core group non-pwr/bwr reactors - mit …core group non-pwr/bwr reactors lecture 1 22.033/22.33 –...

28
Core Group Non-PWR/BWR Reactors Lecture 1 22.033/22.33 – Nuclear Engineering Design Project Sep. 12, 2011 MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 – Nuclear Design Course Page 1

Upload: hoangkhanh

Post on 06-Apr-2018

226 views

Category:

Documents


2 download

TRANSCRIPT

  • Core Group

    Non-PWR/BWR Reactors

    Lecture 122.033/22.33 Nuclear Engineering Design Project

    Sep. 12, 2011

    MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 1

    http:22.033/22.33http:22.033/22.33

  • Main Parameters to Consider

    Coolant Moderator Thermo. cycle

    & TTin out Neutron spectrum Materials Power density

    MIT Dept. of Nuclear Science and Engineering 22.033/22.33 Nuclear Design Course

    Special features Commercial

    readiness Safety

    (active/passive) Efficiency Fuel

    Dr. Michael P. Short, 2011 Page 2

    http:22.033/22.33

  • Relative Scales for Parameters

    Outlet Temperature Low: 700C Very high quality process heat, maximum flexibility

    Power level Low: 100-300MWe Medium: 300-750MWe High: >750MWe

    Feasibility Low: Test reactors only Medium: Few operated

    plants, some designs High: Operating plants,

    mature designs

    MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 3

    http:22.033/22.33

  • Acronyms!

    LBEFR CANDU RBMK

    LBE LFR NNFR IFR AGR PHWR

    GFR MSRVHTR SCWR SFR PBMR NaK

    MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 4

    http:22.033/22.33

  • Gas Cooled Reactors

    More acronyms: -NU (natural uranium) -(L,M,H)EU (low, medium, high) enriched

    uranium

    MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 5

    http:22.033/22.33

  • AGR (Advanced Gas-cooled Reactor)

    Coolant: CO2 Tout: Med-high

    Fuel: LEU Moderator: Graphite Power level: Med. Power density: Low

    (Why?) Feasibility: High

    MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 6

    Wikipedia User: MesserWoland. License CC BY-SA. This content is excluded from ourCreative Commons license. For more information, see http://ocw.mit.edu/fairuse.

    http://ocw.mit.edu/fairuse

  • AGR Special Features, Peculiarities

    Capable of on-load fueling (or part-load)

    Graphite moderator must be cooled due to oxidation in CO2

    Courtesy of Sellafield Ltd. Used with permission.

    Windscale Prototype AGRImage source: http://www.sellafieldsites.com/

    MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 7

    http://www.sellafieldsites.com/http:22.033/22.33

  • PBMR(Pebble Bed Modular Reactor)

    Coolant: Helium Tout: High

    Fuel: LEU - MEU Moderator: Graphite Power level: Low Med. Power density: Low Feasibility: Low Med.

    Public domain image.

    Adapted from: Wikimedia Commons

    MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 8

    http:22.033/22.33

  • PBMR Special Features, Peculiarities

    Continuous fuel cycle Pebble fuel (not rods) Pebbles act as built-in

    disposal methods Very passive safety

    systems (nat. circ.) Unknowns: material

    concerns (fission products), stresses

    MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 9

    Fuel Element Design for PBMR

    5mm Graphite Layer

    Coated Particles Imbedded in Graphite Matrix

    Diameter 60 mmPyrolytic CarbonFuel Sphere

    Silicon Carbite Barrier Coating

    Inner Pyrolytic CarbonHalf Section

    Porous Carbon Buffer

    Diameter 0,92mmCoated Particle

    Diameter 0,5mmUranium Dioxide

    Fuel

    Image by MIT OpenCourseWare.

    http:22.033/22.33

  • VHTR (Very High Temperature Reactor)

    Coolant: Helium, molten salt Tout: High (very!)

