 Steel with Molybdenum (AISI Type 316) L CFaM

NON-METALLIC

Buna N (synthetic rubber) BunaN B ...Composition (disc) Composition C Disc No.

Ethylene-Propylene-Terpolymer EPT Z ...Tetrafluoroethylene PTFE Tor TF TForTFE

Chlorosulfonated Polyethylane Hypalon H ...Fluorocarbon Viton V .. ,

The Catalog No. suffix for steel valves having a disc and seat of different materials Is a combination of letters, such

as "XU" for 13CR to Hard Facing.

21

Page 24: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 24/80

IDENTIFICATION OF CRANE PRODUCTS

Identification Plates

For further product identification, bodymarkings may be supplemented by identification plates, as shown on this page.The plates, depending on type and sizeof product, are mounted in the most prac-ticable position . . .under the wheel nut,on the yoke, etc.

Bronze valves except checks, and all ironvalves including checks have plates bear-ing the valve catalog number and thenumber of the composition disc if soequipped. Bronze checks have no platesand are generally identifiable by bodymarkings or by comparison with catalogillustrations. Check valves having a composition disc, in most cases, have thedisc number stamped on the valve cap.

Steel valves have plates bearing some orall of the following data: catalog number

and size . . .material of body, disc, stem,and seat (trim}_ .. fluid recommendation. .. and the pressure-temperaturerating. Symbols for trim materials areshown in the table on page 21.

CRANE 461125S 200WOG

BRONZE TRIM

Iron valves have a plate bearing thecatalog number of the valve.

Proper Identificiation Important

Proper identification of Crane productsin service. . . or ordering of replacementparts, to replace an old valve, for inquiriesconcerning operation, etc . .. s extreme

ly important. To expedite handling ofsuch matters, it is imperative that thecustomer furnish all pertinent data

General, for bronze or iron valves, thecatalog number and size will suffice; if

these are not available, specify the complete body markings, type of valve, andthe size of the pipe line.

In the case of steel valves, specify thecatalog number and size, or the assem blypart number, if these are not available,furnish all body markings and all information shown on the identification plate.

When valves have a composition disc, besure to include the number of the discorthe service. In all cases where recordspermit, furnish the approximate purchase date of the product underconsideration.

Cast steel valves have a plate bearingthe catalog number, size, rating, ANSIClass, the body, stem, disc, and seator seat faCing material and partnumber.

tOPEN

SHUTjCRANEJ

CAT. 9302~ 8!!!!H c.W.P. 1.-----,--======:::>- . . , t f C A ~ d ; r . J ; ( ; ; ; ; ; ; ; ~ ~ I ....J,__

Ball valves In Bronze, carbon steel,and corrosion resistant alloys withthreaded .or socket ends have thecatalog number printed on the vinylInsulator sleeve of the operatinghandle.

Iron Butter fly valveshave the catalognumber and pressure rating stampedon a tag which Is either wrappedaround the valve neck or fasteneddirectly to the valve body.

Corrosion resistant valves have aplate bearing the figure number of the

valve.

Bronze valves, except checks, have aplate bearing the catalog number of

the valve.

Forged steel valves have a plate bearing the catalog number, size, rating,and ANSI Class, and In some cases,the body, stem, disc, and seat or seatfacing material.

OCRANE c O ' s E A T 1 1 ; o ; : : ~ : ~ : : : ~ P : : ~ Y N O ~ ' : - ' : : : ~ ~ _____ 0CAT HO. _____ lOOy _ _ _ TRIM _ _ _ _ _ _ __ _ I ' . ' ~ Cl. _ _ _

Flanged Ball Valves In cast steel andcorrosion resistant alloys have a platebearing the catalog number, rating,ANSI Class, body and trim materialand part number.

Page 25: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 25/80

MATERIAL SYMBOL MARKINGS ON

CRANE PRESSURE·CONTAINING IRON AND STEEL CASTINGS OR FORGINGS

Classification ASTMof Material

Material Designation

Specifi- Class or

cation Grade

Cast Irons A126 B

Alloy... ...

Cast IronsDuctile Iron A536 65-4512

A436 1Ype 2

Malleable Iron A47 32510

Carbon A216 WCB

Cast Steels114% Chromium-Y2% Moly. A217 WC6

214% Chromium-l% Moly. A217 WC9·

5% Chromium-Y2% Moly. A217 C5

Low Carbon A352 LCB

Thmperature 2Y2 % Nickel Steel A352 LC2

Cast Steels 3Y2 % Nickel Steel A352 LC3

Carbon A105 '"

Forged 114% Chromium-Y2% Moly. A182 Fl I

Steels 214% Chromium-l% Moly. A182 F22

5% Chromium-Y2% Moly. A182 F5a

11-13% Chromium Steel A182 F6

18-21% Cr-8-11% Ni A351 CF8

18-21% Cr-9-12% Ni-2-3% Mo A351 CF8M

Stainless 17-21% Cr-8-12% Ni A351 CF3

Steels 17-21% Cr-9-131110 Ni-2-3% Mo A351 CF3M

18-211110 Cr-9-121110 Ni with Cb A351 CF8C

19% Cr-281110 Ni-21110 Mo A351 CN7M

641110 Ni, 280/0 Mo A494 N12MV

60% Ni, 16% Cr, 17% Mo A494 CW12MW

Nickel

Alloys95% Ni A494 CZ-l00

70% Ni, 15% Cr A494 CY-40

70%Ni, 30% Cu A494 M-35-1

*Hastelloy is a trademark of Cabot Corporation**Inconel is a trademark of Intemational Nickel Company

AISI Crane Symbol ForMaterial Material on descrip-1Ype Designation Casting tion of

or material

(*)Forging see:

... Hi-Strength Cast Iron CLB page 4

. . 30/0 Nickel Cast Iron 3NI

Ductile Iron DI page 4

... Ni-Resist Cast Iron NR2... Malleable Iron MI or MALL page 4

'"Carbon Cast Steel WCB.. . No. 7 Cas t Steel WC6 page 7

... No. 9 Cast Steel WC9

... No. 5 Cast Steel C5

... "LCB" Cast Steel LCB

... No. 3 Cast Steel LC3 page 7... "Arctic" Cas t Steel LC3

'"Carbon Forged Steel A105

... No. 7 Forged Steel Fl l

No.9 Forged Steel F22page 7...

... NO.5 Forged Steel F5a

Type 410 13% Chromium Steel F6 page 7

lYpe 304304

CF8

1Ype 316316

CF8M

Type 304L 304L CF3 page 8

Type 316L 316L CF3M

Type 347 347 CF8C

... CN7M

Hastelloy B* A494

N12MV

Hastelloy C* A494

CW-12MWNickel A494

CZl00 page 9

Inconel** A494

CY-40

Monel A494

M35-1

23

Page 26: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 26/80

Pressure Temperature ratings are for body, bonnet or cover. ParticularCrane Model numbers may have limitations based on gaskets, boltingor design. Please refer to catalog page for specific pressure/temperaturerating of a particular Crane Model.

Temp OF

·20 ·150

200

250

300

350

400

406

450

500

550

Pressure-Temperature RatingsPressure·Temperature Ratings (comply with MSS·Sp·aO)

BRONZE VALVES

Working Pressure, psig

ASTM 862 ASTM 861

Class 125 Class 150 Class 200 Class 300

THO FLG 2112·3

200 300 225 400 1000 600

185 270 210 375 920 560

170 250 195 350 830 525

155 210 180 325 740 490

140 180 165300

650 450

.. . .. . 275 560 410

125 150 150 " . .. . ...120 145 " . 250 480 375

.. . ... . .. 225 390 340

. .. . .. . 200 300 300

Pressure-Temperature RatingsPressure·Temperature Ratings (comply with MSS·Sp·70, 71 & 85)

IRON VALVES

Working Pressure, psigTemp OF ASTM A126 CL8

Class 125 Class 250

2" ·12" 14" • 24" 30"·48" 2" • 12" 14" • 24"

·20 to 150 200 150 150 500 300

200 190 135 115 460 280

250 175 125 85 415 260

300 165 110 50 375 220

350 150 100 ... 335 220

400 140 .. . ., . 290 200

450 125 . . ... 250 ...

)

Page 27: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 27/80

Pressure-Temperature Ratings(comply with ANSI B16.34-1981-Standard Class)

STEEL, NICKEL ALLOY and OTHER SPECIAL ALLOYS

WORKING PRESSURE, PSIG

CLASS TEMP A216 A217 A217 A217 A352 A352OF WCB C5 WC6 WC9 LCB LC3

A182 A182 A350Al05 Fll F22 LF3

·20 to 100· 285 290 290 290 265 290200 260 260 260 260 250 260

300 230 230 230 230 230 230400 200 200 200 200 200 200500 170 170 170 170 170 170600 140 140 140 140 140 140650 125 125 125 125 125 125700 110 110 110 110 - -750 95 95 95 95 - -

CLASS 800 80 80 80 80 - -150 850 65' 65 65 65 - -

900 50' 50 50 50 - -950 35' 35 35 35 - -

1000 20' 20 20 20 - -1050 - 20' 20' 20' - -

1100 - 20' 20' 20' - -1150 - 20' - - - -1200 - 20' - - - -1250 - - - - - -1300 - - - - - -1350 - - - - - -1400 - - - - - -1450 - - - - - -1500 - - - - - -

·20 to 100· 740 750 750 750 695 750200 675 750 710 715 655 750300 655 730 675 -675 640 730400 635 705 660 650 620 705500 600 665 640 640 585 665600 550 605 605 605 535 605650 535 590 590 590 525 590700 535 570 570 570 - -750 505 530 530 530 - -

CLASS 800 410 500 510 510 - -300 850 270' 440 485 485 - -

900 170' 355 450 450 - -950 105' 260 380 380 -

-1000 50' 190 225 270 - -1050 - 140 140 200 - -1100 - 105 95 115 - -1150 - 70 - - - -1200 - 45 - - - -1250 - - - - - -1300 - - - - - -1350 - - - - - -1400 - - - - - -1450 - - - - - -1500 - - - - -

·20 to 100· 1480 1500 1500 lS00 1390 1500200 1350 1500 1425 1430 1315 1500300 1315 1455 1345 1355 1275 1455400 1270 1410 1315 1295 1235 1410500 1200 1330 1285 1280 1165 1330600 1095 1210 1210 1210 1065 1210650 1075 1175 1175 11.5 1045 1175700 1065 1135 1135 1135 - -750 1010 1065 1065 1065 - -

CLASS 800 825 995 1015 1015 - -600 850 535' 880 975 975 - -900 345' 705 900 900 - -

950 205' 520 755 755 - -1000 105' 385 445 535 - -1050 - 280 275 400 - -1100 - 205 190 225 - -1150 - 140 - - - -1200 - 90 - - - -1250 - - - - - -1300 - - - - - -1350 - -'- - - - -1400 - - - - - -1450 - - - - - -1500 - - - - - -

'Permissible, but not recommended for prolonged usage abolle about 800·F'For Welding End Valves only, flanged and ratings terminate at l000·F

A351A351 I 351

CFBM CF3M CF8

A182 A182

F316 F304

275 275 275

240 240 235

215 215 205195 195 180170 170 170140 140 140125 125 125

110 110 11095 95 95

80 80 80

65 65 6550 - 50

35 - 3520 - 2020' - 20'

20' - 20'20' - 20'20' - 20'20' - 20'20' - 20'20' - 20'20' - 20'20' - 15'15' - 10'

720 720 720620 620 600560 560 530515 515 470480 480 435450 450 415

445 445 410430 430 405425 425 400415 415 395405 405 390395 - 385385 - 375365 - 325360 - 310325 - 260275 - 195205 - 155180 - 110140 - 85105 - 60

75 - 5060 - 3540 - 25

1440 1440 14401240 1240 12001120 1120 10551030 1030 940955 955 875905 905 830890 890 815865 865 805845 845 795830 830 790

810 810 780790 - 770

775 - 750

725 - 645720 - 620645 - 515550 - 390410' - 310'365 - 220275 - 165205 - 125150 - 95115 - 7085 - 50

/

A351CF3

275235205180170140125110

95

80-----

---------720600530470435415410405400395

--

------------

144012001055940875830815805795790

--------------

A351 A351CF8C CN7M

275 230245 215225 200200 -170 -140 -125 -110 -95

80 -65 -50 -35 -20 -20' -20' -20' -20' -20' -20' -20' -20' -20' -15' -

720 600635 555590 525555 -520 -490 -480 -470 -460 -455 -445 -430 -385 -365 -360 -325 -275 -170 -125 -

95 -70 -50 -40 -35 -

1440 12001270 11151175 10451110 -1035 -985 -960 -935 -920 -910 -

890 -865 -775 -725 -720 -645 -550 -345 -245 -185 -135 -105 -

80 -70 -

25

Page 28: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 28/80

CLASS TEMP'F

·20 to 100·

200300400

400

600

650

700

750

CLASS 800

900 850

900950

1000

10501100

1150

1200

1250

1300

1350

1400

1450

1500

·20 to 100·

200300400

500600

650700750

800850

9009501000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

·20 to 100·

200300400

500600

650700750

800

CLASS850

250090095D

1000

1050

1100

1150

1200

1250I.351

1481

145DI.

Pressure-Temperature Ratings(comply with ANSI B16.34-1981-Standard Class)

A216 A217WCB C5

Al05

2220 2250

2025 2250

1970 2185

1900 2115

1795 1995

1640 1815

1610 1765

1600 1705

1510 1595

1235 1490

805' 1315

515' 1060

310' 780

155' 575

- 420- 310

- 205

- 135

-- --- --- -

3705 3750

3375 3750

3280 3640

3170 3530

2995 3325

2735 3025

2685 2940

2665 2840

2520 2660

2060 2485

1340' 2195

860' 1765

515' 1305

260' 960- 705

- 515

- 345

- 225- -- -- -- -- -- -

6170 6250

5625 6250

5470 6070

5280 5880

4990 5540

4560 5040

4475 4905

4440 4730

4200 4430

3430 41452230 36601430 2945860 2170

430 1600- 1170- 860

- 570- 370

- -- -- -- -- -- -

STEEL, NICKEL ALLOY and

OTHER SPECIAL ALLOYS

WORKING PRESSURE, PSIG

A217 A217 A352 A352 A351 A351 A351WC6 WC9 LCB LC3 CF8M CF3M CF8A182 A182 A350 A182 A182Fll F22 LF3 F316 F304

2250 2250 2085 2250 2160 2160 2160

2135 2150 1970 2250 1860 1860 1800

2020 2030 1915 2185 1540 1540 1410

1975 1945 1850 2115 1540 1540 1410

1925 1920 1745 1995 1435 1435 1310

1815 1815 1600 1815 1355 1355 1245

1765 1765 1570 1765 1330 1330 1225

1705 1705 - ...., 1295 1295 1210

1595 1595 - - 1270 1270 1195

1525 1525 - - 1245 1245 1180

1460 1460 - - 1215 1215 1165

1350 1350 - - 1180 - 1150

1130 1130 - - 1160 - 1125

670 805 - - 1090 - 965

410 595 - - 1080 - 925

290 340 - - 965 - 770.. . ... - - 825 - 585.. .. . - - 620' - 465- - - - 545 - 330- - - - 410 - 245- - - - 310 - 185- - - - 225 - 145- - - - 175 - 105- - - - 125 - 70

3750 3750 3470 3750 3600 3600 3600

3560 3580 3280 3750 3095 3095 3000

3365 3385 3190 3640 2795 2795 2640

3290 3240 3085 3530 2570 2570 2350

3210 3200 2910 3325 2390 2390 2185

3025 3025 2665 3025 2255 2255 2075

2940 2940 2615 2940 2220 2220 2040

2840 2840 - - 2160 2160 2015

2660 2660 - - 2110 2110 19902540 2540 - - 2075 2075 1970

2435 2435 - - 2030 2030 1945

2245 2245 --

1970

- 19201885 1885 - - 1930 - 1870

1115 1340 - - 1820 - 1610

665 995 - - 1600 - 1545

480 565 - - 1610 - 1285

- - - - 1370 - 980

- - - - 1030' - 770

- - - - 910 - 550

- - - - 685 - 410- - - - 515 - 310- - - - 380 - 240- - - - 290 - 170- - - - 205 - 120

6250 6250 5785 6250 6000 6000 6000

5930 5965 5470 6250 5160 5160 5000

5605 5640 5315 6070 4660 4660 4400

5485 5400 5145 5880 4280 4280 3920

5350 5330 4850 5540 3980 3980 36405040 5040 4440 5040 3760 3760 34604905 4905 4355 4905 3700 3700 3400

4730 4730 - - 3600 3600 3360

4430 4430 - - 3520 3520 3320

4230 4320 - - 3460 3460 32804060 4060 - - 3320 3320 3240

3745 3745 - - 3280 - 32003145 3145 - - 3220 - 3120

1860 2230 - - 3030 - 2685

1145 1660 - - 3000 - 2570

BOO 945 - - 2685 - 2145- - - - 2285 - 1630- - - - 1715 - 1285

- - - - 1515 - 915

- - - - 1145 - 685- - - - 860 - 515- - - - 630 - 400

- - - - 485 - 285

- - - - 345 - 200

'PermiSSible. but not recommended lor prolonged usage alxM! about BOO'F.

A351 A351 A351CF3 CF8C CN7M

2160 2160 1800

1800 1910 1670

1410 1765 1570

1410 1665 -1310 1555 -1245 1475 -1225 1440 -1210 1405 -1195 1385 -1180 1370 -- 1330 -- 1295 -- 1160 -- 1090

-- 1080 -- 965 -- 825 -- 515 -- 370 -- 280 -- 205 -- 155 -- 125 -- 105 -

3600 3600 3000

3000 3180 2785

2640 2940 2615

2350 2770 -2185 2590 -2075 2460 -2040 2400 -2015 2340 -1990 2305 -1970 2280 -- 2220 -- 2160 -- 1930 -- 1820 -- 1800 -- 1610 -- 1370 -- 855 -- 615 -- 465 -- 345 -- 255 -- 205 -- 170 -

6000 6000 5000

5000 5300 4640

4400 4900 4360

3920 4620 -3640 4320 -3460 4100 -3400 4000 -3360 3900 -3320 3840 -3280 3800 -- 3700 -- 3600 -- 3220 -- 3030 -- 3000 -- 2685 -- 2285 -- 1430 -- 1030 -- 770 -- 570 -- 430 -- 345 -- 285 -

Page 29: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 29/80

TEMPLATES FOR DRILLING

Bronze Standards

Dimensions In InchesNom- Diam- Diam- Num- Diam- Length Lengthinal eter Thickness eter ber eter of of stud

pipe of of Flange of of of bolts boltssize flange bolt bolts bolts with

circle 2 nuts

Class 150: Templates for drillingand flange dimensions in theupper portion of the table conform to the American NationalBronze Flange Standard (ANSIB16.24), Class 150. This Standard does not include sizes V4

and 3At-inch.

Class 150 Bronze ANSI Standard

The flange diameter, bolt circle,and number and diameter ofbolts for the foregoing Standards are the same as for Class125 Cast Iron and Class 150

Steel American National Standards, size for size, but thicknessand facing of flanges are different.

*1,4

*%1;2

3,4

111,4

11;2

2

2V2

3

*31;2

4

*5

6

8

10

12

2.50 ...2.50 .. .

3.50 0.31

3.81l 0.34

4.25 0.38

4.62 0.41

5.00 0.44

6.00 0.50

7.00 0.56

7.50 0.62

8.50 0.69

9.00 0.69

10.00 0.75

11.00 0.81

13.50 0.94

16.00 1.00

19.00 1.06

1.69 4 % 1.12 1.50

1.69 4 % 1.12 1.50

2.38 4 1;2 1.25 1.88

2.75 4 1;2 1.50 1.88

3.12 4 1;2 1.50 2.00

3.50 4 lh 1.50 2.00

3.88 4 1;2 1.50 2.12

4.75 4 % 1.75 2.50

5.50 4 % 2.00 2.62

6.00 4 % 2.00 2.75

7.00 8 % 2.25 2.88

7.50 8 % 2.25 2.88

8.50 8 34 2.50 3.25

9.50 8 34 2.50 3.3811.75 8 34 2.75 3.62

14.25 12 % 3.25 4.12

17.00 12 'Va 3.25 4.25

Class 300: Templates for drilling and flange dimensions in thelower portion of the table conform to the American NationalBronze Flange Standard (ANSIB16.24), Class 300. Class 300 Bronze ANSI Standard

The flange diameter, bolt circle,and number and diameter of

bolts for the foregoing Standardare the same as for Class 250Cast Iron and Class 300 SteelAmerican National Standards,but thickness and facing offlanges are different.

1;2

34

1114

lV2

2

2V2

3

3V2

4

5

6

8

3.75 0.50

4.62 0.53

4.88 0.595.25 0.62

6.12 0.69

6.50 0.75

7.50 0.81

8.25 0.91

9.00 0.97

10.00 1.06

11.00 1.12

12.50 1.19

15.00 1.38

2.62 4 lh 1. 75 2.25

3.25 4 % 2.00 2.50

3.50 4 % 2.00 2.623.88 4 % 2.00 2.75

4.50 4 34 2.25 3.12

5.00 8 sAl 2.25 3.00

5.88 8 3,4 2.50 3.38

6.62 8 3,4 2.75 3.50

7.25 8 3,4 3.00 3.62

7.88 8 3,4 3.00 3.88

9.25 8 3,4 3.25 4.00

10.62 12 3,4 3.25 4.12

13,00 12 Va 3.75 4.75

Facings: Flange faces of bronzeflanged valves are regularly fur-

• Sizes 1,4 and %-mch are not mcluded m ANSI B16.24.

nished plain faced, with two V-shaped concentricgrooves between the port and the bolt holes, per MSSSP6.

Port: Diameter of port on flanged valves of the classesindicated is the same as the pipe size (nominal).

Bolt lengths. Machine bolt lengths include the heightof the point. Stud bolt lengths do not Include heightof points.

Bolt holes: Bolt holes for the V4 and %-inch diameterbolts are 7116-inch diameter.

The holes for V2-inch diameter bolts and larger aredrilled Va-inch larger than the bolt diameter.

Drilling templates are in multiples of four, so that valvescan be turned to face in any quarter when being installed. Bolt holes are drilled to straddle the center lineunless otherwise ordered.

Spot facing: Bolt holes in Crane bronze flanged valves arenot regularly spot faced.

Gaskets: When bronze flanged valves are bolted to iron orsteel flanges which normally have a raised face, theraised face should be removed to provide a full face bearing for the gasket.

27

Page 30: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 30/80

TEMPLATES FOR DRILLINGClasses 25 and 125 Cast Iron

Dimensions, in Inches

Nom- Class 25 Cast Iron

inal

pipe Diam- Thick- Diam- Num- Diam- L e ~ r hsize eter ness eter of ber eter

of of bolt of of boltsflange flange circle bolts bolts

1 ... .,. . .'" '" . .

IV4 ... .. . ... ...'" . .

lV2 . . . . ... .. . . . ...

2 .. . .. , ... .. . ... ...2V2 .,. ... ... . ..

'" . ..3 ... ... ... ... ... . .

3V2 ... .,. ... '" . . .,.4 9.00 0.75 7.50 8 % 2.50

5 10.00 0.75 8.50 8 % 2.50

6 11.00 0.75 9.50 8 % 2.50

8 13.50 0.75 11.75 8 % 2.50

10 16.00 0.S8 14.25 12 sh 2.75

12 19.00 1.00 17.00 12 % 3.00

14 21.00 1.12 18.75 12 % 3.50

16 23.50 1.12 21.25 16 % 3.50

IS 25.00 1.25 22.75 16 % 3.75

20 27.50 1.25 25.00 20 % 3.75

24 32.00 1.38 29.50 20 % 4.00

30 38.75 1.50 36.00 28 'Va 4.50

36 46.00 1.62 42.75 32 'Va 4.75

42 53.00 1.75 49.50 36 1 5.2548 59.50 2.00 56.00 44 1 5.75

54 66.25 2.25 62.75 44 1 6.25

60 73.00 2.25 69.25 52 lIfs 6.25

72 86.50 2.50 82.50 60 lIfs 6.75

84 99.75 2.75 95.50 64 11/4 7.50

96 113.25 3.00 108.50 68 8.00

ANSI Standard: Templates for drilling and flange dimen-sions in the above table conform to the American National Cast Iron Flange Standard (ANSI B16.1), Classes25 and 125 respectively, as indicated.

Facing: The flanges are plain faced, with a smoothfinish, per MSS SP-6.

Port: Diameter of port on Class 25 and 125 flangedvalves is the same as the pipe size (nominal).

Bolt lengths: Machine bolt lengths include the heightof the point. Stud bolt lengths do not include height ofthe points.

Class 125 Cast Iron

Diam- Thick- Diam- Num- Diam- L e ~ r h Length ofeter ness eter of ber eter stud boltsof of bolt of of bolts with

flange flange circle bolts bolts 2 nuts

4.25 0.44 3.12 4 1f2 1.75 ..,4.62 0.50 3.50 4 1f2 2.00 . .5.00 0.56 3.88 4 1f2 2.00 '"

6.00 0.62 4.75 4 O/S 2.25'"

7.00 0.69 5.50 4 % 2.50'"

7.50 0.75 6.00 4 % 2.50 . .

8.50 0.81 7.00 8 O/S 2.75 '"

9.00 0.94 7.50 8 % 3.00'"

10.00 0.94 8.50 8 % 3.00 ...11.00 1.00 9.50 8 % 3.25

'"

13.50 1.12 11.75 8 3,4 3.50 ...16.00 1.19 14.25 12 'Vs 3.75 ...19.00 1.25 17.00 12 'Vs 3.75 ...21.00 1.38 lS.75 12 1 4.25 ...

23.50 1.44 21.25 16 1 4.50'"

25.00 1.56 22.75 16 Ilh 4.75'"

27.50 1.69 25.00 20 lIh 5.00'"

32.00 1.88 29.50 20 5.50 ...

38.75 2.12 36.00 28 11,4 6.25'"

46.00 2.38 42.75 32 1If2 7.00 S.75

53.00 2.62 49.50 36 IIh 7.50 9.2559.50 2.75 56.00 44 Ilf2 7.75 9.50

66.25 3.00 62.75 44 }3,4 8.50 10.50

73.00 3.12 69.25 52 H4 8.75 10.75

86.50 3.50 82.50 60 H4 9.50 11.50

99.75 3.88 95.50 64 2 10.50 12.75

113.25 4.25 108.50 68 21f4 11.50 14.00

Bolt holes: For bolts 1V2-inch diameter and smaller, boltholes are drilled Va-inch larger than the bolt diameter.

For boltsH ~ - i n c h

diameter and larger, bolt holes aredrilled V4-inch larger than the bolt diameter.

Drilling templates are in multiples of four, so that valvesmay be turned to face in any quarter when being in-stalled.

Bolt holes are drilled to straddle the center line unlessotherwise ordered.

spot facing: Bolt holes are not regularly spot faced.When spot facing is desired, orders must so specify.

)

Page 31: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 31/80

TEMPLATES FOR DRILLING

Class 250 and Class 800 Hydraulic Cast Iron

Clas. 250 Cast Iron Class 800 Hydraulic Cast Iron

Class 250: Templates for drillingand flange dimensions conformto the American National CastIron Flange Standard (ANSI

816.1), Class 250.

Flanges have a 1/16-inch raisedface' with a serrated finish perMSS SP-6. The thickness offlange dimension (C) includes theraised face.

In sizes 24-inch and smaller, thetemplates are the same as forANSI B16.5, Class 300 Steel, except for the diameter (D) of theraised face.

Class 800 Hydraulic: Templatesfor drilling and flange dimensionsconform to the American National Cast Iron Flange Standard(ANSI 816.1), Class 800.

Flanges have a V4 -inch high largemale face with a serrated finishper MSS SP-6. The thickness offlange dimension (C) does not include the male face.

The templates are the same asfor ANSI B16.5, Class 600 Steelexcept for flange thickness andlength of bolts.

Bolt lengths: Machine boltlengths include the height of thepoint. Stud bolt lengths do notinclude the height of the points.

Bolt holes: For bolts smaller than13M-inch diameter, bolt holes aredrilled Va -inch larger than thebolt diameter. For bolts 1%-lnchdiameter and larger, bolt holesare drilled V4-inch larger than thebolt diameter.

Drilling templates are In multiplesof four, so that valves may beturned to face in any quarterwhen being installed. Bolt holesstraddle the center line unlessotherwise ordered.

80lt holes are not regularly spot

faced.

Dimensions, In Inches

Class Nom- No. Dia. L e ~ f h Lengthina! A B C D E of of of studpipe bolts bolts bolts boltssize with

Valve 2 nutsor See See

fitting Note X Note X

1 1.00 4.88 0.69 2.69 3.50 4 % 2.50'"

m 1.25 5.25 0.75 3.06 3.88 4 % 2.50 ...IV2 1.50 6.12 0.81 3.56 4.50 4 3,4 2.75

'"

2 2.00 6.50 0.88 4.19 5.00 8 % 2.75 ...2V2 2.50 7.50 1.00 4.94 5.88 8 3,4 3.25 ...3 3.00 8.25 1.12 5.69 6.62 8 3,4 3.50 ...3V2 3.50 9.00 1.19 6.31 7.25 8 3,4 3.50 ...4 4.00 10.00 1.25 6.94 7.88 8 3,4 3.75 ...5 5.00 11.00 1.38 8.31 9.25 8 3,4 4.00 ...6 6.00 12.50 1.44 9.69 10.62 12 3,4 4.00 ...

Class 250 8 8.00 15.00 1.62 11.94 13.00 12 'Va 4.50 ...Cast Iron 10 10.00 17.50 1.88 14.06 15.25 16 1 5.25 ...

12 12.00 20.50 2.00 16.44 17.75 16 1M! 5.50'"

14 13.25 23.00 2.12 18.94 20.25 20 IVa 6.00 ...

16 15.25 25.50 2.25 21.06 22.50 20 ll4 6.25 ...18 17.00 28.00 2.38 23.31 24.75 24 IV4 6.50 '"

20 19.00 30.50 2.50 25.56 27.00 24 m 6.75 ...24 23.00 36.00 2.75 30.31 32.00 24 IV2 7.50 9.50

30 29.00 43.00 3.00 37.19 39.25 28 J3,4 8.50 10.5036 34.50 50.00 3.38 43.69 46.00 32 2 9.50 11.7542 40.25 57.00 3.67 50.44 52.75 36 2 10.00 12.5048 46.00 65.00 4.00 58.44 60.75 40 2 10.75 13.00

Nom- A B C D E No. Dia. Lengthinal of of of boltspipe Valve bolts boltssize or See See

fitting Note Y Note Z

Class 800 2 2.00 6.50 1.25 3.62 5.00 8 % 3.75 3.50

Hydraulic 2V2 2.50 7.50 1.38 4.12 5.88 8 3,4 4.25 4.00Cast Iron 3 3.00 8.25 1.50 5.00 6.62 8 3,4 4.50 4;25

3V2 3.50 9.00 1 62 5.50 7.25 8 'Va 5.00 4.75For sizes 4 4.00 10.75 1.88 6.19 8.50 8 'Va 5.50 5.25not listed,

use Class 600 5 5.00 13.00 2.12 7.31 10.50 8 1 6.00 5.75steel data

6 6.00 14.00 2.25 8.50 11.50 12 1 6.25 6.00

8 7.88 16.50 2.50 10.62 13.75 12 }l/a 7.00 6.7510 9.75 20.00 2.88 12.75 17.00 16 1\4 7.75 7.5012 11.75 22.00 3.00 15.00 19.25 20 V,4 8.00 7.75

Length of Bolts or Stud Bolts

Nole X - 1/16" raised face to 1 16 " raised face valve, fitting, or companion f lange.

NOle Y - 1/4" male to 1 4" male valve, fitting, or companion flange.

Nole Z {1/4" large male to 3/16" large female valve, fit ting, or companion flange.

- 1/4" tongue to 3/16" groove valve, fitting, or companion flange.29

Page 32: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 32/80

~ - - - - - - B - - - - - - ~

Length of

Stud BoltLength of

Machine Bolt

\-i,-Inch Railed Face Joint

Standards: Data for sizes 24-inch and

smaller conform to the American National Steel Flange Standard (ANSIB16.5), Classes 150 and 300 as indicated in the table.

Sizes 30-inch and larger are not included in ANSI B16.5. Data for thesesizes conform to dimensions shownin MSS SP-44 Steel Pipeline FlangeStandard, Classes 150 and 300 as

. indicated.

Facing: End flanges are regularly furnished with a 1/16-inch raised facehaving a serrated finish per MSSSP-6. The thickness of flange dimen

sion (C) includes the facing.Bolt holes: Bolt holes are drilled Vsinch larger than the bolt diameter.

Drilling templates are in multiples offour, so that valves may be turned toface in any quarter when installed.Bolt holes are drilled to straddle thecenter line unless otherwise ordered.

Bolt holes are spot faced.

Bolts and stud bolts: Stud bolt lengths(F) do not include the height of thepoints. Machine bolt lengths (G) include the height of the point.

Lengths F and G apply for flangedjoints made up of product having1/16-inch high raised faces.

Class 150: Stud bolt lengths establish·ed by ANSI B16.5 are adequate for allClass 150 flanged joints having the reg·ular 1116·inch raised face.

Class 300: For male to female or tongueto groove flanged joints, add the heightof the male or tongue (1;4·inch) to di·mension F or G.

