consistent connectome classification · consistent connectome classi cation joshua t. vogelstein...

65
consistent connectome classification joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right now

Upload: others

Post on 27-Jul-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

consistent connectome classification

joshua t. vogelstein

assistant research scientistdept. applied math & statsjohns hopkins university

right now

Page 2: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

survey

who here is a card carrying:

biologist

neuroscientist

mathematician

computer scientist

statistician

nota bene

if i use some jargon that you don’t know, please interrupt me!!!

let’s have fun

Page 3: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

survey

who here is a card carrying:

biologist

neuroscientist

mathematician

computer scientist

statistician

nota bene

if i use some jargon that you don’t know, please interrupt me!!!

let’s have fun

Page 4: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

outline

1 backgroundneurostats

2 methodsstatsneuro

3 resultsstatsneuro

4 discussion

Page 5: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

motivation

International Neuroimaging Data-sharing Initiative (Child Mind Institute)

Page 6: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

motivation

Connectome Project (Harvard University)

Page 7: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

motivation

Institute for Data Intensive Engineering and Science (JHU)

Page 8: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

background

human brains

O(1011) neurons (vertices)

O(1015) synapses (edges)

we believe the details matter (somewhat)

neuro-anatomists have proposed a multiscale structure

Page 9: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

background

graphs

G = (V ,E )

G ∈ Gn, |Gn| =?

|Gn| = 2(n2)

# of bytes in a hellabyte: 1027

# of chess positions: 1047

# of atoms in the universe: 1080

# go positions: 10170

Page 10: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

background

graphs

G = (V ,E )

G ∈ Gn, |Gn| =?

|Gn| = 2(n2)

# of bytes in a hellabyte: 1027

# of chess positions: 1047

# of atoms in the universe: 1080

# go positions: 10170

Page 11: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

background

graphs

G = (V ,E )

G ∈ Gn, |Gn| =?

|Gn| = 2(n2)

# of bytes in a hellabyte: 1027

# of chess positions: 1047

# of atoms in the universe: 1080

# go positions: 10170

Page 12: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

background

graphs

G = (V ,E )

G ∈ Gn, |Gn| =?

|Gn| = 2(n2)

# of bytes in a hellabyte: 1027

# of chess positions: 1047

# of atoms in the universe: 1080

# go positions: 10170

Page 13: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

background

graphs

G = (V ,E )

G ∈ Gn, |Gn| =?

|Gn| = 2(n2)

# of bytes in a hellabyte: 1027

# of chess positions: 1047

# of atoms in the universe: 1080

# go positions: 10170

Page 14: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

background

graphs

G = (V ,E )

G ∈ Gn, |Gn| =?

|Gn| = 2(n2)

# of bytes in a hellabyte: 1027

# of chess positions: 1047

# of atoms in the universe: 1080

# go positions: 10170

Page 15: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

background

graphs

G = (V ,E )

G ∈ Gn, |Gn| =?

|Gn| = 2(n2)

# of bytes in a hellabyte: 1027

# of chess positions: 1047

# of atoms in the universe: 1080

# go positions: 10170

Page 16: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

background

graphs

G = (V ,E )

G ∈ Gn, |Gn| =?

|Gn| = 2(n2)

# of bytes in a hellabyte: 1027

# of chess positions: 1047

# of atoms in the universe: 1080

# go positions: 10170

Page 17: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

goals

long-term

colloquial: ”understand” the relationship between our brains and ourminds

math/cs: explain how brain-graphs encode and process information

stats: build statistical models that capture mental property variabilityconditional on brain-graph properties

short-term

learn/develop some statistics for graphs

be able to classify people into groups based on their brain-graphs

Page 18: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

goals

long-term

colloquial: ”understand” the relationship between our brains and ourminds

math/cs: explain how brain-graphs encode and process information

stats: build statistical models that capture mental property variabilityconditional on brain-graph properties

short-term

learn/develop some statistics for graphs

be able to classify people into groups based on their brain-graphs

Page 19: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

concrete goal

classify

given a collection of brain-graphs and associated class labels,

Ds = (Gi , yi )i∈[s], where (Gi , yi ) ∈ G × Y

build a classifier h : G → Y that takes a new graph G and estimatesits corresponding class.

Page 20: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

(most?) previous work

ignore block structure

approach: take each graph, say that it is a matrix, vectorize it(concatenate columns), and apply standard machine learning stuff

problem: ignores graph structure, graphs are not matrices

ignore vertex labels

approach: take each graph, compute a bunch of graph invariants∗,and apply standard machine learning stuff

problem: ignores vertex label information, lacks theory

∗ a graph invariant is an function ψ : G → Rd that is invariant to vertexrelabeling, e.g., degree distribution.

