computational motor control: state space models for motor adaptation (jaist summer course)

35
Computational Motor Control Summer School 03: State space models for motor adaptation. Hirokazu Tanaka School of Information Science Japan Institute of Science and Technology

Upload: hirokazutanaka

Post on 12-Apr-2017

371 views

Category:

Science


5 download

TRANSCRIPT

Page 1: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

Computational Motor Control Summer School03: State space models for motor adaptation.

Hirokazu Tanaka

School of Information Science

Japan Institute of Science and Technology

Page 2: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

State-space modeling of motor adaptation.

In this lecture, we will learn:

• Motor adaptation paradigms

• Continuous-time state-space models

• Discrete-time state-space models

• Controllability

• Observability

• State-space description for motor adaptation

• Multi-rate models

• Motor memory of errors

• Mirror reversal (non-error based learning)

Page 3: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

Motor adaptation paradigms to dynamical perturbations: Force-field adaptation.

Shadmehr & Mussa-Ivaldi (1994) J Neurosci

Baseline (no field) Initial exposures

adaptation catch trials

Page 4: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

Motor adaptation paradigms to kinematical perturbations: Visuomotor rotation.

Krakauer et al. (2000) J Neurosc; Krakauer (2009) Progress in Motor Control

Page 5: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

Adaptation to prism displacements.

Martin et al. (1996) Brain ;Kitazawa et al. (1995) J Neurosci

Page 6: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

Adaptation to prism displacements.

Kitazawa et al. (1995) J Neurosci

1 1n n ne e ke 1

1

1

n

in

i

e e k e

Page 7: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

Continuous-time state-space models.

F ma mx x v

Fv am

x

v

x

Newton’s equation of dynamics

0 1 0

0 0 1/

x xF

v v m

x Ax Bu

x Ax Bu

State-space representation

A x B u

State-space vector

Page 8: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

Discrete-time state-space models.

Discrete-time representation

k k t x x

1 ( 1)k

k k

k k k

k k

k t

t

t

t t

x x

x x

x Ax Bu

I A x B u

1ˆ ˆ

k k k x Ax Bu

2

ˆ t

t

t t

te t

e

t

A

A

A I A

B BB

t

Δt 2Δt 3Δt (k-1)Δt kΔt (k+1)Δt0

k-1 k k+10 1 2 3

time (continuous)

time steps (discrete)

Page 9: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

Deterministic and stochastic state-space models.

1k k k

k k

x Ax Bu

z Cx

1

k

kk k

kk

k

w

v

x Ax Bu

z Cx

Deterministic Stochastic

XkXk-1 Xk+1

zk-1 zk zk+1

uk-1 uk uk+1

Page 10: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

Linear time-variant and time-invariant state-space models.

1k k k

k k

k k

k

x x u

xCz

A B

Time-variant model

1k k k

k k

x x u

xCz

A B

Time-invariant model

Throughout these lectures, we will use linear time-invariant (LTI) models for mathematical simplicity.

Page 11: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

State-space models in an explicit component form.

1k k k x Ax Bu

k kz Cx

1, 1

2, 1

, 1

k

k

N k

x

x

x

1,

2,

,

k

k

N k

x

x

x

11 12 1

21 21

11 1

N

N

a a a

a a

a a

11

21

1

1

L

N NL

b b

b

b b

1

L

u

u

= +

1,

2,

,

k

k

N k

x

x

x

1

M

z

z

11 12 1

1 112

N

MM

c c c

c c c

=

Process equation

Measurement equation

N vector N×N matrix N vector N×L matrix L vector

M vector M×N matrix N vector

Page 12: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

Controllability: the ability of driving a system into desired final state.

1k k k x Ax Bu

, , ,N L N N

k k

N L x u A B

Controllability is the ability of external inputs {uk} to drive a state from any initial condition to any final condition in a finite time. A state-space model is controllable if the N×NL controllability matrix has full row rank:

2 1n B AB A B A B

Sketch of proof:

0

1 1

2

2 2 1

1

1

0

2

N N N

N N

NN

N

N

N

x Ax Bu

A x ABu Bu

u

uA x B AB A B

uKalman (1963) SIAM J Contr

Page 13: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

Observability: determining hidden state from measurements.

k kz Cx

, ,N M N

k

M

k

x z C

Observability is the ability to determine a (latent) state from a sequence of measurements {zk}. A state space model is called observable if the MN×N observability has full rank N:

Kalman (1963) SIAM J Contr

1N

C

CA

C A

Page 14: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

State-space models for dynamic (force-field) motor adaptation.

