clase rocas

Upload: juan-karlos

Post on 06-Jul-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Clase Rocas

    1/41

    INTRODUCCION

    En las páginas que siguen se exponen pensando en el ángulo agronómico, algunos temas

    geológicos haciendo énfasis en la descripción de rocas, minerales y estructuras más que en su

    génesis. Esto no siempre es posible ya que muchos de los términos empleados en las

    clasificaciones están relacionados con aspectos genéticos y no puramente descriptivos. En todos

    los casos en la caracterización de los elementos de estudio de la geología se optará por

    ejemplificar con materiales de nuestro territorio y sólo con aquellos que por su abundancia relativa

    tienen interés para el agrónomo.

     

    PARA SITUARNOS...

    Estructura de la Tierra:

    En la estructura de la tierra pueden distinguirse una serie de capas aproximadamente concéntricas

    diferenciables por su composición mineral y propiedades físicas, el esquema que se presenta

    expone sus nombres y dimensiones relativas.

    Es interesante observar que el hombre sólo tiene acceso directo para su estudio a una mínima

    parte de los casi 6400 km necesarios para alcanzar el centro de nuestro planeta. La perforación

    más profunda efectuada hasta la fecha es de unos 8000m y en la enorme mayoría de los casos las

    observaciones directas para inferir el

    comportamiento y los procesos que

    operan en el interior de nuestro planeta

    son de profundidad mucho menor.

    Las rocas que hoy vemos en superficie,

    directamente debajo de los suelos pueden

    haberse formado en posiciones muy

    diferentes de aquellas en las que hoy se

    encuentran. De hecho, su naturaleza,propiedades, respuesta a la

    meteorización, incidencia en la química

    del suelo, y aún la incidencia en la

    topografía son temas íntimamente

    relacionados, que solo pueden

    entenderse conociendo los mecanismos

  • 8/17/2019 Clase Rocas

    2/41

    generales en la evolución de nuestro planeta: un sistema "vivo" en equilibrio inestable, en el que

    cada observación es únicamente una fotografía instantánea de procesos relativamente lentos

    cuando se les observa a escala temporal humana.

    De todas las familias de procesos que conducen a la transformación química y física de los

    materiales de la corteza terrestre a través del tiempo, solamente una pequeña parte -aquellos que

    ocurren en la superficie de nuestro planeta- son directamente observables. Meteorización, erosión,

    transporte y sedimentación son procesos de este tipo (exógenos), y en su conjunto caracterizarán

    el producto final: las rocas sedimentarias.

    Otro grupo de procesos (endógenos) ocurren a distintos niveles de profundidad en la corteza. Las

    condiciones de temperatura, presión y composición química en cada lugar son incógnitas que debe

    inferir el geólogo a partir de datos indirectos. Dos grupos de rocas son las que se generan en estas

    condiciones: rocas ígneas y rocas metamórficas.

    Los procesos endógenos ocurren en el interior de nuestro planeta, y

    las variables son la presión, temperatura y composición química. Los

    procesos exógenos son exclusivos de la superficie de la Tierra, y

    resultan de la interacción entre las rocas de la corteza terrestre y la

    atmósfera, hidrósfera y biósfera.

    Como vemos, la primera gran clasificación del universo de las rocas se realiza teniendo en cuenta

    aspectos genéticos y no descriptivos, no las clasificamos por su color, densidad o cualesquiera de

    sus propiedades físicas, sino por el mecanismo que dio lugar a esa agrupación de minerales. La

    ventaja relativa de una clasificación genética, y del reconocimiento de que por ejemplo una roca

    pertenece a la categoría de las "rocas sedimentarias" es que nos permite realizar inmediatamente

    inferencias acerca de lo que ocurre más allá de nuestro punto de observación.

    A continuación enfocaremos entonces el problema de la clasificación de las rocas, para lo cual

    deberemos primeramente definir los elementos constituyentes de todas ellas, no importa su origen:

    los minerales.

    MINERALES

    Definiciones básicas:

    MINERAL: Compuesto químico, homogéneo, de origen natural, dotado de una composición

    química determinada -dentro de ciertos límites- y con una estructura interna específica (constantes

    cristalográficas). Todas las demás características y comportamientos fisicoquímicos del mineral se

    derivan de su composición química y estructura, estando frecuentemente supeditados cualitativa y

  • 8/17/2019 Clase Rocas

    3/41

    cuantitativamente a las contaminaciones, mezclas isomorfas, defectos estructurales, radiactividad,

    etc., que posea cada individuo en concreto.

    SOLIDO: Sustancia cuyos constitutivos se agrupan formando una red cristalina.

    RED CRISTALINA: Conjunto de todos los nodos que forman una estructura cristalina. Está definida

    para cada especie mineral por seis constantes cristalográficas: a0, b0, c0, a, b, g.

    ESTRUCTURA CRISTALINA: Ordenación tridimensional, periódica, anisótropa y simétrica de los

    átomos, iones o moléculas que constituyen un mineral.

    CRISTAL: Materia cristalina, natural o artificial, delimitada por superficies planas, paralelas a planos

    reticulares de su estructura interna.

    Todo mineral puede concebirse además como un sistema en equilibrio

    con el medio que lo rodea en el momento de su cristalización. Todocambio en la temperatura, presión, o composición del entorno (,T,!" lo

    transforma en un sistema relativamente inestable. La alterabilidad en

    condiciones superficiales de un mineral en particular depende entre

    otros factores de la diferencia entre las condiciones reinantes durante

    su cristalización y las condiciones a las que se encuentra sometido en el

    ciclo superficial. #tro de los factores que inciden fuertemente es la

    naturaleza de los enlaces entre los elementos constituyentes de cada

    cristal, la ener$ía de esas uniones que son destruídas en la alteración

    condiciona la estabilidad de cada mineral frente a un cambio de

    condiciones ,T,!.

    Las propiedades físicas y químicas de las rocas dependen entre otros parámetros, de las

    propiedades físicas y químicas de los minerales constituyentes.

    El reconocimiento de los minerales es el conjunto de técnicas que podemos utilizar para inferir la

    especie en función de propiedades observables o medibles. Para el agrónomo, en la amplia

    mayoría de los casos, las herramientas de observación y análisis son muy limitadas. Será limitado

    entonces la capacidad de reconocer un número importante de diferentes especies minerales.

    Afortunadamente una clasificación razonable y útil de las rocas más abundantes del subsuelo

    puede llevarse a cabo sabiendo reconocer unos pocos minerales, que por su frecuencia de

    aparición y volumen relativo en la corteza permiten definirlas. Han sido reconocidas en la corteza

    unas 3000 especies minerales, su clasificación compete a la mineralogía y los criterios utilizadosen estas clasificaciones son o bien químicos (silicatos, sulfatos, óxidos, etc.), o bien estructurales

    (filosilicatos, tectosilicatos, inosilicatos, etc.). No debe pues confundirse el reconocimiento que será

    el fruto de la observación de unas pocas propiedades físicas, con la clasificación en si: resultado de

    un análisis de laboratorio detallado y extenso donde se aplican sofisticadas técnicas para el

    reconocimiento de la estructura cristalina y composición química.

  • 8/17/2019 Clase Rocas

    4/41

     

    Clasificación de los minerales:

    Una de las clasificaciones más utilizadas en mineralogía fue elaborada por H. Strunz, quién la

    propuso en 1938. Con algunas modificaciones, se encuentra en uso y es universalmente aceptada.

    Divide a los minerales en 9 clases:

    1. Elementos

    2. Sulfuros

    3. Halogenuros

    4. Oxidos e hidróxidos

    5. Nitratos, carbonatos, boratos

    6. Sulfatos

    7. Fosfatos

    8. Silicatos

    9. Sustancias orgánicas

    Clase 

    No. de

    especies

    aprox 

    Ejemplos 

    I  %&  #ro, 'zufre

    II 

    &&  irita, )alena

    III 

    *&&  +luorita, al $ema

    IV 

    -%&  uarzo, /ematita, 0ubí 

    -&&  alcita, 1olomita

    VI 

    -&&  2eso, 3aritina

  • 8/17/2019 Clase Rocas

    5/41

    VII  %&  'patito, 4onazita

    VIII  %&&  +eldespatos, 4icas

    IX  -& 'mbar

    Dentro de cada una de estas clases se contemplan una serie de divisiones denominadas "tipos",

    "grupos", "series", "familias" y por último la unidad fundamental: la "especie".