TEMPLATES FOR DRILLING

Classes 150 and 300 Steel

Dimensions in InchesClass Nom- A B C D E

inal Valve Corn- Valvepipe or panion or

size fitting flange fitting

Ih 0.50 3.50 0.44 ... 1.38 2.38

34 0.75 3.88. 0.50 ... 1.69 2.75

1 1.00 4.25 0.56 0.44 2.00 3.12

1M 1.25 4.62 0.62 0.50 2.50 3.50

IIh 1.50 5.00 0.69 0.56 2.88 3.88

2 2.00 6.00 0.75 0.62 3.62 4.75

21h 2.50 7.00 0.88 0.69 4.12 5.50

3 3.00 7.50 0.94 0.75 5.00 6.00

31h 3.50 8.50 0.94 0.81 5.50 7.004 4.00 9.00 0.94 6.19 7.50

5 5.00 10.00 0.94 7.31 8.50

Class 6 6.00 11.00 1.00 8.50 9.50150

Steel8 8.00 13.50 1.12 10.62 11.75

10 10.00 16.00 1.19 12.75 14.25

12 12.00 19.00 1.25 15.00 17.00

14 13.25 21.00 1.38 16.25 18.75

16 15.25 23.50 1.44 18.50 21.25

18 17.25 25.00 1.56 21.00 22.75

20 19.25 27.50 1.69 23.00 25.00

24 23.25 32.00 1.88 27.25 29.50

30 30.00 38.75 2.94 33.75 36.00

36 36.00 46.00 3.56 40.25 42.75

42 42.00 53.00 3.81 47.00 49.5048 48.00 59.50 4.25 53.50 56.00

Ih 0.50 3.75 0.56 1.38 2.62

34 0.75 4.62 0.62 1.69 3.25

1 1.00 4.88 0.69 2.00 3.501M 1.25 5.25 0.75 2.50 3.88

IIh 1.50 6.12 0.81 2.88 4.50

2 2.00 6.50 0.88 3.62 5.00

21h 2.50 7.50 1.00 4.12 5.88

3 3.00 8.25 1.12 5.00 6.62

31h 3.50 9.00 1.19 5.50 7.25

Class 4 4.00 10.00 1.25 6.19 7.88

300 5 5.00 11.00 1.38 7.31 9.25

Steel 6 6.00 12.50 1.44 8.50 10.62

8 8.00 15.00 1.62 10.62 13.00

10 10.00 17.50 1.88 12.75 15.25

12 12.00 20.50 2.00 15.00 17.7514 13.25 23;00 2.12 16.25 20.25

16 15.25 25.50 2.25 18.50 22.50

18 17.00 28.00 2.38 21.00 24.75

20 19.00 30.50 2.50 23.00 27.00

24 23.00 36.00 2.75 27.25 32.00

30 ... 43.00 3.62 33.75 39.25

36 ... 50.00 4.12 40.25 46.00

Bolts or F G

Stud

Bolts

No. Dia.

4 112 2,50 2.00

4 Ih 2.50 2.25

4 Ih 2.75 2.25

4 Ih 2.75 2.50

4 Ih 3.00 2.50

4 % 3.25 2.75

4 % 3.50 3.00

4 % 3.75 3.25

8 % 3.75 3.25

8 % 3.75 3.25

8 34 4.00 3.25

8 34 4.00 3.50

8 34 4.25 3.75

12 Vs 4.75 4.00

12 Vs 4.75 4.25

12 1 5.25 4.50

16 1 5.50 4.75

16 Hi 6.00 5.00

20 Hi 6.25 5.50

20 m 7.00 6.00

28 1M ... ...32 IIh ... ...36 IIh ... ...44 m ... ...4 112 2.75 2.25

4 % 3.00 2.50

4 % 3.25 2.754 % 3.25 2.75

4 34 3.75 3.00

8 % 3.50 3.00

8 3,4 4.00 3.50

8 34 4.25 3.75

8 34 4.50 3.758 34 4.50 4.00

8 34 4.75 4.25

12 34 5.00 4.25

12 Vs 5.50 4.75

16 1 6.25 5.50

16 Hi 6.75 6.00

20 IJ,-8 7.00 6.25

20 m 7.50 6.50

24 114 7.75 6.75

24 m 8.25 7.25

24 IIh 9.25 8.00

28 134 ... ...32 2 ... ...

Page 33: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 33/80

Page 34: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 34/80

TEMPLATES FOR DRILLINGClasses 400, 600, and 900 Steel

Dimensions, in Inches

c

Male to MaleFlanged Joint

Male to FemaleFlanged Joint

Stud 8011 Length UGH also applies

for Tongue to Groove Flanged Joinl

Standards: Templates fo r drilling,flange dimensions, and stud bolt

lengths shown in the table conformto the American National Steel FlangeStandard (ANSI B16.5), Classes 400,SOO, and 900, as indicated .. . exceptthe 3O-inch Class SOO data conformsto MSS SP-44 Steel Pipeline FlangeStandard (Class SOO).

Facing: End flanges of flanged valvesof these classes are regularly furnishedwith 1/4-inch high large male facing

having a serrated finish per MSS SP-S.

The thickness of flange dimension (C)does not include the 1/4-inch facing.

Bolt holes: Bolt holes are drilled Va-inch larger than the bolt diameter.

Drilling templates are in multiples offour, so that valves may be turned toface in any quarter when being installed. Bolt holes are dri l led tostraddle the center line unless otherwise ordered.

Bolt holes are spot faced.

Stud bolts: Stud bolt lengths (F and G)do not include the height of the points.The lengths apply for flanged Joints,made up of combinations of flangedproduct having male, female, tongue, orgroove faces. Male or tongue faces arev.. ·inch high; female or groove faces are3/16-inch deep.

Class

Class

400

Steel

Class

600

Steel

Class

900

Steel

Nominal

pipesize

4

5

6

8

10

12

14

16

18

20

24

1/2

3,4

1

114

1\12

2

2¥.z

3

3¥.z

4

5

6

8

10

1214

16

18

20

24

30

3

4

5

6

8

10

1214

16

18

20

24

Stud

At B C D E Bolts

No. Dia.

4.00 10.00 1.38 6.19 7.88 8 Va

5.00 11.00 1.50 7.31 9.25 8 Va

6.00 12.50 1.62 8.50 10.62 12 Va

8.00 15.00 1.88 10.62 13.00 12 1

10.00 17.50 2.12 12.75 15.25 16 1\10

12.00 20.50 2.25 15.00 17.75 16 B413.12 23.00 2.38 16.25 20.25 20 1\14

15.00 25.50 2.50 18.50 22.50 20 10/0

17.00 28.00 2.62 21.00 24.75 24 1%

18.88 30.50 2.75 23.00 27.00 24 1\12

22.62 36.00 3.00 27.25 32.00 24 1%

0.50 3.75 0.56 1.38 2.62 4 ¥.z.

0.75 4.62 0.62 1.69 3.25 4 %1.00 4.88 0.69 2.00 3.50 4 %1.25 5.25 0.81 2.50 3.88 4 %

1.50 6.12 0.88 2.88 4.50 4 3,4

2.00 6.50 1.00 3.62 5.00 8 %

2.50 7.50 1.12 4.12 5.88 8 3,4

3.00 8.25 1.25 5.00 6.62 8 3,4

3.50 9.00 1.38 5.50 7.25 8 Va

4.00 10.75 1.50 6.19 8.50 8 Va

5.00 13.00 1.75 7.31 10.50 8 1

6.00 14.00 1.88 8.50 11.50 12 1

7.88 16.50 2.19 IG.62 13.75 12 m9.75 20.00 2.50 12.75 17.00 16 114

11.75 22.00 2.62 15.00 19.25 20 B412.88 23.75 2.75 16.25 20.75 20 1%

14.75 27.00 3.00 18.50 23.75 20 1¥.z

16.50 29.25 3.25 21.00 25.75 20 1%

18.25 32.00 3.50 23.00 28.50 24 1%

22.00 37.00 4.00 27.25 33.00 24 IVa

... 44.50 4.50 33.75 40.25 28 2

2.88 9.50 1.50 5.00 7.50 8 Va

3.88 11.50 1.75 6.19 9.25 8 1M!

4.75 13.75 2.00 7.31 11.00 8 114

5.75 15.00 2.19 8.50 12.50 12 m

7.50 18.50 2.50 10.62 15.50 12 1%

9.38 21.50 2.75 12.75 18.50 16 1%

11.12 24.00 3.12 15.00 21.00 20 1%12.25 25.25 3.38 16.25 22.00 20 1¥.z

14.00 27.75 3.50 18.50 24.25 20 1%

15.75 31.00 4.00 21.00 27.00 20 IVa

17.50 33.75 4.25 23.00 29.50 20 2

21.00 41.00 5.50 27.25 35.50 20 21/2

tDlmenslOn "A " applies to valves or fittings.

F G

5.50 5.25

5.75 5.50

6.00 5.75

6.75 6.50

7.50 7.25

8.00 7.75

8.25 8.00

8.75 8.50

9.00 8.75

9.75 9.50

10.75 10.50

3.25 3.00

3.50 3.253.75 3.50

4.00 3.75

4.25 4.00

4.25 4.00

4.75 4.50

5.QO 4.75

5.50 5.25

5.75 5.50

6.50 6.25

6.75 6.50

7.75 7.50

8.50 8.25

8.75 8.509.25 9.00

10.00 9.75

10.75 10.50

11.50 11.25

13.00 12.75

. . .,.

5.75 5.50

6.75 6.50

7.50 7.25

7.75 7.50

8.75 8.50

9.25 9.00

10.00 9.7510.75 10.50

11.25 11.00

12.75 12.50

13.50 13.50

17.25 17.00

31

Page 35: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 35/80

~ - - - - - - - - B - - - - - - - - ~

Male to Male

Flanged JointMale to F.male

Flanged Joint

Stud 8011 lenglh "G " al.o applie.fo r Tongue 10 Groove Flanged Joinl

ANSI B16.5: Templates for drilling,flange dimensions, and stud bolt

lengths shown in the table conform tothe American National Steel FlangeStandard (ANSI B16.5), Classes 1500and 2500, as indicated.

Facing: End flanges of flanged valvesof these classes are regularly furnishedwith V4-inch high large male facinghaving a serrated finish per MSS SP-6.

The thickness of flange dimension (C)does not include the V4-inch facing.

Bolt holes: Bolt holes are drilled Vsinch larger than the bolt diameter.

Drilling templates are in multiples offour, so that valves may be turned toface in any quarter when installed. Boltholes are drilled to straddle the centerline unless otherwise ordered.

Bolt holes are spot faced.

Stud bolts: Stud bolt lengths (F and G)do not include the height of the pOints.

The lengths apply for flanged jOints,made up of combinations of flangedproduct having male, female, tongue, orgroove faces. Male or tongue faces areV4·lnch high; female or groove faces are3/16·inch deep.

TEMPLATES FOR DRILLINGClasses 1500 and 2500 Steel

Dimensions, in Inches

c . . I 5.. 1 At I B I c I D IE INo ~ f ~ " , I FIG

~ 0.50 4.75 0.88 1.38 3.25 4 3;4 4.25 4.003;4 0.56 5.12 1.00 1.69 3.50 4 34 4.50 4.251 0.88 5.88 1.12 2.00 4.00 4 'Va 5.00 4.75B4 1.12 6.25 1.12 2.50 4.38 4 'Va 5.00 4.75

1.38 7.00 1.25 2.88 4.88 4 1 5.50 5.252 1.88 8.50 1.50 3.62 6.50 8 'Va 5.75 5.50

2.25 9.62 1.62 4.12 7.50 8 1 6.25 6.003 2.75 10.50 1.88 5.00 8.00 8 1I/a 7.00 6.75

Class 4 3.62 12.25 2.12 6.19 9.50 8 H4 7.75 7.501500 5 4.38 14.75 2.88 7.31

11.50 8 l¥2 9.75 9.50Steel 6 5.38 15.50 3.25 8.50 12.50 12 1% 10.25 10.00

8 7.00 19.00 3.62 10.62 15.50 12 1% 11.50 11.2510 8.75 23.00 4.25 12.75 19.00 12 lV's 13.25 13.0012 1 0 ~ 3 8 26.50 4.88 15.00 22.50 16 2 14.75 14.5014 11.38 29.50 5.25 16.25 25.00 16 2I,4 16.00 15.75

16 13.00 32.50 5.75 18.50 27.75 16 21/2 17.50 17.2518 14.62 36.00 6.38 21.00 30.50 16 23;4 19.50 19.0020 16.38 38.75 7.00 23.00 32.75 16 3 21.50 21.()()

24 19.62 46.00 8.00 27.25 39.00 16 24.50 24.00

~ 0.44 5.25 1.19 1.38 3.50 4 3;4 5.25 5.003;4 0.56 5.50 1.25 1.69 3.75 4 34 5.25 5.001 0.75 6.25 1.38 2.00 4.25 4 'Va 5.75 5.5011/4 1.00 7.25 1.50 2.50 5.12 4 1 6.25 6.00

m 1.12 8.00 1.75 2.88 5.75 4 IIh 7.00 6.75Class 2 1.50 9.25 2.00 3.62 6.75 8 1 7.25 7.002500 1.88 10.50 2.25 4.12 7.75 8 1Ih 8.00 7.75Steel 3 2.25 12.00 2.62 5.00 9.00 8 lI,4 9.GO 8.75

4 2.88 14.00 3.00 6.19 10.75 8 l¥2 10.25 10.00

5 3.62 16.50 3.62 7.31 12.75 8 P4 12.00 11.756 4.38 19.00 4.25 8.50 14.50 8 2 13.75 13.50

8 5.75 21.75 5.00 10.62 17.25 12 2 15.25 15.0010 7.25 26.50 6.50 12.75 21.75 12 2112 19.50 19.2512 8.62 30.00 7.25 15.00 24.38 12 234 21.50 21.25

tDimenslOn "A" apphes to valves or fittmgs.

Page 36: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 36/80

Large Male

*Small Male

large Tongue

Small Tongue

MALE, FEMALE, TONGUE, AND GROOVE FLANGE FACINGSFor Class 300 Steel

Large Female

·Small Female

large Groove

Small Groove

Class

Dimensions, In Inches

Size

IA

IB

IC D

Ih· 1.38 1.00 0.72 1.3834 1.69 1.31 0.94 1.69

I 2.00 1.50 1.19 1.88

114 2.50 1.88 1.50 2.25

II/2 2.88 2.12 1. 75 2.50

2 3.62 2.88 2.25 3.25

21h 4.12 3.38 2.69 3.75

3 5.00 4.25 3.31 4.62

3V2 5.50 4.75 3.81 5.12

Class 300 4 6.19 5.19 4.31 5.69

Steel 5 7.31 6.31 5.38 6.81

6 8.50 7.50 6.38 8.00

8 10.62 9.38 8.38 10.0010 12.75 11.25 10.50 12.00

12 15.00 13.50 12.50 14.25

14 16.25 14.75 13.75 15.50

16 18.50 16.75 15.75 17.62

18 21.00 19.25 17.75 20.12

20 23.00 21.00 19.75 22.00

24 27.25 25.25 23.75 26.25

Dimensions above conform to the American National SteelFlange Standard, (ANSI 816.5).

All of the types of facings can be applied to Class 300 steelflanged product conforming to

ANSI816.5.

Center-to-face: The illustrations show how regular valvecenter-to-face dimensions are affected by these special facings. Note that the male or tongue facing increases the regular center-to-face V4-inch; the female or groove facing doesnot alter the regular center-to-face.

Regular facing and finish: End flanges of Class 300 valves areregularly furnished with a 1/16-inch raised face.

The 1/16-inch raised and V4-inch large male faces regularlyhave a serrated finish per MSS SP-6. The female, tongue, andgroove faces regularly have a smooth finish per MSS SP-6.

*Small male and female: Small male and female facing, when

used with steel screwed flanges, makes the joint directly onthe end of the pipe. In these cases, the, pipe must be thickenough to provide a bearing surface of ample width to prevent crushing of the gasket.

If a pipe end is to be used as a mating member in a joiht,orders should specify the inside diameter of the pipe. In someinstances, it may be necessary to lag up the port diameter of

valves to match the 1.0. of the pipe, in which case specialprices will apply.

Gaskets: Gaskets for male and female and for tongue andgroove joints should cover the bottom of the recess withminimum clearances, allowing for the plus or minus toleranceof 0.02" which is permitted by ANSI 816.5 on the inside andoutside-diameters of facings.

33

Page 37: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 37/80

MALE, FEMALE, TONGUE, AND GROOVE FLANGE FACINGS

For Classes 400 to 2500 Steel

Dimensions, in Inches

Class Size

IA

IB

IC D

112 1.38 1.00 0.72 1.383,4 1.69 1.31 0.94 1.69

1 2.00 1.50 1.19 1.88

1:14 2.50 1.88 1.50 2.25

11h 2.88 2.12 1.15 2.50

2 3.62 2.88 2.25 3.25

21/2 4.12 3.38 2,69 3.75

3 5.00 4.25 3.31 4.62

Class 3112 5.50 4.75 3.81 5.12

400,600, 4 6.19 5.19 4.31 5.69900,1500, 5 7.31 6.31 5.38 6.81or 2500 6 8.50 7.50 6.38 8.00

Steel

8 10.62 9.38 8.38 10.00

10 12.75 11.25 10.50 12.0012 15.00 13.50 12.50 14.25

14 16.25 14.75 13.75 15.50

16 18.50 16.75 15.75 17.62

18 21.00 19.25 17.75 20.12

20 23.00 21.00 19.75 22.00

24 27.25 25.25 23.75 26.25

Dimensions above conform to the American National SteelFlange Standard, ANSI 816.5.

All of the types of facings can be applied to Class 400, 600,900, 1500, and 2500 steel flanged product conforming to ANSI816.5.

Center-to-face: The illustrations show how regular valvecenter-to-face dimensions are affected by these special facings. Notice particularly: the male and tongue facings areincluded in the regular center-to-face: the female and groovefacings require a deduction of 1f4-inch from the regular center to face.

Regular faCing and finish: End flanges of valves of the classesindicated are regularly furnished with a 1f4-inch male facehaving a serrated finish, per MSS SP-6.

Female, tongue, and groove faces regularly have a smoothfinish per MSS SP-6.

*Small male and female: Small male and female facing, whenused with steel screwed flanges, makes the joint directly onthe end of the pipe. In these cases, the pipe must be thickenough to provide a bearing surface of ample width to prevent crushing of the gasket.

If a pipe end is to be used as a mating member in a joint,orders should specify the inside diameter of the pipe. In someinstances, it may be necessary to lag up the port diameter ofvalves to match the 1.0. of the pipe, in which case specialprices Will apply.

Gaskets: Gaskets for male and female and for tongue andgroove joints should cover the bottom of the recess withminimum clearances, allowing for the plus or minus toleranceof 0.02" which is permitted by ANSI 816.5 on the inside andoutside diameters of facings.

Large Male Large Female

*Small Male *Small Female

large Tongue Large Groove

Small Tongue Small Groove

...-.

Page 38: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 38/80

RING JOINT FACINGS AND RINGS

American National Standard - Dimensions, in Inches

/f',

Valve Classes150 and 300

Valve Classes 400, 600,goO, 1500, and 2500

• "."',approxl-mate

clearancewith

( J studbolts

) -II·G l tight.

Assembled Ring Joint

RingClass Size

No.A

V2' R11 1.3443,4 R13 1.688

1 R16 2.000

IV" R18 2.375

IIh R20 2.688

2 R23 3.250

211.! R26 4.000-3 R31 4.875

Class 311.! R34 5.188

300 4 R37 5.875

400 5 R41 7.125

600 6 R45 8.312

8 R49 10.625

10 R53 12.750

12 R57 15.000

14 R61 16.500

16 R65 18.500

18 R69 21.000

20 R73 23.000

24 R77 27.250

Class I ize I ingNo.

1 R15114 R17

IIh R19

2 R22

21h R25

3 R29

31h R33

4 R36

Class 5- R40

150 6 R43

8 R48

10 R52

12 R56

14 R59

16 R64

18 R68

20 R72

24 R76

B C D

0.250 0.438 0.375

0.312 0.562 0.500

0.312 0.562 0.500

0.312 0.562 0.500

0.312 0.562 0.500

0.438 0.688 0.625

0.438 0.688 0.6250.438 0.688 0.625

0.438 0.688 0.625

0.438 0.688 0.625

0.438 0.688 0.625

0.438 0.688 0.625

0.438 0.688 0.625

0.438 0.688 0.625

0.438 0.688 0.625

0.438 0.688 0.625

0.438 0.688 0.625

0.438 0.688 0.625

0.500 0.750 0.688

0.625 0.875 0.812

A

1.8752.250

2.562

3.250

4.000

4.500

5.188

5.875

6.750

7.625

9.750

12.000

15.000

15.625

17.875

20.375

22.000

26.500

E

0.281

0.344

0.344

0.344

0.344

0.469

0.4690.469

0.469

0.469

0.469

0.469

0.469

0.469

0.469

0.469

0.469

0.469

0.531

0.656

Oval Ring

Octagonal Ring

k - - - - - - - - - A - - - - - - - - - - ~

Oval rings fi t grooves having either a flat or round bottom;octagonal rings only fit grooves having a flat bottom.

0.312 0.562 0.500 0.344 0.250 0.16 2.500.312 0.562 0.500 0.344 0.250 0.16 2.88

0.312 0.562 0.500 0.344 0.250 0.16 3.25

0.312 0.562 0.5pO 0.344 0.250 0.16 4.00

0.312 0.562 0.500 0.344 0.250 0.16 4.75

0.312 0.562 0.500 0.344 0.250 0.16 5.25

0.312 0.562 0.500 0.344 0.250 0.16 6.06

0.312 0.562 0.500 0.344 0.250 0.16 6.75

0.312 0.562 0.500 0.344 0.250 0.16 7.62

0.312 0.562 0.500 0.344 0.250 0.16 8.62

0.312 0.562 0.500 0.344 0.250 0.16 10.75

0.312 0.562 0.500 0.344 0.250 0.16 13.00

0.312 0.562 0.500 0.344 0.250 0.16 16.00

0.312 0.562 0.500 0.344 0.250 0.12 16.75

0.312 0.562 0.500 0.344 0.250 0.12 19.00

0.312 0.562 0.500 0,344 0.250 0.12 21.50

0.312 0.562 0.500 0.344 0.250 0.12 23.50

0.312 0.562 0.500 0.344 0.250 0.12 28.00

G JF

Class Class ClassH

Class Class300 400 600 300 400

0.219 0.12 . . . . 0.12 2.00 3.00 . . . .

0.250 0.16 . . . . 0.16 2.50 3.50 . . . .

0.250 0.16 . . . . 0.16 2.75 3.75 . . . .0.250 0.16 .... 0.16 3.12 3.75 . . ..

0.250 0.16 •• 0. 0.16 3.56 4.25 ....

0.312 0.22 . . . . 0.19 4.25 4.25 . . . .

0.312 0.22. . . .

0.19 5.00 4.75. . . .

0.312 .0.22 . . . . 0.19 5.75 5.00 ....

0.312 0.22 .... 0.19 6.25 5.25 ....

0.312 0.22 0.22 0.19 6.88 5.25 5.75

0.312 0.22 0.22 0.19 8.25 5.50 6.00

0.312 0.22 0.22 0.19 9.50 5.75 6.25

0.312 0.22 0.22 0.19 11.88 6.25 7.00

0.312 0.22 0.22 0.19 14.00 7.00 7.75

0.312 0.22 0.22 0.19 16.25 7.50 8 .25

0.312 0.22 0.22 0.19 18.00 7.75 8.50

0.312 0.22 0.22 0.19 20.00 8.25 9.00

0.312 0.22 0.22 0.19 22.62 8.50 9.25

0.375 0.22 0.22 0.19 25.00 9.00 10.00

0.438 0.25 0.25 0.22 29.50 10.25 11.25

J

3.253.25

3.50

3.75

4.00

4.25

4.25

4.25

4.50

4.50

4.75

5.25

5.25

5.75

6.00

6.50

6.75

7.50

Class600

3.00

3.50

3.75

4.00

4.25

4.50

5.005.25

5.75

6.00

6.75

7.00

7.75

8.75

9.00

9.50

10.25

11.00

11.75

13.25

35

Page 39: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 39/80

RING JOINT FACINGS AND RINGS

American National Standard - Dimensions, in Inches

(continued from Ihe preceding page)

Dimensions shown on these facing pages apply to ringjoint facing and rings for the end flanges of Crane steelvalves.

The side walls of the groove which is cut into the raisedface on end flanges (see illustrations on facing page)have a smooth finish per MSS SP-6.

Standards: The dimensions of the rings and ring jointgrooves, as well as the marking of the rings, conformto American National Standard 816.20.

The flange facing dimensions conform to the AmericanNational Steel Flange Standard (ANSI 816.5).

Class I ize I I A I B I C I DIE I FIG I H I Center to end: When ring jointfacing is applied to Class 150 and300 valves, the center-to-end isequal to the regular center-toface dimension (which includesthe 1/16-inch raised face) plusthe depth of the groove.

3 R31 4.875 0.438 0.688 0.625

4 R37 5.875 0.438 0.688 0.625

5 R41 7.125 0.438 0.688 0.625

6 R45 8.312 0.438 0.688 0.625

8 R49 10.625 0.4380.688 0.625Class 10 R53 12.750 0.438 0.688 0.625

900 12 R57 15.000 0.438 0.688 0.625

14 R62 16.500 0.625 0.875 0.812

16 R66 18.500 0.625 0.875 0.812

18 R70 21.000 0.750 1.000 0.938

20 R74 23.000 0.750 1.000 0.938

24 - R78 27.250 1.000 1.312 1.250

% R12 1.562 0.312 0.562 0.500

3,4 R14 1.750 0.312 0.562 0.500

i R16 2.000 0.312 0.562 0.500

1lA R18 2.375 0.312 0.562 0.500

1% R20 2.688 0.312 0.562 0.500

2 R24 3.750 0.438 0.688 0.625

21/2 R27 4.250 0.438 0.688 0.625

3 R35 5.375 0.438 0.688 0.625

Class4 R39 6.375 0.438 0.688', 0.625

15005 R44 7.625 0.438 0.688 0.625

6 R46 8.312 0.500 0.750 0.688

8 R50 10.625 0.625 0.875 0.812

10 R54 12.750 0.625 0.875 0.812

12 R58 15.000 0.875 1.125 1.062

14 R63 16.500 1.000 1.312 1.250

16 R67 18.500 1.125 1.438 1.375

18 R71 21.000 1.125 1.438 1.375

20 R75 23.000 1.250 1.562 1.500

24 R79 27.250 1.375 1.750 1.625

1/2 R13 1.688 0.312 0.562 0.500

3A R16 2.000 0.312 0.562 0.500

1 R18 2.375 0.312 0.562 0.500

lIA R21 2.844 0.438 0.688 0.625

11/2 R23 3.250 0.438 0.688 0.625

Class 2 R26 4.000 0.438 0.688 0.625

2500 21/2 R28 4.375 0.500 0.750 0.688

3 R32 5.000 0.500 0.750 0.688

4 R38 6.188 0.625 0.875 0.812

5 R42 7.500 0.750 1.000 0.938

6 R47 9.000 0.750 1.000 0.938

8 R51 11.000 0.875 1.125 1.062

10 R55 13.500 1.125 1.438 1.375

12 R60 16.000 1.250 1.562 1.500

0.469 0.312 0.16

0.469 0.312 0.16

0.469 0.312 0.16

0.469 0.312 0.16

0.469 0.312 0.160.469 0.312 0.16

0.469 0.312 0.16

0.656 0.438 0.16

0.656 0.438 0.16

0.781 0.500 0.19

0.781 0.500 0.19

1.062 0.625 0.22

0.344 0.250 0.16

0.344 0.250 0.16

0.344 0.250 0.16

0.344 0.250 0.16

0.344 0.250 0.16

0.469 0.312 0.12

0.469 0.312 0.12

0.469 0.312 0.12

0.469 0.312 0.12

0.469 0.312 0.12

0.531 0.375 0.12

0.656 0.438 0.16

0.656 0.438 0.16

0.906 0.562 0.19

1.062 0.625 0.22

1.188 0.688 0.31

1.188 0.688 0.31

1.312 0.688 0.38

1.438 0.812 0.44

0.344 0.250 0.16

0;344 0.250 0.16

0.344 0.250 0.16

0.469 0.312 0.12

0.469 0.312 0.12

0.469 0.312 0.12

0.531 0.375 0.12

0.531 0.375 0.l.2

0.656 0.438 0.16

0.781 0.500 0.16

0.781 0.500 0.16

0.906 0.562 0.19

1.188 0.688 0.25

1.312 0.688 0.31

6.12

7.12

8.50

9.50

12.1214.25

16.50

18.38

20.62

23.38

25.50

30.38

2.38

2.62

2.81

3.19

3.62

4.88

5.38

6.62

7.62

9.00

9.15

12.50

14.62

17.25

19.25

21.50

24.12

26.50

31.25

2.56

2.88

3.25

4.00

4.50

5.25

5.88

6.62

8.00

9.50

11.00

13.38

16.75

19.50

6.00

7.00

7.75

7.75

9.009.50

10.25

11.25

11.75

13.50

14.25

17.75

4.25

4.50

5.00

5.00

5.50

5.75

6.257.00

7.75

9.75

10.50

12.00

13.75

15.50

17.00

18.50

20.50

22.50

25.75

5.25

5.25

5.75

6.50

7.25

7.50

8.25

9.25

10.75

12.75

14.50

16.00

20.50

22.50

On ring jOint valves of Classes400 and higher, the center-to-endis equal to the regular center-toface dimension minus 1f4-inch(height of the large male), plusthe depth of the groove.

\

This practice also applies toloose flanges; that is, the raisedface which is equal to the depthof the groove is added to theflange thickness.

*Stud bolts: The length of studbolts, indicated as dimension "J"

in the tables on these facingpages, applies for all combinations of ring jOint valves, fittings,and flanges.

Stud bolt lengths (J) do not include the height of the points.

For quantity and diameter of studbolts required for each flangedjoint, refer to appropriate "tem

plate for drilling" table (pages 31to 32).

Page 40: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 40/80

Outside

- - - - - ,

See Note (5)

Outside

45 deg. max.

Component or Fitting

Inside

See Note (5) I--__ ..J

Inside

NOTES:

!min.2

BUTT·WELDING ENDS FOR STEEL VALVES

ANSI 816.25

Radius of at least 0.05 Imin.

30 deg. max.

\\\

Max. Slope 1:3

Radius of at least 0.05 Imin.

2lmin.

Transition Region

\\\\

......

......

.....

)---III

/---.::-

"-...:)

Imin.

See Note (1)

FIGURE 1 WELDING END TRANSITIONS MAXIMUM ENVELOPE

(1) The value of Imin. is whichever of the following is applicable:

a) the minimum ordered wall thickness of the pipe

Max.-See Note (2)

Min.-1.0 Imin.

b) 0.875 times the nominal wall thickness of pipe ordered toa pipe schedule wall thickness which has an undertolerance of 12.5%

c) the minimum ordered wall thickness of the cylindrical welding end of a component or fitting (or the thinner. of the two) when the joint is between two components

(2) The maximum thickness at the end of the component is:

a) the greater of Imin + 0.15 in. (4 mm) or 1.15tmin when ordered on a minimum wall basisb) the greater of tmin: + 0.15 in. (4 mm) or 1.1 t n o ~ . when ordered on a nominal wall basis

(3) Weld bevel Is shown for illustration only.

(4) The weld reinforcement permitted by app"cable code may lie outside the maximum envelope.

(5) Where transitions using maximum slope do not intersect inside or outside surface, as shown by phantom outlines,maximum slopes shown or alternate radii shall be used.

37

Page 41: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 41/80

___ , 37.5 deg. ± 2.5 deg.

l"\....

"-

See Note ( 2 ) ~,..,..-

r___ .I

BUTT·WELDING ENDS FOR STEEL VALVES

ANSI 816.25

0.06 ± 0.03

f (1.6 ± 0.8)

t

I !

----, 37.5deg. ± 2.5deg.

"-'\....:, - - - ; - - - - - - - - . -

See Note (3) \. I 0.06 ± 0.03~ ~ ~ ( 1 . 6 ± 0 .•

3 O d o g ~ Y f ~ ~ ~ f 1 r0.5 (13) mio.

t tFigure 2a Welding End Detail for Joint Without BackingRing.

Figure 2b l41 Welding End Detail for Joint Using Split Rectangular Backing Ring.

FIGURE 2 WELDING END DETAILS INTENDED FOR USE ON 0.88 in. (22 mm) AND THINNER NOMINAL WALL THICKNESSES

10 deg. ± 1 deg.---,

\''''''J --- - - - - - - - - - - - - - - - - - ~ ~

37.5 deg. ± 2.5 deg. 10.75 ± 0.06

(19 ± 2)10 .06 ± 0.03-L 1.6 ± 0.8)

See Note (2)

r_ _ _ -1

~ i--,..-- t

B

!

A

0.75 ± 0.06(19 ± 2)

37.5 deg. ± 2.5 deg.

0.06 ± 0.03~ . 6 ± 0 . 8 )

3 O ~ v / r l t 1- - ~ ~ ~ 1

0.5 (13) min. t

A

Figure 3a Welding End Detail for Joint Without Backing Ring Figure 3b l41 Welding End Detail for Joint Using Split RectangularBacking Ring.

FIGURE 3 WELDING END DETAILS INTENDED FOR USE ON NOMINAL WAll. THICKNESSES GREATER THAN 0.88 in. (22 mm)

NOTES:

(1) Dotted lines denote maximum envelope for transitions from welding bevel and root face into body of component. See Figure 1 for details.

(2) Internal surface may be as formed or machined for dimension B at root face. Contour within the envelope is manufacturer's option unless otherwisespecifically ordered.

(3) Intersections should be slightly rounded.

(4) Purchase order must specify contour of ring intended to be used.

(5) Linear dimensions are in inches with metric values shown in millimeters in parenthesis.

B = NOMINAL INSIDE DIAMETER OF PIPEA = OUTSIDE DIAMETER (CAST STEEL VALVES)

Other types of weld end preparation can be furnished when specified.

Page 42: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 42/80

TAPS AND DRAINS FOR FLANGED VALVES

Designating Location of Tapped Holes

8 \ -II1\ ..._

c -ti 0

Globe Valve Angle Valve

Globe Valve

These illustrations indicate a standard method

used for designating the location of tappedholes on cast iron and cast steel globe, angle,check, and gate valves in all pressure classes.