Page 21: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

(most?) previous work

ignore block structure

approach: take each graph, say that it is a matrix, vectorize it(concatenate columns), and apply standard machine learning stuff

problem: ignores graph structure, graphs are not matrices

ignore vertex labels

approach: take each graph, compute a bunch of graph invariants∗,and apply standard machine learning stuff

problem: ignores vertex label information, lacks theory

∗ a graph invariant is an function ψ : G → Rd that is invariant to vertexrelabeling, e.g., degree distribution.

Page 22: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

our work

consistent graph classification

1 posit a joint random graph-class model, FGY = FGY(θ) : θ ∈ Θ2 construct an algorithm for this model

3 prove this algorithm is model consistent

4 demonstrate better than state-of-the-art performance on real data

probabilistic theory of pattern recognition

G : Ω→ GY : Ω→ Y(G ,Y ), (Gi , yi )i∈[s]

exch.∼ FGY ∈ FGY

Bayes optimal classifier:

h∗(G ) = argminy∈Y

FG=G |Y=yFY=y

Bayes error L∗F is the misclassification rate of h∗

Page 23: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

our work

consistent graph classification

1 posit a joint random graph-class model, FGY = FGY(θ) : θ ∈ Θ2 construct an algorithm for this model

3 prove this algorithm is model consistent

4 demonstrate better than state-of-the-art performance on real data

probabilistic theory of pattern recognition

G : Ω→ GY : Ω→ Y(G ,Y ), (Gi , yi )i∈[s]

exch.∼ FGY ∈ FGY

Bayes optimal classifier:

h∗(G ) = argminy∈Y

FG=G |Y=yFY=y

Bayes error L∗F is the misclassification rate of h∗

Page 24: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

outline

1 backgroundneurostats

2 methodsstatsneuro

3 resultsstatsneuro

4 discussion

Page 25: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

signal subgraph random graph classification model

assumptions

1 G1(V ) = G2(V ) = · · · = Gs(V ) and all v ∈ V are uniquely labeled

2 edges are sampled independently

3 only the signal subgraph contains class conditional signal

formalizing assumptions

FG|Y = FA|Y (1)

=∏

(u,v)∈E

Bernoulli(auv ; ηuv |y ) (2)

=∏

(u,v)∈S

Bernoulli(auv ; ηuv |y )∏

(u,v)/∈S

Bernoulli(auv ; ηuv ) (3)

Page 26: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

signal subgraph classifier

bayes optimal classifier

h∗(G ) = FG=G |Y=yFY=y

=∏

(u,v)∈S

Bernoulli(auv ; ηuv |y )Bernoulli(y ;πy )

bayes plugin classifier

hs(G ) = F sG=G |Y=yF

sY=y

=∏

(u,v)∈SsBernoulli(auv ; ηsuv |y )Bernoulli(y ; πsy )

Page 27: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

signal subgraph classifier

our tasks

1 estimate πy ∀y ∈ Y2 estimate S3 estimate ηuv |y ∀(u, v) ∈ S, y ∈ Y

Page 28: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

estimating the prior

trivial

πMLEy = sy/s

Page 29: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

estimating the likelihood terms

less trivial

estimator equation result

MLE 1sy

∑i :yi=y a

(i)uv fails

objective MAP B(1/2, 1/2) weirdweakly informative MAP B(1, 1) fails

spike & slab bern + beta didn’t tryBishop et al. (’73) ωηMLE + (1− ω)λ expensive

our L-estimator look ↓ better for us

ηuv |y =

εn if maxi :yi=y a

(i)uv = 0

1− εn if mini :yi=y a(i)uv = 1

ηMLEuv |y otherwise

Page 30: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

estimating the likelihood terms

less trivial

estimator equation result

MLE 1sy

∑i :yi=y a

(i)uv fails

objective MAP B(1/2, 1/2) weird

weakly informative MAP B(1, 1) failsspike & slab bern + beta didn’t try

Bishop et al. (’73) ωηMLE + (1− ω)λ expensiveour L-estimator look ↓ better for us