    Los silicatos constituyen el grupo más importante, ya que en su conjunto conforman el 90% de la

    corteza terrestre. La subdivisión interna de este grupo se hace en base a criterios estructurales y

    no químicos, suponiendo una unidad fundamental [SiO4]4-, esencialmente un tetraedro con un

    átomo de silicio ocupando la posición central y cuatro átomos de oxígeno dispuestos de manera de

    compartir un electrón de valencia con otros cationes

    dando lugar a una estructura cristalina, en base a cuya

    geometría se realiza la clasificación.

    Se reconocen entonces seis grupos fundamentales:

    1) Nesosilicatos: con grupos tetraédricos aislados unidos

    a otros similares con un catión distinto del silicio (v.g.:

    olivino).

    2) Sorosilicatos: dos tetraedros unidos por un vértice

    formando un grupo [Si2O6]2- relacionados entre sí con

    cationes distintos al silicio (v.g.: epidoto).

    3) Ciclosilicatos: donde 3, 4 o 6 tetraedros se unen para

    formar un anillo (v.g.: turmalina).

    4) Inosilicatos: formados por cadenas de longitud indefinida de tetraedros (v.g.: piroxenos y

    anfíboles).

    5) Filosilicatos: los tetraedros conforman una malla plana de arreglo hexagonal (v.g.: micas y

    arcillas).

    6) Tectosilicatos: donde los tetraedros conforman una malla compleja con presencia de aluminio

    en lugar de silicio en algunos de los tetraedros dando lugar a la presencia de cationes diversos

    (Na+, Ca

    2+, K

    +) incluidos en el edificio cristalino (v.g.: feldespatos y cuarzo).

  • 8/17/2019 Clase Rocas

    6/41

     

    Reconocimiento de minerales:

    El reconocimiento de las diferentes especies minerales puede llevarse a cabo basándose en sus

    propiedades físicas solo en unas pocas especies. Pero en definitiva el objetivo que perseguimos es

     justamente ese: aprender a reconocer aquellas especies más comunes que conforman las rocas

    más frecuentes en el subsuelo de nuestro país.

    El análisis de un grupo particular de propiedades físicas -las propiedades ópticas- constituye una

    herramienta poderosa para la determinación de especies minerales, y da lugar a una especialidad

    conocida como "mineralogía óptica". Su instrumento fundamental es el microscopio petrográfico, y

    la técnica de reconocimiento de minerales por este método se ha aplicado en la Facultad de

    Agronomía desde su fundación a principios de siglo por el Prof. Karl Walther.

  • 8/17/2019 Clase Rocas

    7/41

    A continuación pasaremos revista a aquellas propiedades físicas de los minerales que auxilian a su

    reconocimiento cuando no disponemos de instrumental específico para un análisis de laboratorio.

    La práctica de Rocas y Minerales del Taller de Recursos Naturales de Interés Agronómico, supone

    que para la determinación de las especies planteadas como problemas Ud. dispone de los

    siguientes elementos: una lupa de mano, un objeto de bronce (llave) y un objeto de acero

    (cortaplumas, trincheta).

     

    Propiedades físicas de los minerales:

    Como fue mencionado antes, las propiedades físicas de los minerales son una función de su

    composición química y estructura cristalina. De esta manera se podrán definir propiedades físicas

    escalares y vectoriales, si son dependientes o independientes -respectivamente- de la dirección

    cristalográfica de observación.

    Las propiedades físicas de una especie mineral varían entre ciertos

    parámetros como resultado de que distintos individuos de una misma

    especie no son necesariamente id5nticos. or e6emplo7 diferentes

    cristales de cuarzo pueden presentar coloraciones diversas (incoloro,

    $ris, azulado, violeta, rosado, blanco, ne$ro, etc.". 1e allí deducimos

    que el color no es una propiedad 8til para diferenciar el cuarzo del resto

    de los minerales. La biotita (mineral ferro9ma$nesiano del $rupo de las

    micas" es sistemáticamente de color ne$ro o marrón muy oscuro. :n

    ese caso el color es un buen criterio para diferenciarla de otras especies

    similares. :l reconocimiento de un mineral será entonces el resultado de

    la observación de un con6unto de propiedades, siendo una buena

    costumbre el se$uir una ;marcha sistemática;.

    De esta manera podremos separar:

    a" ropiedades

    escalares7 

    a.*" 1ensidad

    b" ropiedades

    vectoriales7

    b.*"

  • 8/17/2019 Clase Rocas

    8/41

    b.=" ropiedades el5ctricas

    b.%" ropiedades

    ma$n5ticas

    b.>" ropiedades radiactivas

    b.?" ropiedades ópticas

    b.?.*" Brillo

    b.?.-" Color

    b.?." Indice de

    refracción

    b.?.="

    Luminiscencia

    b.?.%"

    +luorescencia

    b.?.>"

    +osforescencia

    b.@" ropiedades

    or$anol5pticas

    b.@.*" #lor

    [email protected]" abor

    b.@." Tacto

    Las propiedades en negrita serán empleadas para el reconocimiento de los minerales en la

    práctica antes mencionada.

    Forma:la forma externa de un cristal correspondiente a una especie mineral cualquiera queda

    determinada por su velocidad de crecimiento. Las caras de crecimiento más rápido son las que

    presentan un desarrollo menor. En cambio, las más lentas se desarrollan más y muestran

    tendencia a hacer desaparecer a las otras.

    Cuando un mineral forma parte de una roca, la forma que desarrolla un determinado cristal es

    función de diversos factores, algunos propios de su especie y otros que resultan del

    condicionamiento que determinan las especies minerales vecinas. Así un cristal de cuarzo que

    creciera a partir de la cristalización de un líquido silíceo en completa libertad desarrollará caras

    cristalinas como la que puede observarse en la figura. La misma especie cristalina (cuarzo)

    cristalizando en último lugar en una roca granítica ocupará los intersticios entre los cristales de

    otras especies (feldespatos y mica) que cristalizaron antes que el, y su forma no estará

    determinada por su estructura cristalina sino que se verá condicionada por los espacios vacantes.

  • 8/17/2019 Clase Rocas

    9/41

    Llamamoshábito al desarrollo relativo

    del conjunto de caras de un cristal bajo

    la influencia de los factores

    fisicoquímicos del medio (temperatura,

    presión, radiactividad, concentración,

    viscosidad, etc.), que actúan durante su

    génesis. De manera simplificada

    distinguiremos entre los siguientes tipos

    de hábito:

    Hábito hojoso: es el que presentan

    aquellos minerales en que sus cristales

    se desarrollan preferencialmente en dos

    direcciones y pobremente en la perpendicular al plano que los contiene, típicamente las micas y

    arcillas.

    • Háb

    ito

    fibroso: es el que presentan aquellos minerales en que sus cristales se desarrollan

    preferencialmente en una sola dirección y pobremente en las demás, el mineral adquiere

    aspecto de fibras (algunos anfíboles, asbesto).

    • Hábito prismático: lo presentan los minerales en los que sus cristales se desarrollan

    moderadamente en dos direcciones y fuertemente en la otra. Adquieren formas prismáticas

    de base rectangular, triangular o hexagonal. El hábito tabular es un caso particular del

    prismático en el que las caras del cristal se desarrollan en forma de prisma muy corto oaplastado, el cristal adquiere forma de tabla o tableta.

     

    Cohesión: la resistencia a la ruptura es obviamente diferente en distintos minerales, y la forma de

    los trozos obtenidos al romperlos es una consecuencia de su organización interna. Hay minerales

  • 8/17/2019 Clase Rocas

    10/41

    que se rompen dando lugar a superficies planas: en ese caso diremos que el mineral se cliva o que

    muestraclivajeo

    exfoliación.