~u.;::;rrCheck Valve Ga,e Valve

Valve bodies can be tapped without a boss for a verysmall drain hole; the maximum size of the hole, however, depends entirely upon the location of the tappedhole and the pressure class of the valve.

Gate valves are regularly made with bosses. Globe,angle, and check valves are not regularly made withbosses but can be so furnished when orders specify.

LOCATION OF BY-PASSES

Gate valves: When gate valves are ordered with by-passattached, it shall be regular practice to attach said bypass at the side of the main valve with the stems of bothvalves parallel, pointing vertically upwa:rd.

The more common of the "special" attached-locationsis on the center of the flow line, at the bottom of themain valve, with the stem of the by-pass valve at rightangles to the main valve stem. This is designated as the"bottom attachment," or defined as "by-pass at bottom." When any other "special" attached-location or

other position of the by-pass valve stem is desired, asketch should be submitted.

Globe valves: When globe valves are ordered with bypass attached, it shall be regular practice to attach saidby-pass at the right-hand side of the main valve, withthe stems of both valves parallel, pointing vertically upward. When by-pass is "specially" required attached atthe left-hand side, the designation shall be "left-handattachment."

Right-hand side of a globe valve is the side at the right,when facing the flow-port which leads to the under sideof the disc.

Angle valves: When angle valves ordered with by-pass attached, it shall be regular praCtice to attach saidby-pass at the back of the main valve, with the stems ofboth valves parallel, pointing vertically upward.

When the by-pass is "specially" required attached atthe right or left-hand side, the designations shall be"right-hand attachment" or "left-hand attachment."Right-hand side of an angle valve is at the right, whenfacing the back of the valve.

These illus-trations are

represen'a,iveof steel valves.

Ga'e Valve withBy.PalS on Side

Go,. Valve withBy.PalS at Bollom

Page 43: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 43/80

PIPE DATACarbon and Alloy Steel - Stainless Steel

(a/so see next three pagesj

Nom- Outside Identification Wall Inside Area Transverse Moment Weight Weight External Section

inal Diarn. Steel Stain-. Thick- Diam- of Internal Area of Pipe Water Surface ModulusPipe less ness eter Metal

(a) (A)Inertia

Size Iron Sched. Steel (t) (d) Pounds Pounds Sq.Ft.(IlPipe No. Sched. Square Square Square per per foot per foot ( 2 0 . ~ Jnches Inches Size No. Inches Inches Inches Inches

...'"

lOS .049 .307 .0548 .07401/8 0.405 STD 40 40S .068 .269 .0720 .0568

XS 80 80S .095 .215 .0925 .0364

...'" lOS .065 ' .410 .0970 .1320

1/4 0.540 STD 40 40S .088 .364 .1250 .1041

XS 80 80S .119 .302 .1574 .0716

... . .. lOS .065 .545 .1246 .23333/8 0.675 STD 40 40S .091 .493 .1670 .1910

XS 80 80S .126 .423 .2173 .1405

...'"

5S .065 .710 .1583 .3959.. . ... lOS .083 .674 .1974 .3568

STD 40 40S .109 .622 .2503 .3040

1/2 0.840 XS 80 80S .147 .546 .3200 .2340

... 160 ... .187 .466 .3836 .1706

XXS '" .. . .294 .252 .5043 .050

... . . 5S .065 .920 .2011 .6648

...'"

105 .083 .884 .2521 .6138

STD 40 40S .113 .824 .3326 .53303/4 1.050 XS 80 80S .154, .742 .4335 .4330

... 160 . . .219 .612 .5698 .2961XXS

'".. . .308 .434 .7180 .148

... .. . 5S .065 1.185 .2553 1.1029

... .. . lOS .109 1.097 .4130 .9452

STD 40 40S .133 1.049 .4939 .86401 1.315 XS 80 80S .179 .957 .6388 .7190

... 160 .. . .250 .815 .8365 .5217

XXS ... ... .358 .599 1.0760 .282

... .. . 5S .065 1.530 .3257 1.839

...'"

lOS .109 1.442 .4717 1.633

STD 40 40S .140 1.380 .6685 1.495

U4 1.660 XS 80 80S .i91 1.278 .8815 1.283.... 160 .,. .250 1.160 1.1070 1.057

XXS '" ... .382 .896 1.534 .630

... ... 5S .065 1.770 .3747 2.461

... ... lOS .109 1.682 .6133 2.222

STD 40 40S .145 1.610 .7995 2.03611/2 1.900 XS 80 80S .200 1.500 1.068 1.767

... 160 ... .281 1.338 l.429 1.406

XXS ' " ... .400 1.100 1.885 .950

... '" 5S .065 2.245 .4717 3.958

... '" lOS .109 2.157 .7760 3.654

STD 40 40S .154 2.067 1.075 3.355

2 2.375 XS 80 80S .218 1.939 1.477 2.953... 160 ... .344 1.687 2.190 2.241

XXS ... . . .436 1.503 2.656 1.774

... ... 5S .083 2.709 .7280 5.764

... '" lOS .120 2.635 1.039 5.453

STD 40 40S .203 2.469 1.704 4.78821,12 2.875 XS 80 80S .276 2.323 2.254 4.238

... 160 ... .375 2.125 2.945 3.546

XXS '"... .552 1.771 4.028 2.464

... ' " 5S .083 3.334 .8910 8.730

.. , ' " lOS .120 3.260 1.274 8.347

STi:> 40 40S .216 3.068 2.228 7.393

3 3.500 XS 80 80S .300 2.900 3.016 6.605

... 160 . . .438 2.624 4.205 5.408

XXS'"

... .600 2.300 5.466 4.155

Identlne.llon, w.Uthlcknea. end welghta are extracted Irom ANSI 836.10 and 836.19, The notations

STD. XS, and XXS indicate Standard, Extra Stron9. and Double Extra Strong pipe respectively.

Feet

.00051

.00040

.00025

.00091

.00072

.00050

.00162

.00133

.00098

.00275

.00248

.00211

.00163

.00118

.00035

.00462

.00426

.00371

.00300

.00206

.00103

.00766

.00656

.00600

.00499

.00362

.00196

.01277

.01134

.01040

.00891,00734

.00438

.01709

.01543

.01414

.01225

.00976

.00660

.02749

.02538

.02330

.02050

.01556

.01232

.04002

.03787

.03322

.02942

.02463

.01710

.06063

.05796

.05130

.04587

.03755

.02885

Inches4 foot of pipe of pipe

.00088 .19 .032 .106 .00437

.00106 .24 .025 .106 .00523

.00122 .31 .016 .106 .00602

.00279 .33 .057 .141 .01032

.00331 .42 .045 .141 .01227

.00377 .54 .031 .141 .01395

.00586 .42 .101 .178 .01736

.00729 .57 .083 .178 .02160

.00862 .74 .061 .178 . 0 2 ~ 5 4

.01197 .54 .172 .220 .02849

.01431 .67 .155 .220 .03407

.01709 .85 .132 .220 .04069

.02008 1.09 .102 .220 .04780

.02212 1.31 .074 .220 .05267

.02424 1.71 .022 .220 .05772

.02450 .69 .288 .275 .04667

.02969 .86, .266 .275 .05655

.03704 1.13 .231 .275 .07055

.04479 1.47 .188 .275 .08531

.05269 1.94 .128 .275 .10036

.05792 2.44 .064 .275 .11032

.04999 .87 .478 .344 .07603

.07569 1.40 .409 .344 .11512

.08734 1.68 .375 .344 .1328

.1056 2.i7 .312 .344 .1606

.1251' 2.84 .230 .344 .1903

.1405 3.66 .122 .344 .2136

.1038 1.11 .797 .435 .1250

.1605 1.81 .708, .435 .1934

.1947 2.27 .649 .435 .2346

.2418 3.00 .555 .435 .2913

.2839 3.76 .458 .435 .3421

.3411 5.21 .273 .435 .4lIO

.1579 1.28 1.066 .497 .1662

.2468 2.09 .963 .497 .2598

.3099 2.72 .882 .497 .3262

.3912 3.63 .765 .497 .4lI8

.4824 4.86 .608 .497 .5018

.5678 6.41 .42 .497 .5977

.3149 1.61 1.72 .622 .2652

.4992 2.64 1.58 .622 .4204

.6657 3.65 1.45 .622 .5606

.8679 5.02 1.28 .622 .73091.162 7.46 .97 .622 .9791.311 9.03 .77 .622 1.104

.7100 2.48 2.50 .753 .4939

.9873 3.53 2.36 .753 .6868

1.530 5.79 2.07 .753 1.064

1.924 7.66 1.87 .753 1.339

2.353 10.01 1.54 .753 1.638

2.871 13.69 1.07 .753 1.997- ' - -

1.301 3.03 3.78 .916 .7435

1.822 4.33 3.62 .916 1.041

3.017 7.58 3.20 .916 1.7243.894 10.25 2.86 .916 2.2255.032 14.32 2.35 .916 2.8765.993 18.58 1.80 .916 3.424

T .nave,., Intern . • re. values listed In "square leet" also

represent volume In cubic leet per loot 01 pipe length.

I,

Page 44: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 44/80

PIPE DATA - cont.

Nom- Outside Identification Wall Inside Area Transverse Moment Weight Weight External Section

inal Diam. Steel Stain- Thick- Diam- of Internal Area of Pipe Water Surface ModulusPipe less ness eter Metal

(a) (A)Inertia

Size Iron Sched. Steel (t) (d) (I) Pounds· Pounds Sq. Ft.Pipe No. Sched. Square Square' Square pe r pe r foot per foot

(2/DJnches Inches Size No. Inches Inches Inches Inches

.. , ... 5S .083 3.834 1.021 11.545

.. , ... lOS .120 3.760 1.463 11.10431/2 4.000 STD 40 40S .226 3.548 2.680 9.886

XS 80 80S. .318 3.364 3.678 8.888

... ... 5S .083 4.334 1.152 14.75

'" ... lOS .120 4.260 1.651 14.25ST n 40 40S .237 4.026 3.174 12.73

4 4.500 XS 80 80S .337 3.826 4.407 1l.50.. , 120 ... .438 3.624 5.595 10.31.. 160 ... .531 3.438 6.621 9.28

XXS ... '" .674 3.152 8.101 7.80

.. , ... 5S .109 5.345 1.868 22.44

... ... lOS .134 5.295 2.285 22.02SI D 40 40S .258 5.047 4.300 20.01

5 5.563 XS 80 80S .375 4.813 6.112 18.19.. , 120 ... .500 4.563 7.953 16.35... 160 ... .625 4.313 9.696 14.61

XXS ... ... .750 4.063 1l.34O 12.97

... ... 5S .109 6.407 2.231 32.24

.. , ... lOS .134 6.357 2.733 31.74SI D 40 40S .280 6.065 5.581 28.89

6 6.625 XS 80 80S .432 5.761 8.405 26.07.. , 120 '" .562 5.501 10.70 23.77... 160 ... .719 5.187 13.32 21.15

XXS ... ... .864 4.897 15.64 18.84

... '" 5S .109 8.407 2.916 55.51

.. , ... lOS .148 8.329 3.941 54.48

... 20 . . .250 8.125 6.57 51.85

... 30 ... .277 8.071 7.26 51.16SID 40 40S .322 7.981

8.40 50.038 8.625 ... 60 ... .406 7.813 10.48 47.94XS ,80 80S .500 7.625 12.76 45.66.. , 100 ... .594 7.437 14.96 43.46.. , 120 ... .719 7.187 17.84 40.59.. , 140 ... .812 7.001 19.93 38.50

XXS ... ... .875 6.875 21.30 37.12.. , 160 '" .906 6.813 21.97 36.46

... '" 5S .134 10.482 4.36 86.29

.. , ... HiS .165 10.420 5.49 85.28

... 20 ... .250 10.250 8.24 82.52

.. , 30 ... .307 10.136 10.07 80.69SI D 40 40S .365 10.020 11.90 78.86

10 10.750 XS 60 80S .500 9.750 16.10 74.66... 80 . . .594 9.562 18.92 71.84... 100 . . .719 9.312 22.63 68.13. . 120 ... .844 9.062 26.24 64.53

XXS 140 .... 1.000 8.750 30.63 60.13... 160 ... 1.125 8.500 34.02 56.75

... ... 5S .156 12.438 6.17 121.50

... ... lOS .180 12.390 7.11 120.57

.. , 20'" .250 12.250 9.82 117.86

... 30 ... .330 12.090 12.87 114.80SI D '" 40S .375 12.000 14.58 113.10... 40 '" .406 11.938 15.77 1ll.93XS ... 80S .500 1l.750 19.24 108.43

12 12.75 ... 60 ... .562 1l.626 21.52 106.16.. , 80 '" .688 1l.374 26.03 101.64.. , 100 ... .844 1l.062 1.53 96.14

XXS 120 ... 1.000 10.750. 36.91 90.76

." 140 ... 1.125 10.500 41.08 86.59

... 160 ... 1.312 10.126 47.14 80.53

Identl"catlon,wallthlckne.s and weights are extracted from ANSI 836.10 and 836.19. The notations

STD, XS. and XXS Indicate Standard, Extra Strong, and Double Extra Strong pipe respectively.

Feet

.08017

.07711

.06870

.06170

.10245

.09898

.08840

.07986

.0716

.0645

.0542

.1558.1529.1390.1263.1136.1015.0901

.2239

.2204

.2006

.1810

.1650

.1469

.1308

.3855

.3764

.3601

.3553

.3474.3329

.3171

.3018

.2819

.2673

.2578

.2532

.5992

.5922

.5731

.5603

.5475

.5185

.4989

.4732

.4481

.4176

.3941

.8438

.8373

.8185

.7972

.7854

.7773;7528

.7372

.7058

.6677

.6303

.6013

.5592

Inches4 foot of pipe of pipe

1.960 3.48 5.00 1.047 .97992.755 4.97 4.81 1.047 1.3784.788 9.11 4.29 1.047 2.3946.280 12.50 3.84 1.047 3.140

2.810 3.92 6.39 1.178 1.2493.963 5.61 6.18 1.178 1.7617.233 10.79 5.50 1.178 3.2149.610 14.98 4.98 1.178 4.271

11.65 19.00 4.47 1.178 5.17813.27 22.51 4.02 1.178 5.89815.28 27.54 3.38 1.178 6.791

6.947 6.36 9.72 1.456 2.4988.425 7.77 9.54 1.456 3.029

15.1614.62 8.67 1.456 5.45120.67 20.78 7.88 1.456 7.431

25.73 27.04 7.09 1.456 9.25030.03 32.96 6.33 1.456 10.79633.'63 38.55 5.61 1.456 12.090

11.85 7.60 13.97 1.734 3.57614.40 9.29 13.75 1.734 4.34628.14 18.97 12.51 1.734 8.49640.49 28.57 11.29 1.734 12.2249.61 36.39 10.30 1.734 14.9858.97 45.35 9.16 1.734 17.8166,33 53.16 8.16 1.734 20.02

26.44 9.93 24.06 2.258 6.13135.41 13.40 23.61 2.258 8.21257.72 22.36 22.47 2.258 13.3963.35 24.70 22.17 2.258 14.69

72.49 28.55 21.70 2.258 16.8188.73 35.64 20.77 2.258 20.58105.7 43.39 19.78 2.258 24.51121.3 50.95 18.83 2.258 28.14140.5 60.71 17.59 2.258 32.58153.7 67.76 16.68 2.258 35.65162.0 72.42 16.10 2.258 37.56165.9 74.69 15.80 2.258 38.48

63.0 15.19 37.39 2 . 8 ~ 4 1l.71

76.9 18.65 36.95 2.814 14.30113.7 28.04 35.76 2.814 21.15137.4 34.24 34.96 2.814 25.57160.7 40.48 34;20 2.814 29.90212.0 54.74 32.35 2.814 39.43244.8 64.43 31.13 2.814 45.54286.1 77.03 29.53 2.814 53.22324.2 89.29 27.96 2.814 60.32

367.8 104.13 26.06 2.814 68.43399.3 115.64 24.59 2.814 74.29

122.4 20.98 52.65 3.338 19.2140.4 24.17 52.25 3.338 22.0191.8 33.38 51.07 3.338 30.2248.4 43.77 49.74 3.338 39.0279.3 49.56 49.00 3.338 43.8300.3 53.52 48.50 3.338 47.1361.5 65.42 46.92 3.338 56.7400.4 73.15 46.00 3.338 62.8475.1 88.63 44.04 3.338 74.6561.6 107.32 41.66 3.338 88.1641.6 125.49 39.33 3.338 100.7

7 0 0 ~ 5 139.67 37.52 3.338 109.9781.1 160.27 34.89 3.338 122.6

Transverse Internal area values listed In "square feet" also

represent volume In cubic feet per foot of pipe length.

41

Page 45: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 45/80

PIPE DATA-cont.

Nom- Outside Identification Wall Inside Area Transverse Moment Weight Weight External Section

inal Diam. Steel Stain- Thick- Diam- of Internal Area of Pipe Water Surface ModulusPipe less ness eter Metal

(a) (A)Inertia

Size Iron Sched. Steel (t) (d) (I) Pounds Pounds Sq. Ft.Pipe No. Sched. Square Square Square per per

foot per foot ( 2 0 . ~ Jnches Inches Size No. Inches Inches Inches Inches Feet Inches4 foot of pipe of pipe

... . . 55 .156 13.688 6.78 147.15 1.0219 162.6 23.07 63.77 3.665 2 3 ~ 2

... ... lOS .188 13.624 8.16 145.78 1.0124 194.6 27.73 63.17 3.665 27.8

... 10 . . .250 13.500 10.80 143.14 .9940 255.3 36.71 62.03 3.665 36.6

... 20'" .312 13.376 13.42 140.52 .9758 3J4.4 45.61 60.89 3.665 45.0

STD 30 ... .375 13.250 16.05 137.88 .9575 372.8 54.57 59.75 3.665 53.2... 40 ... .438 13.124 18.66 135.28 .9394 429.1 63.44 58.64 3.665 61.3

14 14.00 XS ... ... .500 13.000 21.21 132.73 .9217 483.8 72.09 57.46 3.665 69.1... 60 . . .594 12.812 24.98 128.96 .8956 562.3 85.05 55;86 3.665 80.3... 80 . . .750 12.500 31.22 122.72 .8522 678.3 106.13 53.18 3.665 98.2... 100 ... .938 12.124 38.45 115.49 .8020 824.4 130.85 50.04 3.665 117.8... 120 ... 1.094 11.812 44.32 109.62 .7612 929.6 150.79 47.45 3.665 132.8... 140 '0 • 1.250 11.500 50.07 W3.87 .7213 1027.0 170.28 45.01 3.665 146.8... 160

'" 1.406 11.188 55.63 98.31 .6827 1117.0 189.11 42.60 3.665 159.6

... . . 55 .165 15.670 8.21 192.85 1.3393 257.3 27.90 83.57 4.189 32.2

... . . 105 .188 15.624 9.34 191.72 1.3314 291.9 31.75 83.08 4.189 36.5... 10 ... .250 15.500 12.37 188.69 1.3103 383;7 42.05 81.74 4.189 48.0

... 20 . . .312 15.376 15.38 185.69 1.2895 473.2 52.27 80.50 4.189 59.2STD 30 ... .375 15.250 18.41 182.65 1.2684 562.1 62.58 79.12 4.189 70.3

16 16.00 XS 40 ... .500 15.000 24.35 176.72 1.2272 731.9 82.77 76.58 4.189 91.5... 60 . .. .656 14.688 31.62 169.44 1.1766 932.4 107.50 73.42 4.189 116.6... 80 ... .844 14.312 40.14 160.92 1.1175 1155.8 136.61 69.73 4.189 144.5... 100 . . 1.031 13.938 48.48 152.58 1.0596 1364.5 164.82 66.12 4.189 170.5... 120

'" 1.219 13.562 56.56 144.50 1.0035 1555.8 192.43 62.62 4.189 194.5... 140 . . 1.438 13.124 65.78 135.28 .9394 1760.3 223.64 58.64 4.189 220.0... 160 . . 1.594 12.812 72.10 128.96 .8956 1893.5 245.25 55.83 4.189 236.7

... . . 55 .165 17.670 9.25 245.22 1.7029 367.6 31.43 106.26 4.712 40.8

... ... 105 .188 17.624 10.52 243.95 1.6941 417.3 35.76 105.71 4.712 46.4

... 10 . . .250 17.500 13.94 240.53 1.6703 549.1 47.39 104.21 4.712 61.1... 20 '" .312 17.376 17.34 237.13 1.6467 678.2 58.94 102.77 4.712 75.5STD

'" ... .375 17.250 20.76 233.71 1.6230 806.7 70.59 101.18 4.712 89.6... 30 . . .438 17.124 24.17 230.30 1.5990 930.3

82.15 99.84 4.712 103.418 18.00 XS ... ... .500 17.000 27.49 226.98 1.5763 1053.2 93.45 98.27 4.712 117.0... 40 ... .562 16.876 30.79 223.68 1.5533 1171.5 104.67 96.93 4.712 130.1... 60 ... .750 16.500 40.64 213.83 1.4849 1514.7 138.17 92.57 4.712 168.3... 80 . . .938 16.124 50.23 204.24 1.4183 1833.0 170.92 88.50 4.712 203.8... 100 ... 1.156 15.688 61.17 193.30 1.3423 2180.0 207.96 83.76 4.712 242.3... 120 . . 1.375 15.250 71.81 182.66 1.2684 2498.1 244.14 79.07 4.712 277.6... 140 ' 0 - ' 1.562 14.876 80.66 173.80 1.2070 2749.0 274.22 75.32 4.712 305.5... 160 . . 1.781 14.438 90.75 163.72 1.1369 3020.0 308.50 70.88 4.712 335.6

... ... 55 .188 19.624 11.70 302.46 2.1004 574.2 39.78 131.06 5.236 57.4

... . . 105 .218 19.564 13.55 300.61 2.0876 662.8 46.06 130.27 5.236 66.3

... 10 . . .250 19.500 15.51 298.65 2.0740 765.4 52.73 129.42 5.236 75.6STD 20 ... .375 19.250 23.12 290.04 2.0142 1113.0 78.60 125.67 5.236 111.3XS 30 ... .500 19.000 30.63 283.53 1.9690 1457.0 104.13 122.87 5.236 145.7... 40 . . .594 18.812 36.15 278.00 1.9305 1703.0 123.11 120.46 5.236 170.4

20 20.00 ... 60 . . .812 18.376 48.95 265.21 1.8417 2257.0 166.40 114.92 5.236 225.7... 80 . . 1.031 17.938 61.44 252.72 1.7550 2772.0 208.87 109.51 5.236 277.1

... 100 . . 1.281 17.438 75.33 238.83 1.6585 3315.2 256.10 103.39 5.236 331.5... 120 . . 1.500 17.000 87.18 226.98 1.5762 3754.0 296.37 98.35 5.236 375.5'"

140 ... 1.750 16.500 100.33 213.82 1.4849 4216.0 341.09 92.66 5.236 421.7... 160 . . 1.969 16.062 111.49 202.67 1.4074 4585.5 379.17 87.74 5.236 458.5

... ... 55 .188 21.624 12.88 367.25 2.5503 766.2 43.80 159.14 5.760 69.7... . . 105 .218 21.564 14.92 365.21 2.5362 884.8 50.71 158.26 5.760 80.4... 10 . . .250 21.500 17.08 363.05 2.5212 1010.3 58.07 157.32 5.760 91.8STD 20 ... .375 21.250 25.48 354.66 2.4629 1489.7 86.61 153.68 5.760 135.4XS 30 ... .500 21.000 33.77 346.36 2.4053 1952.5 114.81 150.09 5.760 117.5

22 22.00 ... 60 ... .875 20.250 58.07 322.06 2.2365 3244.9 197.41 139.56 5.760 295.0... 80 ... 1.125 19.75 73.78 306.35 2.1275 4030.4 250.81 132.76 5.760 366.4... 100 ... 1.375 19.25 89.09 291.04 2.0211 4758.5 302.88 126.12 5.760 432.6... 120 . . 1.625 18.75 104.02 276.12 1.9175 5432.0 353.61 119.65 5.760 493.8... 140 ... 1.875 18.25 118.55 261.59 1.8166 6053.7 403.00 113.36 5.760 550.3... 160 ... 2.125 17.75 132.68 247.45 1.7184 6626.4 451.06 107.23 5.760 602.4

Id.ntlflcltlon, .llIthlckn•• • Ind • • Ohn are extracted from ANSI 836.10 and 836.19. The notations

STD, XS. and XXS Indicate Standard, Extra Strong. and Double Extra Strong pipe respectively.

Trln.v.ra. Internal .r.. values listed In "square feet" also

represent volume In cubic feet per foot of pipe length.

)

Page 46: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 46/80

PIPE DATA-cont

Nom- Outside Identification Wall Inside Area Transverse

inal Diam. Steel Stain- Thick- Diam- of Internal Area

Pipe less ness eter Metal(a) (A)

Size Iron Sched. Steel (t) (d)

Pipe No. Sched. Square Square SquareInches Inches Size No. Inches Inches Inches Inches Feet

... ., . 5S .218 23.564 16.29 436.10 3.0285

... 10 lOS .250 23.500 18.65 433.74 3.0121STD 20 .. , .375 23.250 27.83 424.56 2.9483XS ... . . .500 23.000 36.91 415.48 2.8853.,. 30 . . .562 22.876 41.39 411.00 2.8542

24 24.00 .,. 40 . . .688 22.624 50.31 402.07 2.7921... 60 . .. .969 22.062 70.04 382.35 2.6552. . 80 ... 1.219 21.562 87.17 365.22 2.5362.,. 100 .., 1.531 20.938 108.07 344.32 2.3911.,. 120 . .. 1.812 20.376 126.31 326.08 2.2645. . 140 ... 2.062 19.876 142.11 310.28 2.1547... 160 . . 2.344 19.312 159.41 292.98 2.0346

.,. 10 . . .312 25.376 25.18 505.75 3.5122

26 26.00 STD .,. . . .375 25.250 30.19 500.74 3.4774XS 20 ... .500 25.000 40.06 490.87 3.4088

... 10 . . .312 27.376 27.14 588.61 4.0876STD . . ... .375 27.250 . 32.54 583.21 4.0501

28 28.00 XS 20 ... .500 27.000 43.20 572.56 3.9761.,. 30 .. , .625 26.750 53.75 562.00 3.9028

. . ., . 5S .250 29.500 23.37 683.49 4.7465

.,. 10 lOS .312 29.376 29.10 677.76 4.706730 30.00 STD .,. .. .375 29.250 34.90 671.96 4.6664

XS 20 ... .500 29.000 46.34 660.52 4.5869

'" 30 .. , .625 28.750 57:68 649.18 4.5082

.,. 10 .. , .312 31.376 31.06 773.19 5.3694STD ... . . .375 31.250 37.26 766.99 5.3263

32 32.00 XS 20 .. , .500 31.000 49.48 754.77 5.2414.,. 30 .. , .625 30.750 61.60 742.64 5.1572

... 40 ... .688 30.624 67.68 736.57 5.1151

.,. 10 .., .344 33.312 36.37 871.55 6.0524

STD ... . . .375 33.250 39.61 868.31 6.029934 34.00 XS 20 .. , .500 33.000 52.62 855.30 5.9396

. . 30 ... .625 32.750 65.53 842.39 5.8499

'" 40 .. , .688 32.624 72.00 835.92 5.8050

... 10 ... .312 35.376 34.98 982.90 6.8257STD .. . ... .375 35.250 41.97 975.91 6.7771

36 36.00 XS 20 ... .500 35.000 55.76 962.11 6.6813... 30 ... .625 34.750 69.46 948.42 6.5862... 40 ... .750 34.500 83.06 934.82 6.4918

IdentlflClltlon, Willi thlckn.. . ind welghta are extracted from ANSI 836.10 and 836.19. The notationsSTD. XS, and XXS Indicate Standard, Extra Strong, and Double Extra Strong pipe respectively.

Moment Weight Weight External Section

of Pipe Water Surface Modulus

Inertia

(I) Pounds Pounds Sq. Ft.

per per foot per foot ( 2 0 . ~ Jnches4 foot of pipe of pipe

1151.6 55.37 188.98 6.283 96.01315.4 63.41 187.95 6.283 109.61942.0 94.62 183.95 6.283 161.92549.5 125.49 179.87 6.283 212.52843.0 140.68 178.09 6.283 237.03421.3 171.29 174.23 6.283 285.14652.8 238.35 165.52 6.283 387.75672.0 296.58 158.26 6.283 472.86849.9 367.39 149.06 6.283 570.87825.0 429.39 141.17 6.283 652.18625.0 483.12 134.45 6.283 718.99455.9 542.13 126.84 6.283 787.9

2077.2 85.60 219.16 6.806 159.8

2478.4 102.63 216.99 6.806 190.63257.0 136.17 212.71 6.806 250.5

2601.0 92.26 255.07 7.330 185.83105.1 110.64 252.73 7.330 221.84084.8 146.85 248.11 7.330 291.85037.7 182.73 243.53 7.330 359.8

2585.2 79.43 296.18 7.854 172.33206.3 98.93 293.70 7.854 213.83829.4 118.65 291.18 7.854 255.35042.2 157.53 286.22 7.854 336.16224.0 196.08 281.31 7.854 414.9

3898.9 105.59 335.05 8.378 243.74658.5 126.66 332.36 8.378 291.26138.6 168.21 327.06 8.378 383.77583.4 209.43 321.81 8.378 474.0

8298.3 230.08 319.18 8.378 518.6

5150.5 123.65 377.67 8.901 303.0

5599.3 134.67 376.27 8.901 329.47383.5 178.89 370.63 8.901 434.39127.6 222.78 365.03 8.901 536.99991.6 244.77 362.23 8.901 587.7

5569.5 118.92 425.92 9.425 309.46658.9 142.68 422.89 9.425 369.98786.2 189.57 416.91 9.425 488.1

10868.4 236.13 417.22 9.425 603.812906.1 282.35 405.09 9.425 717;0

Trllnaver• • Internlll . r • values listed in "square feet" alsorepresent volume In cubic feet per foot of pipe length.

43

Page 47: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 47/80

SEAMLESS RED BRASS AND COPPER PIPE

Nominal Dimensions (Inches) and Weights

Size Out- Regular Extra Strong .(IPS) side

Diam- Inside I Wall I Lbs. pe r Foot Inside I Wall ILbs. per Foot

eter Diam- Thick- Diam- Thick-eter ness Brass ICopper eter ness Brass ICopper

Va .405 .281 .062 .253 .259 .205 .100 .363 .371

V. .540 .376 .082 .447 .457 .294 .123 .611 .625

% .675 .495 .090 .627 .641 0421 .127 .829 .847

% .840 .626 .107 .934 .955 .542 .149 1.23 1.25

% 1.050 .822 .114 1.27 1.30 .736 .157 1.67 1.711 1.315 1.063 .126 1.78 1.82 .951 .182 2.46 2.51

1% 1.660 1.368 .146 2.63 2.69 1.272 .194 3.39 3.46

1% 1.900 1.600 .150 3.13 3.20 1.494 .203 4.10 4.19

2 2.375 2.063 .156 4.12 4.22 1.933 .221 5.67 5.80

2% 2.875 2.501 .187 5.99 6.12 2.315 .280 8.66 8.85

3 3.500 3.062 .219 8.56 8.76 2.892 .304 11.6 11.8

..3% 4.000 3.500 .250 11.2 11 ..4 3.358 .321 14.1 14.4

4

I 4.500 114

.000

I.250

1

12

.

7

1

12

.

9

113

.

818

1

.341

1

16

.

9

1

17

.

3

5 5.562 5.062 .250 15.8 16.2 4.812 .375 23.2 23.76 6.625 6.125 .250 19.0 19.4 5.751 .437 32.2 32.9

8 I 8.625118.0011.312

1

30

.

91

31.6

117

.

625

1

.500

1

4804

1

49

.

510 10.750 10.020 .365 45.2 46.2 9.750 .500

61.'.1.6204

12 12.750 12.000 .375 55.3 56.5

Above pipe suitable for use in plumbing lines, boiler feed lines, andsimilar applications. Data in table abstracted from ASTM B42 and B43.

SEAMLESS COPPER WATER TUBE

Dimensions and Weights

Standard Nominal Type K Tube I Type LTube I TypeM Tubesize

of tube

Inches

5/S

%1

11/.Iljz2

2%3

3ljz456

8

1012

outsidediameterof tube

Inches

.375

.500

.625

.750

.8751.1251.375

1.6252.1252.6253.125

3.6254.1255.1256.125

8.12510.12512.125

Wallthickness

Inches

.035

.049

.049

.049

.065

.065

.065

.072

.083

.095.109

.120

.134

.160

.192

.271.338.405

Weightpe r foot

Pounds

.145

.269

.344

0418

.641

.8391.04

1.362.06

2.934.00

5.126.519.67

13.9

25.940.357.8

Copper water tubes are designed for plumbing sys-tems, underground water services, etc. The tubing isgenerally used with solder, flared, or compressiontype fittings. Data in table (abstracted from ASTMB88) covers three wall thicknesses designated Types

K, L, and M.

Wallthickness

Inches

.030

.035

.040

.042

.045

.050

.055

.060

.070

.080.090

.100

.110

.125

.140

.200

.250

.280

Weightpe r foot

Pounds

.126

.198

.285

.362

.455

.655

.884

1.141.75

2.483.33

4.29S.387.61

10.2

19.330.140.4

Wallthickness

Inches

.025

.025

.028

.030

.032

.035

.042

.049

.058

.065.on

.083

.095

.109

.122

.170

.212

.254

Weightpe r foot

Pounds

.106

.145

.204

.263.328.465.682

.9401.46

2.032.68

3.584.666.668.92

16.S25.636.7

Types K and L are furnished in colis or straightlengths. Coiled lengths are annealed after coiling.Straight lengths are furnished in the drawn temperunless annealing is specified. Type M is furnished instraight lengths and in drawn temper only.