ηuv |y =

εn if maxi :yi=y a

(i)uv = 0

1− εn if mini :yi=y a(i)uv = 1

ηMLEuv |y otherwise

Page 31: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

estimating the likelihood terms

less trivial

estimator equation result

MLE 1sy

∑i :yi=y a

(i)uv fails

objective MAP B(1/2, 1/2) weirdweakly informative MAP B(1, 1) fails

spike & slab bern + beta didn’t tryBishop et al. (’73) ωηMLE + (1− ω)λ expensive

our L-estimator look ↓ better for us

ηuv |y =

εn if maxi :yi=y a

(i)uv = 0

1− εn if mini :yi=y a(i)uv = 1

ηMLEuv |y otherwise

Page 32: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

estimating the likelihood terms

less trivial

estimator equation result

MLE 1sy

∑i :yi=y a

(i)uv fails

objective MAP B(1/2, 1/2) weirdweakly informative MAP B(1, 1) fails

spike & slab bern + beta didn’t try

Bishop et al. (’73) ωηMLE + (1− ω)λ expensiveour L-estimator look ↓ better for us

ηuv |y =

εn if maxi :yi=y a

(i)uv = 0

1− εn if mini :yi=y a(i)uv = 1

ηMLEuv |y otherwise

Page 33: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

estimating the likelihood terms

less trivial

estimator equation result

MLE 1sy

∑i :yi=y a

(i)uv fails

objective MAP B(1/2, 1/2) weirdweakly informative MAP B(1, 1) fails

spike & slab bern + beta didn’t tryBishop et al. (’73) ωηMLE + (1− ω)λ expensive

our L-estimator look ↓ better for us

ηuv |y =

εn if maxi :yi=y a

(i)uv = 0

1− εn if mini :yi=y a(i)uv = 1

ηMLEuv |y otherwise

Page 34: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

estimating the likelihood terms

less trivial

estimator equation result

MLE 1sy

∑i :yi=y a

(i)uv fails

objective MAP B(1/2, 1/2) weirdweakly informative MAP B(1, 1) fails

spike & slab bern + beta didn’t tryBishop et al. (’73) ωηMLE + (1− ω)λ expensive

our L-estimator look ↓ better for us

ηuv |y =

εn if maxi :yi=y a

(i)uv = 0

1− εn if mini :yi=y a(i)uv = 1

ηMLEuv |y otherwise

Page 35: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

estimating the likelihood terms

less trivial

estimator equation result

MLE 1sy

∑i :yi=y a

(i)uv fails

objective MAP B(1/2, 1/2) weirdweakly informative MAP B(1, 1) fails

spike & slab bern + beta didn’t tryBishop et al. (’73) ωηMLE + (1− ω)λ expensive

our L-estimator look ↓ better for us

ηuv |y =

εn if maxi :yi=y a

(i)uv = 0

1− εn if mini :yi=y a(i)uv = 1

ηMLEuv |y otherwise

Page 36: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

estimating the likelihood terms

L-estimators

a linear combination of (nonlinear functions of) order statistics

h(x (i))

=

εn if maxi :yi=y a

(i)uv = 0

1− εn if mini :yi=y a(i)uv = 1

x (i) otherwise

ani = 1/n

Thm 1: ηP→ ηMLE as s →∞.

Proof: it is an L-estimator.

Page 37: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

estimating the likelihood terms

L-estimators

a linear combination of (nonlinear functions of) order statistics

h(x (i))

=

εn if maxi :yi=y a

(i)uv = 0

1− εn if mini :yi=y a(i)uv = 1

x (i) otherwise

ani = 1/n

Thm 1: ηP→ ηMLE as s →∞.

Proof: it is an L-estimator.

Page 38: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

estimating the signal subgraph

some defintions

signal subgraph: S = u ∼ v : ηuv |y 6= ηuv |y ′signal vertices: V = argminV ′ V ′ where

V ′ = v : ∀u ∼ v ∈ S, u ∪ v ∈ V ′

incoherent estimator: assume |S| = q n2 is known

coherent estimator: assume |V| = m n is known

Page 39: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

estimating the signal subgraph

incoherent estimator

recall: edges are assumed to be independent

construct a test for each edge

H0 : ηuv |y = ηuv |y ′

HA : ηuv |y 6= ηuv |y ′

Fisher’s exact test is optimal under our assumptions

let puv be the p-value for this test

rank-order the p-values, p(1) < p(2) < · · · < p((n2))

let Ssinc = p(1), . . . , p(q)

Thm 2: SsincP→ S as s →∞

Proof: puvP→ 0 ∀ (u, v) ∈ S and puv

P→ U(0, 1) ∀ (u, v) /∈ S

Page 40: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

estimating the signal subgraph

coherent estimator

again, get p-values the same way

rank-order p-values for each u ∈ V , pu,(1) < pu,(2) < · · · < pu,(n)

find a collection ofm vertices who collectively have q edges that aremost significant, call those edges SscohThm 3: Sscoh

P→ S as s →∞Proof: idem.