    Un mineral puede tener

    más de un plano de

    debilidad por los que se

    rompe más fácilmente y

    en ese caso tendrá más

    de un plano de clivaje. Las

    micas constituyen el ejemplo más evidente de mineral con un plano de clivaje perfecto, por el que

    se separa en hojas extremadamente delgadas.

    Clivaje o exfoliación: rotura de un mineral paralelamente a una cara

    real o posible del cristal. Tal cara corresponde a planos reticulares de

    mayor densidad de nodos, mientras que el con6unto de esos planosestán unidos entre sí por enlaces más d5biles. e$8n el $rado de

    facilidad y perfección con que se manifiesta el cliva6e, recibe calificativos

    como7 excelente, muy bueno, bueno, manifiesto, pobre o imperfecto,

    etc.

    Esta particularidad es la que condiciona el uso desde la antigüedad de la muscovita, una mica

    transparente en diversos usos industriales, por ejemplo como sustituto flexible del vidrio.

    Otros minerales como el cuarzo tienen una estructura sin planos de debilidad preferente y se

    rompen tal como lo haría un trozo de vidrio. A este tipo defractura se la conoce como fractura

    concoide.

    ractura: rotura totalmente desordenada, sin nin$una dirección

    preferente de los enlaces estructurales de un cristal como consecuencia

    de un $olpe. e definen = tipos7 irre$ular, concoidea (superficies

    curvas", astillosa (entrantes y salientes puntia$udos" y $anchosa

    (propia de los metales nativos".

    Nótese que el vidrio a pesar de su aspecto no es en realidad un sólido pues no posee estructura

    cristalina sino que es un líquido sobre-enfriado de alta viscosidad.

     

    Tenacidad (fragilidad, ductilidad, flexibilidad, dureza)

    La tenacidad de un mineral es un buen indicador para su determinación. No es posible definirla

    únicamente con un parámetro de dureza pues otros aspectos son también importantes. Un mineral

    es frágil cuando se rompe fácilmente por efecto de un golpe. El diamante, el mineral de más dureza

    conocido es sin embargo frágil.

  • 8/17/2019 Clase Rocas

    11/41

    La ductilidad es la propiedad de poder moldearse en hojas delgadas y es la propiedad

    característica de algunos metales nativos tales como oro plata y cobre. La flexibilidad es la

    propiedad de poder deformarse sin romperse y volver al estado inicial cuando suprimimos el

    esfuerzo, las hojas de mica son altamente flexibles.

    La dureza puede ser cuantificada utilizando escalas más o menos precisas de las cuales la más

    sencilla y popular es la escala de Mohs, que clasifica los minerales tomando como referencia diez

    especies a las cuales les asigna un número entero. La dureza del mineral problema se estima

    entonces por comparación con los minerales standard según quién raye a quién.

    Escala de dureza

    de !o"s 

    !ineral 

    #ureza

    Talco   $ 

    2eso   % 

    alcita   & 

    +luorita   ' 

    'patito   ( 

    #rtoclasa   ) 

    uarzo   * 

    Topacio   + 

    orindón    

    1iamante   $- 

    En la práctica de Taller II emplearemos algunos elementos comunes para comparar durezas cuya

    posición en la escala de Mohs: uña (dureza = 2.5 - 3); Llave de bronce (3.5 - 4); acero (5.5); vidrio

    (5.5 - 6).

     

    Propiedades ópticas:

  • 8/17/2019 Clase Rocas

    12/41

    De las diversas propiedades ópticas de los minerales describiremos aquí brevemente aquellas que

    auxilian a la determinación sin instrumental específico: el brillo y el color.

    En el lenguaje común, la palabra opaco suele usarse con un sentido diferente para aquellos

    materiales no reflectantes. En sentido estricto, los cuerpos opacos no permiten el pasaje de la luz,

    los cuerpos transparentes permiten la observación de objetos a través de ellos, y los cuerpos

    translúcidos permiten el pasaje de la luz, pero con reflexiones internas que imposibilitan distinguir

    una imagen cuando se les interpone en su camino.

    Elbrillo es una propiedad compleja que describe la manera como la luz se refleja en la superficie

    del mismo. Depende de varios factores como el índice de refracción y el grado de pulimento de la

    superficie observada. El brillo metálico lo presentan algunos minerales que como los metales no

    permiten el pasaje de la luz (sustancias opacas) y su nombre es suficientemente explícito. Las

    diversas variedades de brillo no metálico son características de las sustancias transparentes o

    translúcidas y podemos distinguir diversas variedades: brillo adamantino, típico del diamante y delas sustancias con alto índice de refracción, brillo vítreo (el de la mayoría de los minerales)

    semejante al del vidrio, con variedades como el brillo graso (típico de las superficies de rotura del

    cuarzo) semejante al de un objeto engrasado, brillo nacarado en que se observa iridiscencia por

    difracción en las microfisuras de la superficie (la que muestra el Nácar); brillo mate es el típico de

    las sustancias terrosas o de las superficies que dispersan la luz en todas direcciones.

    Elcolor de un mineral es una propiedad que aunque muy aparente posee un potencial de

    diagnóstico limitado. Muchos minerales muestran colores diversos dependiendo de mínimas

    proporciones de impurezas en su estructura, el cuarzo por ejemplo, aunque frecuentemente

    incoloro o gris puede ser rojo, blanco, celeste, violeta (amatista), amarillo (citrino) verde o aún

    negro. Minerales de este tipo sin una coloración típica se llamanalocromáticos mientras que

    aquellos en que se verifica una cierta constancia en el color se denominanidiocromáticos (la biotita

    es normalmente negra).

    A continuación se presentarán una serie de tablas con las propiedades más importantes de los

    minerales de interés para el ingeniero agrónomo.

    C/012 E3#E45/62

    526/4IC2 

    órmula i#-  Aali#@ 

    78bito rismático hexa$onal  rismático corto 

    #ureza ?  > 

  • 8/17/2019 Clase Rocas

    13/41

    5eso Esp. -,>% $Bcm 

    -,%? $Bcm 

    Clivaje Co  Co 

    ractura oncoide  Co 

    Brillo

  • 8/17/2019 Clase Rocas

    14/41

    órmula Cai'l#@  ai-'l-#@ 

    78bito rismático tabular 

    #ureza > 

    5eso Esp. -,>- $Bcm 

    -,?> $Bcm 

    Clivaje 7 dos buenos y uno malo 

    ractura Co 

    Brillo

  • 8/17/2019 Clase Rocas

    15/41

    5eso esp. -,?* $Bcm 

    -,?> 9 -,@@ $Bcm 

    -,@ 9 ,- $Bcm 

    Clivaje excelentes  * excelente  * excelente 

    ractura Co  Co  Co 

    Brillo

  • 8/17/2019 Clase Rocas

    16/41

    Color

    Ce$ro a verde

  • 8/17/2019 Clase Rocas

    17/41

    cristalizada. como la

    muscovita y

    trioctaedricas

    como la biotita.

    esmectitas", que contiene los principales

    miembros si$uientes7 montmorillonita,

    beidellita, nontronita, saponita, hectorita

    y saconita.

    sos

    uando pura

    como mena de

    hierro.

    'rcilla

    formadora de

    suelos. tilizadaen cerámicas,

    papel, pinturas,

    $omas, etc.

    'rcilla formadora de suelos. tilizada en

    cerámicas, papel, pinturas, $omas, etc.

    2 como lodo de perforación.

    ROCAS GENERADAS EN EL CICLO ENDOGENO

    ROCAS IGNEAS

    Consideramos rocas ígneas aquellas que resultan de la cristalización de un magma. Por magma

    puede entenderse una mezcla silicatada parcial o totalmente líquida, generalmente como resultado

    de la fusión de rocas preexistentes.

  • 8/17/2019 Clase Rocas

    18/41

    La composición química de los magmas es muy diversa y por lo tanto lo es también el conjunto de

    rocas que se obtienen luego de su cristalización por enfriamiento. El proceso en si que lleva a la

    consolidación de un magma es también un factor que incide en el producto resultante, iguales

    composiciones químicas, pero diferentes condiciones de solidificación dan como producto rocas de

    aspecto muy diverso.