)

Page 48: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 48/80

AMERICAN NATIONAL STANDARD TAPER PIPE THREADS(NPT)

t=

1:;1 Lf

;::=:

e!==

• ti t~ '

Eo = D - (O.050D + l.l)p*E! = Eo + O.06'l5 L\

p = Pitch

Depth of thread = O.BOpTotal Taper %,"-inch per Foot

Tolerance on Product

One tu m large or smallfrom notch on plug gaugeor face of ring gauge.

Notch flush with face offitting. If chamfered, notchflush with bottom of chamfer2 = (O.BOD + 6.8)p

D

Nominal Outsidepipe diametersize of

pipe

1/16 0.3125

M! 0.40514 0.540

% 0.675

1,1 0.840% 1.0501 1.315

H4 1.660

m 1.900

2 2.37521,1 2.8753 3.50031,1 4.0004 4.500

5 5.563

6 6.6258 8.625

10 10.75012 12.750

140.D. 14.000160.D. 16.000180.D. 18.000200.D. 20.00024 O.D. 24.000

Dimensions in Inches

p Eo

Number Pitch Pitch

of of diameterthreads thread at end ofper inch external

thread

27' 0 . ~ 0 4 0.2711827 0.03704 0.3635118 0.05556 0.47739

18 0.05556 0.61201

14 0.07143 0.V5843

14 0.07143 0.9676811.5 0.08696 1.2136311.5 0.08696 1.5571311.5 0.08696 1. 79609

11.5 0.08696 2.26902

8 0.12500 2.719538 0.12500 3.340628 0.12500 3.837508 0.12500 4.33438

8 0.12500 5.390738 0.125OQ 6.446098 0.12500 8.433598 0.12500 10.545318 0.12500 12.53281

8 0.12500 13.775008 0.12500 15.762508 0.12500 17.750008 0.12500 19.73750

8 0.12500 23.71250

t Also pitch diameter at gauging notch.

§Also length of plug gauge.

E1t

Pitchdiameterat end ofinternalthread

0.281180.373600.49163

0;62701

0.778430.988871.238631.583381.82234

2.296272.762163.388503.888814.38712

5.449296.505978.50003

10.6209412.61781

13.8726215.8757517.8750019.8703123.86094

L11f

Normalengagement

by hand

betweenexternal

and

internalthreads

0.1600.16150.2278

0.240

0.3200.3390.4000.4200.420

,0.436

0.6820.7660.8210.844

0.9370.9581.0631.2101.360

1.5621.8122.0002.1252.375

1fAlso length of ring gauge, and length from gauging notch to small end of plug gauge.

• For the 1AJ-27 and %-18 sizes . . . El approx. = D - (0.05 D + 0.827) P

Above Information extracted from Amerloan

National Standard for Pipe Threads, ANSI 82.1.

L2§

Length Height

of of

effective thread

externalthread

0.2611 0.029630.2639 0.029630.4018 0.04444

0.4078 0.04444

0.5337 0.05714

0.5457 0.057140.6828 0.069570.7068 0.069570.7235 0.06957

0.7565 0.06957

1.1375 0.100001.2000 0.100001.2500 0.100001.3000 0.10000

1.4063 0.100001.5125 0.100001.7125 0.100001.9250 0.100002.1250 0.10000

2.2500 0.100002.4500 0.100002.6500 0.100002.8500 0.100003.2500 0.10000

45

Page 49: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 49/80

THREADED PIPE JOINTS '-0J

Standardized Threads Normal Engagement

Several Standards have been estab.lished covering pipethreads for various purposes. The oldest and probablymost commonly used is the American National Standardfor Pipe Threads, known as ANSI B2.1. There are alsothe American Petroleum Institute Standards No. 5A, 6A,and 5l covering Oil Field Tubular Goods, such as l ine

Pipe and Casing Threads.

The British Standard Taper Pipe Thread system, in accordance with British Standard No. 21, is used in GreatBritain. The form of thread is that of the Whitworthsystem; the sides of the thread form an angle of 55 degrees with each other, and the crests and roots of thethreads are rounded to a radius equal to 0.1373 x thepitch of the thread. The total taper is 0.75-inch per foot,the same as for American National Standard Taper Pipe

Threads.The number of threads per inch are as follows:

Pipe Size Threads

Va" . . . . . . • . • . . . . .28 per inchV4, 3/a" . . . . . . . . . . . 19 per inch1/2,3/4" ••. .•••. . . . 14 per inch

1 to 6" . . . . . . . . . . n per inch8, IIY' . . . . . . . . . . . 10 per inch12" .and up . . . . . . . .8 per inch

Thread Assembling

In making up threaded pipe joints, it is very importantthat the threads in both parts be thoroughly cleaned.Any threads which may have become burred or bentshould be straightened or. removed and afterward agood grade of lubricant should be applied to the threads.The lubricant reduces the friction which allows the two

p a r t ~ to be pulled up further, resulting in a more effective pipe joint. Pipe joints should not be screwed together too rapidly in orper to avoid raising thetemperature of the two parts to a high degree.

Leaky Joints

leaky joints can usually be traced either to faultythreading or an improper lubricant. Frequently thetrouble lies in the thread on the pipe which may havebeen cut with dull or improperly adjusted threadingtools, resulting in wavy, shaved, rough, or chewedthreads.

Wavy threads are noticeable both to the eye and touch,due to circumferential waves or longitudinal flats ofslightly helical form rather than the desired true circularform. Shaved threads appear to have been threadedwith two dies, one not matching the other, giving adouble thread appearance at the start of the thread.Rough or chewed threads are noticeably rough and torn.

Should the threads have any of these defects, it is pos

sible that leaky joints might result.

The normal amount of engagement required betweenmale and female threads to make a tight joint is given inthe table below. The dimensions are based on partsbeing threaded to the American National Standard forPipe Threads or the API Standard for l ine Pipe Threads. . . and have been established from tests made underpractical working conditions. No allowance was madefor variations in tapping or threading.

PipeSize

I/S"

V4

3/S

V2

3/4

1

0.25"0.380.380.500.560.69

American National Standardand API Line Pipe Threads

Normal Thread Engagement

IV4" 0.69"

lV2 0.692 0.752V2 0.943 1.0031i2 1.06

A

4" 1.12"

5 1.256 1.318 1.4410 1.6212 1.75

In order to obtain the thread engagements listed in thetable, it is necessary to vary the torque or power applied

according to the size, weight, and kind of material . . . aswell as the type of lubrication used. For example, it requires considerably less power to make up a threadedjoint using a light bronze valve than a high pressuresteel valve. '

Crane Threaded Products

Crane threaded products have smooth, accurately cutthreads properly gauged and carefully inspected fortaper, lead, thread angle, height, out-of-roundness, andalignment.

They are threaded in compliance with established Standards as the requirements may be, and the start of eachthread is properly chamfered for ease in assembling.

Crane has taken extraordinary precautions to insuresatisfactory thread joints by maintaining constantlycareful inspection of not only the product itself but thethreading equipment as well, which is the b e ~ t available.

A complete gauging system has also been establishedwhich includes Master Gauges approved by the Na-tional Bureau of Standards, Reference Gauges, andWorking Gauges. These gauges are checked periodically and frequently so as to keep them well within theallowable tolerances. In fact, Crane threading is heldto much closer tolerances than actually required to

make a tight joint.

)

)

Page 50: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 50/80

BOLTING - TORQUE AND LOADING

The torque or turning effort required to produce a certain stress in bolting is dependent upon a number ofconditions, some of which are:

with a heavy graphite and oil mixture. It was found thata non-lubricated bolt has an efficiency of about 50 percent of a we" lubricated bolt and also that differentlubricants produce results varying between the limits of50 and 100

per cent of the tabulated stress figures.

1. Diameter of bolt .2. Type and number of threads on bolt.3. Material of bolt.4. Condition of nut bearing surfaces. For high temperature installations, particularly over 5000

5. Lubrication of bolt threads and nut bearing surfaces. F and up to 1050°F, a High Temperature Thread Com-The tables below reflect the results of many Crane tests pound should be used. Through its use, stud bolts canto determine the relation between torque and bolt be more readily followed up or disassembled after beingstress. Values are based on steel bolting well lubricated subjected to heat.

Data for Use with Machine Bolts and Cold Rolled Steel Stud Bolts

Nominal Number Minor Area Stress

Diameter of Diameter Tensileof Bolt Threads Stress 7,500 psi 15,000 psi 30,000 psi

Torque Tension Torque Tension Torque Tension

Inches Pe r Inch Inches Sq. Inch Ft. Lbs. Lbs. Ft. Lbs. Lbs. Ft. Lbs Lbs.

1/4 20 .1887 . 0318 1 239 2 477 4 9545116 18 .2443 .0524 2 393 4 786 8 15723/8 16 .2983 .0775 3 581 6 1163 12 23257/16 14 .3499 .1063 5 797 10 1595 20 31891/2 13 .4056 .1419 8 1064 15 2129 30 4257

9/16 12 .4603 .182 12 1365 23 2730 45 54605/8 11 .5135 .226 15 1695 30 3390 60 67803/ 4 10 .6273 .334 30 2505 55 5010 110 10020718 9 .7387 .462 45 3465 85 6930 170 13860

1 8 .8466 .606 65 4545 130 9090 260 18180

IVa 7 .9497 .763 95 5723 185 11445 370 22890

H4 7 1.0747 .969 130 7268 260 14535 520 290701% 6 1.1705 1.155 170 8663 340 17325 680 34650

IV2 6 1.2955 1.405 225 10538 450 21075 900 42150

1% 5 1.5046 1.90 360 14250 715 28500 1425 570002 41/2 1.7274 2.50 525 18750 1050 37500 2100 75000

Data for Use with Alloy Steel Stud Bolts

Nominal Number Minor Area Stress

Diameter of Diameter Tensileof Stud Threads Stress 30,000 psi 45,000 psi 60,000 psi

Torque Tension Torque Tension Torque TensionInches Pe r Inch Inches Sq. Inches Ft. Lbs. Lbs. Ft. Lbs. Lbs. Ft. Lbs. Lbs.

114 20 .1887 .0318 4 954 6 1431 8 19085116 18 .2443 .0524 8 1572 12 2439 16 3144

3/ 8 16 .2983 .0775 12 2325 18 3488 24 4650'7/16 14 .3499 .1063 20 3189 30 4784 40 63781/2 13 .4056 .1419 30 4257 45 6386 60 8514

9/16 12 .4603 .182 45 5460 68 8190 90 10920

5/8 11 .5135 .226 60 6780 90 10170 120 135603/ 4 10 .6273 .334 110 10020 165 15030 220 200407/8 9 .7387 .462 170 13860 255 20790 340 277201 8 .8466 .606 260 18180 390 27270 520 36360

nil 8 .9716 .790 375 23700 565 35550 750 47400

H4 8 1.0966 1.000 525 30000 790 45000 1050 60000

1% 8 1.2216 1.233 715 36990 1075 55485 1425 7398011-'2 8 1.3466 1.492 925 44760 1395 67140 1850 89520

1% 8 1.4716 1.78 1200 53400 1800 80100 2400 10680013,4 8 1.5966 2.08 1500 62400 2250 93600 3000 124800

IVa 8 1.7216 2.41 1850 72300 2775 108450 3700 144600

2 8 1.8466 2.77 2260 83100 3390 124650 4525 166200

2Jr4 8 2.0966 3.56 3260 106800 4890 160200 6525 213600

21-'2 8 2.3466 4.44 4500 133200 6750 199800 9000 266400

234 8 2.5966 5.43 6025 162900 9040 244350 12050 3258003 8 2.8466 6.51 7875 195300 11815 292950 15750 390600

Bolting materials . .. page 13

47

Page 51: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 51/80

ASSEMBLY AND MAINTENANCE OF FLANGED JOINTS

When a flanged joint is assembled, each of the component parts is subjected to

tensile or compressive stresses of varying magnitude. In the great majority of cases,it is .adequate to tighten the bolts sufficiently to withstand the test pressure without

, leakage.

The maximum allowable stress values for bolt ing given in the various codes such asthe ASME Boiler and Pressure Vessel Code and the ANSI Code for Pressure Pipingare design values to be used in determining the minimum amount of bolting required.

A distinction must be recognized between the design value and the bolt stress thatmight actually exist or that might be needed for conditions other than the· designpressure. The initial tightening of the bolts is a pre-stressing operation, and theamount of bolt stress developed must be within proper limits to insure, on the onehand, that it is adequate to provide against all conditions that tend to produce aleaking joint and, on the other hand, that it is not so excessive that yielding of thebolts and/or flanges can produce relaxation that also can result in leakage.

The first Jmportant consideration is the need for a joint to be tight in the hydrostatic test. An initial bolt stress of some magnitude greater than the design value

therefore must be provided. If it is not, further bolt strain develops during the testwhich tends to part the joint and thereby, to decompress the gasket enough to allowleakage. It. is evident that an initial bolt stress higher than the design value may, andin some cases must, be developed in the tightening operation. This practice ispermissible, as pointed out in Appendix S, Section VIII, Division 1, of the ASMEBoiler and Pressure Vessel Code, provided it includes necessary and appropriateprovision to insure against excessive flange distortion and gross crushing of thegasket.

,

Investigation of field-erected flanged joints has indicated that the probable boltstress developed manually, when using standard wrenches on al/oy steel bolts is:

where S is the bolt stress and d is the nominal diameter of the bolt.

Experience indicates that these stresses are satisfactory for ANSI B16.5 flanges andwill comply with the requirements as set forth in the preceding paragraphs. It canbe seen that smaller bolts will have excessive stress unless judgment is used inpulling up on them. On the other hand, it will be impossible to develop the desiredstress in very large bolts by ordinary hand wrenching. Impact wrenches may proveserviceable, but if not, resort may be had to such methods as preheating the bolt or

using hydraulically-powered bolt tensioners. With some of these methods, controlof the bolt strelSs is possible by means inherent in the procedure, especially ifeffective thread lubricants are employed, but in all cases, the bolt stress can beregulated within reasonable tolerances by measuring the bolt elongation withsuitable extensometer equipment. Generally, simple wrenching without verificationof the actual bolt stress meets all practical needs, and measured control of stressis employed only when there is some special or important reason for doing so.

It is possible for the bolt stress to decrease after initial tightening, because of slowcreep or relaxation of the gasket, particularly in the case of the "softer" gasketmaterials. This may be the cause of leakage in the hydrostatic test, in which case itmay suffice merely to retighten the bolts. A decrease in bolt stress can also occurin service at elevated temperatures as a result of creep in the bolt and/or flangegasket material, with consequent relaxation. When this results in leakage underservice conditions, it is common practice to retighten the bolts, and sometimes asingle such operation, or perhaps several repeated at long intervals, is sufficientto correct the condition.

(Abstracted In part from Appendix S, ASME Boller A Pre88ure Vessel Code, Sec. VII I, Dlv. 1)

\

)

Page 52: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 52/80

a

Cv

Ddf

fT

g

hL

K =

LL/D

P =P' =Qq',. =

q'". =

R. =

FLOW OF FLUID'S THROUGH VALVES, FITTINGS, AND PIPE

The content, Indexed below comprl,e a condensed .ummary 0' data publl,hed In Crane"Technical Paper No. 410 . . . . .Flow 0' Fluid, Through Valve., FIHlng., and Pipe".

Nonmenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

see belowBasic Theory PAGEResistance Coefficient K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50Equivalent Length LID and Flow Coefficient C . . . . . . . . . . . . . . . . . 50Laminar Flow Conditions; Reduced Seat Valves . . . . . . . . . . . . . . . . 51Proper Sizing of Check and Foot Valves. . . . . . . . . . . . . . . . . . . . . . . 51

Representative Resistance Coefficients(UK" Factor Table)Pipe Friction Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Formulas for Contraction and Enlargement . . . . . . . . . . . . . . . . . . . . 52Formulas for Reduced Port Valves and Fittings . . . . . . . . . . . . . . . . 52Coefficients for Valves and Fittings . . . . . . . . . . . . . . . . . . . . . . . . 53-55

Nomographs, Charts, and TablesFriction Factors for Clean Commerical Pipe . . . . . . . , . . . . . . . , . . . 56Weight Density of Air and Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Physical Properties of Water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Viscosity of Steam and Water; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Viscosity of Water and Liquid Petroleum Products . . . . . . . . . . . . . . 59Viscosity of Gases and Vapors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Flow of Water through Steel Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Flow of Air through Steel Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Flow Formulafor Compressible Fluids . . . . . . . . . . . . . . . . . . . . . 62-63Properties of Saturated Steam and Saturated Water . . . . . . . . . . . 64-67Properties of Superheated Steam . . . . . . . . . . . . . . . . . . . . . . . . . . 68-70Properties of Compressed Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Nomenclature

Symbols used In thIs "Flow of FluIds " sectIon are defined as follows:

cross sectional area of pipe or orifice, or Sg = specific gravity of a gas relative to air =flow area in v ~ v e , in square inches the ratio of the molecular weight of the

flow coefficient for valves gas to that of air

internal diameter of pipe, in feet T = absolute temperature, in degrees Rankine

internal diameter of pipe, in inches (460 + t)

friction factor in formula t temperature, in degrees FahrenheithL= fLv 2/D2g V specific volume of fluid, in cubic feet per

friction factor in zone of complete poundturbulence v mean velocity of flow, in feet per second

acceleration of gravity =second per second

32.2 feet per W rate of flow, in pounds per hour

loss of static pressure head due to fluid Greek LeHers

flow, in feet of fluid Beta

resistance coefficient or velocity head loss (3 ratio of small to large diameter in orificesin the formula, hL = KV 2/2g and nozzles, and contractions or enlarge-

length of pipe, in feet ments in pipesequivalent length of a resistance to flow, Delta

in pipe diametersfj . = differential between two points

pressure, pounds per square inch gaugeRho

weight density of fluid, lbs. per cubic footpressure, pounds per square inch absolute

p

Murate of flow, in gallons per minute p, = absolute (dynamic) viscosity, in centipoiserate of flow, in cubic feet per hour atstand-

P,. absolute viscosity, in pound mass per footard conditions (14.7 psia and 6oF), scfh second or poundal seconds per sq. foot

rate of flow, in cubic feet per minute at Theta

std. conditions (14.7 psia and 6oF), scfm 8 angle of convergence or divergence in en-Reynolds number largements or contractions in pipes

49

Page 53: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 53/80

RESISTANCE COEFFICIENT K, EQUIVALENT LENGTH LID,

AND FLOW COEFFICIENTCv

Pressure loss test data for a wide variety of valves andfittings are available from the work of numerous investigators. Extensive studies in this field have been con

ducted by Crane Laboratories. However, due to thetime-consuming and costly nature of such testing, it isvirtually impossible to obtain test data for every sizeand type of valve and fitting. It is therefore desirable toprovide a means of reliably extrapolating available testinformation to enverope those items which have notbeen or cannot readily be tested. Commonly used concepts for accomplishing this are the "equivalent lengthLID", "resistance coefficient K", and "flow coefficientC " .

Pressure losses in a piping system result from a numberof system characteristics, which may be categorized asfollows:

1. Pipe frict ion, which is a function of the surface roughnessof the Interior pipe wall, the inside diameter of the pipe,

and the fI!lid velocity, density and viscosity. For frictiondata, see page 56.

2. Changes In direction of flow path.3. Obstructions in flow path.4. Sudden or gradual changes in the cross-section and

shape of flow path.

Velocity in a pipe is obtained at the expense of statichead, and decrease in static head due to velocity is,

v2hL - - Equation 1

2g'

which is defined as "velocity head". The resistance coefficient K in the equation,

v2hL K-, Equation 2

zg

therefore, is defined as the number of velocity headslost due to a valve or fitting. It is always associated withthe diameter in which the velocity occurs. In most valvesor fittings, the losses due to friction (Category 1 above)resulting from actual length of flow path are minor coillpared to those due to one or more of the other threecategories listed.

The resistance coefficient K is therefore considered asbeing independent of friction factor or Reynolds number, and may be treated as a constant for any givenobstruction (Le., valve or fitting) in a piping systemunder all conditions of flow, including laminar flow.

The same loss in straight pipe is expressed by the Darcy

equation,

hL _ (l=) v2 Equation 3D zg

It follows that,

Equal/on 4

The ratiO LID is the equivalent length, in pipe diametersof straight pipe, that wi!1 cause the same pressure dropas the obstruction under the same flow conditions.Since the resistance coefficient K is constant for allconditions of flow, the value of LID for any given valveor fitt ing must necessarily vary inversely with the changein friction factor for different flow conditions.

Equation 2 may be written in many forms dependingupon the units in which flow conditions are expressed.Some of the more common and useful forms are,

For compressible flow with hL or l:o.P greater than 10%of the inlet absolute pressure, refer to Crane TechnicalPaper No. 410-"Flow of Fluids Through Valves, Fittings, and Pipe".

Analysis of flow test data for different sizes of the sameitems indicates that the resistance coefficient K for anygiven line of valves and fittings tends to vary with size,in the same manner, as does the friction factor forstraight pipe at flow conditions resulting in Reynoldsnumbers falling in the zone of complete turbulence.

As previously stated, the resistance coefficient K is always associated with the diameter in which the velocityin the term v2/2g occurs. The values in the "K" Factor

Table (pages 45 to 48) are associated with the internaldiameter of the following pipe schedule numbers for thevarious ANSI Classes of valves and fittings.

Class 300 and lower . . . . . . . . . . . . . . . . . . . . Schedule 40Class 400 and 600 . . . . . . . . . . . . . . . . . . . . . . Schedule 80Class 900 . . . . • . . . . . . . . . . . . . . . . . . . . . . . .Schedule 120Class 1500 . . . • . . . . . . . . . . . . . . . . . . . . . . . .Schedule 160Class 2500 (sizes Ve to 6") . . . . . " . . . . . . . . Schedule 160Class 2500 (sizes 8" and up) . . . . . . . . . . . . . . . . . . . .XXS

When the resistance coefficient K is used in flow equation 2, or any of its equivalent forms, the velocity andinternal diamete-r dimensions used in the equation mustbe based on the dimensions of these schedule numbersregardless of the pipe with which the valve may beinstalled.

An alternate procedure which yields identical resultsfor Equation 2 is to adjust K in proportion to the fourthpower of the diameter ratio, and to base values of velocity or diameter on the internal diameter of the connecting pipe.

t/" = v (ddGb) ,'0 1'1> Equation 5

Subscript "a " defines K and d with reference to the internal diame.ter of the connecting pipe.

Subscript "b" defines K and d with reference to the internal diameter of the pipe for which the values of Kwere established, as given in the foregoing list of pipeschedule numbers.

-

.J

Page 54: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 54/80

RESISTANCE COEFFICIENT K, EQUIVALENT LENGTH LID,

AND FLOW COEFFICIENT Cv-cont.

When a piping system contains more than one size ofpipe, valves, or fittings, Equation 5 may be used to express all resistances in terms of one size. For this case,

subscript "a" relates to the size with reference to whichall resistances are to be expressed, and subscript lib"relates to any other size in the system.

It has been found convenient in some branches of thevalve industry, particularly in connection with controlvalves, to express the valve capacity and the valve flowcharacteristics in terms of the flow coefficient Cv' TheCv coefficient of a valve is defined as the flow of water

at 60 F, in gallons per minute, at a pressure drop of onepound per square inch across the valve.

By the substitution of appropriate equivalent units in the

Darcy equation, it can be shown that,

C2q.qd2

y = VR Equation 6

Also, the quantity (gpm) of liquids of low viscosity thatwill flow through the valve can be determined from:

Q = Cv V0P (6:.4) = 7·q Cy V : Equation 7

LAMINAR FLOW CONDITIONS

In the usual plpmg installation, the flow will changefrom laminar to turbulent in the range of Reynolds numbers from 2000 to 4000, defined in the Friction FactorChart (page 49) as the critical zone. The lower criticalReynolds number of 2000 is usually recognized as theupper limit for the application of Poiseuille's law forlaminar flow in straight pipes,

(JJ.LV)hL = O.Oq62 d2p Equation 8

which is identical to Equation 3 when the value of thefriction factor for laminar flow, f=641 Reo is factoredinto it. Laminar flow at Reynolds numbers above 2000

is unstable, and in the critical zone and lower range ofthe transition zone, turbulent mixing and laminar motion may alternate unpredictably.

Equation 2 (h L = Kv'12g) is valid for computing headloss due to valves and fittings for all conditions offlow, including laminar flow, using resistance coefficientK as given in the "K" Factor Table (pages 45 to 48).

When Equation 2 is used to determine the losses instraight pipe, it is necessary to compute the Reynoldsnumber in order to establish the friction factor f, to beused to determine the value of the resistance coefficientK for the pipe in accordance with Equation 4 (K=fLlD).

REDUCED SEAT VALVES

Valves are often designed with reduced seats, and thetransition from seat to valve ends may be either abruptor gradual. Straight-through types such as gate and ballvalves so designed with gradual transition are sometimes referred to as venturi valves. Formulas (page 52)for computing resistance coefficient K for several typesof reduced seat valves have been found to yield resultsthat have excellent correlation with test results. It willbe noted that these computed K values are a function ofthe ratio f3 (beta) of the seat diameter to the internaldiameter of the connecting pipe.

Procedure for determining K for reduced seat globe andangle valves is also applicable to throttled globe andangle valves. For this case the value of f3 must be basedupon the square root of the ratio of areas,

(3 = Valwhere: a2

B, . •• defines area at most restricted point in flow pathB•• •• defines internal area of connecting pipe.

'The use of /1 as a factor is purely empirical based on test information and it has no theoretical basis.

PROPER SIZING OF CHECK AND FOOT VALVES

Many difficulties encountered with check valves, bothlift and swing types, or with foot valves, are due tooversizing which results in noisy operation and premature wear of moving parts. The minimum velocity re-quired to lift the disc to the full-open and stable positionhas been determined by test for numerous types ofcheck and foot valves, and is given on pages 53 and 54.pressed in terms of a constant times the square root ofthe specific volume of the fluid being handled, makingIt applicable for use with any fluid.

Sizing check and foot valves on the basis of the specified minimum velocity for full disc lift will often resultin valves smaller in size than the pipe in which they areinstalled, but the pressure drop will be little, if any,higher than if a full size valve is used with the disc notfully open. The losses due to sudden or gradual contraction and expansion which will occur in such installations with bushings, reducing flanges or taperedreducers can be readily calculated from the data givenon page 52.

51

Page 55: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 55/80

"K" FACTOR TABLE-SHEET 1of .4

REPRESENTATIVE RESISTANCE COEFFICIENTS (K) FOR VALVES AND FITTINGS

Nominal Size %"

Friction .027Factor (Fr)

• Formula I

(UK" Is based on use of schedule pipe as listed on page 50)

PIPE FRICTION DATA FOR CLEAN COMMERCIAL STEEL PIPEWITH FLOW IN ZONE OF COMPLETE TURBULENCE

*".025

1" 1%" 2" 2Y2,3" 4" 5" 6"

.023 .022 .Q21 .019 .018 .017 .016 .015

FORMULAS FOR CALCULATING "K" FACTORSFOR VALVES AND FlnlNGS WITH REDUCED PORT

• Formula 6

8·10"

.014

12·16"

.013

K2 = + Formula 2 + Formula 4

KdO.5 VSin!(1 + (I _K2 = 2

fJ4

• Formula 7

18·24"

.012

• Formula 3 K2 = ~ + :3 (Formula 2 + Formula 4) when 8 = 180°

• Formula 4

K· (I -2 =

fJ4

• Formula 5

K2 = i +Formula I + Formula 3

Kl + i n ~ [ 0 . 8 (I - + 2.6 (I _ ~ ) 2 ]K2 = 2

fJ4

/

SUDDEN AND GRADUAL CONTRACTION

-, ,

{ a. d.

\ ,/ 1

( f

) (

, =;] i ,S "\

9\ d, I a, I

t \ ":; I

If : 8 45° . . . . . . . . .Ks - Formula I

45° < 8;;;: 180° .. .Ks - Formula 2

Subscript I defines dimensionsand coefficients with reference to

the smaller diameter.

Subscript 2 refers to the largerdiameter.

SUDDEN AND GRADUAL ENLARGEMENT

,5 ' , i ,_,a,/d, , d.

" / t ,

t! ...

rs , (, ,I \I a. I\ I

'z "

If : 8 <: 45° . . . . . . . . .Ks - Formula 3

45° < 8 180° . . •Ks - Formula 4

Page 56: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 56/80

"K" FACTOR TABLE-SHEET 2 of 4

REPRESENTATIVE RESISTANCE COEFFICIENTS (K) FOR VALVES AND FITTINGS

If :

(for formulas and friction date, see page 52)

("K" Is based on use of schedule pipe as listed on page 50)

GATE VALVESWedge Disc, Double Disc, or Plug Type

_.....- G : ~If: f:J = 1,8 = 0 . . . . . . . . . . . . . . Kl = 8fT

f:J < I and 8 450. ••••••• • K2 = Formula 5

(:3 < I and 450< 8 < 180

0• • . K2 = Formula 6

GLOBE AND ANGLE VALVES

If : (:3=I . . . K1=55fT

(:3=I . . . K1=150fT If : f:J=I . . . Kl=55fT

All globe an d angle valves,whether reduced seat or throttled,

If : f:J < I . . .K2 = Formula 7

SWING CHECK VALVES

K = 100fT

Minimum pipe velocity(fps) fot full disc lift

K = 50 fT

Minimum pipe velocity(fps) for full disc lift

=35 VV = 60 yvU/L Listed = 100 y=-

LIFT CHECK VALVES

If : (:3=I . . . Kl =600fT

(:3 < I . . .K2 = Formula 7

Minimum pipe velocity (fps) for full disc lift

=4°132 VV

If : (:3 = I .• . Kl = 55 fT

(:3 < I . . .K2 = Formula 7

Minimum pipe velocity (fps) for full disc lift

= 140 (:32 YV

TILTING DISC CHECK VALVES

Sizes 2 to 8" . . . K =

Sizes 10 to 14" . . . K =

Sizes 16 to 48" . . . K =

Minimum pipe velocity(fps) for full disc lift =

STEEL

40fT

30 fT

20fT

8 0VV

IRON

120fT

qOfT

60fT

30 VV

53

Page 57: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 57/80

"K" FACTOR TABLE-SHEET 3 of 4

REPRESENTATIVE RESISTANCE COEFFICIENTS (K) FOR VALVES AND FITTINGS(for formulas and friction date, see page 52)

("K" ;s based on use of schedule pipe as listed on page 50)

STOP·CHECK VALVES(Globe and Angle Types)

If :{3 = I ... K! = 400 fT

{3 < I .. :K2 = Formula 7

Minimum pipe velocityfor full disc lift

= 55 ~ 2 V V

If:{3 = I ... K! = 300 iT

{3 < I .. .K2 = Formula 7

If :{3 = I .. .K! = 200fT

{3 < I .. . K2 = Formula 7

Minimum pipe velocity

for full disc lift

= 75 {32 VV

If:{3= I . . . K!=35o fT

f3 < I .. . K2 = Formula 7

Minimum pipe velocity (fps) for full disc lift

= 6 0 {32VV

[ [

If : If :f3=I . . . K!=55iT {3 = I. . . K! = 55 iT

f3 < I .. . K2 = Formula 7 (3 < I .. .K2 = Formula 7

Minimum pipe velocity (fps) for full disc lift

= 140 f32 v'V

FOOT VALVES WITH STRAINER

Poppet Disc

Minimum pipe velocity(fps) for full disc lift

= 15 VV

Hinged Disc

Minimum pipe velocity(fps) for full disc lift

= 35 VV

BALL VALVES

If : f3=I,(}=0 . . . . . . . . . . . . . . K!=3fT

{3 < 1 and () <: 45°· . , . . . . . .K2 = Formula 5

f3 < 1 and 45° < (} <: 180° . . . K2 = Formula 6

BUTTERFLY VALVES

Sizes 2 to 8" . . .K = 45 iT

Sizes 10 to 14/1·· .K = 35 iT

Sizes 16 to 24/1 .. ·K = 25 iT

Page 58: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 58/80

"K" FACTOR TABLE-SHEET.4 of.4

REPRESENTATIVE RESISTANCE COEFFICIENTS (K) FOR VALVES AND FITTINGS

(for formulas and fr iction date, see page 52)

("K" is based on use of schedule pipe as /lsted on page 50)

PLUG VALVES AND COCKSStraight-Way 3-Way ~;J

a.' -

View X-X •

atJf.. cfDIf : {3= I,

Kl = I8hIf : {3= I ,

Kl = 30fT

If : {3 = I ,

Kl = gofT

If : (3 < I .. .K2 = Formula 6

MITRE BENDS

c< K

0° 2 fr15° 4fr

8fr45° 15 fr60° 25 fr75° 40 fr90° 60 fr

90° PIPE BENDS ANDFLANGED OR BUTT-WELDING 90° ELBOWS

rid K rid K

UJld

~ : j, I

1 20 fr 10 30 fr2 12 fr 12 34 fr3 12 fr 14 38 fr4 14 fr 16 42 fr

6 17 fr 18 46 fr

8 24 fr 20 50 fr

Th e resistance coefficient, Kn, for pipe bends otherthan goO may be determined as follows:

KB = (n - I) (0.2 5 71"

ha+ 0.5 K) +K

n = number of 90° bendsK = resistance coefficient for one 90° bend (per table)

CLOSE PATTERN RETURN BENDS

STANDARD ELBOWS90° 45°

(iJ 0=3 0 h K = I6h

STANDARD TEES

Flow thru run . . . . . . . K = 20 hFlow thru branch . . . . K = 60 h

InwardProjecting

Projecting

K 1.0

PIPE ENTRANCE

rid K

0.00* 0.50.02 0.280.04 0.240.06 0.150.10 0.09

0.15 & up 0.04

·Sharp-edged

PIPE EXIT

Sharp-Edged

K 1.0

Flush

For,K,

see table

Rounded

-K m 1.0

55

Page 59: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 59/80

VALUES OF (ud) FOR WATER AT 60 · F (VELOCITY IN FT.{SEC. X DIAMETER IN INCHES)

f

FrictionFactor =

hL

( ~ ) ~

.07

.06

.05

.04

.03

.02

.015

0.1 0.2 0.4 - 0.6 0.8 1

.RI'ilCALZONE

ilNAR - AN I t J Q ~ -""I'- Z 1""

\ l., ~I""'--.

r<-';\ : '-I - 1\ \ ~f - ~ \ ~ ~

~ 1\." :"

~ ~,

N

,

4 6 8 10 20 40 60 80 100

TURBULENT

CO

i"'" ,;:::1"-

,.... I"- 1\

..... '.