Thoroughman & Shadmehr (2000) Nature; Donchin et al. (2003) J Neurosci

1n n n

n n n

x Ax Bu

z Cx Du

Page 15: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

State-space models for dynamic (force-field) motor adaptation.

Thoroughman & Shadmehr (2000) Nature; Donchin et al. (2003) J Neurosci

1n n n

n n n

x Ax Bu

z Cx Du

Page 16: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

State-space models for kinematic (visual rotation) motor adaptation.

Tanaka et al. (2006) J Neurophysiol

T

1

k k k k

k k k

z

z

x Ax BH

H x

Page 17: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

Trial-by-trial generalization width reflects directional tuning width.

1

1i i N

i

N

g

g

g

r r r r Rg

T

k k k rR g

1 1 1

T

k k k k k k k k R R g R g gr g

Suppose that, for target direction θ, the motor output is a weighted sum of population activity {gi(θ)} multiplied with preferred directions {ri}:

A gradient descent learning rule specifies the change of preferred directions according to the movement error Δrk and the population activity {g(θk)} :

This change affects the motor output at the next trial as:

Page 18: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

Two-rate model of motor adaptation: fast and slow learners.

Smith et al. (2006) PLoS Biol

1n n nu x Ax B

f ff f

1

s ss s

1

0

0

n n

n

n n

x xa bu

x xa b

n nz Cx

f

f s1

1 1s

1

1 1n

n n n

n

xz x x

x

f s s f,a a b b

There are two learners in the brain; the fast learner (x(f)) learns quickly but forgets quickly, while slow learner (x(s)) learns slowly but maintains its memory longer.

Motor output is a sum of the fast and slow learners.

State vector consists of fast (x(f)) and slow learners (x(s)).

Page 19: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

The model explains savings, spontaneous recovery.

Smith et al. (2006) PLoS Biol

Savings Spontaneous recovery

Page 20: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

The prediction of spontaneous recovery is confirmed in humans.

Smith et al. (2006) PLoS Biol

Page 21: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

The slow process contributes to motor memory consolidation.

Joiner & Smith (2008) J Neurophysiol

The slow process, but not the fast process, contributes to motor memory consolidation.

Page 22: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

Explicit (strategic) and implicit (error-based) learning.

Mazzoni & Krakauer (2006) J Neurosci

Strategy (aiming the adjacent target) cancels the “error” without any adaptation!

Page 23: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

Explicit (strategic) and implicit (error-based) learning.

Mazzoni & Krakauer (2006) J Neurosci

Page 24: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

Explicit (strategic) and implicit (error-based) learning.

Mazzoni & Krakauer (2006) J Neurosci

Page 25: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

What is “motor error?”: Aiming error and target error.

Taylor & Ivry (2011) PLoS Comp Biol; Taylor & Ivry (2014) Prog Brain Res

Page 26: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

State-space model for strategic and error-based learning.

Taylor & Ivry (2011) PLoS Comp Biol; Taylor & Ivry (2014) Prog Brain Res

yn: target directionrn: rotation anglexn: adaptation variablesn: strategy variable

yn

sn

sn-rn+xn

aiming

n n n nn n ne s s r x r x

target

n n n n n n nn ne y s r x y sx r

aiming

netarget

ne

Page 27: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

State-space model for strategic and error-based learning.

Taylor & Ivry (2011) PLoS Comp Biol; Taylor & Ivry (2014) Prog Brain Res

yn

sn

sn-rn+xn

aiming

n n n nn n ne s s r x r x

target

n n n n n n nn ne y s r x y sx r

aiming

netarget

ne

aiming

targ

1

e

1

t

n n n

nn n

x ax be

s cs de

a=0.99, b=0.015,

c=0.999, d=0.022

Page 28: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

Steepest descent learning rule for optimization.

Lecture 6, in Neural Networks for Machine Learning, Geoff Hinton

E( 1) ( )n n E

w w

w

optimum

E

w

E

w

Descent learning rule:

RPROP: Adjustment of learning rate.

E

wgradient

learning rate

1 1

Page 29: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

Motor memory of experienced errors.

