computational motor control: optimal control for stochastic systems (jaist summer course)

28
Computational Motor Control Summer School 05: Optimal control for stochastic systems. Hirokazu Tanaka School of Information Science Japan Institute of Science and Technology

Upload: hirokazutanaka

Post on 18-Feb-2017

290 views

Category:

Science


6 download

TRANSCRIPT

Page 1: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Computational Motor Control Summer School05: Optimal control for

stochastic systems.

Hirokazu Tanaka

School of Information Science

Japan Institute of Science and Technology

Page 2: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Optimal control for stochastic systems.

In this lecture, we will learn:

• Feedforward and feedback control

• Trial-by-trial variability

• Signal-dependent noise

• Dynamic programming

• Bellman’s optimality equation

• Linear-quadratic-Gaussian (LQG) control

• Optimal feedback control (OFC) model

• Human psychophysics

Page 3: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Feedforward and feedback control.

Feedforward control as a function of time step:

1k k k x Ax Bu

k k ku u

Feedback control as a function of state:

k k ku u x

For a deterministic system, feedforward and feedback control are equivalent. On the other hand, for a stochastic system, feedforward and feedback control are NOT equivalent.

Page 4: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Signal-dependent noise: trial-by-trial variability.

van Beers et al. (2004) J Neurophysiol;Schmidt et al. (1979) Psychol Rev; Jones et al. (2002) J Neurophysiol

Variability in reaching endpoints Variability in force production

noise 0, 11 , u u

noise noise TE , Cov u u u uuSignal dependent noise

Page 5: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Minimum-variance control predicts smooth trajectory.

Harris & Wolpert (1998) Nature

1 1n n n n x Ax Bu

1 1 1

2

2 2 2 1 1

1

0

0

1

1

1 1

1n

n

k

k

n n n n

n n n n n

n k

k

x Ax Bu

A x ABu Bu

A x A Bu

0

1

0

1E n kn

n

n

k

k

x A x A Bu

T

1 T1

0

T 1Cov n k n k

n k k

n

k

x A Bu u B A

Page 6: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Minimum-variance control predicts smooth trajectory.

Harris & Wolpert (1998) Nature

0

11

0

En

n

k

n k

n

k

f ft t T

x A x A Bu x

T

1 T T1

11

110

1Covf f

f f

T

n k n

t t T n

k

t n t k

n k

t

k

x A Bu u B A

Minimize the variance of final position (quadratic with respect to u)

under constraints (T+1 constraints with respect to u)

This problem can be solved with quadratic programming (quadprogcommand).

Page 7: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Minimum-variance control predicts smooth trajectory.

Harris & Wolpert (1998) Nature

Saccade velocity

Reaching and drawing

Page 8: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Minimum-time control predicts Fitts’ law and main sequence.

Tanaka et al. (2006) J Neurophysiol

Faster, but less accurate

300ms 700ms

More precise, but slower

500ms

Unique movement time can be determined

MT ,

T

1 Var (t

( ) E ( )

{ }

)t tf p

f

t tf p

f

f

p

t f

t f

f

V d

dt t

tt

S t

t

t

μ x x

u

x

minimization of movement time

final variance constraint

final position constraint

Page 9: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Minimum-time control predicts Fitts’ law and main sequence.

Tanaka et al. (2006) J Neurophysiol

Fitts’ law

Main sequence

Model Experiment

Page 10: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Optimal control: Bellman’s optimality equation.

1

0 1 1 0

0

1 1, , , ;

2 2

NT T T

N k k k k k N N N

k

J

u u u x x Q x u Ru x Q x

1k k k x Ax Bu

Error during movement

Control cost Endpoint error

Find control signals {u0, u1, …, uN-1} that minimize the cost function.

Deterministic (i.e., noiseless) dynamics:

Cost function:

Page 11: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Optimal control: Pontryagin’s minimum principle.

State x

Time stepNN-1N-2N-30 1 2 3

u0

u1 u2

u3

uN-3

uN-2uN-1

x0

x1

x2x3

xN-3 xN-2

xN-1

xN

1

0 1 1 0

0

1 1, , , ;

2 2

NT T T

N k k k k k N N N

k

J

u u u x x Q x u Ru x Q x

The control signals {u0, u1, …, uN-1} are optimized as a whole.

Page 12: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Optimal control: Bellman’s optimality equation.

State x

Time stepNN-1N-2N-30 1 2 3

u0

u1 u2

u3

x0

x1

x2x3

n n+1 n+2

(cost at state xn at step n) = (cost of moving xn to xn+1) + (cost at state xn+1 at step 𝑛 + 1)

1 1n nV x n nV x

Page 13: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Optimal control: Bellman’s optimality equation.