\:S"' - -I--....

t ' --.;

~ ~ ~~ ~

I I

200 400 600 800 '\.1'- ' J . . ~ ~ f I , . ~ - ~ i ' " ~ G ; "

- ..

._-1- .- -_ .. -- _ ...- .. . -- -

ETE RBI) C

'......

-::- - i . . .~~ ;;;::::::::: '-

r-;:

,

I

InsideDiameter,

Inches0.2')

0.2

0.3

0.4

O.

O.

1.0

l.

2

3

4

81012

16

36

48

5

J

0

5

F

I"'"

NominalPipeSize,

Inches1.-

-1

]..

'4

'8

'2

'4

]

11,,

4

b- 5~ 68

142 4 6 8 1 1 1 100000246

o 0 0 0

Schedule Number

.0

.009103 23456810 4 2 3 4 5 6 8105 2 3 4 5 6 8106 2 3 4 56 8107 2 3 4 56 8108

DvpRe - Reynolds Number =---;;::-

Problem: Determine the friction factor for 12-inch Schedule 4 0 pipe at a flow having a Reynolds number of 300 ,000 .

Solution: Th e friction factor (1) equals 0.016.

-'-.....- ~ -

L.F. Moody, "Friction Factors for Pipe Flow"; Trans-actions of the American Society of Mechanical Enginee;,s,Volume 66, November, 1944; pages 671 to 678.

"11:D( ;...(5

Z~(' )

a:Dtil

cg:D(' )rm»z(' )

o3:3:m:D(' )

;;r-

~mmr-

::!!"'Um

J

Page 60: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 60/80

AirTemp.

DegF.

I30·40506070

8090

100110120

130140150175200

225250275300350

400450500550600

30·

40506070

8090

100110120

130140150175200

225250·275

300350

400450500550600

0psi

.0811

.0795

.0782

.0764

.0750

.0736

.0722

.0709

.0697

.0685

.0673

.0662

.0651

.0626

.0602

.0580

.0559

.0540

.0523

.0490

.0462

.0436

.0414

.0393

.0375

130psi

.798

.782.770

.752

.738

.724

.711

.698

.686

.674

.663

.652

.641

.616

.593

.571

.551

.532

.515

.483

.455

.430

.407

.387

.369

5psi

.1087

.1065

.1048

.1024

.1005

.0986

.0968

.0951

.0934

.0918

~ 0 9 0 2.0887.0873.0834.0807

.0777

.0750

.0724

.0700

.0657

.0619

.0585

.0555

.0527

.0502

140psi

.853

.836.823

.804

.789

.774

.760

.747

.734

.721

.709

.697

.686

.659

.634

.610

.589

.569

.550

.516

.486

.459

.436

.414

.394

I

WEIGHT DENSITY OF AIR AND GASES

WeIght Den.lty of AIr·

Weight Density of Air, in Pounds per Cubic Foot

Fo r Gl\uge Pressures Indicated

(Based on an atmospheric pressure of 14.696 and a molecular weight of 28.9Z)

10psi

.1363

.1335

.1314

.1284

.1260

.1236

.1214

.1192

.1171

.1151

.1131

.1113

.1094

.1051

.1011

.0974

.0940

.0908

.0878

.0824

.0776

.0733

.0695

.0661

.0630

150psi

.909

.890.876

.856

.840

.824

.809

.795

.781

.768

.755

.742

.730

.701

.675

.650

.627

.606

.586

.550

.518

.489

.464

.441

.420

I20psi

.1915

.1876

.1846

.1804

.1770

.1737

.1705

.1675

.1645

.1617

.1590

.1563

.1537

.1477

.1421

.1369

.1321

.1276

.1234

.1158

.1090

.1030

.0977

.0928

.0885

175psi

1;047

1.0261.009.986.968

.950

.932

.916

.900

.884

.869

.855

.841

.807

.777

.749

.722

.698

.675

.633

.596

.563

.534

.508

.484

I30psi

.247

.242

.238

.232

.228

.224

.220

.216

.212

.208

.205

.201

.1981

.1903

.1831

.1764

.1702

.1644

.1590

.1491

.1405

.1327

.1258

.1196

.1140

200psi

1.185

1.1611.142l.i161.095

1.0751.0551.0361.0181.001

.984

.967

.951

.914

.879

.847

.817

.790

.764

.716

.675

.638

.604

.575

.547

I40psi

.302

.295

.291

.284

.279

.274

.269

.264

.259

.255

.251

.246

.242

.233

.224

.216

.208

.201

.1945

.1825

.1719

.1624

.1540

.1464

.1395

250psi

1.460

1.4311.4081.3761.350

1.3251.3011.2781.2551.234

1.2131.1931.1731.1271.084

1.0441.088

.973

.941

.883

.832

.786

.745

.708

.675

I50psi

.357

.350

.344

.336

.330

.324

.318

.312

.307

.302

.296

.291

.287

.275

.265

.255

.246

.238

.230

.216

.203

.1921

.1821

.1731

.1649

300psi

1.736

1.7021.6741.6361.605

1.5751.5471.5191.4921.467

1.4421.4181.3951.3401.289

1.2421.1981.1571.1191.050

.989

.934

.886

.842

.801

I60psi

.412

.404

.397

.388

.381

.374

.367

.361

.354

.348

.342

.337

.331

.318

.306

.295

.284

.275

.266

.249

.235

.222

.210

.1999

.1904

400psi

2.29

2.242.212.162.12

2.082.042.001.9671.933

1.9001.8681.8381.7651.698

1.636.1.5791.5251.4751.384·

1.3031.2321.1671.1101.057

70psi

.467A58

.451

.440

.432

.424

.416

.409

.402

.395

.388

.382

.375

.361

.347

.334

.322

.311

.301

.283

.266

.252

.238

.227

.216

500psi

2.84

2.782.742.682.63

2.582.532.482.442.40

2.362.322:282.192.11

2.031.9591.8931.8301.717

1.6181.5291.4491.3771.312

80psi

.522

.512

.504

.492

.483

.474

.465

.457

.449

.441

,434.427.420.403.388

.374

.361

.348

.337

.316

.298

.281

.267

.253

.241

600psi

3.39

3.323.273.203.14

3.083.022.972.922.86

2.822.772.722.622.52

2.432.342.262.192.05

1.9321.8261.7311.6451.567

Interpolate 'o r value. of infermediate pre.sures or temperatures.

I90psi

.578

.566

.557

.544

.534

.524

.515

.505

.497

.488

.480

.472

.464

.446

.429

.413

.399

.385

.372

.349

.329

.311

.295

.280

.267

700psi

3.94

3.863.803.723.65

3.583.513.453.393.33

3.273.223.173.042.93

2.822.722.632.542.38

2.252.122.011.9121.822

I100psi

.633

.620.610.596.585

.574

.564

.554

.544

.535

.525

.517

.508

.488

.470

.453

.437

.422

.408

.383

.360

.341

.323

.307

.292

800psi

4.49

4.404.334.244.16

4.084.003.933.863.80

3.733.673.613.473.34

3.213.103.002.902.72

2.562.422.292.182.08

I I 120pSI psi

.688 .743

.674 .728

.663 .717

.648 .700

.636 .687

.624 .674

.613 .662

.602 .650

.591 .639

.581 .628

.571 .617

.562 .607

.553 .597.531 .573

.511 .552

.492 .531

.475 .513

.459 .495

.443 .479

.416 .449

.392 .423

.370 .400

.351 .379

.334 .360

.318 .343

900 1000psi psi

5:05

I5.60

4.95 5.494.87 5.404.76 5.284.67 5.18

4.58 5.084.50 4.994.42 4.904.34 4.814.26 4.73

4.19 4.654.12 4.574.05 4.503.89 4.323.75 4.16

3.61 4.003.48 3.863.36 3.733.25 3.613.05 3.39

2.87 3.192.72 f OI

2.58 .862.45 2.722.33 2.59

Air: Values in the table were calculated using theperfect gas law. Correction for supercompressi-bility, the deviation from the perfect gas law, wouldbe less than three percent and has not been applied.

*Gases other than air: The weight density ofgases other than air can be determined by multiply-ing the density listed for air by the specific gravity(Sg) of the gas relative to air.

57

Page 61: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 61/80

VISCOSITY OF STEAM AND WATER

Temp. Viscosity of Steam and Water -In Centipoise (,,}

p ~ i a I 2 5 10 20 50 100 200 500 1000 2000 5000 7500 10000 12000F psia psia psi a psia psia psia psia psia psia psia psia psia psia psia

I

Sat. water .667 .524 .388 .313 .255 .197 .164f

.138 .m .094 .078 ... ... ... ....013 .014 .015 .017 .019 .023at. st'earn .010 .010 .011 .012 .012 .... . . ... ...

15000.041 .041 .041 .041 .041 .041 .041 .041 .042 .042 .042 .044 .046 .048 .050

1450 .040 .040 .040 .040 .040 .040 .040 .040 .040 .041 .041 .043 .045 .047 .0491400 .039 .039 .039 .039 .039 .039 .039 .039 .039 .040 .040 .042 .044 .047 .0491350 .038 .038 .038 .038 .038 .038 .038 .038 .038 .038 .039 .041 .044 .046 .0491300 .037 .037 .037 .037 .037 .037 .037 .037 .037 .037 .038 .040 .043 .045 .048

1250 ·935 .035 .035 .035 .035 .035 .035 .036 .036 .036 .037 .039 .042 .045 .0481200 .034 .034 .034 .034 .034 .034 .034 .034 .035 .035 .036 .038 .041 .045 .0481150 .034 .034 .034 .034, .034 .034 .034 .034 .034 .034 .034 .037 .041 .045 .0491100 .032 .032 .032 .032 .032 .032 .032 .032 .033 .033 .034 .037 .040 .045 .0501050 .031 .031 .031 .031 .031 .031 .031 .031 .032 .032 .033 .036 .040 .047 .052

1000 .030 .030 .030 .030 .030 .030 .030 .030 .030 .031 .032 .035 .041 .049 .055950 .029 .029 .029 .029 .029 .029 .029 .029 .029 .030 .031 . 0 ~ 5 .042 .052 .059900 .028 .028 .028 .028 .028 .028 .028 .028 .028 .028 .029 .035 .045 .057 .064850 .026 .026 .026 .026 .026 .026 .027 .027 .027 .027 .028 .035 .052 . ~ .070800 .025 .025 .025 .025 .025 .025 .025 .025 .026 .026 .027 .040 .062 .071 .075

750 .024 .024 .024 .024 .024 .024 .024 .024 .025 .025 . 0 2 ~ ~ .057 .071 .078 .081700 .023 .023 .023 .023 .023 .023 .023 .023 .023 .024 .026 .071 .079 .085 .086650 .022 .022 .022 .022 .022 .022 .022 .022 ·023 .02,3 .023 .082 .088 .092 .096600 .021 .021 .021 I .021 .021 .021 .021 .021 .021 .021 .087 .091 .096 .101 .104550 .020 .020 .020 .020 .020 .020 .020 .020 .020 .019 .095 .101 .105 .109 .113

500 .019 .019 .019 .019 .019 .019 .019 .018 .018 .103 .105 .111 .114 .119 .122450 .018 .018 .018 .018 .017 .017 .017 .017 .1l5 .1l6 .118 .123 .127 .131 .135400 .016 .016 .016 .016 .016 .016 .016 .016 .131 .132 .134 .138 .143 .147 .150350 .015 .015 .015 .015 .015 .015 .015 :m .153 .154 .155 .160 .164 .168 .171300 .014 .014 .014 .014 .014 .014 .182 .183 .183 .184 .185 .190 .194 '.198 .201

250 .013 .013 .013 .013 .013 .228 .228 .228 .228 .229 .231 .235 .238 .242 .245200 .012 .012 .012 .012 .300 .300 .300 .300 .301 .301 .303 .306 .310 .313 .316150 .Oll .011 .427 .427 .427 .427 .427 .427 .427 .428 .429 .431 .434 .437 .439100 .680 .680 .680 .680 .680 .680 .680 .680 .680 .680 .680 .681 .682 .683 .68350 1.299 1.299 1.299 1.299 1.299 1.299 1.299 1.299 1.299 1.298 1.296 1.289 1.284 1.279 1.275

32 1.153 1.753 1.753 1.753 1.753 1.753 1.7531.752 1.751 1.749 1.745 1.733 1.723 1.713 1.705

Values directly below underscored viscosities are for water. ® Critical point.

PHYSICAL PROPERTIES OF WATER

Temp. Saturation Specific Weight Weight Temp. Saturation Specific Weight Weightof Water Pressure Volume Density of Water Pressure Volume Density

t P' V P t P' V p

Degrees Cubic Feet Pounds per Pounds Degrees Cubic Feet Pounds per PoundsFahrenheit Psia Per Pound Cubic Foot Per Gallon Fahrenheit Psia Per P6und Cubic Foot per Gallon

32" 0.08859 0.016022 62.414 8.3436 200 11.526 0.016637 60.107 8.035140 0.12163 0.016019 62.426 8.3451 210 14.123 0.016705 59.862 8.002450 0.17796 0.016023 62.410 8.3430 212 14.696 0.016719 59.812 7.995760 0.25611 0.016033 62.371 8.3378 220 17.186 0.016775 59.613 7.9690

70 0.36292 0.016050 62.305 8.3290 240 24.968 0.016926 59.081 7.897980 0.50683 0.016072 62.220 8.3176 260 35.427 0.017089 58.517 7 ~ 8 2 2 690 0.69813 0.016099 62.116 8.3037 280 49.200 0.017264 57.924 7.7433

100 0.94924 0.016130 6 1 . ~ 9 6 8.2877 300 67.005 0.01745 57.307 7.6608

110 1.2750 0.01616.,5 61.862 8.2698 350 134.604 0.01799 55.586 7.4308120 1.6927 0.016204 61.7132 8.2498 400 247.259 0.01864 53.648 7.1717130 2.2230 0.016247 61.550 8.2280 450 422.55 0.01943 51.:467 6.8801140 2.8892 0.016293 61.376 8.2048 500 680.86 0.02043 48.948 6.5433

150 3.7184 0.016343 61.188 8.1797 550 1045.43 0.02176 45.956 6.1434160 4.7414 0.016395 60.994 8.1537 600 1543.2 0.02364 42.301 5.6548170 5.9926 0.016451 60.787 8.1260 650 2208.4 0.02674 37.397 4.9993180 7.5110 0.016510 60.569 8.0969 700 3094.3 0.03662 27.307 3.6505

SpecifiC gravity of waterat 60

F equals1.00.

Weight per gallonbased

on7.48052

gallons per cubic foot.

Page 62: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 62/80

VISCOSITY OF WATER AND

LIQUID PETROLEUM PRODUCTS

4nM

3Mn I21

'l<W \I \

IMn 1\800

4'"'\

3nn \ \ \

20nI, \ \ \

\ \ _\ \

10013\ \ \ _\ \

80

60

40 12 \

30"'- 1\ \ \

11!'-.., 15'- \ 1\\ 1\ \ \20

1 4 " " '\ \' \

In....... \ \ 1\ !'\

0

8

6 8

4~ ' \ .

9"7 ~ ~ :, \.3 ,

1'\,"- ~ \ \\!\2 61, ~ ,\1\ 1

1.0 "- ",,,- \ 1\\1\

.8 5

.6

.4 4"'- l "-

.3r-- ,....., ........

3 r-.... ~ '\..2

I "-- -2

.1~ r - -r- .......... ~ -,

.08r - -

.06

. ~ . ,

.0

10 20 30 40 60 80 100 200 300 400 600 800 1000

-t - Temperature, in Degrees Fahrenheit

1. Ethane (C2H ,)

2. Prapane (CaH 8)

3. Butane (C.H 10)

4. Natural Gasoline

5. Gasoline

6. Water

7. Kerosene

8. Distillate

9. 48 Oeg. API Crude

10. 40 Oeg. API Crude

11. 35.6 Oeg. API Crude

12. 32.6 O&g. API Crude

13. Salt Creek Crude

14. Fuel 3 (Max.)

IS. Fuel 5 (Min.)

16. SAE 10 Lube (100 V.I.)

17. SAE 30 Lube (100 V.I.)

I 8. FuelS (Max.) or 6 (Min.)

19. SAE 70 Lube (100 V.I.)

20. Bunker C Fuel (Max.)

and M.C. Residuum

21. Asphalt

Example: The viscosity of water at 125 Fahrenheit is0.52 centipoise (CurveNo.6).

References: Cu rves 1, 2, and 3 are taken from FlowMeasurement with Orifice Meters by R. F. Stearns,R. M. Jackson, R. R. Johnson, and C. A. Larson; courtesyof D. Van Nostrand Company, Inc., New York, 1951.

Curve 6 is a plot of the viscosity data shown in the uppertable on the facing page.

All remaining curves reproduced with permission of the

Oil and Gas Journal.

'"I)

.040

.036

.032

'0~ .028c:

'"..:>c:

~.024

'"I):>

I

::t .020j~

.01 6'LI

V /2 ~ ~.01

.00 ~

VISCOSITY OF GASES

AND VAPORS

// /

/ L /

/ / / V/ v/ / :V V/

V/ ~ //V/V/

// j /// ,.

Vi% co //, /

~ . " " ~

~ ~ ~ // 1 '/ d ~ ..~ " / / / ~ v""""~ /.V ,; / ~ ./

/.

L /1 . / / //

~ /:. ~ /.;. ....-- .......-" . .

V/ ~ /V

1 /,.,

V

/

//

/'

/ '~V

" , ...

V...-

. ~

HELIUM

Air

So = .5·NHa

So = .75*

So = LOa·

o 100 200 300 400 500 600 700 800 900 1000

t - Temperature, in Degrees Fahrenheit

•The broken line curves in-dicated as S. In the tableabove represent hydro-

carbon IIBpors ana naturalgases.

Example: The viscosity of sUlphurdioxide gas S02 at 200 F is 0.Q16centipoise.

References: The curves for hydrocarbon vapors and natural

gases are from the Data Book onHydrocarbons by J.B. Maxwell.Courtesy of D. Van NostrandCompany, Inc. of New York City.

The curve for helium is from theHandbook of Chemistry an d

Physics, 44th Edition. Courtesy of

the Chemical Rubber PublishingCo. of Cleveland, Ohio.

All other curves in the table are

based upon Sutherland's formula. 59

Page 63: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 63/80

60

FLOW OF WATER THROUGH SCHEDULE 40 STEEL PIPE

Pressure Drop per 10 0 feet and Velocity in Schedule 40 Pipe for Water at 60 FDischarge

Veloe- Press. Veloe- Press. Veloe- Press. Veloe- Press. Veloe- Press. Veloe- Press. Veloe- Press. Veloe- Press.it y Drop Ity Drop it y Drop Ity Drop it y Drop it y Drqp lt y Drop it y Drop

Gallons I ubic Ft. Feet Lbs. Feet Lbs. Feet Lbs. Feet Lbs. Feet Lbs. Feet Lb . Feet Lbs. Feet Lbs.per per per per per per per per per per per per per per ~ d ~ r n . per per

Minute Second Second Sci. In. Second Sci. In. Second Sq. In. Second Sci. In. Second Sq. In. Second Sci. 1n. Second Sci. rn.

lfs/l 14/1 %" 1f2/1

.2 0.000446 1.13 1.86 0.616 0.35934"3 0.000668 1.69 4.l l 0.924 0.903 0.504 0.159 0.l l7 0.061

.4 0.000891 2.26 6.98 1.23 1.61 0.672 0.34/1 0.422 0.086

.5 0.00111 2.82 10.5 1.54 2.39 0.840 0.539 0.528 0.167 0.301 0.033

.6 0.00134 3.39 14.7 1.85 3.29 1.01 0.751 0.633 0.240 0.361 0.0411" 114"8 0.00178 4.52 25.0 2.46 5.44 1.34 1.25 0.844 0.408 0.481 0.102

1 0.00223 5.65 37.2 3.08 8.28 1.08 1.85 LOb 0.600 0.602 0.155 0.371 0.048 11f2/12 0.00446 11.29 134.4 6.16 30.1 3.36 6.58 2.11 2.10 1.20 0.626 0.743 0.164 0,429 0.0443 0.00668 9.25 64.1 5.04 13.9 3.17 4.33 1.81 1.09 1.114 0.336 0.644 0.090 0,473 0.0434 0.00891

2"12.33 111.2 6.72 23.9 4.22 7.42 2.41 1.83 1.49 0.565 0.858 0.150 0.630 0.071

5 0.01114 8.40 36.7 5.28 11.2 3.01 2.75 1.86 0.835 1.073 0.l l3 0.788 0.104

6 0.01337 0.574 0.044 21fz/l 10.08 51.9 6.33 15.8 3.61 3.84 2.23 1.17 1.29 0.309 0.946 0.1458 0.01782 0.765 0.073 13 .44 91.1 8.45 27.7 4.81 6.60 2.97 1.99 1.72 0.518 1.26 0.241

10 0.02228 0.956 0.108 0.670 0.0463/1

10.56 42.4 6.02 9.99 3.71 2.99 2.15 0.774 1. 58 O.36l15 0.03342 1.43 0.224 1.01 0.094

31f2"9.03 21.6 5.57 6.36 3.22 1.63 2.37 0.755

20 0.04456 1.91 0.375 1.34 0.158 0.868 0.056 12.03 37.8 7.43 10.9 4.29 2.78 3.16 1.28

25 0.05570 • . 39 0.561 1.68 0.234 1.09 0.083 0.812 0.041 4" 9.28 16.7 5.37 4.22 3.94 1.9330 0.06684 2.87 0.786 2.01 0.327 1.30 0.114 0.974 0.056 11.14 23.8 6.44 5.92 4.73 2.7235 0.07798 3.35 1.05 2.35 0.436 1. 52 0.151 1.14

o.on0.882 0.041

12.99 32.2 7.51 7.90 5.52 3.6440 0.08.912 3.83 1.35 2.68 0.556 1.74 0.192 1.30 0.09 1.01 0.052 14.85 41.5 8.59 10.24 6.30 4.6545 0.1003 4.30 1.67 3.02 0.668 1.95 0.239 1,46 0.117 1.13 0.064 9.67 12.80 7.09 5.85

50 0.1114 4.78 2.03 3.35 0.839 2.17 0.288 1.62 0.142 1.26 0.076 5" 10.74 15.66 7.88 7.1560 0.1337 5.74 2.87 4.02 1.18 2.60 0.406 1.95 0.204 1.51 0.107 12.89 22.2 9.47 10.2170 0.1560 6.70 3.84 4.69 1.59 3.04 0.540 2.27 0.261 1.76 Q.l43 1.12 0.047 11.05 13.7180 0.1782 7.65 4.97 5.36 2.03 3,47 0.687 2.60 0.334 2.02 0.180 1.28 0.060

6"12.62 17.59

90 0.2005 8.60 6.20 6.03 2.53 3.91 0.861 2.92 0.416 2.27 0.224 1.44 0.074 14.20 ll.O

100 0.2228 9.56 7.59 6.70 3.09 4.34 1.05 3.25 0.509 2.52 0.272 1.60 0.090 1.11 0.036 15.78 26.9125 0.2785 11.97 11.76 8.38 4.71 5.43 1.61 4.06 0.769 3.15 0.415 2.01 0.135 1.39 0.055 19.72 41.4150 0.3342 14.36 1 6.70 10.05 6.69 6.51 2.24 4.87 1.08 3.78 0.580 2,41 0.190 1.67 0.0"175 0.3899 16.75 22.3 11.73 8.97 7.60 3.00 5.68 1.44 4.41 0.774 2.81 0.253 1.94 0.102

S"00 0.4456 19.14 28.8 13 .42 11.68 8.68 3.87 6.49 1.85 '5.04 0.985 3.21 0.313 2.22 0.130

225 0.5013 ... .. 15.09 14.63 9.77 4.83 7.30 2.32 5.67 1.23 3.61 0.401 2.50 0.162 1.44 0.043250 0.557 .. . .. , ... .. . 10.85 5.93 8.12 2.84 6.30 1.46 4.01 0.495 2.78 0.195 1.60 0.051275 0.6127 .. . .. , .. . ... 11.94 7.14 8.93 3.40 6.93 1.79 4.41 0.583 3.05 0.234 1.76 0.061300 0.6684 .. . .. , .. . .. . 13.00 8.36 9.74 4.02 7.56 2.11 4.81 0.683 3.33 0.275 1.92 0.072325 0.7241 .. . .. , .. . .. . 14.12 9.89 10.53 4.09 8.19 2.47 5.21 0.797 3.61 0.320 2.08 0.083

350 0.7798 .. . .. . ... . .. 11.36 5.41 8.82 2.84 5.62 0.919 3.89 0.367 2.24 0.095375 0.8355 .. . .... ... ... 12.17 6.18 9.45 3.25 6.02 1.05 4.16 0.416 2.40 0.108400 0.8912 ... ... ... .. . 12.98 7.03 10.08 3.68 6.42 1.19 4.44 0.471 2.56 0.121425 0.9469

10 '

... ... ...'" 13.80 7.89 10.71 4.12 6.82 1.33 4.72 0.529 2.73 0.136

450 1.003 ... ... ... .. . 14.61 8.80 11 .34 4.60 7.22 1.48 5.00 0.590 2.89 0.151

475 1.059 1.93 0.054 ... ... . .. .. . 11.97 5.12 7.62 1.64 5.27 0.653 3.04 0.166500 1.114 2.03 0.059 ... ... ...

'" 12.60 5.65 8.02 1.81 5.55 0.720 3.21 0.182550 1.225 2.24 0.071 ... ... . . ... 13.85 6.79 8'.82 2.17 6.11 0.861 3.53 0.219600 1.337 2.44 0.083

12/1... ... .. .

'" 15.12 8.04 9.63 2.55 6.66 1.02 3.85 0.258650 1.448 2.04 0.097 ... ... ... ... .. . ... 10.43 2.98 7.22 1.18 4.17 0.301

700 1.560 2.85 0.112 2.01 0.04714/1

... '" ... ... 11.23 3.43 7.78 1.35 4.49 0.343750 1.671 3.05 0.127 2.15 0.054 ... ... ... '" 12.03 3.92 8.33 1.55 4.81 0.392800 1.782 3 .25 0.143 2.29 0.061 ... ... ... ... 12.83 4.43 8.88 1.75 5.13 0.443'850 1.894 3.46 0.160 2.44 0.068 2.02 0.042 ... ... ... ... 13.64 5.00 9.44 1.96 5.45 0.497900 2.005 3.66 0.179 2.58 0.075 2.13 0.047 ... ... ... 14.44 5.58 9.99 2.18 5.77 0.554

950 2.117 3.86 0.198 2.72 0.083 2.25 0.05216/1

... ... 15.24 6.21 10.55 2.42 6.09 0.6131000 2.228 4.07 0.218 2.87 0.091 2.37 0.-057 ... ... 16.04 6.84 11.10 2.68 6.41 0.6751100 2.451 4.48 0.260 3.15 0.110 2.61 0.068 .. ... 17.65 8.13 12.22 3.l l 7.05 0.8071200 2.674 4.88 0.306 3.44 0.128 2.85 0.080 2.18 0.042 ... ... ... .. . 13.33 3.81 7.70 0.9481300 2.896 5.29 0:355 3.73 0.150 3.08 0.093 2.36 0.048 ... .. . .. . ... 14.43 4.45 8.33 1.11

1400 3.119 5.70 0.409 4.01 0.171 3.32 0.107 2.54 0.055IS"

15.55 5.13 8.98 1.281500 3.342 6.10 0.466 4.30 0.195 3.56 0.122 2.72 0.063 16.66 5.85 9.62 1.461600 3.565 6.51 0.527 4.59 0.219 3.79 0.138 2.90 0.071 17.77 6.61 10.26 1.651800 4.010 7.32 0.663 5.16 0.276 4.27 0.172 3.27 0.088 2.58 0.050 19.99 8.37 11. 54 2.082000 4.456 8.14 0.808 5.73 0.339 4.74 0.209 3.63 0.107 2.87 0.060

20"

22.21 10.3 12.82 2.55

2500 5.570 10.17 1.24 7.17 0.515 5.93 0.321 4.54 0.163 3.59 0.09124"

16.03 3.943000 6.684 12.20 1.76 8.60 0.731 7.11 0.451 5.45 0.232 4.30 0.129 3.46 0.075 19.24 5.593500 7.798 14.24 2.38 10.03 0.982 8.30 0.607 6.35 0.312 5.02 0.173 4.04 0.101 22.44 7.564000 8.912 16.27 3.08 11.47 1.27 9.48 0.787 7.26 0.401 5.74 0.ll2 4.62 0.129 3.19 0.051 25.65 9.804500 10.03 18.31 3.87 12.90 1.60 10.67 0.990 8.17 0.503 6.46 0.280 5.20 0.161 3.59 0.065 28.87 11.2

5000 11.14 20.35 4.71 14.33 1.95 11.85 1.21 9.08 0.617 7.17 0.340 5.77 0.199 3.99 0.079 ... ...6000 13.37 24.41 6.74 17.20 2 ." 14.23 1.71 10.89 0.8" 8.61 0.483 6.93 0.280 4.79 0.1l1 ... .. .7000 15.60 28.49 9.11 20.07 3.74 16.60 2.31 12.71 1.18 10.04 0.651 8.08 0.376 5.59 0.150 ... ...8000 17.82 ... ... 22.93 4.84 IS.96 2.99 14.52 1.51 11.47 0.839 9.23 0.488 6.38 0.192 ... ...9000 20.05 ... ... 25.79 6.09 21.34 3.76 16.34 1.90 12.91 1.05 10.39 0.608 7.1S 0.242 ... . .

10000 22.28 ... ... 2S.66 7.46 23.71 4.61 IS.15 1.34 14.34 1.28 11. 54 0.739 7.98 0.294 ... .. .11000 26.74 ... ... 34.40 10.7 28.45 6.59 21.79 3.33 17.21 1.83 13 .S5 1.06 9.58 0.416 ... ...14000 31.19 ... ... ... ... 33.19 8.89 25.42 4.49 20.0S 2.45 16.16 1.43 11.17 0.561 ... . ..16000 35.65 ... .. , ... ... ... ... 29.05 5.83 22.95 3.18 18.47 1.85 12.77 0.713 ... . .18000 40.10 ... ... ... ... ... ... 32.08 7.31 25.82 4.03 10.77 2.3l 14.36 0.907 ... . .20000 44.56 ... .. , ... ... ... .. . 36.31 9.03 28.69 4.93 Z3.08 2.86 15.96 1.12 ... ...

For pipe lengths other than 100 feet, the pressure drop is proportional to thelength. Thus, for 50 feet of pipe, the pressure drop is approximately one-halfthe value given in the table . . . for 300 feet, three times the given value, etc.

Velocity is a function of the cross sectionalflow area; thus, it is constant for a givenflow rate and is independent of pipe length.

For cer/cu/ertlon. for pip. oth.r than Schedule 40, .. . exp/ernertiC/ft 011 next perfle.

Page 64: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 64/80

FLOW OF AIR THROUGH SCHEDULE 40 STEEL PIPE

For lengths of pipe other than100 feet, the pressure drop isproportional to the length.Thus, for 50 feet of pipe, thepressure drop is approximately

one-half the value given in thetable ... for 300 feet, threetimes the given value, etc.

The pressure drop is also inversely proportional to theabsolute pressure and directlyproportional to the absolutetemperature.

Therefore, to determine thepressure drop for inlet or average pressures other than 100psi and at temperatures otherthan 60 F, multiply the valuesgiven in the table by the ratio:

(100+ 14.7)(460+t)P -+ 14.7 520

where:

"P " is the inlet or averagegauge pressure in pounds persquare inch, and, .

"t'. is th e temperature in ·degrees Fahrenheit underconsideration.

The cubic feet per minute ofcompressed air at any pressure is inversely proportionalto the absolute pressure anddirectly proportional to theabsolute temperature.

To determine the cubic feetper minute of compressed airat any temperature and pressure other than standard con

ditions, multiply the value ofcubic feet per minute of freeair by the ratio:

~ ) ( 4 6 0 + t )14.7 + P 520

Calculations for Pipe

Other than Schedule 40

To determine the velocity ofwater, or the pressure dropof water or air, through pipeother than Schedule 40, usethe following formulas:

Va = V40 ( rL!;Pa =

~ P 4 0(

rwhere:

V = velocity, feet per sec.

d = internal diameter ofpipe, in inches; seepages 27 to 30.

= pressure drop, inpounds per squareinch.

Subscript "a " refers to theSchedule of pipe throughwhich velocity or pressuredrop is desired.

Subscript "40" refers to thevelocity or pressure dropthrough Schedule 40 pipe, asgiven on these facing pages.