Page 41: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

neuro data analysis

the process

collect diffusion MRI data from 50 people in 2 groups

estimate a brain-graph for each person

pretend brain-graphs are perfect estimates

build classifiers

compare results

Page 42: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

data collection

diffusion-weighted MRI (e.g., diffusion tensor imaging)

brains have large fiber bundles

water primarily diffuses within bundles, not across them

at each voxel, we can estimate the primary direction of diffusion

we can estimate the most likely path from each voxel

all voxels along the path we say are connected

we can also parcellate the brain into 70 regions

we can then compress the graph into 70 vertices

Page 43: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

graph inference

(Mr. Cap): magnetic resonance connectome automated pipeline

Page 44: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

outline

1 backgroundneurostats

2 methodsstatsneuro

3 resultsstatsneuro

4 discussion

Page 45: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

simulated data analysis

set |S| = 20, |V| = 1, η, and π

generate s samples (Gi , yi )iid∼ FGY (θ)

estimate parameters using both strategies

compare edge selection and classification performance

Page 46: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

a single simulation

Page 47: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

a monte carlo experiment

Page 48: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

relative efficiency

Page 49: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

brain-graphs!!!

Page 50: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

average brain-graphs

Figure: caption

Page 51: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

leave-one-out cross-validation misclassification rate

Page 52: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

synthetic data analysis

Page 53: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

model assumption checking

Page 54: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

signal subgraph

Page 55: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

bake-off

complementary approaches

nonparametric: k-nearest neighbor

semiparametric: metric embedding infinite gaussian mixture model

hackometric: graph invariants PCA SVM

theoretical properties

nonparametric: universally consistent (see [1] or [2] for proof)

semiparametric: universally consistent? (proof in progress)

hackometric: NOT

Page 56: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

bake-off

complementary approaches

nonparametric: k-nearest neighbor

semiparametric: metric embedding infinite gaussian mixture model

hackometric: graph invariants PCA SVM

theoretical properties

nonparametric: universally consistent (see [1] or [2] for proof)

semiparametric: universally consistent? (proof in progress)

hackometric: NOT

Page 57: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

bake-off

complementary approaches

nonparametric: k-nearest neighbor

semiparametric: metric embedding infinite gaussian mixture model

hackometric: graph invariants PCA SVM

theoretical properties

nonparametric: universally consistent (see [1] or [2] for proof)

semiparametric: universally consistent? (proof in progress)

hackometric: NOT

Page 58: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

bake-off

complementary approaches

nonparametric: k-nearest neighbor

semiparametric: metric embedding infinite gaussian mixture model

hackometric: graph invariants PCA SVM

theoretical properties

nonparametric: universally consistent (see [1] or [2] for proof)

semiparametric: universally consistent? (proof in progress)

hackometric: NOT

Page 59: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

bake-off

complementary approaches

nonparametric: k-nearest neighbor

semiparametric: metric embedding infinite gaussian mixture model

hackometric: graph invariants PCA SVM

theoretical properties

nonparametric: universally consistent (see [1] or [2] for proof)

semiparametric: universally consistent? (proof in progress)

hackometric: NOT

Page 60: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

bake-off

results

classifier error (%)

naive bayes 41incoherent 27coherent 16

kNN 20CW6GI 20

kNNPCA12GI 16semiparametric 16

Page 61: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

outline

1 backgroundneurostats

2 methodsstatsneuro

3 resultsstatsneuro

4 discussion

Page 62: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

summary

stats

first (to our knowledge) to develop probabilistic classifiers thatnatively operate on graph-valued data

the combination of parametric, semiparametric, nonparametric, andhackometric spans the space of strategies that one might employ

neuro

we can now efficiently (in parallel) estimate brain-graphs

better than state-of-the-art performance

Page 63: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

next steps

stats

semiparametric theory

more interesting generative process story

generalize to multiclass and regression

bayesianize

neuro

data start as 128× 128× 128× 256 ∈ R50M per subject

we then call our 70× 70 graphs high-dimensional

we have O(103) brain-scans

building a neuroimaging database to efficiently process/query datastaticize “pre-processing”

can apply to function connectivity as well

Page 64: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

acknowledgements

brother: R. Jacob Vogelstein, PhD

postdoc advisor: Carey E. Priebe, PhD

grad student: William R. Gray

his advisor: Jerry L. Prince, PhD

presented data: Susan Resnick, PhD

large data collection: Michael Milham, PhD, MD

database: Randal Burns, PhD

Page 65: consistent connectome classification · consistent connectome classi cation joshua t. vogelstein assistant research scientist dept. applied math & stats johns hopkins university right

anything

email: [email protected]

all code, pre-prints, etc, available at my website: http://jovo.me

all brain data: http://openconnecto.me