    Fuel: LEU - MEU Moderator: Graphite Power level: Low Power density: Low or high

    Courtesy of Idaho National Laboratory. Used with permission. Feasibility: Low Med.

    MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 10

    Coolant: Helium, molten salt

    http:22.033/22.33

  • VHTR Special Features, Peculiarities

    High Tout opens up all doors to hydrogen

    Significant high-T materials concerns

    Molten salt variety can be more corrosive

    Single phase coolant TRISO particles, ups &

    downs MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 11

    Diameter 60 mmFuel Sphere

    Half Section

    Diameter 0,92mm

    Diameter 0,5mmCoated Particle

    FuelUranium Dioxide

    5mm Graphite Layer

    Coated Particles Imbedded in Graphite Matrix

    Pyrolytic CarbonSilicon Carbite Barrier Coating

    Inner Pyrolytic Carbon

    Porous Carbon Buffer

    Fuel Element Design for PBMR

    Image by MIT OpenCourseWare.

    http:22.033/22.33

  • Water Cooled Reactors

    More acronyms/symbols:-D2O Deuterium oxide (heavy water)

    MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 12

    http:22.033/22.33

  • CANDU (CANada Deuterium- Uranium reactor)

    Coolant: D2O

    Tout: Low

    Fuel: NU - LEU (Why?) Moderator: D2O

    Power level: Med. - High Power density: Med.

    Courtesy of Wikipedia User:Inductiveload. Used with permission.

    Feasibility: High Adapted from: Wikimedia Commons MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 13

    http://commons.wikimedia.org/wiki/File:CANDU_Reactor_Schematic.svghttp:22.033/22.33

  • CANDU Special Features, Peculiarities

    Courtesy of NSERC-UNENE Industrial Research Chair Program atUniversity of Waterloo. Used with permission.

    Continuous fuel cycleExpensive moderator -~25% of capital cost

    Moderator is unpressurized, thermally insulated

    CANDU fuel bundle. Image source: http://www.civil.uwaterloo.ca/watrisk/research.html

    MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 14

    http://www.civil.uwaterloo.ca/watrisk/research.htmlhttp:22.033/22.33

  • RBMK Reaktor Bolshoy Moshchnosti Kanalniy

    Coolant: H2O

    Tout: Low

    Fuel: NU - LEU Moderator: Graphite Power level: High

    Wikipedia Users: Fireice and Sakurambo. License CC BY-SA. Thiscontent is excluded from our Creative Commons license. For moreinformation, see http://ocw.mit.edu/fairuse.

    Power density: Low Image source: Wikimedia Commons Feasibility: Med. (safety)

    MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 15

    http://commons.wikimedia.org/wiki/File:RBMK_reactor_schematic.svghttp://ocw.mit.edu/fairusehttp:22.033/22.33

  • RBMK Special Features, Peculiarities

    Online refueling possible High positive void

    coefficient Why? Improvements in design -No more graphite-tipped

    control rods -More control rods

    Photo courtesy of Wikipedia User:Cs szabo. License CC BY.

    MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 16

    http:22.033/22.33

  • SCWR Supercritial Water Reactor

    Courtesy of Idaho National Laboratory. Used with permission.

    Coolant: SC-H2O

    Tout: Med.

    Fuel: NU - LEU Moderator: SC-H2O

    Power level: High Power density: High Feasibility: Low (now)

    MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 17

    http:22.033/22.33

  • SCWR Special Features, Peculiarities

    Geothermania. All rights reserved. This content is excluded from our CreativeCommons license. For more information, see http://ocw.mit.edu/fairuse.