1 1

1

, , ,

1 1

2 2minn n N

NT T T

n n k k k k k N N N

k n

V

u u u

x x Q x u Ru x Q x

1

1 1

1

1

,

,

,

1

,

,

1

1 1

2 2

1 1 1

2 2 2

min

min min

n N

nn N

n

NT T T

n n k k k k k N N N

k n

NT T T T T

n n n n n k k k k k N N N

nk

V

u u u

u u u

x x Q x u Ru x Q x

x Q x u Ru x Q x u Ru x Q x

1 1

1

2minn

T T

n n n n n n nV

u

x Q x u Ru x 1 1n nV x

1 1

1

2minn

T T

n n n n n n n n nV V

u

x x Q x u Ru x

Page 14: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Solvable example: Linear-Quadratic-Regulator control.

1 1 1

1

1 1

2 2

1 1

2 2

min

min

T T T

k k k k k k k k ku

TT T

k k k k k k k k k ku

V

x x Q x u Ru x S x

x Q x u Ru Ax Bu S Ax Bu

1 1

1 1

10

2

T T T T T T T

k k k k k k k k k k

T T

k k k k

u Ru u B ABu x A S Bu u B S Axu

R B S B u B S Ax

1

1 1

T T

k k k k k k

u R B S B B S Ax L x

Assume that the cost-to-go function has a quadratic form:

1 1 1 1

1

2

T

k k k kV x x S x

Substituting this into the Bellman equation gives

Then, by minimizing with respect to u,

A feedback control law is obtained:

Page 15: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Solvable example: Linear-Quadratic-Regulator control.

1

1 1

T T

k k k k k k

u R B S B B S Ax L x

1

1 1

1

1 1

2 2

TT T

k k k k k k k kk

V

x x S x x Q A S BR B A x

1

1 1

1

T T

k k k

S Q A S BR B A

Substituting the control law

into the Bellman equation gives

Therefore a backward recursive equation for the matrix S is obtained.

0

S0

L0

1

S1

L1

2

S2

k-1

Sk-1

Lk-1

k

Sk

Lk

k+1

Sk+1

Lk-2

N-1

SN-1

LN-1

N

SN

LN-2

Page 16: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Solvable example: Linear-Quadratic-Regulator control.

k k k u L x

1

1 1

T T

k k k

L R B S B B S A

1

1 1

1

T T

k k k

S Q A S BR B A

N NS Q

Backward recursion equation for the matrix S:

Feedback control law:

where

with the terminal condition

Therefore, once the matrices {S0, …, SN} and {L0, …, LN-1} are obtained, the optimal feedback control signals {u0, …, uN-1} can be computed.

Page 17: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Deterministic and stochastic optimal control.

1

0 1 1 0

0

1 1, , , ;

2 2

NT T T

N k k k k k N N N

k

J

u u u x x Q x u Ru x Q x

1

0 1 1

0 ,

0 0

1 1ˆ, , , ; E,

2 2

NT T T

N k k k k k N N N

k

J

w v

u u u x x Q x u Ru x Q x

1k k k

k k

x Ax Bu

y Cx

1k k k

k kk

k

w

v

x Ax Bu

y Cx

Deterministic Optimal Control

Stochastic Optimal Control

Page 18: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Stochastic optimal control combines Kalman filter and feedback control.

ˆk k k u L x

1ˆ ˆ ˆ

k k k k k k x Ax Bu K y Cx

1

0 1 1

0 ,

0 0

1 1ˆ, , , ; E,

2 2

NT T T

N k k k k k N N N

k

J

w v

u u u x x Q x u Ru x Q x

1k k k

k kk

k

w

v

x Ax Bu

y Cx

Stochastic Optimal Control

Optimal state estimation (Kalman Filter)

Feedback controller

Page 19: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Kalmanfilter

Sensory feedback

Effector

Feedback controller

Forward model

Observation model

y

filterˆ u Lx

x

filterx

predictionx

predictiony

Page 20: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Optimal feedback control as a model of motor control.

Todorov & Jordan (2002) Nature Neurosci

1

0 1 1

0 ,

0 0

1 1ˆ, , , ; , E

2 2

NT T T

N k k k k k N N N

k

J

ω

u u u x x Q x u Ru x Q x

1 k

k

k k k k

k k

x Ax Bu C

y Hx ω

u

Page 21: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Optimal feedback control as a model of motor control.