    El estudio de las rocas se basa en métodos propios de la mineralogía, geología, química y de la

    física, y requiere la identificación precisa de los minerales presentes. La mayoría de las veces las

    rocas son heterogéneas, es decir, están compuestas por más de una fase mineral, y además de su

    identificación precisa es necesario describir o cuantificar las relaciones entre las especies que

    integran la roca (su textura).

    Existen diferentes criterios para clasificar una roca ígnea, algunos se basan en su quimismo, otros

    en su composición mineral y todos ellos de alguna manera tienen en cuenta la textura. Aunque

    nuestro objetivo es aprender a reconocer las rocas ígneas más frecuentes en nuestro país,

    debemos además prestar alguna atención a criterios de clasificación química a los efectos de

    conocer el significado de algunos términos comúnmente empleados en la bibliografía geológica.

     

  • 8/17/2019 Clase Rocas

    19/41

    Clasificación textural de las rocas ígneas:

    Este criterio de clasificación atiende a la forma, disposición y tamaño relativo de los cristales

    constituyentes de una roca, pasando por alto las especies minerales involucradas. En este sentido,

    el cuadro se considera suficientemente explícito como para reconocer a que categoría textural

    pertenece una roca dada.

    La textura de la roca es directamente dependiente del ambiente geológico (profundidad) de

    cristalización del magma, es así que se pueden distinguir:

    a) rocas intrusivas (o plutónicas): cristalizadas lentamente en profundidad. El descenso muy

    gradual de la temperatura permite que los minerales se desarrollen, obteniéndose texturas

    granudas.

    b) rocas hipabisales (o filonianas):cristalizadas a profundidad intermedia, en filones, diques,sills, apófisis, etc. Suelen "heredar" algunos cristales de mayor tamaño de la cámara magmática,

    los que quedan inmersos en una matriz

    de grano fino. La textura resultante es

    la porfírica.

    c) rocas efusivas (o volcánicas):

    cristalizadas en superficie, bajo

    condiciones de presión atmosférica.

    Las bajas temperaturas impiden el

    desarrollo de cristales de tamaño

    visible, y las condiciones de presión

    habilitan la desgasificación,

    responsable en el caso de los basaltos

    de los niveles vesiculares o vacuolares superiores.

  • 8/17/2019 Clase Rocas

    20/41

     

    Clasificación mineral de las rocas ígneas:

    Esta clasificación estrictamente llamada "modal", divide las diversas rocas ígneas en grupos o

    clases estableciendo rangos en que diferentes especies minerales pueden aparecer en la roca en

    cuestión. Presentaremos aquí una simplificación suficiente para los fines perseguidos, de la

    universalmente aceptada clasificación del IUGS.

    Es interesante notar que la misma permite identificar la pertenencia a una clase u otra basándose

    únicamente en la proporción de cuarzo, feldespatos alcalinos, plagioclasa y eventualmente la

    cantidad de minerales ferromagnesianos presente. El tipo de diagrama utilizado -diagrama

    triangular- permite la representación de un sistema ternario como un punto con posición definida en

    un triángulo equilátero.

    La condición que ha de cumplir el sistema ternario para ser representado como un punto es

     justamente que la suma de los porcentajes relativos de cada uno de los componentes sea 100%.

    De ello se deriva que en principio no tendremos en cuenta para clasificar una roca nada más que

    los porcentajes relativos de cuarzo, feldespatos alcalinos y plagioclasa.

    or e6emplo, consideremos una roca formada por

    F de cuarzo, --F de pla$ioclasa (oli$oclasa",

    ?F de feldespato potásico (ortosa", >F de biotita,

    *F de epidoto y *F de circón. ' los efectos de la

    clasificación modal llevamos las proporciones de

    cuarzo, pla$ioclasa y feldespato potásico al *&&F7

    Qz R (x*&&"BG- R >F $ R (--x*&&"BG- R -=F

    Af R (?x*&&"BG- R =&F 1e esta manera, el

    análisis modal de la roca se plotea en un dia$rama

    trian$ular de v5rtices Q 9 ' 9 y queda

    representado por un punto dentro del campo de los

    $ranitos. lasificamos la roca entonces como un

    $ranito a biotita, de6ando en claro cual es la fase

    mineral accesoria más importante.

     

    Clasificación química de las Rocas Igneas:

  • 8/17/2019 Clase Rocas

    21/41

    Todas las rocas ígneas pueden ser clasificadas en base a su quimismo, aunque este criterio es

    especialmente apto para aquellas de grano muy fino (afaníticas) o vítreas, para las cuales la

    mineralogía es imposible de definir.

    Una vez analizada, los resultados composicionales son expresados -por lo general- en porcentaje

    en peso de los óxidos de los elementos mayoritarios: sílice (SiO2), aluminio (Al2O3), hierro (FeO -

    Fe2O3), magnesio (MgO), manganeso (MnO), titanio (TiO2), calcio (CaO), sodio (Na2O) y potasio

    (K2O). A estos valores suele agregárseles los del fósforo (P2O5) y pérdida de agua por ignición

    (H2O-).

    Si construyésemos un gráfico de frecuencia respecto al porcentaje de sílice en el total de la corteza

    terrestre, veríamos que la distribución es bimodal, con dos máximos: uno en el entorno del 50%

    (rocas de afinidad basáltica) y otro en el entorno del 70% (rocas graníticas). Esto significa que en la

    naturaleza hay una gran escasez, en volumen, de rocas con contenido de sílice entre 54 y 66%.

    Tradicionalmente las rocas con bajo contenido de sílice se han denominado rocas básicas y

    aquellas con alto contenido se llamaron rocas ácidas. Esta clasificación sigue en uso, y es

    necesario aclarar que se basa exclusivamente en el contenido en sílice de la roca, sin

    connotaciones respecto al "pH" de la misma.

    El resto de los óxidos que componen la roca presentan un comportamiento particular respecto al

    porcentaje de sílice, y sus tendencias pueden ser referidas al mismo. Esto se ejemplifica en la

    figura siguiente:

  • 8/17/2019 Clase Rocas

    22/41

    Las conclusiones más relevantes son:

    1) el porcentaje de los óxidos de sodio y potasio aumentan proporcionalmente con el óxido de

    silicio. Esto se ve reflejado en la mineralogía de las rocas ácidas, ricas en feldespatos potásicos y

    plagioclasas sódicas.

    2) Inversamente, los óxidos de hierro, calcio y magnesio disminuyen proporcionalmente con el

    tenor de sílice. De allí que en las rocas básicas dominen minerales ferromagnesianos como el

    piroxeno, anfíboles, olivinos, etc.; y las plagioclasas sean más cálcicas.

    3) El aluminio, sin embargo, permanece aproxi-madamente constante en ambos grupos de rocas,

    en alrededor de 14% en peso de las mismas.

    La relación entre la composición química y la mineralogía resultante se intenta ejemplificar con la

    figura siguiente. Esta es una pauta general para relacionar la composición química, y

    específicamente el contenido en sílice, con la mineralogía.

  • 8/17/2019 Clase Rocas

    23/41

    Se grafica en el eje horizontal el tanto por ciento del óxido de silicio y en el eje vertical el porcentaje

    en volumen de los minerales.

    Ejemplo: una roca con 65% de sílice en peso tendría una mineralogía compuesta por 10% de

    cuarzo, casi 30% de feldespato potásico, aproximadamente 35% de plagioclasa (60% molécula

    anortítica y 40% de molécula albítica), 15% de hornblenda y un 10% de biotita.

    El orden de cristalización de los minerales en la roca está condicionado por la composición química

    del magma y la tasa de enfriamiento. N. L. Bowen estudió por primera vez el orden de cristalización

    para las rocas basálticas, definiendo dos series: una continua, representada por los feldespatos de

    la familia de las plagioclasas, y otra discontinua, en la que los minerales formados son

    reabsorbidos totalmente por el líquido a medida que la temperatura desciende.

    La serie de cristalización de Bowen se discutirá más adelante sus implicancias con la

    susceptibilidad de meteorización de las rocas ígneas.