Free Airq'm

Cubic FeetPer Minute

at 60 F and14.7 psia

12345

68

101520

2530354045

5060708090

100125150175200

225250275300325

350375400425450

475500

550600650

700750800850900

9501000110012001300

14001500160018002000

2 SOO

3000350040004500

50006000700080009 000

1000011 000120001300014000

1500016000180002000022000

24000260002800030000

Com-pressed Air

Cubic FeetPer Minute

at 60 F'and100 psig

0.1280.2560.3840.5130.641

0.7691.0251.2821.9222.563

3.2043.8454.4865.1265.767

6.4087.6908.971

10.2511.53

12.8216.0219;2222.4325.63

28.8432.0435.2438.4541.65

44.8748.0651.2654.4757.67

60.8864.08

70.4976.9083.30

89.7196.12

102.5108.911&.3

121.8128.2141.0153.8166.6

179.4192.2205.1230.7256.3

320.4384.5448.6

512.6576.7

640.8769.0897.1

10251153

12821410153816661794

19222051230725632820

3076333235883845

Va" %"

0.361 0.0831.31 0.2853.06 0.6054.83 1.047.45 1.58

10.6 2.2318.6 3.8928.7 5.96

.. . 13.0

.. . 22.8

.. , 35.6

.. . ...'" ...... ..... . ...

2%"

0.0190.023

0.029 3"0.0440.062 0.0210.083 0.0280.107 0.036

0.134 0.0450.164 0.0550.191 0.0660.232 0.0780.270 0.090

0.313 0.1040.356 0.11.90.402 0.1340.452 0.1510.507 0.168

0.562 0.1870.623 0.2060.749 0.2480.887 0.2931.04 0.342

1.19 0.3951.36 0.4511.55 0.5131.74 0.5761.95 0.642

2.18 0.7152.40 0.7882.89 0.9483.44 1.134.01 1.32

4.65 1.525.31 1.746.04 1.977.65 2.509.44 3.06

14.7 4.7621.1 6.8228.8 9.23

37.6 12.147.6 15.3

... 18.8

... 27.1

... 36.9

... '"... '"

... ...

... ...

... ...

... ...

... ...

... '"

... ...

... ...

... ...

... ...

... ...

... ...

...'"...'"

Pressure Drop of AirIn Pounds per Square Inch

Pe r 100 Feet of Schedule 40 Pipe

Fo r Air at 100 Pounds perSquare Inch Gauge Pressure

and 60 F Temperature

%" lh"

0.0180.064 0.020

%".133 0.0420.226 0.0710.343 0.106 0.027

1"0.408 0.148 0.0370.848 0.255 0.062 0.019

1%".26 0.356 0.094 0.0292.73 0.834 0.201 0.0624.76 1.43 0.345 0.102 0.026

7.34 2.21 0.526 0.156 0.03910.5 3.15 0.748 0.219 0.05514.2 4.24 1.00 0.293 0.07318.4 5.49 1.30 .0.379 0.09523.1 6.90 1.62 0.474 0;116

28.5 8.49 1.99 0.578 0.14940.7 12.2 2.85 0.819 0.200... 16.5 3.83 1.10 0.270... 21.4 4.96 1.43 0.350'" 27.0 6.25 1.80 0.437

33.2 7.69 2.21 0.534... 11.9 3.39 0.825... 17.0 4.87 1.17

3ljz".. . 23.1 6.60 1.58'" 30.0 8.54 2.05

0.022 37.9 10.8 2.590.027 ... 13.3 3.180.032

'" 16.0 3.830.037

'" 19.0 4.560.043

4"... 22.3 5.32

0.050 . .. 25.8 6.170.057 0.030 ... 29.6 7.050.064 0.034 ... 33.6 8.020.072 0.038 ... 37.9 9.010.081 0.042 ...

'" 10.2

0.089 0.047 ... 11.30.099 0.052 ... 12.&0.118 0.062 ... 15.10.139 0.073

5"... 18.0

0.163 0.086'" 21.1

0.188 0.099 0.032 24.30.214 0.113 0.036 27.90.244 0.127 0.041 31.80.274 0.144 0.046

6"35.9

0.305 0.160 0.051 40.2

0.340 0.178 0.057 0.023 .. ,

0.375 0.197 0.063 0.025 ...0.451 0.236 0.075 0.030 ..0.533 0.279 0.089 0.035 .. ,

0.626 0.327 0.103 0.041 ..

0.718 0.377 0.119 0.0470.824 0.431 0.136 0.054

8".932 0.490 0.154 0.0611.18 0.616 0.193 0.0751.45 0.757 0.237 0.094 0.023

2.25 1.17 0.366 0.143 0.0353.20 1.67 0.524 0.204 0.0514.33 2.26 0.709 0.276 0.068

5.66 2.94 0.919 0.358 0.0887.16 3.69 1.16 0.450 0.111

8.85 4.56 1.42 0.552 0.13612.7 . 6.57 2.03 0.794 0.19517.2 8.94 2.76 1.07 0.26212.5 11.7 3.59 1.39 0.33928.5 14.9 4.54 1.76 0.427

35.2 18.4 5.60 2.16 0.526... 22.2 6.78 2.62 0.633... 26.4 8.07 3.09 0.753... 31.0 9.47 3.63 0,884... 36.0 11.0 4.21 1,02

... ... 12.6 4.84 1.17

... . . 14.3 5.50 1.33

... . . 18.2 6.96 1.68

. .. . . 22.4 8.60 2.01

... . .. 27.1 10.4 2.50

... . . 32.3 12.4 2.97

... . .. 37.9 14.5 3.49

... ... . .. 16.9 4.04... . . ... 19.3 4.64

1%"

0.0190.0260.0350.044

2".055

0.067 0.0190.094 0.0270.126 0.0360.162 0.0460.203 0.058

0.247 0.0700.380 0.1070.537 0.1510.727 0.2050.937 0.264

1.19 0.3311.45 0.4041.75 0.4842.07 0.5732.42 0.673

2.80 0.7763.20 0.8873.64 1.004.09 1.134.59 1.26

5.09 1.405.61 1.556.79 1.878.04 2.219.43 2.60

10.9 3.0012.6 3.4414.2 3.9016.0 4.4018.0 4.91

20.0 5.4722.1 6.0626.7 7.2931.8 8.6337.3 10.1

11.813.516.319.3

10"23.9

37.30.0160.022

0.028 12".035

0.043 0.0180.061 0.0250.082 0.0340.107 0.0440.134 0.055

0.164 0.0670.197 0.0810.234 0.0960.273 0.1120.316 0.129

0.364 0.1480.411 0.1670.520 0.2130.642 0.2600.771 0.314

0.918 0.3711.12 0.4351.25 0.5051.42 0.520

61

Page 65: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 65/80

SIMPLIFIED FLOW FORMULA FOR COMPRESSIBLE FLUIDSPipe or Valve Pressure Drop, Rate of Flow, and Size

The simplified flow formula was developed from theDarcy formula and employs friction factors for the fullyturbulent flow range; see page 49.

t:.PlOO = pressure drop per 100 feet of pipe, in pounds per sq. inchC1 = discharge factor, from chart at the rightC2 = size factor, from table on the facing pageV = specific volume, in cubic feet per pound

(for steam, see pages 64 to 71 )p = weight density, in pounds per cubic foot

(jor air or gas, see page 57 )

Limitations of Simplified Flow Formula

1. Flow rates through throttled or reduced seat valvesmay be restricted by sonic velocity at the seat; theformula is 'hot applicable for this condition of flow.

2. The formula is accurate for the fully turbulent flowrange indicated by the friction factor diagram, and alsoprovides a good approximation for most normal flowconditions.

3. When pressure drop is less than 10 percent Of theinlet gauge pressure, use Vor p based on either inletor out/et conditions.

4. When pressure drop is greater than 10 percent butless than 40 percent of the inlet gauge pressure, use theaverage of V or p based on inlet and outlet conditions.

5. When pressure drop is greater than 40 percent of

the inlet gauge pressure, divide the pipe into shortersections and use V or p based on an average of the inletand outlet conditions of the shorter pipe section.

Converting Flow Rates

To convert flow rates given in pounds per hour (W), tostandard cubic feet per hour (q' h) or to standard cubicfeet per minute (q'",), use the following formulas:

,W ,Wqh= 6 S qm= --S-

0.07 4 g 4.58 g

Example 1

Given: Steam at 345 psig and 500 F flows through an8-inch Class 300 steel angle valve at a rate of 240,000

pounds' per hour.

Find: The pressure drop through the valve.

Solution: Referring to pages 50 and 53, note that re-sistance of the given valve is based on Schedule 40pipe and its equivalent length in pipe diameters is 150.

1.0. of 8-inch Schedule 40 pipe = 7.981Equivalent length of valve in

feet of Schedule 40 pipe = 150 (7.981/12) = 99.8 feetCalculate the pressure drop per 100 feet of pipe:

C1 = 57 . . . . . . . . . . . . . . . . . . . . . . . .from this page

C2 = 0.146 . . . . . . . . . . . . . . . . . . . . . . from facing page

V = 1.45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 68

ilP 100 = 57 X 0.146 X 1.45 = 12.1

Pressure drop through valve = 12.1 (99.8/100) = 12.1 psi.

Values of C1

W

10 10 lOOO

900

800

15

3 30 0

: l: :::c

l;; 3) l;; 250c . c .

en en'C 'C

200c

'"::::J

0 0(l . a..

25 '0 100 Gn'C

'0

30en <I)

::::J Q)

0100

::::J

. c t'5I -90 >

.:80

70

u::ro0-

0

50

0:::

40

~30

25

20

15

10

.0006

Example 2

Given: The pressure drop is 5 psi with 100 psig air at90 F flowing through 100 feet of 4-inch Schedule 40pipe.

Find: The flow rate in standard cubic feet per minute(scfm).

Solution: ilP100 = 5.0

Ct = 5-l7p = 0.564 . . . . . from page 50

C1 = (5.0 X 0.564) + 5. 17 = 0.545

W= 23 000

, W 23 000 = 5022 scfmq m = 4.58 S, = 4.58 X 1.0

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 49Example on "determining pipe size" . . . . . . . . . . . . . . . . . . see next page

Page 66: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 66/80

SIMPLIFIED FLOW FORMULA FOR COMPRESSIBLE FLUIDSPipe or Valve Pressure Drop, Rate of Flow, and Size

Nominal IPipe Size

Inches

Va

1,4

%

%

3,4

1

11,4

1%

2

21/2

3

3%

4

Example 3

Schedule

Number

40sSOx

40 sSOx

40sSOx

40 sSOx

160. . . xx

4Cls

SOx160. . . xx

40sSOx

160.. . xx

40 sSOx

160.. . xx

40580 x

160. . . xx

40 s80 x

160.. . xx

40580 x

160. . . xx

405SOx

160. . . xx

405SOx

405SOx

120160. . . xx

Value

of C2

7920000.26200000.

1590 000.4290000.

319000.71S 000.

93500.1S6100.430000.

111S0000.

21200.

36900.100 100.627000.

5950.9640.

22500.114100.

14OS.2110.3490.

13640.

627.904.

1656.4630.

169.236.48S.S99.

66.791.S

146.3380.0

21.42S.748.396.6

10.013.2

5.176.75S.94

11.S0IS.59

Given: An 85 psig saturatedsteam line with 20,000 poundsper hour flow is permitted amaximum pressure drop of 10psi per 100 feet of pipe.

Find: The smallest size of

Schedule 40 pipe suitable.

IINominal IPipe Size

Inches

5

6

8

10

12

14

Solution:

Values of C2

Schedule INumber

40 sSOx

120160. . . xx

40 sSOx

120160. . . xx

203040560

SOx

100120140. . . xx160

203040560xSO

100120140160

2030. . . 540. . .x

60

SO100120140160

102030540. . . x60

80100120140160

b.P lOO = 10

CI = 0.4

Value

of C2

1.592.042.693.594.93

0.6100.79S1.0151.376I.S61

0.1330.13S0.1460.1630.IS5

0.2110.2520.2S90.3170.333

0.03970.04210.04470.05140.0569

0.06520.07530.09050.1052

0.()I570.01680.0175O.OIS 00.01950.0206

0.02310.02670.03100.03500.0423

0.009490.009960.010460.010990.011550.012 44

0.014160.01657O.OIS 9S0.02180.0252

II~ o m i ~ a l lPipe Size

Inches

16

18

20

24

Schedule

Number

102030 s40x60

SO100120140160

1020.. 530. . x40

60SO

100120140160

1020530 x4060

SO

100120140160

10205. . x304060

SO100120140160

Note

Value

ofC,

0.004 630.OO4S30.005040.005490.00612

0.00700O.OOS 040.009260.010990.01244

0.002470.002560.00266

0.002760.002 S70.0029S

0.003350.003760.004350.005040.005730.006 69

0.001410.001500.001610.001690.00191

0.00217

0.002510.002870.003350.003 S5

0.0005340.0005650.0005970.0006140.0006510.000741

0.000 8350.0009720.0011190.0012740.001478

The letters 5, x, and xx in the col-umns o f Schedule Numbers indicateStandard, Extra Strong, and Double

Extra Strong pipe respectively.

v = 4.5 . . . . . . . . . . . . . page 65

C2 = 10 + (0.4 X 4.,) = 5.56

Reference to the table of C2 values above shows that the 4-inch sizeis the smallest Schedule 40 pipe having C2 value less than 5.56.

The actual pressure drop per 100 feet of 4-inch Schedule 40 pipe is:

b.PlOo = 0·4 x 5·17 x 4.5 = 9.3 63

Page 67: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 67/80

PROPERTIES OF SATURATED STEAM AND SATURATED WATER*

Absolute Pressure Vacuum Temper- Heat of Latent Heat Total Heat Specific Volume

Lbs. pe r Inches Inches ature th e of of Steam VSq. In . ofHg ofHg Liquid Evaporation hl1pI t Water Steam

DegreesF. Btu/lb. Btu/lb. Btu/lb. Cu. ft. pe r lb. Cu. ft . pe r lb .

0.08859 0.02 29.90 . 32.018 0.0003 1075.5 1075.5 0.016022 3302.4

0.10 0.20 29.72 35.023 3.026 1073.8 1076.8 0.016020 2945,50.15 0.31 29.61 45.453 13.498 1067.9 1081.4 0.016020 2004.70.20 0.41 29.51 53.160 21.217 1053.5 1084.7 0.016025 1526.3

0.25 0.51 29.41 59.323 27.382 1060.1 1087.4 0.016032 1235.50.30 0.61 29.31 64.484 32.541 1057.1 1089.7 0.016040 1039.70.35 0.71 29.21 68.939 36.992 1054.6 1091.6 0.016048 898.60.40 0.81 29.11 72.869 40.917 1052.4 1093.3 0.016056 792.10.45 0.92 29.00 76.387 44.430 1050.5 1094.9 0.016063 708.8

0.50 1.02 28.90 79.586 47.623 1048.6 1096.3 0.016071 641.50.60 1.22 28.70 85.218 53.245 . 1045.5 1098.7 0.016085 540.10.70 1.43 28.49 90.09 58.10 1042.7 1100.8 0.016099 466.940.80 1.63 28.29 94.38 62.39 1040.3 1102.6 0.016112 411.690.90 1.83 28.09 98.24 66.24 1038.1 1104.3 0.016124 368.43

1.0 2.04 27.88 101.74 69.73 1036.1 1105.8 0.016136 333.601.2 2.44 27.48 107.91 75.90 1032.6 1108.5 0.016158 280.961.4 2.85 27.07 113.26 81.23 1029.5 1110.7 0.016178 243.021.6 3.26 26.66 117.98 85.95 1026.8 1112.7 0.016196 214.331.8 3.66 26.26 122.22 90.18 1024.3 1114.5 0.016213 191.85

2.0 4.07 25.85 126.07 94.03 1022.1 1116.2 0.016230 173.762.2 4.48 25.44 129.61 97.57 1020.1 1117.6 0.016245 158.872.4 4.89 25.03 132.88 100.84 1018.2 1119.0 0.016260 146.402.6 5.29 24.63 135.93 103.88 1016.4 1120.3 0.016274 135.802.8 5.70 24.22 138.78 106.73 1014.7 1121.5 0.016287 126.67

3.0 6.11 23.81 141.47 109.42 1013.2 1122.6 0.016300 118.733.5 7.13 22.79 147.56 115.51 1009.6 1125.1 0.016331 102.744.0 8.14 21.78 152.96 120.92 1006.4 1127.3 0.016358 90.644.5 9.16 20.76 157.82 125.77 1003.5 1129.3 0.016384 83.035.0 10.18 19.74 162.24 130.20 1000.9 1131.1 0.016407 73.5325.5 11.20 18.72 166.29 134.26 998.5 1132.7 0.016430 67.2496.0 12.22 17.70 170.05 138.03 996.2 1134.2 0.016451 61.9846.5 13.23 16.69 173.56 141.54 994.1 1135.6 0.016472 57.5067.0 14.25 15.67 176.84 144.83 992.1 1136.9 0.016491 53.6507.5 15.27 14.65 179.93 147.93 990.2 1138.2 0.016510 50.2948.0 16.29 13.63 182.86 150.87 988.5 1139.3 0.016527 47.3458.5 17.31 12.61 185.63 153.65 986.8 1140.4 0.016545 44.7339.0 18.32 11.60 188.27 156.30 985.1 1141.4 0.016561 42.4029.5 19.34 10.58 190.80 158.84 983.6 1142.4 0.016577 40.310

10.0 20.36 9.56 193.21 161.26 982.1 1143.3 0.016592 38.42011.0 22.40 7.52 197.75 165.82 979.3 1145.1 0.016622 35.14212.0 24.43 5.49 201.96 170.05 976.6 1146.7 0.016650 32.39413.0 26.47 3.45 205.88 174.00 974.2 1148.2 0.016676 30.05714.0 28 .50 1.42 209.56 177.71 971.9 1149.6 0.016702 28.043

Pressure Temper- Heat of Latent Heat Total Heat Specific VolumeLbs. pe r Sq. In . ature th e of of Steam V

Absolute Gage Liquid Evaporation

pI pt hl1 Water Steam

Degrees F. Btu/lb. Btu/lb. Btu/lb. Cu. ft. per lb. Cu. ft. pe r lb.

14.696 0.0 212.00 180.17 970.3 1150.5 0.016719 26.79915.0 0.3 213.03 181.21 969.7 1150.9 0 ~ 0 1 6 7 2 6 26.29016.0 1.3 216.32 184.52 967.6 1152.1 0.016749 24.75017.0 2.3 219.44 187.66 965.6 1153.2 0.016771 23.38518.0 3.3 222.41 190.66 963.7 1154.3 0.016793 22.16819.0 4.3 225.24 193.52 961.8 1155.3 0.016814 21.07420.0 5.3 227.96 196.27 960.1 1156.3 0.016834 20.08721.0 6.3 230.57 198.90 958.4 1157.3 0.016854 19.19022.0 7.3 233.07 201.44 956.7 1158.1 0.016873 18.37323.0 8.3 235.49 203.88 955.1 1159.0 0.016891 17.62424.0 9.3 237.82 206.24 953.6 1159.8 0.016909 16.93625.0 10.3 240.07 208.52 952.1 1160.6 0.016927 16.30126.0 11.3 242.25 210.7 950.6 1161.4 0.016944 15.713827.0 12.3 244.36 212.9 949.2 1162.1 0.016961 15.168428.0 13.3 246.41 214.9 947.9 1162.8 0.016977 14.660729.0 14.3 248.40 217.0 946.5 1163.5 0.016993 14.186930.0 15.3 250.34 218.9 945.2 1164.1 0.017009 13.743631.0 16.3 252.22 220.8 943.9 I 1164.8 0.017024 13.328032.0 17.3 254.05 222.7 942.7 1165.4 0.017039 12.937633.0 18.3 255.84 224.5 941.5 1166.0 0.017054 12.570034.0 19.3 257.58 226.3 940.3 1166.6 0.017069 12.2234

*Abstracted from ASME Steam Tables (1967), with permission of the publisher, Th e AmericanSociety of Mechanical Engineers, 345 East 47th Street, New York, New York 10017.

(continued on

the next page'

Page 68: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 68/80

PROPERTIES OF SATURATED STEAM AND SATURATED WATER-CONTINUED

Pressure Temper- Heat of Latent Heat Total Heat Specific VolumeLbs. pe r Sq. In . ature th e of of Steam

VAbsolute Gage t

Liquid Evaporationhg Water SteampI P Degrees F. Btu/lb. Btu/lb. Btu/lb. Cu . ft. per lb. Cu . ft . pe r lb .

35.0. 20..3 259.29 228.0. 939.1 1167.1 0..0.170.83 11.8959

36.0. 21.3 260..95 229.7 938.0. 1167.7 0..0.170.97 11.5860.37.0. 22.3 262.58 231.4 936.9 1168.2 0..0.17111 11.292338.0. 23.3 264.17 233.0. 935.8 1168.8 0..0.17124 11.0.13639.0. 24.3 265.72 234.6 934.7 1169.3 0..0.17138 10..7487

40..0. 25.3 267.25 236.1 933.6 1169.8 0..0.17151 10..496541.0. 26.3 268.74 231.7 932.6 1170..2 0..0.17164 10..256342.0. 27.3 270..21 239.2 931.5 1170..7 0..0.17177 10..0.27243.0. 28.3 271.65 240..6 930..5 1171.2 0..0.17189 9.80.8344.0. 29.3 273.0.6 242.1 929.5 1171.6 0..0.1720.2 9.599145.0. 30..3 274. 44 243 .5 928.6 1172.0. 0..0.17214 9.398846.0. 31.3 275.80. 244.9 927.6 1172.5 0..0.17226 9.20.70.47.0. 32.3 277.14 246.2 926.6 1172.9 0..0.17238 9.0.23148.0. 33.3 278.45 247.6 925.7 1173.3 0..017250. 8.846549.0. 34.3 279.74 248.9 924.8 1173.7 0..0.17262 .8.6770.

50..0. 35.3 281.0.2 250..2 923.9 1174.1 0..0.17274 8.5140.51.0. 36.3 282.27 251.5 923.0. 1174.5 0..0.17285 8.357152.0. 37.3 283.50. 252.8 922.1 1174.9 0..0.17296 8:20.6153.0. 38.3 284.71 254.0. 921.2 1175.2 0..0.1730.7 8.0.60.654.0. 39 .3 285.90. 255.2 920..4 1175.6

0..0.17319 7.920.355.0. 40..3 287.0.8 256.4 919.5 1175.9 0..0.17329 7.7850.56.0. 41.3 288.24 257.6 9 18.7 1176.3 0..0.17340. 7.654357.0. 42.3 289. 38 258.8 917.8 1176.6 0..0.17351 7.5280.58.0. 43.3 290..50. 259.9 917.0. 1177.0. 0..0.17362 7.40.5959.0. 44.3 291.62 261.1 916.2 1177.3 0..0.17372 7.2879

60..0. 45.3 292.71 262.2 915.4 1177.6 0..0.17383 7.173661.0. 46.3 293.79 263.3 914.6 1177.9 0..0.17393 7.0.630.62.0. 47.3 294.86 264.4 913.8 1178.2 0..0.1740.3 6.955863.0. 48.3 295.91 26 5.5 913.0. 1178.6 0..0.17413 6.851964.0. 49.3 296.95 266.6 912.3 1178.9 0..0.17423 6.7511

65.0. 50..3 297. 98 267 .6 911.5 1179.1 0..0.17433 6.653366;0. 51.3 298.99 268.7 910..8 1179.4 0..0.17443 6.558467.0. 52.3 299.99 269.7 910..0. 1179.7 0..0.17453 6.466268.0. 53 .3 30.0..99 270..7 90.9.3 1180..0. 0..0.17463 6.376769.0. 54.3 30.1.96 271.7 90.8.5 1180..3 0..0.17472 6.2896

70..0. 55.3 30.2.93 272.7 90.7.8 1180..6 0..0.17482 6.20.50.71.0. 56.3 30.3.89 273.7 90.7.1 1180..8 0..0.17491 6.122672.0. 57.3 30.4.83 274.7 90.6.4 1181.1 0..0.1750.1 6.0.42573.0. 58.3 30.5.77 275.7 90.5.7 1181.4 0..0.17510. 5.964574.0. 59.3 30.6.69 276.6 90.5.0. 1181.6 0..0.17519 5.8885

75.0. 60..3 30.7.61 277.6 90.4.3 1181.9 0..0.17529 5.814476.0. 61.3 30.8.51 278.5 90.3.6 1182.1 0..0.17538 5.742377.0. 62.3 30.9.41 279.4 90.2.9 1182.4 0..0.17547 5.6720.78.0. 63.3 310..29 280..3 90.2.3 1182.6 0..0.17556 5.60.3479.0. 64.3 311.17 281.3 90.1.6 1182.8 0..0.17565 5.5364

80..0. 65.3 312.0.4 282.1 90.0..9 1183.1 0..0.17573 5.471181.0. 66.3 312.90. 283.0. 90.0..3 1183.3 0..0.17582 5.40.7482.0. 67.3 313.75 283.9 899.6 1183.5 0..0.17591 5.345183.0. 68.3 314.60. 284.8 899.0. 1183.8 0..0.1760.0. 5.284384.0. 69.3 315.43 285.7 898.3 1184.0. 0..0.1760.8 5.2249

85.0. 70..3 316.26 286.5 897.7 1184.2 0..0.17617 5.166986.0. 71.3 317.0.8 287.4 897.0. 1184.4 0..0.17625 5.110.187.0. 72.3 317.89 288.2 896.4 1184.6 0..0.17634 5.0.54688.0. 73.3 318.69 289.0. 895.8 1184.8 0..0.17642 5.0.0.0.489.0. 74.3 319.49 289.9 895.2 1185.0. 0..0.17651 4.947390..0. 75.3 320..28 290..7 894.6 1185.3 0..0.17659 4.8953

91.0. 76.3 321.0.6 291.5 893.9 1185.5 0..0.17667 4.844592.0. 77.3 321.84 292.3 893.3 1185.7 0..0.17675 4.794793.0. 78.3 322.61 293.1 892.7 1185.9 0..0.17684 4.745994.0. 79.3 323.37 293.9 892.1 1186.0. 0..0.17692 4.698295.0. 80..3 324.13 294.7 891.5 1186.2 0..0.1770.0. 4.651496.0. 81.3 324.88 295.5 891.0. 1186.4 0..0.1770.8 4.60.5597.0. 82.3 325.63 296.3 890..4 1186.6 0..0.17716 4.560.698.0. 83.3 326.36 297.0. 889.8 1186.8 0..0.17724 4.516699.0. 84.3 327.10. 297.8 889.2 1187.0. 0..0.17732 4.4734

10.0..0. 85.3 327.82 298.5 888.6 1187.2 0..0.17740. 4.4310.10.1.0. 86.3 328.54 299.3 888.1 1187.3 0..0.1775 4.389510.2.0 87.3 329.26 30.0..0. 887.5 1187.5 0..0.1776 4.348710.3.0. 88.3 329.97 30.0..8 886.9 1187.7 0..0.1776 4.30.8710.4.0 89.3 330..67 30.1.5 886.4 1187 .9 0..0.1777 4.2695

10.5.0. 90..3 331.37 30.2.2 885.8 1188.0. 0..0.1778 4.230.9106.0. 91.3 332.06 30.3.0. 885.2 1188.2 0..0.1779 4.193110.7.0. 92.3 332.75 30.3.7 884.7 1188.4 0..0.1779 4.1560.10.8.0 93.3 333.44 30.4.4 884.1 1188.5 0..0.1780. 4.119510.9.0.

94.3 334.11 30.5.1 883.6 1188.70..0.1781

4.0.837 65

Page 69: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 69/80

· ..

PROPERTIES OF SATURATED STEAM AND SATURATED WATER-CONTINUED

Pressure Temper- Heat of Latent Heat Total Heat Specific VolumeLbs. per Sq. In . ature th e of of Steam

VAbsolute Gage t

Liquid Evaporationhq Water SteamI P DegreesF. Btu/lb. Btu/lb. Btu/lb. Cu. ft.·per lb. Cu. ft . per lb.

110.0 95.3 334.79 305.8 883.1 U88.9 0.017824.0484111.0 96.3 335.46 306.5 882.5 1189.0 0.01782 4.0138

112.0 97.3 336.12 307.2 882.0 1189.2 0.01783 3.9798113.0 98.3 336.78 307.9 881.4 1189.3 0.01784 3.9464114.0 99.3 337.43 308.6 880 .9 1189.5 0.01785 3.9136115.0 100.3 338.08 309.3 880.4 1189.6 0.01785 3.8813116.0 101.3 338.73 309.9 879.9 1189.8 0.01786 3.8495117.0 102.3 339.37 310.6 879.3 1189.9 0.01787 3.8183118.0 103.3 340.01 311.3 878.8 1190.1 0.01787 3.7875119.0 104.3 340.64 311.9 878;3 1190.2 0.01788 3.7573120.0 105.3 341.27 312.6 877.8 1190.4 0.01789 3.7275121.0 106.3 341.89 313.2 877;3 1190.5 0.01790 3.6983122.0 107.3 342.51 313.9 876.8 1190.7 0.01790 3.6695123.0 108.3 343.13 314.5 876.3 1190.8 0.01791 3.6411124.0 109.3 343.74 315.2 8 ~ . 8 1190.9 0.01792 3.6132125.0 110.3 344.35 315.8 875.3 1191.1 0.01792 3.5857126.0 111.3 344.95 316.4 874.8 1191.2 0.01793 3.5586127.0 112.3 345.55 317.1 874.3 1191.3 0.01794 3.5320128.0 113.3 346.15 317.7 873.8 1191.5 0.01794 3.5057129.0 114.3 346.74 318.3 873.3 1191.6 0.01795 3.4799130.0 115.3 347.33 319.0 872.8 1191.7 0.01796 3.4544131.0 116.3 347.92 319.6 872.3 1191.9 0.01797 3.4293132.0 117.3 348.50 320.2 871.8 1192.0 0.01797 3.4046133.0 118.3 349.08 320.8 871.3 1192.1 0.01798 3.3802134.0 119.3 349.65 321.4 870.8 1192.2 0.01799 3.3562135.0 120.3 350.23 322.0 870.4 1192.4 0.01799 3.3325136.0 121.3 350.79 322.6 869.9 1192.5 0.01800 3.3091137.0 122.3 351.36 323.2 869.4 1192;6 0.01801 3.2861138.0 123.3 351.92 323.8 868.9 1192.7 0.01801 3.2634139.0 124.3 352.48 324.4 868.5 1192.8 0.01802 3.2411140.0 125.3 353.04 325.0 868.0 1193.0 0.01803 3.2190141.0 126.3 353.59 325.5 867.5 1193.1 0.01803 3.1972142.0 127.3 354.14 326.1 867.1 1193.2 0.01804 3.1757143.0 128.3 354.69 326.7 866.6 1193.3 0.01805 3.1546144.0 129.3 355.23 327.3 866.2 1193.4 0.01805 3.1337145.0 130.3 355.77 327.8 8 ~ . 7 1193.5 0.01806 3.1130146.0 131.3 356.31 328.4 865.2 1193.6 0.01806 3.0927

147.0 132.3 356.84 329.0 864.8 1193.8 0.01807 3.0726148.0 133.3 357.38 329.5 864.3 1193.9 0.01808 3.0528149.0 134.3 357.91 330.1 863.9 1194.0 0.01808 3.0332150.0 135.3 358.43 330.6 863.4 1194.1 0.01809 3.0139152.0 137.3 359.48 331.8 862.5 1194.3 0.01810 2.9760154.0 139.3 360.51 332.8 861.6 1194.5 0.01812 2.9391156.0 141.3 361.53 333.9 860.8 1194.7 0.01813 2.9031158.0 143.3 362.55 335.0 859.9 1194.9 0.01814 2.8679160.0 145.3 363.55 336.1 859.0 1195.1 0.01815 2.8336162.0 147.3 364.54 337.1 858.2 1195.3 0.01817 2.8001164.0 149.3 365.53 338.2 857.3 1195.5 0.01818 2.7674166.0 151.3 366.50 339.2 856.5 1195.7 0.01819 2.7355168.0 153.3 367.47 340.2 855.6 1195.8 0.01820 2.7043170.0 155.3 368.42 341.2 854.8 1196.0 0.01821 2.6738172.0 157.3 369.37 342.2 853.9 1196.2 0.01823 2.6440174.0 159.3 370.31 343.2 853.1 1196.4 0.01824 2.6149176.0 161.3 371.24 344.2 852.3 1196.5 0.01825 2.5864178.0 163.3 372.16 345.2 851.5 1196.7 0.01826 2.5585

180.0 165:3 373.08 346.2 850.7 1196.9 0.01827 2.5312182.0 167.3 373.98 347.2 849.9 1197.0 0.01828 2.5045184.0 169.3 374.88 348.1 849.1 1197.2 0.01830 2.4783186.0 171.3 375.77 349.1 848.3 1197.3 0.01831 2.4527188.0 173.3 376.65 350.0 847.5 1197.5 0.01832 2.427619(M 175.3 377.53 350.9 846.7 1197.6 0.01833 2.4030192.0 177.3 378.40 351.9 845.9 1197.8 0.01834 2.3790194.0 179.3 379.26 352.8 845.1 1197.9 0.01835 2.3554196.0 181.3 380.12 353.7 844.4 1198.1 0.01836 2.3322198.0 183.3 380.96 354.6 843.6 1198.2 0.01838 2.3095200.0 lti5.3 381.80 355.5 842.8 1198.3 0.01839 2.28728205.0 190.3 383.88 357.7 840.9 1198.7 0.01841 2.23349210.0 195.3 385.91 359.9 839.1 1199.0 0.01844 2.18217215.0 200.3 387.91 362.1 837.2 1199.3 0.01847 2.13315220.0 205.3 389.88 364.2 835.4 1199.6 0.01850 2.08629225.0 210.3 391.80 366.2 833.6 1199.9 0.01852 2.04143230.0 215.3 393.70 368.3 831.8 1200.1 0.01855 1.99846235.0 220.3 395.56 370.3 830.1 1200.4 0.01857 1.95725240.0 225.3 397.39 372.3

828.4 1200.6 0.01860 1.91769245.0 230.3 399.19 374.2 826.6 1200.9 0.01863 1.87970

Page 70: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 70/80

PROPERTIES OF SATURATED STEAM AND SATURATED WATER-CONCLUDED

Pressure Temper- Heat of Latent Heat Total Heat Specific VolumeLbs. per Sq. In . ature th e of of Steam

VAbsolute Gage t

Liquid Evaporationhg

Water SteamP' P DegreesF. Btu/lb. Btu/lb. Btu/lb. Cu. ft . pe r lb. Cu . ft . pe r lb.