    Phase diagram for water. Image source: http://geothermania.blogspot.com/2011/05/research-of-

    supercritical-water-may.html

    Very simple design Significant materials

    concerns Coolant/moderator

    voiding a non-issue High efficiency Start-up procedures (pre-

    heating) to bring coolant supercritial

    MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 18

    http://geothermania.blogspot.com/2011/05/research-of-supercritical-water-may.htmlhttp://geothermania.blogspot.com/2011/05/research-of-supercritical-water-may.htmlhttp://ocw.mit.edu/fairusehttp:22.033/22.33

  • Liquid Metal Cooled Reactors

    More acronyms/symbols: -LBE Lead-bismuth eutectic -NaK Sodium-potassium alloy

    MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 19

    http:22.033/22.33

  • SFR (or NaK-FR) Sodium Fast Reactor

    Courtesy of Idaho National Laboratory. Used with permission.

    Coolant: Liquid sodium Tout: Med.

    Fuel: NEU - HEU Moderator: None Power levels: All Power density: High Feasibility: Low-Med.

    (now)

    MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 20

    http:22.033/22.33

  • SFR Special Features, Peculiarities

    Courtesy of and copyright Bruno Comby / EFN - Environmentalists ForNuclear Energy - http://www.ecolo.org. Used with permission.

    No pressurization Very high k, cP High material

    compatibility High boiling margin Neutron activation

    worker dose concerns Molten sodium at MONJU, Japan. Image source:

    http://www.ecolo.org/photos/visite/monju_02/monju.sodium Na + H2O = RUN AWAY .hot.melted.jpg MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 21

    http://www.ecolo.org/photos/visite/monju_02/monju.sodium.hot.melted.jpghttp://www.ecolo.org/photos/visite/monju_02/monju.sodium.hot.melted.jpghttp://www.ecolo.orghttp:22.033/22.33

  • LFR (or LBEFR) Lead Fast Reactor

    Courtesy of Idaho National Laboratory. Used with permission.

    Coolant: Lead (or LBE) Tout: Med. (higher soon...)

    Fuel: MEU Moderator: None Power levels: All Power density: High Feasibility: Low-Med.

    (now)

    MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 22

    http:22.033/22.33

  • LFR Special Features, Peculiarities

    High heat capacity Self-shielding Must melt coolant first Essentially no coolant

    voiding possible Polonium creation Material corrosion

    Alfa-class Russian submarine, using a LFR as its propulsion system. Image source: Wikimedia Commons Coolant cost (LBE)

    (Public domain)

    MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 23

    http:22.033/22.33

  • Molten Salt Cooled Reactors

    More acronyms/symbols:-FLiBe Lithium & beryllium fluoride salts

    MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 24

    http:22.033/22.33

  • MSR Molten Salt Reactor

    Coolant: FLiBe, UF4 Tout: Med. - High

    Fuel: MEU Moderator: Graphite Power levels: All Power density: High Feasibility: Med. (now)

    Courtesy of Idaho National Laboratory. Used with permission.

    MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 25

    http:22.033/22.33

  • MSR Special Features, Peculiarities

    Molten FLiBe. Image source: Wikimedia Commons

    Unpressurized core ThF4/UF4 fluid can be

    both fuel & coolant Very negative

    temperature coeff. High neutron flux causes

    Li3H, 3H+F-HF (hydrofluoric acid)

    On-site salt reprocessing MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 26

    http:22.033/22.33

  • Core Group - Questions

    Which coolant to use?What outlet temperature?How big of a reactor?Primary / secondary / tertiary cycles?Recuperator?How much electricity vs. process heat?Where in the cycle should process heat exit?

    MIT Dept. of Nuclear Science and Engineering Dr. Michael P. Short, 2011 22.033/22.33 Nuclear Design Course Page 27

    http:22.033/22.33

  • MIT OpenCourseWarehttp://ocw.mit.edu

    22.033 / 22.33 Nuclear Systems Design ProjectFall 2011 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/termshttp://ocw.mit.edu

    Slide 1Slide 2Slide 3Slide 4Slide 5Slide 7Slide 8Slide 12Slide 13Slide 14Slide 16Slide 17Slide 18Slide 19Slide 20Slide 21Slide 22Slide 23Slide 24Slide 26Slide 27