     

    Petrogénesis de Rocas Igneas:

  • 8/17/2019 Clase Rocas

    24/41

    Como ya ha sido establecido, las rocas ígneas son el resultado de la cristalización de un fundido

    silicatado llamado magma. El magma, a su vez, es la consecuencia de la fusión parcial de una roca

    preexistente.

    La composición química del magma (y por ello, la de la roca formada a sus expensas) será función

    de la composición química de la roca de partida, el grado de fusión parcial (dependiente de la

    temperatura y presencia o ausencia de volátiles), y de la duración del fenómeno.

    La fusión parcial puede ser concebida como un proceso de destilación fraccionada, en la que una

    roca se ve sometida a un aumento gradual de la temperatura circundante hasta que se alcanza el

    punto de fusión de uno o más de sus componentes. De esta manera se logra un "líquido" con la

    composición química de la/las fases minerales de menor punto de fusión y un residuo refractario

    (restita). El líquido formado (magma) podrá moverse hacia otra posición distinta a la de su área

    fuente (deslocalizarse) si las condiciones de presión confinante, permeabilidad del medio y grado

    de fusión se lo permiten.

    La forma de ascenso del magma desde su área fuente (por lo general la base de la corteza o la

    interface corteza - manto) hasta su lugar de emplazamiento ha sido sujeto de discusión, llegando a

    varios modelos conceptuales. Sin embargo, todas tienen en común la presencia de estructuras

    profundas (cámaras magmáticas) de diverso tamaño y geometría; estructuras subsuperficiales en

    forma de diques, filones o sills; y estructuras superficiales o volcánicas (derrames de lava, coladas,

    conos volcánicos, domos, etc.).De esta manera un mismo magma podrá emplazarse en distintos

    "ambientes geológicos" o profundidades.

    El resultado serán rocas con igual composición química e idéntica mineralogía, pero con texturas

    diferentes. El cuadro siguiente ejemplifica este hecho:

    5lutónica 

    7ipabisal 

    Extrusiva 

    )ranito  4icro$ranito  0iolita 

    ienita 

    4icrosienita 

    ienita 

    )ranodiorita 

    0iodacita 

    Tonalita 

    1acita 

    )abro 

    1iabasa 

    3asalto 

  • 8/17/2019 Clase Rocas

    25/41

    0ecordemos nuevamente que la separación de las rocas í$neas en básicas y

    ácidas se basa exclusivamente en el porcenta6e de óxido de sílice. 1e esta

    manera, serán rocas básicas aquellas con menos de %%F de i#-, y ácidas las

    que posean más del >&F en peso de i#-. #tra característica distintiva de las

    rocas ácidas respecto a las básicas es la presencia de ;cuarzo libre; o cristales

    de cuarzo visibles a simple vista (como en un $ranito".

    Las rocas ígneas se distribuyen inhomogéneamente en la corteza terrestre. Las rocas ácidas ybásicas se mantienen separadas no solamente en su ambiente de generación: magmas basálticos

    en dorsales meso-oceánicas y magmas graníticos en zonas de subducción; sino también en su

    forma de yacencia.

    Los basaltos -equivalente extrusivo de los gabros- son las rocas básicas más comunes en la

    superficie de nuestro planeta, mientras que los granitos -equivalentes plutónicos de las riolitas- son

    las rocas ácidas que predominan en la Tierra. Estrictamente, la composición química promedio de

    la corteza continental se sitúa en el entorno a la granodiorita. Esta roca es el equivalente intrusivo

    de las andesitas, principal lava eruptada en los volcanes de las zonas de subducción.

    Obsérvese la etimología de andesita, que significa "roca de los Andes", en clara referencia a su

    lugar de origen.

    La frase "mucho granito y poco gabro - mucho basalto y poca riolita" es bien conocida entre los

    petrólogos y geólogos desde principio de siglo.

    Para terminar con esta pequeña y somera reseña sobre petrogénesis de rocas ígneas se presenta

    el siguiente esquema, donde se señalan los ambientes geotectónicos de generación de magmas

    en la Tierra.

    Las rocas basálticas resultan de la fusión parcial (anatexis) del manto superior, que posee una

    composición ultrabásica. Es posible observar que en las zonas de formación de corteza oceánica

    (ridges meso-oceánicos) y en las islas oceánicas (como Hawaii) la roca que está sufriendo los

  • 8/17/2019 Clase Rocas

    26/41

    procesos de anatexis es el manto terrestre. Por el contrario, en las zonas de subducción la corteza

    oceánica se sumerge por debajo de la continental; como resultado de este proceso se introduce

    agua en el manto, que actúa como fundente, permitiendo la fusión parcial de la base de la corteza

    continental y de los sedimentos acarreados sobre la corteza oceánica.

    ROCAS METAMÓRFICAS

    Como ya ha sido mencionado en la introducción de este cuadernillo, existen tres categorías de

    rocas: ígneas, sedimentarias y metamórficas. Las rocas ígneas se forman mediante la solidificación

    de un fundido silicatado denominado magma; las rocas sedimentarias se forman por una variedad

    de procesos a bajas temperaturas cercanas o en la superficie. La tercera categoría -las rocas

    metamórficas- fueron originalmente ígneas, sedimentarias o incluso metamórficas, pero su carácter

    ha sido cambiado por procesos operantes por debajo de la superficie de la Tierra.

    Uno de los factores que controlan el proceso metamórfico es latemperatura. Debe tenerse

    presente que la fuente de calor para estas transformaciones proviene de la desintegración

    radiactiva de isótopos que ocurre en el interior de nuestro planeta. Ya que la superficie del mismo

    está sometida a un continuo enfriamiento (calor irradiado por la Tierra) existe un aumento gradual

    de la temperatura con la profundidad, al que usualmente se llama gradiente geotérmico. Este varía

    de una zona a otra de la corteza siendo su valor medio de 1ºC cada 33 m. De ello surge que una

    roca a medida que se ve sometida a condiciones mas profundas se ve inmersa en un medio de

    mayor temperatura y de mayorpresión.

    Cuando las temperaturas son bajas -en las cercanías de la superficie- los procesos se asignan al

    ciclo exógeno o sedimentario, y más precisamente a la diagénesis o litificación. En cambio, cuando

    las temperaturas alcanzan el punto de fusión de las rocas envueltas en un evento metamórfico,

    generándose un fundido (fusión anatéctica o anatexis), los procesos pasan al campo de las rocas

    ígneas. Entre estas dos temperaturas, que definen los limites superior e inferior del metamorfismo,

    se desarrolla el proceso metamórfico.

    Es importante dejar bien en claro que el metamorfismo tiene lugar mientras las fases minerales

    integrantes de una roca determinada están en estado sólido. Es así que los procesos del

    metamorfismo son"procesos en estado sólido" con pocas o mínimas fases volátiles involucradas(agua y dióxido de carbono), además el sistema esisoquímico: la composición química

    volumétrica de la roca es invariante y las nuevas especies minerales (especies neoformadas)

    estarán condicionadas por la química original.

    La forma en que aumentan la temperatura y la presión no es la misma en diferentes puntos de la

    corteza. Existen zonas anómalamente calientes con abundante magmatismo donde la temperatura

  • 8/17/2019 Clase Rocas

    27/41

    se incrementa muy rápido con la profundidad, especialmente cerca de los bolsones de magma que

    están próximos a la superficie. Por el contrario nuestro planeta muestra zonas anómalamente frías

    en que aún a profundidades importantes la temperatura es relativamente baja. De todo ello surge

    que en las rocas que han sufrido transformación metamórfica habrá algunas en que los cambios en

    la mineralogía y textura se deben fundamentalmente al aumento de temperatura mientras que

    habrá otras en que la presión y la deformación son los factores más importantes que condicionan el

    cambio mineral.

    De allí que podamos de manera sintética decir que existen tres grandes familias de procesos

    metamórficos según el predominio relativo de la temperatura y la presión:

    a. El metamorfismo de contacto: producido en salbandas o aureolas alrededor de cuerpos

    intrusivos en vías de enfriamiento. En estos casos T>>P permitiendo la recristalización y

    transformación de las rocas que están próximas al contacto.Este es el origen más común para los

    mármoles uruguayos, especialmente en la zona de Polanco donde un granito entra en contacto conrocas calcáreas de unos 600 Ma de

    antigüedad.

    b. metamorfismo dinámico: en estos casos la

    presión dirigida, y por consiguiente la

    deformación predomina netamente sobre la

    temperatura. Las rocas involucradas están

    sujetas a varios tipos de "molienda mineral" y

    recristalización de algunas especies minerales.