Todorov & Jordan (2002) Nature Neurosci; Todorov (2005) Neural Comput

Kalman filter: 1

ˆ ˆ ˆk k k k k k x Ax Bu K y Hx

1T T

T T T

1 1 1

1

ˆ T ˆ ˆ

1

;

ˆ ˆ;

k k k

k k k k k k

T T

k k k k k k

e

x x x

e ω

e e x e

e

K A H H

A K H A CL L C

K H A A BL A BL x

Ω

x

H

Feedback control:

ˆk k k u L x

1T T T

1 1 1 1

T

1

TT

1 1

;

;

k

N

N

k k k k

k k k k N

k k k k k k

Q

e

e e e

x x x

x x x

x

L B S B R C S S C B S A

S Q A S A BL S

S A S BL A K H S A K H S 0

Page 22: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Infinite-horizon optimal feedback control.

Phillis (1985) IEEE Trans Auto Contr; Qian et al. (2013) Neural Comput

,d dd dt d

d dt d

x Yu G

y Cx

x Bu x

D

A F

T T T

1 20

1lim E E lim

t

t tJ J J dt

t

x Ux x Qx u Ru

Stochastic dynamics with signal- and state-dependent noises:

Infinite-horizon cost:

.

ˆ ,ˆ

ˆ

ˆd dt d dt

x Ax Bu y

u

x

L

C

x

K

In infinite-horizon optimal feedback control, the Kalman gain (K) and the feedback gain (L) are time invariant.

Page 23: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Bimanual coordination explained by OFC model.

Dietrichsen (2007) Curr Biol

Two cursor condition One cursor condition

Model

Experiment

Page 24: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Motor adaptation as reoptimization.

Izawa et al. (2008) J Neurosci

Sigmoidal pathsModel Experiment

Field uncertaintyModel Experiment

Page 25: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Movement as a real-time decision making process.

Nashed et al. (2014) J Neurosci

Page 26: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Summary

• Feedforward and feedback control differ in stochastic dynamics.

• Signal-dependent control noise contributes to trial-by-trial motor variability.

• Movement accuracy under signal-dependent noise models human movements.

• Optimal feedback control (OFC) integrates state estimation and motor control in a single computational framework.

• A number of psychophysical experiments can be explained by the OFC model.

Page 27: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

References

• Schmidt, R. A., Zelaznik, H., Hawkins, B., Frank, J. S., & Quinn Jr, J. T. (1979). Motor-output variability: a theory for the accuracy of rapid motor acts. Psychological review, 86(5), 415.

• van Beers, R. J., Haggard, P., & Wolpert, D. M. (2004). The role of execution noise in movement variability. Journal of Neurophysiology, 91(2), 1050-1063.

• Harris, C. M., & Wolpert, D. M. (1998). Signal-dependent noise determines motor planning. Nature, 394(6695), 780-784.

• Tanaka, H., Krakauer, J. W., & Qian, N. (2006). An optimization principle for determining movement duration. Journal of neurophysiology, 95(6), 3875-3886.

• Todorov, E., & Jordan, M. I. (2002). Optimal feedback control as a theory of motor coordination. Nature neuroscience, 5(11), 1226-1235.

• Todorov, E. (2005). Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system. Neural computation, 17(5), 1084-1108.

• Athans, M. (1967). The matrix minimum principle. Information and control, 11(5), 592-606.

• Phillis, Y. A. (1985). Controller design of systems with multiplicative noise. Automatic Control, IEEE Transactions on, 30(10), 1017-1019.

• Qian, N., Jiang, Y., Jiang, Z. P., & Mazzoni, P. (2013). Movement duration, fitts's law, and an infinite-horizon optimal feedback control model for biological motor systems. Neural computation, 25(3), 697-724.

• Diedrichsen, J. (2007). Optimal task-dependent changes of bimanual feedback control and adaptation. Current Biology, 17(19), 1675-1679.

• Izawa, J., Rane, T., Donchin, O., & Shadmehr, R. (2008). Motor adaptation as a process of reoptimization. The Journal of Neuroscience, 28(11), 2883-2891.

• Nashed, J. Y., Crevecoeur, F., & Scott, S. H. (2014). Rapid online selection between multiple motor plans. The Journal of Neuroscience, 34(5), 1769-1780.

Page 28: Computational Motor Control: Optimal Control for Stochastic Systems (JAIST summer course)

Exercise

• Write a Matlab code of the minimum-variance model for a trajectory with given initial and final positions.

• Write a Matlab code of the optimal feedback control for a trajectory with given initial and final positions.

• Investigate how the minimum-variance model and the optimal feedback model differ.