250.0 235.3 400.97 376.1 825.0 1201.1 0.01865 1.84317255.0 240.3 402.72 378.0 823.3 1201.3 0.01868 1.80802260.0 245.3 404.44 379.9 821.6 1201.5 0.01870 1.77418265.0 250.3 406.13 381.7 820.0 1201.7 0.01873 1.74157270.0 255.3 407.80 383.6 818.3 1201.9 0.01875 1.71013

275.0 260.3 409.45 385.4 '816.7 1202.1 0.01878 1.67978280:0 265.3 411.07 387.1 815.1 1202.3 0.01880 1.65049285.0 270.3 412.67 388.9 813.6 1202.4 0.01882 1.62218290.0 275.3 414.25 390.6 812.0 1202.6 0.01885 1.59482295.0 280.3 415.81 392.3 810.4 1202.7 0.01887 1.56835

300.0 285.3 417.35 394.0 808.9 1202.9 0.01889 1.54274320.0 305.3 423.31 400.5 802.9 1203.4 0.01899 1;44801340.0 325.3 428.99 406.8 797.0 1203.8 0.01908 1.36405360.0 345.3 434.41 412.8 791.3 1204.1 0.01917 1.28910380.0 365.3 439.61 418.6 785.8 1204.4 0.01925 1.22177

400.0 385.3 444.60 424.2 780.4 1204.6 0.01934 1.16095420.0 405.3 449.40 4i9.6 775.2 1204.7 0.01942 1.10573440.0 425.3 454.03 434.8 770.0 1204.8 0.01950 1.05535

460.0 445.3 458.50 439:8 765.0 1204.8 0.01959 1.00921480.0 465.3 462.82 444.7 760.0 1204.8 0.01967 0.96677

500.0 485.3 467.01 449.5 755.1 1204.7 0.01975 0.92762520.0 505.3 471.07 454.2 750.4 1204.5 0.01982 0.89137540.0 525.3 475.01 458.7 745.7 1204.4 0.01990 0.85771560.0 545.3 478.84 463.1 741.0 1204.2 0.01998 0.82637580.0 565.3 482.57 467.5 736.5 1203.9 0.02006 0.79712

600.0 585.3 486.20 471.7 732.0 1203.7 0.02013 0.76975620.0 605.3 489.74 475.8 727.5 1203.4 0.02021 0.74408640.0 625.3 493.19 479.9 723.1 1203.0 0.02028 0.71995660.0 645.3 496.57 483.9 718.8 1202.7 0.02036 0.69724680.0 665.3 499.86 487.8 714.5 1202.3 0.02043 0.67581

700.0 685.3 503.08 491.6 710.2 1201.8 0.02050 0.65556720;0 705.3 506.23 495.4 706.0 1201.4 0.02058 0.63639740;0 725.3 509.32 499.1 701.9 1200.9 0.02065 0.61822760.0 745.3 512.34 502.7 697.7 1200.4 0.02072 0.60097780.0 765.3 515,30 506.3 693.6 1199.9 . 0.02080 0.58457

800.0 785.3 518.21 509.8 689.6 1199.4 0.02087 0.56896820.0 805.3

521.06513.3 685.5 1198.8 0.02094 0.55408

840.0 825.3 523.86 516.7 681.5 1198.2 0.02101 0.53988860.0 845.3 526.60 520.1 677.6 1197.7 0.02109 0.52631880.0 865.3 529.30 523.4 673.6 1197.0 0.02116 0.51333

900.0 885.3 531.95 526.7 669.7 1196.4 0.02123 0.50091920.0 905.3 534.56 530.0 665.8 1195.7 0.02130 0.48901940.0 925.3 537.13 533.2 661.9 1195.1 0.02137 0.47759%0.0 945.3 539.65 536.3 658.0 1194.4 0.02145 0.46662980.0 965.3 542.14 539.5 654.2 1193.7 0.02152 0.45609

1000.0 985.3 544.58 542.6 650.4 1192.9 0.02159 0.445961050.0 1035.3 550.53 550.1 640.9 1191.0 0.02177 0.422241100.0 1085.3 556.28 557.5 631.5 1189.1 0.02195 0.400581150.0 1135.3 561.82 564.8 622.2 1187.0 0.02214 0.380731200.0 1185.3 567.19 571.9 613.0 1184.8 0.02232 0.36245

1250.0 1235.3 572.38 578.8 603.8 1182.6 0.02250 0.345561300.0 1285.3 577.42 585;6 594.6 1180.2 0.02269 0.329911350.0 1335.3 582.32 592.2 585.6 1177.8 0.02288 0.315361400.0 1385.3 587.07 598.8 567.5 1175.3 0.02307 0.301781450.0 1435.3 591.70 605.3 567.6 1172.9 0.02327 0.28909

1500.0 1485.3 596.20 611.7 558.4. 1170.1 0.02346 0.277191600.0 1585.3 604.87 624.2 540.3 1164.5 0.02387 0.255451700.0 1685.3 613.13 636.5 522.2 1158.6 0.02428 0.236071800.0 1785.3 621.02 648.5 503.8 1152.3 0.02472 0.218611900.0 1885.3 628.56 660.4 485.2 1145.6 0.02517 0.20278

2000.0 1985.3 635.80 672.1 466.2 1138.3 0.02565 0.188312100.0 2085.3 642.76 683.8 446.7 1130.5 0.02615 0.175012200.0 2185.3 649.45 695.5 426.7 1122.2 0.02669 0.162722300.0 2285.3 655.89 707.2 406.p 1113.2 0.02727 0.151332400.0 2385.3 662.11 719.0 384.8 1103.7 0.02790 0.14076

I,/

2500.0 2485.3 668.11 731.7 361.6 1093.3 0.02859 0.130682600.0 2585.3 673.91 744.5 337.6 1082.0 0.02938 0.121102700.0 2685.3 679.53 757.3 312.3 1069.7 0.03029 0.111942800.0 2785.3 684.96 770.7 285.1 1055.8 0.03134 0.103052900.0 2885.3 690.22 785.1 254.7 1039.8 0.03262 0.09420

3000.0 2985.3 695.33 801.8 218.4 1020.3 0.03428 0.085003100.0 3085.3 700.28 824.0 169.3 993.3 0.03681 0.074523200.0 3185.3 705.08 875.5 56.1 931.6 0.04472 0.05663

3208.2 3193.5 705.47 906.0 0.0 906.0 0.05078 0.05078 67

Page 71: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 71/80

68

Pressure Sat.

PROPERTIES OF SUPERHEATED STEAM*

v=speciflc volume, cubic feet per pound

hg= otal heat of steam, Btu per pound

Lbs. r,;r Temp. Total Temperature-Degrees Fahrenheit (t )

Sq . n.Abs. Gage

3500 4000 5000 6000 7000 8000 9000

pi P t

15.0 0.3 213.03 V 31.939 33.963 37.985 41.986 45.978 49.964 53.946hg 1216.2 1239.9 1287.3 1335.2 1383.8 1433.2 1483.4

20.0 5.3 227.96 V 23.900 25.428 28.457 31.466 34.465 37.458 40.447hg 1215.4 1239.2 1286.9 1334.9 1383.5 1432.9 1483.2

30.0 15.3 250.34 V- 15.859 16.892 18.929 20.945 22.951 24.952 26.949hg 1213.6 1237.8 1286.0 1334.2 1383.0 1432.5 1482.8

40.0 25.3 267.25 V- 11.838 12.624 14.165 15.685 17.195 18.699 20.199hg 1211.7 1236.4 1285.0 1333.6 1382.5 1432.1 1482.5

50.0 35.3 281.02 V- 9.424 10.062 11.306 12.529 13.741 14.947 16.150hg 1209.9 1234.9 1284.1 1332.9 1382.0 1431.7 1482.2

60.0 45.3 292.71 V 7.815 8.354 9.400 10.425 11.438 12.446 13.450hg 1208.0 1233.5 1283.2 1332.3 1381.5 1431.3 1481.8

70.0 55.3 302.93 V- 6.664 7.133 8.039 8.922 9.793 10.659 11.522hg 1206.0 1232.0 1282.2 1331.6 1381.0 1430.9 1481.5

80.0 65.3 312.04 V- 5.801 6.218 7.018 7.794 8.560 9.319 10.075hg 1204.0 1230.5 1281.3 1330.9 1380.5 1430.5 1481.1

90.0 75.3 320.28 V 5.128 5.505 6.223 6.917 7.600 8.277 8.950hg 1202.0 1228.9 1280.3 1330.2 1380.0 1430.1 1480.8

100.0 85.3 327.82 V 4.590 \4.935 5.588 6.216 6.833 7.443 8.050hg 1199.9 1227.4 1279.3 1329.6 1379.5 1429.7 1480.4

120.0 105.3 341.27 V- 3.7815 4.0786 4.6341 5.1637 5.6813 6.1928 6.7006hg 1195.6 1224.1 1277.4 1328.2 1378.4 1428.8 1479.8

140.0 125.3 353.04

V. . . 3.4661 3.9526 4.4119 4.8588 5.2995 5.7364

hg .. . 1220.8 1275.3 1326.8 1377.4 1428.0 1479.1

160.0 145.3 363.55 V .. . 3.0060 3.4413 3.8480 4.2420 4.6295 5.0132hg ... 1217.4 1273.3 1325.4 1376.4 1427.2 1478.4

180.0 165.3 373.08 V ... 2.6474 3.0433 3.4093 3.7621 4.1084 4.4508hg ... 1 2 1 3 . ~ 1271.2 1324.0 1375.3 1426.3 1477.7

200.0 185.3 381.80 V .. . 2.3598 2.7247 3.0583 3.3783 3.6915 4.0008hg .. . 1210.1 1269.0 1322.6 1374.3 1425.5 1477.0

220.0 205.3 389.88 V .. . 2.1240 2.4638 2.7710 3.0642 3.3504 3.6327hg ... 1206.3 1266.9 1321.2 1373.2 1424.7 1476.3

240.0 225.3 397.39 V .. . 1.9268 2.2462 2.5316 2.8024 3.0661 3.3259hg .. . 1202.4 1264.6 1319.7 1372.1 1423.8 1475.6

260.0 245.3 404.44 V- ... . .. 2.0619 2.3289 2.5808 2.8256 3.0663hg .. . .. . 1262.4 1318.2 1371.1 1423.0 1474.9

280.0 265.3 411.07 V .. . .. . 1.9037 2.1551 2.3909 2.6194 2.8437hg .. . .. . 1260.0 1316.8 1370.0 1422.1 1474.2

300.0 285.3 417.35 V .. . ... 1.7665 2.0044 2.2263 2.4407 2.6509hg .. . .. . 1257.7 1315.2 1368.9 1421.3 1473.6

320.0 305.3 423.31 V- .. . .. . 1.6462 1.8725 2.0823 2.2843 2.4821hg .. . ... 1255.2 1313.7 1367.8 1420.5 1472.9

340.0 325.3 428.99 V- .. . .. . 1.5399 1.7561 1.9552 2.1463 2.3333hg .. . .. . 1252.8 1312.2 1366.7 1419.6 1472.2

360.0 345.3 434.41 V- .. . ... 1.4454 1.6525 1.8421 2.0237 2.2009hg .. . .. . 1250.3 1310.6 1365.6 1418.7 1471.5

*Abstracted from ASME Steam Tables (1%7) with permission of the publisher, theAmerican Society of Mechanical Engineers, 345 East 47th Street, New York, N.Y. 10017.

10000 11000

57.926 61.9051534.5 1586.5

43.435 46.4201534.3 1586.3

28.943 30.9361534.0 1586.1

21.697 23.1941533.7 1585.8

17.350 18.5491533.4 1585.6

14.452 15.4521533.2 1585.j

12.382 13.2401532.9 1585.1

10.829 11.5811532.6 1584.9

9.621 10.2901532.3 1584.6

8.655 9.2581532.0 1584.4

7.2060 7.70%1531.4 1583.9

6.1709 6.60361530.8 1583.4

5.3945 5.77411530.3 1582.9

4.7907 5.12891529.7 1582.4

4.3077 4.61281529.1 1581.9

3.9125 4.19051528.5 1581.4

3.5831 3.83851527.9 1580.9

3.3044 3.54081527.3 1580,4

3.0655 3.28551526.8 1579.9

2.8585 3.06431526.2 1579.4

2.6774 2.87081525.6 1578.9

2.5175 2.70001525.0 1578.4

2.3755 2.54821542.4 1577.9

13000 15000

69.858 77.8071693.2 1803.4

52.388 58.3521693.1 1803.3

34.918 38.8961692.9 1803.2

26.183 29.1681692.7 1803.0

20.942 23.3321692.5 1802.9

17.448 19.4411692.4 1802.8

14.952 16.6611692.2 1802.6

13.081 14.5771692.0 1802.5

11.625 12.9561691.8 1802.4

10.460 11.6591691.6 1802.2

8.7130 9.71301691.3 1802.0

7.46528.32331690.9 1801.7

6.5293 7.28111690.5 1801.4

5.8014 6.47041690.2 1801.2

5.2191 5.82191689.8 1800.9

4.7426 5.29131689.4 1800.6

4.3456 4.84921689.1 1800.4

4.0097 4.47501688.7 1800.1

3.7217 4.15431688.4 1799.8

3.4721 3.87641688.0 1799.6

3.2538 3.63321687.6 1799.3

3.0611 3.41861687.3 1799.0

2.8898 3.22791686.9 1798.8

(continued on

'he neld page)

Page 72: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 72/80

Pressure

Lbs. pe rSq. In .

Abs. Gagepi P

380.0 365.3

400.0 385.3

420.0 405.3

440.0 425.3

460.0 445.3

480.0 465.3

500.0 485.3

520.0 505.3

540.0 525.3

560.0 545.3

580.0 565.3

600.0 585.3

650.0 635.3

700.0 685.3

750.0 735.3

800.0 785.3

850.0 835.3

900.0 885.3

950.0 935.3

1000.0 985.3

1050.0 1035.3

1100.0 1085.3

1150.0 1135.3

PROPERTIES OF SUPERHEATED STEAM-CONTINUED

Sat.

Temp.

5000

t

439.61 V- 1.3606

hg 1247.7

444.60 V- 1.2841

hg 1245.1

449.40 V- 1.2148

hg 1242.4

454.03 V 1.1517

hg 1239.7

458.50 V- 1.0939

hg 1236.9

462.82 V- 1.0409hg 1234.1

467.01 V- 0.9919hg 1231.2

471.07 V- 0.9466hg 1228.3

475.01 V- 0.9045hg 1225.3

478.84 V 0.8653hg 1222.2

482.57 V- 0.8287hg 1219.1

486.20 V- 0.7944hg 1215.9

494.89 V 0.7173hg 1207.6

503.08 V- ' ..

hg " .

510.84 V- " ,

hg " ,

518.21 V ' ..

hg ' ..

525.24 V- ., .hg ., .

531.95 V-.. ,

hg '.

538.39 V , '.bg ...

544.58 V ...hg ., ,

550.53 V ., .hg ., .

556.28 V " .hg ...

561.82 V .hg ...

v= speciflc volume, cubic feet per pound

hg = total heat of steam, Btu per pound

Total Temperature-Degrees Fahrenheit (t )

6000 7000 8000 9000 10000 11000 12000 13000

1.5598 1.7410 1.9139 2.0825 2.2484 2.4124 2.5750 2.73661309.0 1364.5 1417.9 1470.8 1523.8 1577.4 1631.6 1686.5

1.4763 1.6499 1.8151 1.9759 2.1339 2.2901 2.4450 2.59871307.4 1363.4 1417.0 1470.1 1523.3 1576.9 1631.2 1686.2

1.4007 1.5676 1.7258 1.8795 2.0304 2.1795 2.3273 2.47391305.8 1362.3 1416.2 1469.4 1522.7 1576.4 1630.8 1685.8

1.3319 1.4926 1.6445 1.7918 1.9363 2.0790 2.2203 2.36051304.2 1361.1 1415.3 1:468.7 1522.1 1575.9 1630.4 1685.5

1.2691 1.4242 1.5703 1.7117 1.8504 1.9872 2.1226 2.25691302,.5 1360.0 1414.4 1468.0 1521.5 1575.4 1629.9 1685.1

1.2115 1.3615 1.5023 1.6384 1.7716 1.9030 2.0330 2.16191300.8 1358.8 1413.6 1467.3 15io.9 1574.9 1629.5 1684.7

1.1584 1.3037 1.4397 1.5708 1.6992 1.8256 1.9507 2.07461299.1 1357.7 1412.7 1466.6 1520.3 1574.4 1629.1 1684.4

1.1094 1.2504 1.3819 1.5085 1.6323 1;7542 1.8746 1.99401297.4 1356.5 1411.8 1465.9 1519.7 1573.9 1628.7 1684.0

1.0640 1.2010 1.3284 1.4508 1.5704 1.6880 1.8042 1.91931295.7 1355.3 1410.9 1465.1 1519.1 1573.4 1628.2 1683.6

1.02i7 1.1552 1.2787 1.3972 1.5129 1.6266 1.7388 1.85001 2 9 3 ~ 9 1354.2 1410.0 1464.4 1518.6 1572.9 1627.8 1683.3

0.9824 1.1125 1.2324 1.3473 1.4593 1.5693 1.6780 1.78551292.1 1353.0 1409.2 1463.7 1518.0 1572.4 1627.4 1682.9

0.9456 1.0726 1.1892 1.3008 1.4093 1.5160 1.6211 1.72521290.3 1351.8 1408.3 1463.0 1517.4 1571.9 1627.0 1682.6

0.8634 0.9835 1.0929 1.1969 1.2979 1.3969 1.4944 1.59091285.7 1348.7 1406.0 1461.2 1515.9 1570.7 1625.9 1681.6

0.7928 0.9072 1.0102 1.1078 1.2023 1.2948 1.3858 1.47571281.0 1345.6 1403.7 1459.4 1514.4 1569.4 1624.8 1680.7

0.7313 0.8409 0.9386 1.0306 1.1195 1.2063 1.2916 1.37591276.1 1342.5 1401.5 1457.6 1512.9 1568.2 1623.8 1679.8

0.6774 0.7828 0.8759 0.9631 1.0470 1.1289 1.2093 1.28851271.1 1339.3 1399.1 1455.8 1511.4 1566.9 1622.7 1678.9

0.6296 0.7315 0.8205 0.9034 0.9830 1.0606 1.1366 1.21151265.9 1336.0 1396.8 1454.0 1510.0 1565.7 1621.6 1678.0

0.5869 0.6858 0.7713 0.8504 0.9262 0.9998 1.0720 1.14301260.6 1332.7 1394.4 1 ~ 5 2 . 2 1508.5 1564.4 1620.6 1677.1

0.5485 0.6449 0.7272 0.8030 0.8753 0.9455 1.0142 1.08171255.1 1329.3 1392.0 1450.3 1507.0 1563.2 1619.5 1676.2

0.5137 0.6080 0.6875 0.7603 0.8295 0.8966 0.9622 1,02661249.3 1325.9 1389.6 1448.5 1505.4 1561.9 1618.4 1675.3

0.4821 0.5745 0.6515 0.7216 0.7881 0.8524 0.9151 0.97671243.4 1322.4 1387.2 1446.6 1503.9 1560.7 1617.4 1674.4

0.4531 0.5440 0.6188 0.6865 0.7505 0.8121 0.8723 0.93131237.3 1318.8 1384.7 1444.7 1502.4 1559.4 1616.3 1673.5

0.4263 0.5162 0.5889 0.6544 0.7161 0.7754 0.8j32 0.88991230.9 1315.2 1382.2 1442.8 1500.9 1558.1 1615.2 1672.6

14000 15000

2.8973 3.05721742.2 1798.5

2.7515 2.90371741.9 1798.2

2.6196 2.76471741.6 1798.0

2.4998 2.63841741.2 1797.7

2.3903 2.52301740.9 1797.4

2.2900 2.41731740.6 1797.2

2.1977 2.32001740.3 1796.9

2.1125 2.23021740.0 1796.7

. ,"

2.0336 2.14711739.7 1796.4

1.9603 2.06991739.4 1796.1

1.8921 1.99801739.1 1795.9

' 1.8284 1.93091738.8 1795.6

1.6864 1.78131738.0 1794.9

1.5647 1.65301737.2 1794.3

1.4592 1.54191736.4 1793.6

1.3669 1.44461735.7 1792.9

1.2855 1.35881734.9 1792.3

1.2131 1.28251734.1 1791.6

1.1484 1.21431733.3 1791.0

1.0901 1.15291732.5 1790.3

1.0373 1.09731731.8 1789.6

0.9894 1.04681731.0 1789.0

0.9456 1.00071730.2 1788.3

69

Page 73: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 73/80

I RANEJ

PressureLbs. perSq. In.

Abs. Gage

pI P

1200.0 1185.3

1300.0 1285.3

··1400.0 1385.3

1500.0 1485.3

1600.0 1585.3

1700.0 1685.3

1800.0 1785.3

1900.0 1885.3

2000.0 1985.3

2100.0 2085.3

2200.0 2185.3

2300.0 2285.3

2400.0 2385.3

2500.0 2485.3

2600.0 2585.3

2700.0 2685.3

2800.0 2785.3

2900.0 2885.3

3000.0 2985.3

3100.0 3085.3

3200.0 3185.3

3300.0 3285.3

3400.0 3385.3.'

PROPERTIES OF SUPERHEATED STEAM- CONCLUDED

Sat.Temp.

t650

0 J567.19 V 0.4497

hg 1271.8

577.42 V 0.4052hg 1261.9

587.07 V 0.3667hg 1251.4

596.20 V 0.3328hg 1240.2

604.87 V 0.3026hg 1228.3

613.13 V 0.2754hg 1215.3

621.02 V 0.2505hg 1201.2

628.56 V 0.2274hg 1185.7

635.80 V 0.2056hg 1168.3

642.76 V 0.1847hg 1148.5

649.45 V 0.1636

. hg 1123.9

655.89 V .. .

h4 ...

662.11 V .. .

hg .. .

668.11 V ...hg .. .

673.91 V ...hg .. .

679.53 V ...hg .. .

684.96 V ...hg ...

690.22 V ...hg ...

695.33 V ...hg ...

700.28 V . .hg .. .

705.08 V ...hg " .

... V .. .hg ...

.. . V : ..hg .. .

v=specific volume, cubic feet per pound

hg= otal heat of steam, Btu per pound

Total Temperature-Degrees Fahrenheit (t )

7000 J 7500

80009000

10000 1100012000 l3()(t

0.4905 0.5273 0.5615 0.6250 0.6845 0.7418 0.7974 0.85191311.5 1346.9 1379.7 1440.9 1499.4 1556.9 1614.2 1671.6

0.4451 0.4804 0.5129 0.5729 0.6287 0.6822 0.7341 0.78471303.9 1340.8 1374.6 1437.1 1496.3 1554.3 1612.0 1669.8

0.4059 0.4400 0.4712 0.5282 0.5809 0.6311 0.6798 0.72721296.1 1334.5 1369.3 1433.2 1493.2 1551.8 1609.9 1668.0

0.3717 0.4049 0.4350 0.4894 0.5394 0.5869 0.6327 0.67731287.9 1328.0 1364.0 1429.2 1490.1 1549.2 1607.7 1666.2

0.3415 0.3741 0.4032 0.4555 0.5031 0.5482 0.5915 0.63361279.4 1321.4 1358.5 1425.2 1486.9 1546.6 1605.6 1664.3

0.3147 0.3468 0.3751 0.4255 0.4711 0.5140 0.5552 0.59511270.5 1314.5 1352.9 1421.2 1483.8 1544.0 1603.4 1662.5

0.2906 0.3223 0.3500 0.3988 0.4426 0.4836 0.5229 0.56091261.1 1307.4 1347.2 1417.1 1480.6 1541.4 1601.2 1660.7

0.2687 0.3004 0.3275 0.3749 0.4171 0.4565 0.4940 0.53031251.3 1300.2 1341.4 1412.9 1477.4 1538.8 1599.1 1658.8

0.2488 0.2805 0.3072 0.3534 0.3942 0.4320 0.4680 0.50271240.9 1292.6 1335.4 1408.7 1474.1 1536.2 1596.9 1657.0

0.i304 0.2624 0.2888 0.3339 0.3734 0.4099 0.4445 0.47781229.8 1284.9 1329.3 1404.4 1470.9 1533.6 1594.7 1655.2

0.2134 0.2458 0.2720 0.3161 0.3545 0.3897 0.42310.45511218.0 1276.8 1323.1 1400.0 1467.6 1530.9 1592.5 1653.3

0.1975 0.2305 0.2566 0.2999 0.3372 0.3714 0.4035 0.43441205.3 1268.4 1316.7 1395.7 1464.2 1528.3 1590.3 1651.5

0.1824 0.2164 0.2424 0.2850 0.3214 0.3545 0.3856 0.41551191.6 1259.7 1310.1 1391.2 1460.9 1525.6 1588.1 1649.6

0.1681 0.2032 0.2293 0.2712 0.3068 0.3390 0.3692 0.39801176.7 1250.6 1303.4 1386.7 1457.5 1522.9 1585.9 1647.8

0.1544 0.1909 0.2171 0.2585 0.2933 0.3247 0.3540 0.38191160.2 1241.1 1296.5 1382.1 1454.1 1520.2 1583.7 1646.0

0.1411 0.1794 0.2058 0.2468 0.2809 0.3114 0.3399 0.36701142.0 1231.1 1289.5 1377.5 1450.7 1517.5 1581.5 1644.1

0.1278 0.1685 0.1952 0.2358 0.2693 0.2991 0.3268 0.35321121.2 1220.6 1282.2 1372.8 1447.2 1514.8 1579.3 1642.2

0.1138 0.1581 0.1853 0.2256 0.2585 0.2877 0.3147 0.34031095.3 1209.6 1274.7 1368.0 1443.7 1512.1 1577.0 1640.4

0.0982 0.1483 0.1759 0.2161 0.2484 0.2770 0.3033 0.32821060.5 1197.9 1267.0 1363.2 1440.2 1509.4 1574.8 1638.5

... 0.1389 0.1671 0.2071 0.2390 0.2670 0.2927 0.3170

., . 1185.4 1259.1 1358.4 1436.7 1506.6 1572.6 1636.7

. . 0.1300 0.1588 0.1987 0.2301 0.2576 0.2827 0.3065

. . 1172.3 1250.9 1353.4 1433.1 1503.8 1570.3 1634.8

. .. 0.1213 0.1510 0.1908 0.2218 0.2488 0.2734 0.2966

. . 1158.2 1242.5 1348.4 1429.5 1501.0 1568.1 1623.9

. . 0.1129 0.1435 0.1834 0.2140 0.2405 0.2646 0.2872

... 1143.2 1233.7 1343.4 1425.9 1498.3 1565.8 1631.1,

14000 15000

0.9055 0.95841729.4 1787.6

0.8345 0.88361727.9 1786.3

0.7737 0.81951726.3 1785.0

0.7210 0.76391724.8 1783.7

0.6748 0.71531723.2 1782.3

0.6341 0.67241721.7 1781.0

0.5980 0.63431720.1 1779.7

0.5656 0.60021718.6 1778.4

0.5365 0.56951717.0 1777.1

0.5101 0.54181715.4 1775.7

0.4862 0.51651713.9 1774.4

0.4643 0.49351712.3 1773.1

0.4443 0.47241710.8 1771.8

0.4259 0.45291709.2 1770.4

0.4088 0.43501707.7 1769.1

0.3931 0.41841706.1 1767.8

0.3785 0.40301704.5 1766.5

0.3649 0.38871703.0 1765.2

0.3522 0.37531701.4 1763.8

0.3403 0.36281699.8 1762.5

0.3291 0.35101698.3 1761.2

0.3187 0.34001696.7 1759.9

0.3088 0.32961695.1 ,1758.5

Page 74: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 74/80

PROPERTIES OF SUPERHEATED STEAM AND COMPRESSEDWATER*

v = specific volume, cubic feet per pound

hg= total heat of steam, Btu per pound

Absolute

Total Temperature-Degrees· Fahrenheit (t )Pressure

Lbs. pe r2000 4000

5000 6000

7000

8000

9000

10000 11000

Sq. In .

35.0.0 V .0.0164 .0 . 0183 0 0199 0 0225 0.03.07 .0.1364 .0.1764 .0.2066 .0.2326hg 176•0 379.1 487.6 6.08.4 779.4 1224.6 1338.2 1422.2 1495.5

3600 V .0.0164 .0.0183 0.0198 0 0225 0.03.02 .0.1296 .0.1697 .0.1996 .0.2252hg 176.3 379.3 487.6 6.08.1 775.1 1215.3 1333 •0 1418.6 1492.6

380.0 V 0.0164 0.0183 0.0198 0.0224 0.0294 .0.1169 0.1574 .0.1868 0.2116hg 176.7 379.5 487.7 6.07.5 768.4 1195.5 1322.4 1411.2 1487.0

400.0 V 0.0164 .0.0182 .0.0198 0.0223 0 0287 .0.1052 0.1463 .0.1752 .0.1994hg 177.2 379.8 487.7 6.06.9 763.0 1174.3 1311.6 1403.6 1481.3

4200 V 0.0164 .0 . 0182 .0.0197 .0• 0222 0.0282 .0.0945 .0.1362 .0.1647 .0.1883hg 177.6 380.1 487.8 606.4 758.6 1151.6 130.0.4

1396.0 1475.54400 V 0.0164 .0.0182 0.0197 0 •0222 0.0278 .0.0846 .0.127.0 .0.1552 .0.1782

hg 178.1 380.4 487.9 6.05.9 754.8 1127.3 1289 0 1388.3 1469.7

460.0 V 0.0164 .0.0182 0.0197 .0.0221 0.0274 .0.0751 0.1186 .0.1465 .0.1691hg 178.5 38.0.7 487.9 6.05.5 751.5 1100.0 1277.2 138.0.5 1463.9

4800 V .0.0164 .0 . 0182 0 0196 .0•022.0 0 0271 .0 . 0665 .0.1109 .0.1385 .0.16.06hg 179.0 380.9 488.0 605.0 748.6 1071.2 1265.2 1372.6 1458.0

52.0.0 V .0.0164 0.0181 0.0196 0.0219 0.0265 0.0531 0.0973 0.1244 .0.1458hg 179.9 381.5 488.2 604.3 743.7 1016.9 1240.4 1356.6 1446.2

5600 V 0.0163 .0.0181 0.0195 .0.0217 0.0260 0.0447 0.0856 0.1124 .0.1331hg 180.8 382.1 488.4 603.6 739.6 975.0 1214.8 1340.2 1434.3

6000 V 0.0163 .0.0180 0.0195 0.0216 0.0256 0.0397 0.0757 0.1020 0.1221hg 181.7 382.7 488.6 602.9 736.1 945.1 1188.8 1323.6 1422.3

6500 V 0.0163 .0.0180 0.0194 0.0215 0.0252 0.0358 0.0655 0.0909 .0.1104hg 182.9 383.4 488.9 602.3 732.4 919.5 1156.3 1302.7 1407.3

7000 V 0.0163 .0.0180 .0.0193 0.0213 0.0248 0.0334 0.0573 0.0816 .0.10.04hg 184.0 384.2 489.3 601.7 729.3 901.8 1124.9 1281.7 1392.2

7500 V 0.0163 .0.0179 0.0193 0.0212 0.0245 0.0318 0.0512 0.0737 0;0918hg 185.2 384.9 489.6 601.3 726.6 889.0 1097.7 1261.0 1377.2

8000 V 0.0162 .0.0179 0.0192 0.0211 0.0242 0.0306 0.0465 0.0671 0.0845hg 186.3 385.7 490.0 600.9 724.3 879.i 1.074.3 1241.0 1362.2

9.0.0.0 V .0• 0162 .0 . 0178 .0.0191 0.0209 0.0237 0.0288 .0.0402 .0 . 0568 .0 . 0724

hg 188.6 387.3 490.9 60.0.3 720.4 864.7 1037.6 1204.1 1333.0

10000 V 0.0161 0.0177 .0.0189 0.0207 0.0233 0.0276 0.0362 0.0495 .0 . 0633

hg 19.0.9 388.9 491.8 6.0.0•0 717.5 854.5 1.011.3 1172.6 1305.3

11.00.0 V .0• 0161 .0.0176 .0 . 0188 0 •02.05 0 •0229 .0•0267 .0.0335 .0 •0443 .0 . 0562

hg 193.2 39.0.5 492.8 599.9 715.1 846.9 992.1 1146.3 1280.2

12.00.0 V .0.0161 .0 . 0176 0 0187 .0. 02.03 0 •0226 .0.026.0 .0 . 0317. .0.04.05 .0 . 0508

hg 195.5 392;1 493.9 599.9 713.3 841..0 977.8 1124.5 1258.0

13.00.0 V .0• 016.0 .0.0115 .0 . 0186 0 0201 0.0223 .0.0253 .0.03.02 0 0376 .0 . 0466

hg 197.8 393;8 495.0 60.0.1 711.9 836.3 966.8 1106.7 1238.5

14.0.0.0 V .0•016.0 .0 . 0174 .0 . 0185 .0. 02.0.0 0.022.0 .0•0248 0.0291 .0•0354 .0 . 0432

hg 20.0.1 395.5 496.2 600.5 71.0.8 832.6 958 . 0 1.092.3 1221.4

1500.0 V .0• 0159 .0.0174 .0•0184 .0•0198 .0. 0218 0.0244 .0.0282 .0 . 0337 .0•0405

hg 2.02.4 3 9 7 ~ 2 497.4 6.0.0.9 71.0 •0 829.5 95.0.9 1.08.0.6 12.06.8

155.0.0 V .0• 0159 .0 . 0173 0 0184 .0•0198 .0•0217 0 0242 .0.0278 .0 . 0329 .0•0393

hg 2.03.6 398.1 498.1 6.01.2 7.09.7 828.2 947.8 1.075.7 12.00.3

*Abstracted from ASME Steam Tables (1967) with permission of the publisher, The

American Society of Mechanical Engineers, 345 East 47th Street. New York, N. Y.1.0.017

12000

.0.25631563.6

.0.24851561.3

0.23401556.8

.0.221.0

1552.2

.0.2.093

1547.6.0.19861543.0

.0.18891538.4

.0.18.0.0

1533.8

0.16421524.5

0.15081515.2

0.13911505.9

0.12661494.2

0.11601482.6

0.10681471.0

0.09891459.6

0 0858

1437.1

.0 . 0757

1415.3

.0.0676

1394.4

.0.061.0

1374.7

0 0558

1356.5

0 • 0515

134.0.2

0 0479

1326 0

.0 . 0464

1319.6

13000

14000

.0.2784 .0.29951629.2 1693.6

.0.2702 0.29081627.3 1692 0

.0.2549 0.27461623.6 1688.9

0.2411 0.26011619.8 1685.7

.0.2287 0.2470

1616.1 1682.6.0.2174 .0.23511612.3 1679.4

.0.2071 .0.22421608.5 1676.3

.0.1977 0.21421604.7 1673.1

.0.1810 0.19661597.2 1666.8

.0.1667 0.18151589.6 1660.5

.0.1544 0.16841582.0 1654.2

.0.1411 0.15441572.5 1646.4

0.1298 0.14241563.1 1638.6

0.1200 0.13211553.7 1630.8

0.1115 0.12301544.5 1623.1

0.0975 0.10811526.3 1607.9

.0.0865 .0 . 0963

1508.6 1593.1

.0.0776 .0 . 0868

1491.5 1578.7

0 07.04 0 079.0

1475.1 1564.9

.0.0645 .0 . 0725

1459.4 1551.6

0.0595 .0 . 0670

1444.4 1538.8

.0.0552 .0 . 0624

143.0.3 1526.4

.0 . 0534 .0.06.03

1423.6 1520.4

15000

0.31981757.2

0.31061755 .9

0.29361753.2

0.27831750.6

0.2645

1748.0

0.25191745.3

0.24.041742.7

0.22991740 0

0.21141734.7

0.19541729.5

0.18171724.2

0.16691717.6

0.15421711.1

0.14331704.6

0.13381698.1

0.11791685.3

0.10541672.8

0 0952

166.0.6

.0 . 08691648.8

.0 . 07991637.4

.0.074.0

1626.5

.0.069.0

1615.9

.0.0668161.0.8

71

Page 75: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 75/80

72

EQUIVALENTs-GENERAL

Measure

1 in . 25.4 mm

Weight

1 kg = 2.205 lb

1 in .