    Las rocas resultantes de este tipo de

    metamorfismo se desarrollan siguiendo zonas

    donde la deformación fue máxima.Un ejemplo

    notable lo constituyen las rocas alineadas sobre la Sierra de la Ballena, Sierra de los Caracoles y

    Cerro Largo que forman una enorme estructura que atraviesa Uruguay (y se continúa en Brasil)

    indicando que a lo largo de ese "lineamiento" se produjo una deformación extrema producto del

    resbalamiento relativo entre dos porciones de la corteza terrestre.

  • 8/17/2019 Clase Rocas

    28/41

    c. metamorfismo regional: el metamorfismo esta

    determinado por el par presión - temperatura, definiéndose de

    esta manera una serie de "grados" y "facies" metamórficas.

    Es el caso mas común del metamorfismo y también el mas

    complejo, y para su estudio es necesario un conocimiento

    profundo de la cartografía geológica y estructural de la zona

    relevada, así como de la petrografía de cada tipo litológico

    involucrado.

    Es interesante prestar atención a las variaciones de P y

    fundamentalmente la temperatura a lo largo del "evento

    metamórfico". A medida que la roca original -llamada

    protolito- se ve sometida a aumentos progresivos de T y eventualmente P, las fases minerales

    originales comienzan a sufrir los cambios necesarios para "adaptarse" al medio.

    En algún momento determinado, la T alcanzara su máximo y la roca desarrollara una asociación

    mineral que definirá un ciertogrado metamórfico ofacies metamórfica. La asociación mineral

    recristalizada estable para ese par [P-T] se denominaparagénesis mineral metamórfica.

    Los grados y facies metamórficas son definidas para cada protolito en particular por una cierta

    paragénesis, y mas específicamente por los limites de estabilidad termodinámica de los minerales

    recristalizados. Esta es la causa por la que se establece que si una roca metamórfica presenta

  • 8/17/2019 Clase Rocas

    29/41

    hornblenda (anfíbol), pertenece al "grado medio de metamorfismo"; o lo que es lo mismo, la

    hornblenda define al grado medio de metamorfismo (o facies anfibolita).

    La mayoría de los minerales índices del metamorfismo no poseen interés particular ni singular para

    el ingeniero agrónomo, pero se creyó conveniente presentar un esbozo general de la problemática

    petrográfica de las rocas metamórficas.

    Para entender cómo se forman estas rocas es necesario revisar algunos conceptos fundamentales

    de la evolución continua que se verifica en nuestro planeta. En primer lugar nos referiremos a las

    rocas metamórficas que resultan de la transformación de una roca sedimentaria. Como veremos en

    el capítulo de rocas sedimentarias éstas tienen composición química diversa según el proceso que

    les diera origen y el grupo más importante en nuestro país es el de las rocas detríticas.

    Por su implicancia en la agronomía, consideraremos también como punto de partida para el

    metamorfismo, entre las rocas de precipitación química a las rocas carbonatadas (calizas ydolomías). La transformación que sufren estas rocas está normalmente asociada a fenómenos de

    compresión y desorden que ocurren en aquellas zonas de la tierra en que colisionan dos trozos de

    corteza que se desplazan con direcciones opuestas. En estas zonas los fenómenos compresivos

    tienden a apilar porciones de los segmentos de corteza implicados de manera que algunos de ellos

    quedan debajo de enormes masas de roca cambiando sustancialmente las condiciones de presión

    y temperatura.

    Los minerales constituyentes de las rocas sedimentarias se desestabilizan, especialmente aquellos

    que fueron generados en el ciclo exógeno como las arcillas, ocurren reacciones de deshidratación,

    disolución, cambio de estructura cristalina y cristalización de nuevas especies minerales. Notemos

    que todo ello ocurre sin que se produzca una verdadera fusión de los materiales originales y que

    en estos ambientes es normal que exista una dirección de presión dominante que no es vertical

    sino lateral.

    Pensando en lo expuesto será fácil comprender que la transformación gradual que se va

    produciendo dará como producto una roca nueva que tiene generalmente una composición química

    muy similar a la original pero con una composición mineral y aspecto totalmente diferente. Pueden

    definirse de una manera arbitraria "Grados de Metamorfismo", esto es como escalonar las

    condiciones de temperatura y presión a las que ocurre el proceso de transformación.

    Aunque la definición del grado metamórfico no interesa específicamente al Agrónomo podemos

    ejemplificar lo que le ocurre a una pelita cuando se ve sometida a condiciones de temperatura y

    presión crecientes:

    0oca ;rado metamórfico 

  • 8/17/2019 Clase Rocas

    30/41

    Bajo 

    !edio 

    /lto 

    elita +ilita 

    4icaesquisto 

    )neiss 

    3asalto 4etabasalto 

    'nfibolita 

    'nfibolita 

    aliza aliza marmórea 

    4ármol 

    4ármol 

    Asimismo la forma geométrica que adoptarán los diversos

    estratos de rocas sedimentarias, originalmente de desarrollo

    tabular horizontal es totalmente distinta.

    La figura muestra algunos ejemplos de estructuras comunes de

    las rocas metamórficas. Una de las características más comunes

    de las rocas metamórficas que auxilia a su reconocimiento, es la

    orientación preferencial de sus minerales debido a que estos se

    han desarrollado en un medio en que existe presión dirigida. La

    orientación resultante define lafoliación o laesquistosidad de

    la roca metamórfica.

    Es=uistosidad >foliación?: estructura típica de

    las rocas metamórficas, consistente en

    con6untos de superficies paralelas de mayor o

    menor espaciado, que proporciona a estos

    materiales un determinado $rado de fisilidad.

    Así las hojas de las micas que recristalizan durante el

    metamorfismo tienden a alinearse según superficies más o

    menos definidas dándole a la roca un aspecto particular. Las

    texturas resultantes dependen de la intensidad de los procesos

    de transformación y de los minerales que componen la nueva

    roca resultante.

    Las texturas más comunes entre las rocas metamórficas se

    esquematizan en el cuadro siguiente. Para los fines perseguidos

    en el Taller II es suficiente con saber distinguir entre las rocas

    metamórficas más frecuentes por lo que aquí se brinda una

    descripción de las mismas que auxiliará a su identificación.

    Gneiss: roca de textura granoblástica, cuyo componente

    esencial y siempre presente es un feldespato. El tamaño de

  • 8/17/2019 Clase Rocas

    31/41

    grano puede variar entre 1 y 15mm para los feldespatos; el cuarzo casi siempre está presente en

    granos de magnitud similar o más pequeños que el feldespato. Los accesorios comunes son

    muscovita (gneiss muscovítico), biotita (gneiss biotítico), ambas micas (gneiss a dos micas), o

    anfíbol (gneiss anfibólico). Los ferromagnesianos están orientados de forma más o menos notoria.

    Las micas normalmente contornean los granos mayores de feldespato que adquieren el aspecto de

    "ojos". Cuando se describe un gneiss debe indicarse cual es el accesorio ferromagnesiano

    presente, su tamaño de grano (fino, medio o grueso), y si es posible distinguir el tipo de feldespato.

    Micaesquisto: roca normalmente muy esquistosa, compuesta fundamentalmente por muscovita,

    biotita o ambas; el cuarzo es un componente esencial. Las micas suelen disponerse siguiendo

    estructuras planares o curvas de pequeño radio (textura plegada). Muchos otros minerales suelen

    aparecer en el micaesquisto en calidad de accesorio, por ejemplo granate, estaurolita, andalucita,

    etc. El tamaño de las micas varía entre 0,5mm y 1cm, y siempre son visibles a ojo desnudo. La

    textura de la roca se denomina lepidoblástica.