Herzfeld et al. (2014) Science

( ) ( ) ( )

( 1) ( ) ( ) ( )

ˆ

ˆ ˆ

n n n

n n n n

e y y

x ax e

( )

( )

( )

( )

( )

: perturbation

ˆ : estimated perturbation ("belief")

: sensory consequence

ˆ : predicted sensory consequence

: control signal

n

n

n

n

n

x

x

y

y

u

State-space model: memory of environments

Population-coding model: memory of errors

( ) ( )n n

i i

i

w g e

2

2exp

2

i

i

e eg e

( 1)

( 1) ( 1) ( 1) ( )

T ( 1) ( 1)sgn

n

n n n n

n n

ee e

e e

gw w

g g error

acti

vity

w1 w2 w3 wn

η

Page 30: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

Motor memory of experienced errors.

Herzfeld et al. (2014) Science

Page 31: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

Displacement and left-right reversal: Why so different?

Martin et al. (1996) Brain; Sekiyama et al. (2000) Nature

Displacement prism

… takes only few dozen trials. … takes a few weeks.

Left-right reversed prism

Day 3

Day 34

Page 32: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

Mirror reversal: a distinct form of motor adaptation?

Taglen et al. (2014) J Neurosci; Lilicrap et al. (2013) Exp Brain Res

Movement number Movement number

Ab

solu

te e

rro

r

Ab

solu

te e

rro

r

Visual rotation Mirror reversal

Page 33: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

Summary

• A state-space model consists of a process equation (temporal transition) and an observation equation (measurement).

• Humans are flexible to a novel environment, known as motor adaptation, such as perturbations of force fields and visual transformation.

• State-space modeling has been very successful in describing trial-by-trial adaptation processes in humans.

Page 34: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

References

• Thoroughman, K. A., & Shadmehr, R. (2000). Learning of action through adaptive combination of motor primitives. Nature, 407(6805), 742-747.

• Donchin, O., Francis, J. T., & Shadmehr, R. (2003). Quantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: theory and experiments in human motor control. The Journal of Neuroscience, 23(27), 9032-9045.

• Tanaka, H., Sejnowski, T. J., & Krakauer, J. W. (2009). Adaptation to visuomotor rotation through interaction between posterior parietal and motor cortical areas. Journal of Neurophysiology, 102(5), 2921-2932.

• Smith, M. A., Ghazizadeh, A., & Shadmehr, R. (2006). Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol, 4(6), e179.

• Joiner, W. M., & Smith, M. A. (2008). Long-term retention explained by a model of short-term learning in the adaptive control of reaching. Journal of Neurophysiology, 100(5), 2948-2955.

• Inoue, M., Uchimura, M., Karibe, A., O'Shea, J., Rossetti, Y., & Kitazawa, S. (2015). Three timescales in prism adaptation. Journal of Neurophysiology, 113(1), 328-338.

• Mazzoni, P., & Krakauer, J. W. (2006). An implicit plan overrides an explicit strategy during visuomotor adaptation. The Journal of Neuroscience, 26(14), 3642-3645.

• Taylor, J. A., & Ivry, R. B. (2011). Flexible cognitive strategies during motor learning. PLoS Comput Biol, 7(3), e1001096-e1001096.

• Taylor, J. A., & Ivry, R. B. (2014). Cerebellar and prefrontal cortex contributions to adaptation, strategies, and reinforcementlearning. Progress in Brain Research, 210, 217.

• Taylor, J. A., Krakauer, J. W., & Ivry, R. B. (2014). Explicit and implicit contributions to learning in a sensorimotor adaptation task. The Journal of Neuroscience, 34(8), 3023-3032.

• Telgen, S., Parvin, D., & Diedrichsen, J. (2014). Telgen, S., Parvin, D., & Diedrichsen, J. (2014). Mirror reversal and visual rotation are learned and consolidated via separate mechanisms: Recalibrating or learning de novo?. The Journal of Neuroscience, 34(41), 13768-13779.?. The Journal of Neuroscience, 34(41), 13768-13779.

• Lillicrap, T. P., Moreno-Briseño, P., Diaz, R., Tweed, D. B., Troje, N. F., & Fernandez-Ruiz, J. (2013). Adapting to inversion of the visual field: a new twist on an old problem. Experimental Brain Research, 228(3), 327-339.

• Ostry, D. J., Darainy, M., Mattar, A. A., Wong, J., & Gribble, P. L. (2010). Somatosensory plasticity and motor learning. The Journal of Neuroscience, 30(15), 5384-5393.

Page 35: Computational Motor Control: State Space Models for Motor Adaptation (JAIST summer course)

Exercise

• Simulate the state-space model proposed by Taylor and Ivry.

• Mirror reversal is different from most adaptation paradigms in that learning from error worsens the performance. Can we consider a state-space model for mirror reversal?