Im m

Im m

1 cu in . of water (60 F) = 0.073551 cu in . of mercury (32 F)

1 cu in. of mercury (32 F) = 13.596 cu in . of water (60 F)

1 micron =

2.54 cm

0.03937 in .0.00328 ft0.000001 meter

1 cu in. of mercury (32 F) = 0.4905 lb

1 torr 1 mm mercury10- 8 torr = 1 atom mercury

1 ft1 ft

= 304.8 mm30.48 cm

Velocity

1 sq . in .1 sq cm1 sq cm1 sq ft

6.4516 sq cm0.155 sq in .0.00108 sq ft

= 929.03 sq cm

1 ft per sec = 0.3048 m pe r sec1 m per sec = 3.2808 ft per sec

Density

Circumferenceof a ci!-cle = 21Tr = 1Td

1Td2Area of a circle = 7rr2 = ""4

l ib per cu in . = 27.68 gram per cu cm

1 gr pe r cu cm = 0.03613 Ib pe r cu in .

1 Ib pe r cu ft = 16.0184 kg per cu m

1 kg pe r cu m = 0.06243 Ib pe r cu ft

Physical Constants

Base of Natural Logarithms (e) . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . , . . . . . . 2.7182818285

Acceleration of Gravity (g) . . . . . . . . . . . . . 32.174 ft/sec 2 ••••••••••• (980.665 cm/sec')

Pi (1T). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. 3.1415926536

DegreesKelvin

Absolute Zero... . . . . . . . . . . . . . . . .. . . . 0Water Freezing Point (14.696 psia) . . . . . . . 273.15Water Boiling Point (14.696 psia) . . . . . . . 373.15

Equivalents of Temperature

To convert degrees Celsius to degrees Fahrenheit:

t = 1.8 tc + 32

DegreesRankine

o491.67

671.67

DegreesCelsius

- 273.15

o100

DegreesFahrenheit

- 459.6732

212

To convert degrees Fahrenheit to degrees Celsius:

t -3 2

tc = --r:s- Where: te = temperature, in degrees Celsius

Prefixes

atto••.. . a ••.. one·quintillionth •.• .••••.• .• .• . . - ••.•

femto•. • f • . . . one.quadrillionth . . . . .• . . . .• .•• . . .• . .

0.000 000 000 000 000 001 . . . 10 -18

0.000 000 000 000 001 •••••••10 -15

pico . . . . p . . . . one.trillionth . . . . . . . . . . . . . . . . . . . . . . . . 0.000 000 000 001 . . . . . . . . . . . . 10 -12

nano . . . n . . . . one.billionth . . . . . . . . . . . . . . . . . . . . . . . . 0.000 000 001. . • . . ••••••• .•••10-9

micro . p.••••

one'l;llillionth . . . . . . . . . . . . . . . . . . . . . . . . 0.000 001 . . . . . • .• .• •••• . .• . . • 10 -6

milli •.•. m •. . one. thousandth. . . . . . . . . . . . . . . . . . . . . . 0.001

centi •••• c .•••one.hundredth.. • .• . . • .• • . . . . • .• . . • • . 0.01

deci. . . . d . . . . one· ten th. . . . . . . . . . . . . . . . . . . . . . . .. . . . 0.1

uni. •••••••••one. • • • • • • • • . • • • . • • • • • • • . • • • • • • • . • . . 1.0

deka . . . . da . . ten. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.0

hecto .• •h . . . . one hundred ••••••.•••••.••••••••••• 100.0

kilo •••.• k .••• one thousand••..•••.••••.••••••..•• 1 000.0

mega •• •M ••• one million ••.•••••••.•••••.••• 1 000 000.0

giga. . . . . G . . . one billion. . . . . . . . . . . . . . . . . 1 000000000.0

tera . . . . .T •• •one trillion. . . . . . . . . . . . 1 000 000 000 000.0

••••• , •••••••• .•••••10 -8

•••••.• .••••••••••. . 10-2

• .•• , ••. . .•••••••••• 10 -1

••.•••.•••.••••.•••• 100. . 'I . . . . . ' . . . . . . . . . . 101

•..•••••••••••••••••102

•••••••••••••••••••• lOS

••••• .••••••••••••••105

. •••••••••••••••••••109

•• II ••••••••••••••••1012

Page 76: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 76/80

TEMPERATURE CONVERSION

-459.40to 00

10to 600

610to 2900

3000to 8900

9000to 30000

c

-273-268

-262

-257

-251

-246

-240

-234

-229

-223

-218

-212

-207

-201

-196

-190

-184-179

-173

-169

-168

-162

-157

-151

-146

-140

-134

-129

-123

-118

-112

-107

-101- 96- 90

- 84

- 79- 73- 68

- 62

- 57- 51

- 46- 40- 34

- 29- 23- 17.8

I ~ I F c I ~ I F c I ~ I F c I ~ I F c

-459.4-450

-440

-430

-420

-410

-400

-390

-380

-370

-360

-350

-340

-330

-320

-310

-300-290

-280

-273

-270

-260

-250

-240

-230

-220

-210

-200

-190

-180

-170

-160

-150-140

-130

-120

-110

-100

- 90- 80

- 70- 60- 50

- 40

- 30

- 20- 10

0

-17.2 1 33.8 16.1 61 141.8 149 300 572 482-16.7 2 35.6 16.7 62 143.6 154 310 590 488-16.1 3 37.4 17.2 63 145.4 160 320 608 493-15.6 4 39.2 17.8 64 147.2 166 330 626 499-15.0 5 41.0 18.3 65 149.0 171 340 644 504

-14.4 6 42.8 18.9 66 150.8 177 350 662 510-13.9 7 44.6 19.4 67 152.6 182 360 680 516-13.3 8 46.4 20.0 68 154.4 188 370 698 521-12.8 9 48.2 20.6 69 156.2 193 380 716 527-12.2 10 50.0 21.1 70 158.0 199 390 734 532

-11.7 11 51.8 21.7 71 159.8 204 400 752 538-11.1 12 53.6 22.2 72 161.6 210 410 770 549-10.6 13 55.4 22.8 73 163.4 216 420 788 560-10.0 14 57.2 23.3 74 165.2 221 430 806 571- 9.4 15 59.0 23.9 75 167.0 227 440 824 582

- 8.9 16 60.8 24.4 76 168.8 232 450 842 593

- 8.3 17 62.6 25.0 77 170.6 238 460 860 604- 7.8 18 64.4 25.6 78 172.4 243 470 878 616- 7.2 19 66.2 26.1 79 174.2 249 480 896 627

-459.4 - 6.7 20 68.0 26.7 80 176.0 254 490 914 638

-454 - 6.1 21 69.8 27.2 81 177.8 260 500 932 649-436 - 5.6 22 71.6 27.8 82 179.6 266 510 950 660-418 - 5.0 23 73.4 28.3 83 181.4 271 520 968 671-400 - 4.4 24 75.2 28.9 84 183.2 277 530 986 682-382 - 3.9 25 77.0 29.4 85 185.0 282 540 1004 693

-364 - 3.3 26 78.8 30.0 86 186.8 288 550 1022 704-346 - 2.8 27 80.6 30.6 87 188.6 293 560 1040 732-328 - 2.2 28 82.4 31.1 88 190.4 299 570 1058 760-310 - 1.7 29 84.2 31.7 89 192.2 304 580 1076 788-292 - 1.1 30 86.0 32.2 90 194.0 310 590 1094 816

-274 - 0.6 31 87.8 32.8 91 195.8 316 600 1112 843-256 0.0 32 89.6 33.3 92 197.6 321 610 1130 871

-238 0.6 33 91.4 33.9 93 199.4 327 620 1148 899-220 1.1 34 93.2 34.4 94 201.2 332 630 1166 927-202 1.7 35 95 • 0 35.0 95 203.0 338 640 1184 954

-184 2.2 36 96.8 35.6 96 204.8 343 650 1202 982-166 2.8 37 98.6 36.1 97 206.6 349 660 1220 1010-148 3.3 38 100.4 36.7 98 208.4 354 670 1238 1038-130 3.9 39 102.2 37.2 99 210.2 360 680 1256 1066-112 4.4 40 104.0 37.8 100 212.0 366 690 1274 1093

- 94 5.0 41 105.8 43 110 230 371 700 1292 1121- 76 5.6 42 107.6 49 120 248 377 710 1310 1149- 58 6.1 43 109.4 54 130 266 382 720 1328 1177- 40 6.7 44 111.2 60 140 284 388 730 1346 1204- 22 7.2 45 113.0 66 150 302 393 740 1364 1232

- 4 7.8 46 114.8 71 160 320 399 750 1382 126014 8.3 47 116.6 77 170 338 404 760 1400 128832 8.9 48 118.4 82 180 356 410 770 1418 1316

9.4 49 120.2 88 190 374 416 780 1436 134310.0 50 122.0 93 200 392 421 790 1454 1371

10.6 51 123.8 99 210 410 427 800 1472 139911.1 52 125.6 100 212 413.6 432 810 1490 142711.7 53 127.4 104 220 428 438 820 1508 145412.2 54 129.2 110 230 446 443 830 1526 148212.8 55 131.0 116 240 464 449 840 1544 1510

13.3 56 132.8 121 250 482 454 850 1562 153813.9 57 134.6 127 260 500 460 860 1580 156614.4 58 136.4 132 270 518 466 870 1598 159315.0 59 138.2 138 280 536 471 880 1616 162115.6 60 140.0 143 290 554 477 890 1634 1649

Locate temperature In middle column. If In degrees Celsius, read Fahrenheit equivalentIn right hand column; If In degrees Fahrenheit, read Celsius equivalent in left hand column.

I ~ I F

900 1652910 1670

920 1688930 1706

940 1724

950 1742

960 1760970 1778

980 1796990 1814

1000 1832

1020 18681040 19041060 1940

1080 1976

1100 2012

1120 20481140 20841160 21201180 2156

1200 21921220 22281240 2264

1260 2300

1280 2336

1300 2372

1350 24621400 25521450 26421500 2732

1550 2822

1600 2912

1650 30021700 3092

1750 3182

1800 32721850 33621900 3452

1950 3542

2000 3632

2050 37222100 3812

2150 3902

2200 39922250 4082

2300 41722350 4262

2400 4352

2450 44422500 4532

2550 46222600 47122650 4802

2700 48922750 4982

2800 5072

2850 51622900 5252

2950 53423000 5432

73

Page 77: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 77/80

LINEAR CONVERSION

Fractions of an InchTo Decimals of an Inch and to Millimeters

Fraction Doclmal Mllllmot.r Fraction Decimal Mllllm.tor

I" . .015625 0.39688 3%, .515625 13.09690

1h2 .03125 0.79375 1%2 .53125 13.49378

%, .046875 1.19063 3%. .546875 13.89065

Ilt6 .0625 1.58750 %6 .5625 14.28753

%, .078125 1.98438 37,. .578125 14.68440

%2 .09375 2.38125 I%Z .59375 15.08128

%. .109375 2.77813 3%, .609375 15.47816

Va ......................... .125 3.17501 %'" .................... .625 15.87503

%, .140625 3.57188 '1/64 .640625 16.27191

%z .15625 3.96876 21hz .65625 16.66878

1%. .171875 4.36563 '% , .671875 17.06566

3/16 .1875 4.76251 I1lt6 .6875 17.46253

1%, .203125 5.15939 '5/64 .703125 17.85941

%z .21875 5.55626 23/3Z .71875 18.25629

1%, .234375 5.95314 '7/64 .734375 18.653161/.& ... ................ ..... .25 6.35001 % " ....................... .75 19.05004

1%. .265625 6.74689 49/64 .765625 19.44691

%z .28125 7.14376 2%Z .78125 19.843791%, .296875 7.54064 5%. .796875 20.24066

5;16 .3125 7.93752 l3lt6 .8125 20.63754

21", .328125 8.33439 5%, .828125 21.03442

11/32 .34375 8.73127 Z%z .84375 21.43129

Z%. .359375 9.12814 5%. .859375 21.82817

3fs ..... ................. .375 9.52502 % ........................ .875 22.22504

2%, .390625 9.92189 5%. .890625 22.62192

I%Z .40625 10.31877 29/32 .90625 23.01880.421875 10.71565 5%, .921875 23.41567

7lt6 .4375 11.11252 l5lt6 .9375 23.81255

2%, .453125 11.50940 6%. .953125 24.20942

1%2 .46875 11.90627 31/32 .96875 24.60630

3%. .484375 12.30315 6%. .984375 25.00317

1f2 '0 •••••••••••••••••••••• .5 12.70002 1 • •••••••••••••••••••• 0 o' 1.0 25.40005

74

Page 78: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 78/80

'\

)

0 0.0 1.6 3.2 4.81 25.4 27.0 28.6 30.22 50.8 52.4 54.0 55.63 76.2 77.8 79.4 81.04 101.6 103.2 104.8 106.4

5 127.0 128.6 130.2 131.86 152.4 154.0 155.6 157.27 177.8 179.4 181.0 182.68 203.2 204.8 206.4 208.0

9 228.6 230.2 231.8 233.4

10 254.0 255.6 257.2 258.811 279.4 281.0 282.6 284.212 304.8 306.4 308.0 309.613 330.2 331.8 333.4 335.014 355.6 357.2 358.8 360.4

15 381.0 382.6 384.2 385.816 406.4 4Q8.0 409.6 411.2

)17 431.8 433.4 435.0 436.618 457.2 458.8 460.4 462.019 482.6 484.2 485.8 487.4

20 508.0 509.6 511.2 512.821 533.4 535.0 536.6 538.222 558.8 560.4 562.0 563.623 584.2 585.8 587.4 589.024 609.6 611.2 612.8 614.4

25 635.0 636.6 638.2 639.826 660.4 662.0 663.6 665.227 685.8 687.4 689.0 690.628 711.2 712.8 714.4 716.029 736.6 738.2 739.8 714.4

30 762.0 763.6 765.2 766.831 787.4 789.0 790.6 792.232 812.8 814.4 816.0 817.633 838.2 839.8 841.4 843.034 863.6 865.2 866.8 868.4

35 889.0 890.6 892.2 893.836 914.4 916.0 917.6 919.237 939.8 941.4 943.0 944.638 %5.2 966.8 968.4 970.039 990.6 992.2 993.8 995.4

40 1016.0 1017.6 1019.2 1020.841 1041.4 1043.0 1044.6 1046.242 1066.8 1068.4 1070.0 1071.643 1092.2 1093.8 1095.4 1097.044 1117.6 1119.2 1120.8 1122.4

45 1143.0 1144.6 1146.2 1147.846 1168.4 1170.0 1171.6 1173.247 1193.8 1195.4 1197.0 1198.648 1219.2 1220.8 1222.4 1224.049 1244.6 1246.2 1247.8 1249.4

50 1270.0 1271.6 1273.2 1274.8

6.4

31.857.282.6

108.0

133.4158.8184.2209.6

235.0

260.4285.8311.2336.6362.0

387.4412.8438.2463.6489.0

514.4539.8565.2590.6616.0

641.4666.8692.2717.6743.0

768.4793.8819.2844.6870.0

895.4920.8946.2971.6997.0

1022.41047.81073.21098.61124.0

1149.41174.81200.21225.61251.0

1276.4

LINEAR CONVERSION

7.9

33.358.784.1

109.5

134.9160.3185.7211.1

236.5

261.9287.3312.7338.1363.5

388.9414.3439.7465.1490.5

515.9541.3566.7592.1617.5

642.9668.3693.7719.1744.5

769.9795.3820.7846.1871.5

896.9922.3947.7973;1

998.5

1023.91049.31074.71100.11125.5

115G.91176.31201.71227.11252.5

1277.9

Inches to MIllimeters

(1 inch = 25.4 millimeters)

9.5 11.1 n .7 14.334.9 36.5 38.i 39.760.3 61.9 63.5 65.185.7 87.3 88.9 90.5

111.1 112.7 114.3 115.9

136.5 138.1 139.7 141.3161.9 163.5 165.1 Hi6.7187.3 188.9 190.5 192.1212.7 214.3 215.9 217.5

238.1 239.7 241.3 242.9

263.5 265.1 266.7 268.3288.9 290.5 292.1 293.7314.3 315.9 317.5 319.1339.7 341.3 342.9 344.5365.1 366.7 368.3 369.9

390.5 392.1 393.7 395.3415.9 417.5 419.1 420.7441.3 442.9 444.5 446,1466.7 468.3 469.9 471.5492.1 493.7 495.3 496.9

517.5 519.1 520.7 522.3542.9 544.5 546.1 547.7568.3 569.9 571.5 573.1593.7 595.3 5%.9 598.5619.1 620.7 622.3 623.9

644.5 646.1 647.7 649.3669.9 671.5 673.1 674.7695.3 696.9 698.5 700.1720.7 722.3 723.9 725.5746.1 747.7 749.3 750.9

771.5 773.1 774.7 776.3796.9 798.5 800.1 801.7822.3 823.9 825.5 827.1847.7 849.3 850.9 852.5873.1 874.7 876.3 877.9

898.5 900.1 901.7 903.3923.9 925.5 927.1 928.7949.3 950.9 952.5 954.1974.7 976.3 977.9 979.5

1000.1 1001.7 1003.3 1004.9

1025.5 1027.1 1028.7 1030.31050.9 1052.5 1054.1 1055.71076.3 1077.9 1079.5 1081.11101.7 1103.3 1104.9 1106.5

1127.1 1128.7 1130.3 1131.9

1152.5 1154.1 1155.7 1157.31177.9 1179.5 1181.1 1182.71203.3 1204.9 1206.5 1208.11228.7 1230.3 1231.9 1233.51254.1 1255.7 1257.3 1258.9

1279.5 1281.1 1282.7 1284.3

15.9 17.5 19.1 20.6 22.2 23.841.3 42.9 44.5 46.0 47.6 49.266.7 68.3 69.9 71.4 73.0 74.692.1 93.7 95.3 %.8 98.4 100.0

117.5 119.1 120.7 122.2 123.8 125.4

142.9 144.5 146.1 147.6 149.2 150.8168.3 169.9 171.5 173.0 174.6 176.2193.7 195.3 196.9 198.4 200.0 201.6219.1 220.7 222.3 223.8 225.4 227.0

244.5 246.1 247.7 249.2 250.8 252.4

269.9 271.5 273.1 274.6 276.2 277.8295.3 296.9 298.5 300.0 301.6 303.2320.7 322.3 323.9 325.4 327.0 328.6346.1 347.7 349.3 350.8 352.4 354.037L5 373.1 374.7 376.2 377.8 379.4

396.9 398.5 400.1 401.6 403.2 404.8422.3 423.9 425.5 427.0 428.6 430.2447.7 449.3 450.9 452.4 454.0 455.6473.1 474.7 476.3 477.8 479.4 481.0498.5 500.1 501.7 503.2 504.8 506.4

523.9 525.5 527.1 528.6 530.2 531.8549.3 550.9 552.5 554.0 555.6 557.2574.7 576.3 577.9 579.4 581.0 582.6600.1 601.7 603.3 604.8 606.4 608.0625.5 627.1 628.7 630.2 631.8 633.4

650.9 652.5 654.1 655.6 657.2 658.8676.3 677.9 679.5 681.0 682.6 684.2701.7 703.3 704.9 706.4 708.0 709.6727.1 728.7 730.3 731.8 733.4 735.0752.5 754.1 755.7 757.2 758.8 760.4

777.9 779.5 781.1 782.6 784.2 785.8803.3 804.9 806.5 808.0 809.6 811.2828.7 830.3 831.9 833.4 835.0 836.6854.1 855.7 857.3 858.8 860.4 862.0879.5 881.1 882.7 884.2 885.8 887.4

904.9 906.5 908.1 909.6 911.2 912.8930.3 931.9 933.5 935.0 936.6 938'.2955.7 957.3 958.9 960.4 962.0 963.6981.1 982.7 984.3 985.8 987.4 989.0

1006.5 1008.1 1009.7 1011.2 1012.8 1014.4

1031.9 1033.5 1035.1 1036.6 1038.2 1039.81057.3 1058.9 1060.5 10,62.0 1063.6 1065.21082.7 1084.3 1085.9 1087.4 1089.0 1090.61108.1 1109.7 1111.3 1112.8 1114.4 1116.01133.5 1135.1 1136.7 1138.2 1139.8 1141.4

1158.9 1160.5 1162.1 1163.6 1165.2 1166.81184.3 1185.9 1187.5 1189.0 1190.6 1192.21209.7 1211.3 1212.9 1214.4 1216.0 1217.61235;1 1236.7 1238.3 1239.8 1241.4 1243.01260.5 1262.1 1263.7 1265.2 1266.8 1268.4

1285.9 1287.5 1289.1 1290.6 1292.2 1293.8

75

Page 79: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 79/80

Inches II 0.00 I .01 .02

0.00 0.00 0.25 0.51.10 2.54 2.79 3.05.20 5.08 5.33 5.59.30 7.62 7.87 8.13.40 10.16 10.41 10.67

.50 12.70 12.95 13.21

.60 15.24 15.49 15.75

.70 17.78 18.03 18.29

.80 20.32 20.57 20.83

.90 22.86 23.11 23.37

Millimetersll 0 1 2

0 0.00 0.039 0.07910 0.39 0.43 0.4720 0.79 0.83 0.8730 1.18 1.22 1.2640 1.57 1.61 1.65

50 1.97 2.01 2.0560 2.36 2.40 2.4470 2.76 2.80 2.8380 3.15 3.19 3.23

90 3.54 3.58 3.62

100 3.94 3.98 4.02110 4.33 4.37 4.41120 4.72 4.76 4.80130 5.12 5.16 5.20140 5.51 5.55 5.59

150 5.91 5.94 5.98160 6.30 6.34 6.38170 6.69 6.73 6.77180 7.09 7.13 7.17190 7.48 7.52 7.56

200 7.87 7.91 7.95210 8.27 8.31 8.35220 8.66 8.70 8.74230 9.06 9.09 9.13240 9.45 9.49 9.53

250 9.84 9.88 9.92260 10.24 10.28 1 0 ~ 3 1270 10.63 10.67 10.71280 11.02 11.06 11.10290 11.42 11.46 11.50

300 11.81 11.85 11.89310 12.20 12.24 12.28320 12.60 12.64 12.68330 12.99 13.03 n.07340 13.39 13.43 13.46

350 13.78 13.82 13.86360 14.17 14.21 14.25370 14.57 14.61 14.65380 14.96 15.00 15.04390 15.35 15.39 15.43

76

LINEAR CONVERSION

Decimals of an Inch to Millimeters

(0.10 inch = 2.54 millimeters)

.03 .04 .05 .06

0.76 1.02 1.27 1.523.30 3.56 3.81 4.065.84 6.10 6.35 6.608.38 8.64 8.89 9.14

10.92 11.18 11.43 11.68

13.46 13.72 13.97 14.2216.00 16.26 16.51 16.7618.54 18.80 19.05 19.3021.08 21.34 21.59 21.8423.62 23.88 24.13 24.38

Millimeters to Inches

(1 millimeter = 0.03937 inch)

3 4 5 6

0.118 0.157 0.197 0.2360.51 0.55 0.59 0.630.91 0.94 0.98 1.021.30 1.34 1.38 1.421.69 1.73 1.77 1.81

2.09 2.13 2.17 2.202.48 2.52 2.56 2.602.87 2.91 2.95 2.993.27 3.31 3.35 3.39

3.66 3.70 3.74 3.78

4.06 4.09 4.13 4.174.45 4.49 4.53 4.574.84 4.88 4.92 4.965.24 5.28 5.31 5.355.63 5.67 5.71 5.75

6.02 6.06 6.10 6.146.42 6.46 6.50 6.546.81 6.85 6.89 6.937.20 7.24 7.28 7.327.60 7.64 7.68 7.72

7.99 8.03 8.07 8.118.39 8.43 8.46 8.508.78 8.82 8.86 8.909.17 9.21 9.25 9.299.57 9.61 9.65 9.69

9.96 10.00 10.04 10.0810.35 10.39 10.43 11).4710.75 10.79 10.83 10.8711.14 11.18 11.22 11.2611.54 11.57 11.61 11.65

11.93 11.97 12.01 12.0512.32 12.36 12.40 12.4412.72 12.76 12.80 12.8313.11 13.15 13.19 13.2313.50 13.54 13.58 13.62

13.90 13.94 13.98 14.0214.29 14.33 14.37 14.4114.69 14.72 14.76 14.8015.08 15.12 15.16 15.2015.47 15.51 15.55 15.59

(continued on next page)

.07 .08 .09 II Inches

1.78 2.03 2.29 0.004.32 4.57 4.83 .106.86 7.11 7.37 .209.40 9.65 9.91 .30

11.94 12.19 12.45 .40

14.48 14.73 14.99 .5017.02 17.27 17.53 .6019.56 19.81 20.07 .7022.10 22.35 22.61 .8024.64 24.89 25.15 .90

7 8 9 II Millimeters

0.276 0.315 0.354 00.67 0.71 0.75 101.06 1.10 1.14 201.46 1.50 1.54 301.85 1.89 1.93 40

2.24 2.28 2.32 502.64 2.68 2.72 603.03 3.07 3.11 703.43 3.46 3.50 803.82 3.86 3.90 90

4.21 4.25 4.29 1004.61 4.65 4.69 1105.00 5.04 5.08 1205.39 5.43 5.47 1305.79 5.83 5.87 140

6.18 6.22 6.26 1506.57 6.61 6.65 1606.97 7.01 7.05 1707.36 7.40 7.44 1807.76 7.80 7.83 190

8.15 8.19 8.23 2008.54 8.58 8.62 2108.94 8.98 9.02 2209.33 9.37 9.41 2309.72 9.76 9.80 240

10.12 10.16 10.20 25010.51 10.55 10.59 26010.91 10.94 10.98 27011.30 11.34 11.38 28011.69 11.73 11.77 290

12.09 12.13 12.17 30012.48 12.52 12.56 31012.87 12.91 12.95 32013.27 13.31 13.35 33013.66 13.70 13.74 340

14.06 14.09 14.13 35014.45 14.49 14.53 36014.84 14.88 14.92 37015.24 15.28 15.31 38015.63 15.67 15.71 390

Page 80: Crane Engineering Valve Engineering Data

7/30/2019 Crane Engineering Valve Engineering Data

http://slidepdf.com/reader/full/crane-engineering-valve-engineering-data 80/80

I RANE®I

LINEAR CONVERSION

Millimeters to Inches-cont.

Millimetersll 0 1 2 3 4 5 6 7 8 9 IIMillimeters

400 15.75 15.79 15.83 15.87 15.91 15.94 15.98 16.02 16.06 16.10 400410 16.14 16.18 16.22 16.26 16.30 16.34 16.38 16.42 16.46 16.50 410420 16.54 16.57 16.61 16.65 16.69 16.73 16.77 16.81 16.85 16.89 420430 16.93 16.97 17.01 17.05 17.09 17.13 17.17 17.20 17.24 17.28 430440 17.32 17.36 17.40 17.44 17.48 17.52 17.56 17.60 17.64 17.68 440

450 17.72 17.76 17.80 17.83 17.87 17.91 17.95 17.99 18.03 18.07 450460 18.11 18.15 18.19 18.23 18.27 18.31 18.35 18.39 18.43 18.46 460470 18.50 18.54 18.58 18.62 18.66 18.70 18.74 18.78 18.82 18.86 470480 18.90 18.94 18.98 19.02 19.06 19.09 19.13 19.17 19.21 19.25 480490 19.29 19.33 19.37 19.41 19.45 19.49 19.53 19.57 19.61 19.65 490

500 19.69 19.72 19.76 19.80 19.84 19.88 19.92 19.96 20.00 20.04 500510 20.08 20.12 20.16 20.20 20.24 20.28 20.31 20.35 20.39 20.43 510520 20.47 20.51 20.55 20.59 20.63 20.67 20.71 20.75 20.79 20.83 520530 20.87 20.91 20.94 20.98 21.02 21.06 21.10 21.14 21.18 21.22

530540 21.26 21.30 21.34 21.38 21.42 21.46 21.50 21.54 21.58 21.61 540

550 21.65 21.69 21.73 21.77 21.81 21.85 21.89 21.93 21.97 22.01 550560 22.05 22.09 22.13 22.17 22.20 22.24 22.28 22.32 22.36 22.40 560570 22.44 22.48 22.52 22.56 22.60 22 • 64 22.68 22.72 22.76 22.80 570580 22.83 22.87 22.91 22.95 22.99 23.03 23.07 23.11 23.15 23.19 580590 23.23 23.27 23.31 23.35 23.39 23.43 23.46 23.50 23.54 23.58 590

600 23.62 23.66 23.70 23.74 23.78 23.82 23.86 23.90 23.94 23.98 600610 24.02 24.06 24.09 24.13 24.17 24.21 24.25 24.29 24.33 24.37 610620 24.41 24.45 24.49 24.53 24.57 24.61 24.65 24.68 24.72 24.76 620630 24.80 24.84 24.88 24.92 24.96 25.00 25.04 25.08 25.12 25.16 630640 25.20 25.24 25.28 25.31 25.35 25.39 25.43 25.47 25.51 25.S5 640

650 25.59 25.63 25.67 25.71 25.75 25.79 25.83 25.87 25.91 25.94 650660 25.98 26.02 26.06 26.10 26.14 26.18 26.22 26.26 26.30 26.34 660670 26.38 26.42 26.46 26.50 26.54 26.57 26.61 26.65 26.69 26.73 670680 26.77 26.81 26.85 26.89 26.93 26.97 27.01 27.05 27.09 27.13 680690 27.17 27.20 27.24 27.28 27.32 27.36 27.40 27.44 27.48 27.52 690

700 27.56 27.60 27.64 27.68 27.72 27.76 27.80 27.83 27.87 27.91 700710 27.95 27.99 28.03 28.07 28.11 28.15 28.19 28.23 28.27 28.31 710720 28.35 28.39 28.43 28.46 28.50 28.54 28.58 28.62 28.66 28.70 720730 28.74 28.78 28.82 28.86 28.90 28.94 28.98 29.02 29.06 29.09 730740 29.13 29.17 29.21 29.25 29.29 29.33 29.37 29.41 29.45 29.49 740

750 29.53 29.57 29.61 29.65 29.68 29.72 29.76 29.80 29.84 29.88 750760 29.92 29.96 30.00 30.04 30.08 30.12 30.16 30.20 30.24 30.28 760770 30.31 30.35 30.39 30.43 30.47 30.51 30.55 30.59 30.63 30.67 770780 30.71 30.75 30.79 30.83 30.87 30.91 30.94 30.98 31.02 31.06 780790 31.10 31.14 31.18 31.22 31.26 31.30 31.34 31.38 31.42 31.46 790

800 31.50 31.54 31.57 31.61 31.65 31.69 31.73 31.77 31.81 31.85 800810 31.89 31.93 31.97 32.01 32.05 32.09 32.13 32.17 32.20 32.24 810820 32.28 32.32 32.36 32.40 32.44 32.48 32.52 32.56 32.60 32.64 820830 32.68 32.72 32.76 32.80 32.83 32.87 32.91 32.95 32.99 33.03 830