    Anfibolita: se designa con este nombre a un grupo amplio de rocas metamórficas cuyo

    componente esencial es un anfíbol. Las anfibolitas más comunes tienen como minerales

    integrantes hornblenda, plagioclasa y cuarzo; la hornblenda suele presentarse en bastoncitos cuyo

    eje se orienta paralelo a un plano preferencial, confiriéndole a la roca una textura algo esquistosa

    (nematoblástica). La roca puede mostrar un bandeado alternado de capas verde oscuro, casi

    negras, muy ricas en anfíbol y otras más claras donde domina la plagioclasa y el cuarzo. Algunas

    anfibolitas en muestra de mano tienen pobre esquistosidad, siendo su textura prácticamente

    masiva.

    Filita: roca muy esquistosa, cuyo nombre popular es "piedra laja". Los componentes esenciales

    son sericita y cuarzo. Ocasionalmente pueden contener calcita (filitas calcáreas). Los colores

    varían entre el beige y el negro, el grano es tan fino que es prácticamente imposible distinguir

    minerales individuales a ojo desnudo. La sericita es un nombre que se aplica a la muscovita muy

    finamente cristalizada, constituyendo una transición entre la illita y la muscovita propiamente dicha.

    La abundancia de filosilicatos de grano fino le da a la roca un tacto untuoso, y el ordenamiento

    interno planar le confiere la propiedad de partirse fácilmente en lajas delgadas.

    Caliza metamórfica: las calizas metamórficas son rocas fundamentalmente constituidas por calcita

    y/o dolomita. Tienen colores muy variables desde el blanco hasta el negro, siendo comunes los

    grises y los rosados. El tamaño de grano varía entre submilimétrico y 5mm, siendo en los casos

    más frecuentes de entre 0,5 y 2mm. La roca puede ser bandeada con alternancias de color y de

    tamaño de grano o maciza con textura sacaroide (similar a granos de azúcar); en este último caso

    la roca puede ser clasificada como un mármol. La principal característica para su reconocimiento

    es su reacción con el ácido clorhídrico y que se rayan fácilmente con cualquier objeto metálico, lo

  • 8/17/2019 Clase Rocas

    32/41

    que permite distinguirlas de las cuarcitas, que son rocas fundamentalmente constituidas por

    cuarzo.

    ROCAS GENERADAS EN EL CICLO EXÓGENO

    ROCAS SEDIMENTARIAS

    Las rocas sedimentarias provienen de la litificación de los sedimentos. Para su clasificación y

    reconocimiento es necesario pues revisar algunos conceptos relacionados con el ciclo exógeno y el

    origen de los sedimentos.

    Todas las rocas que quedan expuestas en la superficie de la Tierra interactúan con la atmósfera y

    la hidrósfera. Como resultado de esta interacción las diferentes especies minerales que conforman

    las rocas expuestas se desestabilizan produciéndose un conjunto de cambios físicos y químicos

    que agrupamos bajo el nombre demeteorización. FORD (1984) plantea la diferencia entre

    meteorización e intemperismo en función a la ausencia o presencia, respectivamente, de vida y sus

    procesos relacionados actuando en la descomposición de los minerales, el término intemperismo

    plantea además no solamente el proceso de destrucción de los minerales, sino el de neoformación

    de otras especies y movilización de sus resultantes.

    :s muy importante diferenciar claramente el metamorfismo (procesos

    de transformación mineral acaecidos en el interior de la corteza porvariaciones de la presión y temperatura" de la meteorización, que son

    los procesos de desa$re$ación física y química de las rocas de la

    corteza cuando son sometidas a las condiciones superficiales

    (interacción con el a$ua, aire, bacterias, etc.".

    Estas reacciones de alteración (intemperismo) son de equilibrio y pueden expresarse de la

    siguiente forma:

  • 8/17/2019 Clase Rocas

    33/41

    Residuos Sólidos: minerales arcillosos, óxidos, hidróxidos y/o materiales amorfos que pueden

    abandonar el ambiente si existe algún agente de transporte.

    Coloides:poseen cierta facilidad para abandonar el ambiente.

    Iones: son los más móviles (en agua), aunque algunos de ellos pueden permanecer retenidos por

    fuerzas electrostáticas de las arcillas y otros compuestos. Los agentes de intemperismo son

    aquellos que actúan sobre los minerales primarios para dar lugar a los productos, sin embargo

    estos agentes no desaparecen de la reacción y continúan actuando sobre estos últimos

    movilizando o inmovilizando alguna de las fases creadas.

    Tradicionalmente se han diferenciado los agentes de meteorización enfísicos (encargados de

    fragmentar y aumentar la superficie específica del mineral primario, así como de la eventual

    dispersión de los fragmentos);químicos (aquellos que disgregan la estructura cristalina por

    solubilización y pérdida de constituyentes de las mismas) ybióticos (desempeñan papeles físicos

    y químicos: cuñas de raíces, ácidos húmicos, etc.).

    Todos ellos funcionan en conjunto, complementándose, condicionándose y determinándose

    mutuamente. De las condiciones generales del ambiente y de las características propias de los

    minerales o rocas dependerá que uno u otro mecanismo tenga mayor incidencia relativa.

    De una manera general la meteorización conlleva una pérdida de consistencia en la mayoría de las

    rocas ya sea por la transformación parcial o total de algunos minerales en arcillas o por la

    subdivisión física que ocurre en las rocas expuestas a los agentes atmosféricos.

    La meteorización (o intemperismo" es uno de los temas más

    importantes para el a$rónomo, su dinámica es comple6a y existen

    numerosas variables en 6ue$o que definen la naturaleza y velocidad de

    los cambios producidos en la roca ori$inal que conducen a la roca

    meteorizada. :s altamente recomendable para quien quiera analizar con

    mínima profundidad la relación suelo 9 roca madre, una profundización

    en estos temas, que está fuera del ob6etivo de este cuadernillo.

    En la siguiente tabla se resumen los agentes de meteorización o intemperismo, sin entrar en

    detalles de su mecanismo de acción:

    I4IC24  

    variaciones de presión y

    temperatura

  • 8/17/2019 Clase Rocas

    34/41

     acción del a$ua (líquida y

    sólida"

      acción de sales precipitadas

      acción del viento

      acción de las raíces

      acción de la tectónica frá$il

      acción de los animales

    @I!IC2

    a$ua

      oxí$eno

      hidró$eno

      dióxido de carbono

    BI26IC24  

    bacterias y microor$anismos

      raíces

      etc.

     

  • 8/17/2019 Clase Rocas

    35/41

     A) factores estructurales: tipo estructural, densidad de empaque de la red cristalina, clivajes

    B) factores químicos: movilidad relativa de cationes, grado de hidratación, estado de oxidación de

    los iones.

    Los factores estructurales dependen de la temperatura de formación de los minerales implicados, y

    más específicamente de la fuerza de enlace entre los diferentes iones que componen la red

    cristalina. La relación entre el tipo estructural y la alterabilidad relativa queda expresada por la serie

    de GOLDICH (1938).

    Factores de Intensidad: son característicos del ambiente en el que se produce la alteración,

    controlando el proceso de meteorización y el grado e intensidad del mismo:

    Drenaje: teniendo en cuenta que casi todos los procesos de intemperismo ocurren en medio

    acuoso, el tiempo que el agua está en contacto con los minerales regula la alterabilidad de éstos.

    El agua transportará en solución variadas sustancias y desalojará los productos generados por la

    alteración, manteniendo en funcionamiento la meteorización y bajando el pH del agua. Las

    condiciones ideales para la alteración de minerales es cuando el agua es abundante y el drenaje es

    moderadamente bueno. Una vez que el agua va penetrando en el subsuelo se carga de cationes y

    su pH se vuelve más alcalino, por lo que las reacciones de alteración se hacen menos importantes.

    Por otro lado, el drenaje está estrechamente vinculado con la topografía.

  • 8/17/2019 Clase Rocas

    36/41

    Clima: incide sobre las características e intensidad del proceso intempérico por dos parámetros:

    precipitación y temperatura. La velocidad de las reacciones químicas se multiplica por 2 ó 3 cada

    10º de aumento de temperatura (ley de VAN'T HOFF), siendo esta una de las razones de la alta

    agresividad de los climas tropicales, en los que casi todos los silicatos son inestables. Junto con la

    topografía puede enunciarse:

    - En zonas bajas, bajo la acción de clima cálido y húmedo, la descomposición química es el

    proceso dominante.

    - En zonas quebradas, frías y secas domina la desintegración. Esto es: a climas más cálidos y

    húmedos más rápidamente progresa la meteorización.

    Topografía: actúa condicionando al clima y el drenaje.

    Naturaleza de las rocas: fundamentalmente mineralogía y textura.

    Vegetación: acción mecánica de las raíces, acción química en proximidades de las raíces

    (descenso de pH y suministro de CO2), productos resultantes de la degradación de la materia

    orgánica en el suelo, regulación sobre la precipitación y regulación sobre la erosión.

    La pérdida de consistencia facilita la acción de los agentes de transporte que pueden entonces

    remover parcial o totalmente la roca meteorizada.

    Los principalesagentes de transporte son la gravedad, el agua, aire y hielo.

    :n climas des5rticos el transporte por el viento (eólico" es uno de losfactores predominantes, así como lo es el movimiento de los $laciares

    en las zonas más frías del planeta. :n nuestro país y en las condiciones

    actuales, $ravedad y corrientes de a$ua superficiales son los a$entes

    principales de transporte, aunque el viento 6ue$a asmismo un papel

    importante, especialmente en las arenas costeras. :l transporte por

    hielo es inexistente en nuestro país en las condiciones actuales. in

    embar$o existe re$istro $eoló$ico abundante de sedimentos

    transportados por $laciares en otros momentos de la historia $eoló$ica.

    Las condiciones climáticas en las diferentes zonas de la Tierra cambian el balance entre los

    factores predominantes de transporte. La gravedad es sin duda el principal factor que condiciona la

    ubicación última de las sustancias transportadas por los diversos agentes, de hecho es la gravedad

    quien condiciona el movimiento del agua y del hielo en la superficie emergida de nuestro planeta.

    Es lógico pensar entonces que el destino final de los sedimentos en un momento determinado

    serán las superficies topográficamente deprimidas de nuestro planeta, donde pueden acumulares

    importantes espesores de materiales sedimentarios.

    Cuando las zonas de depositación ocupan extensiones areales regionales, se denominancuencas

    sedimentarias. Es frecuente que en nuestro planeta se desarrollen condiciones para la

  • 8/17/2019 Clase Rocas

    37/41

    depositación continuada o discontinuada de espesores importantes de sedimentos, que pueden

    alcanzar varios miles de metros. A medida que se van depositando nuevas capas de sedimentos,

    los que quedan por debajo se encuentran sometidos a presiones crecientes que tienden a

    compactarlos y a expulsar el agua contenida en los mismos.

    Asimismo tengamos en cuenta que el agua que circula por la superficie de nuestro planeta (y que

    proviene íntegramente de las precipitaciones) no solo arrastra partículas (detritos), sino que

    también contiene iones en solución que son removidos de ciertas zonas y se recombinan en otras

    para dar lugar a especies minerales formadas como consecuencia de la precipitación química.

    Estas especies minerales pueden actuar comocementantes entre los granos de las rocas

    detríticas, o bien constituir espesores importantes de rocas de precipitación química tales como las

    calizas.

    Al conjunto de procesos de compactación y cementación de los sedimentos, incluyendo la

    generación de algunas especies minerales estables en el ciclo exógeno (neoformación), se lesengloba bajo el nombre dediagénesis. Las rocas sedimentarias, producto de la litificación de los

    sedimentos, se clasificarán entonces siguiendo criterios similares a los empleados para la

    clasificación de estos últimos. Por ejemplo, si el sedimento es una arena, la familia de rocas a que

    da lugar será la de las areniscas.

    Una primera gran subdivisión que surge de lo expresado líneas más arriba es que existen dos

    grandes grupos de rocas sedimentarias: lasdetríticas y las deprecipitación química. Otro grupo

    importante lo constituyen aquellas masas rocosas en las que sus constituyentes son

    fundamentalmente restos de organismos; por ejemplo, la acumulación local de conchillas y restos

    de organismos marinos puede dar lugar a rocas llamadas lumaquelas.

    Los organismos vivos juegan a veces papeles menos evidentes, pero no por ello menos

    importantes en la generación de rocas sedimentarias, muchas veces condicionando factores como

    el pH y eH en cuerpos de agua, y regulando entonces la precipitación química de una u otra

    especie mineral.

    Dentro del grupo de rocas detríticas el criterio de clasificación fundamental es el tamaño de grano

    de las partículas que la constituyen. El cuadro que se presenta se considera suficientemente

    explícito al respecto.

  • 8/17/2019 Clase Rocas

    38/41

    Otros elementos que han de tenerse en cuenta para la clasificación de las rocas sedimentarias

    detríticas normalmente considerados en segundo lugar, incluyen aspectos tales comoforma de los

    granos (especialmente en psamitas y psefitas),selección,mineralogía ycemento. Elcolor es

    una propiedad utilizada en la descripción pero no es un criterio de clasificación.

    1ebe tenerse presente que la asi$nación de un nombre particular a una

    roca específica, sea esta sedimentaria, í$nea o metamórfica, es un

    ob6etivo secundario frente al de realizar una minuciosa descripción de la

    misma. 0esulta mucho más valioso aprender a observar y describir

    cuidadosamente una roca, que conocer su nombre en un criterio de

    clasificación arbitrario cualquiera. La correcta descripción de una

    litolo$ía solo puede realizarse cuando se tiene la oportunidad de verla

    en el campo y de observar además su relación con las rocas vecinas. La

    muestra de mano 9obtenida con la herramienta apropiada9 puede

    permitir en al$unos casos una descripción aceptable, pero tiene

    enormes limitaciones. or ello debe entenderse que los e6ercicios

    propuestos en las clases de taller suponen la dificultad accesoria de no

    estar observando directamente el afloramiento, sino una porción

    relativamente pequeKa y no siempre representativa del total. :n estecaso mas que en nin$8n otro, repetimos que el ob6etivo fundamental es

    una exhaustiva descripción de lo que vemos mas que la asi$nación de

    un nombre particular a cada muestra.

    Laselección es la propiedad que describe la variabilidad del tamaño de grano en una roca

    sedimentaria detrítica. Aquellas rocas que muestran solo una clase granulométrica bien definida,

    siendo el tamaño de todas las partículas similar, se dicen bien seleccionadas. Por oposición,

    aquellas en que sus constituyentes presentan una gran diversidad de tamaños se denominan mal

  • 8/17/2019 Clase Rocas

    39/41

    seleccionadas. La selección de una roca es una propiedad que condiciona fuertemente su

    porosidad, y por lo tanto su comportamiento frente a la circulación de agua, subsuperficial o

    subterránea.

    Otro criterio a tener en cuenta en la clasificación de las rocas sedimentarias es la morfología de los

    clastos, denominada en sedimentologíaredondez. La redondez es eldato morfológico de mayor

    interés en la tipificación del ambiente de sedimentación de algunas rocas sedimentarias,

    especialmente las psamitas y

    las psefitas. Por otro lado, la

    esfericidad está relacionada

    con las diferencias existentes

    entre los distintos diámetros o

    longitudes de los ejes de la

    partícula.

    Se dice que una roca

    sedimentaria es más madura

    cuanto más redondeados y

    seleccionados estén los clastos

    que la integran. Lamadurez 

    textural es un índice que refleja

    el tiempo transcurrido entre la

    erosión del material detrítico original y su depositación final.

     

    En las rocas sedimentarias detríticas es común que las partículas constituyentes se encuentren

    más o menos fuertemente adheridas por sustancias minerales a las que llamamoscementos.

  • 8/17/2019 Clase Rocas

    40/41

    Estas sustancias llenan los vacíos que existen entre las partículas eliminando parcial o totalmente

    la porosidad inicial.

    Los cementos pueden ser precipitados químicos que cristalizan a partir de aguas cargadas de

    sales circulando por los poros originales del sedimento o precipitados en forma simultánea con las

    partículas. Una roca sedimentaria detrítica cementada es más densa, más tenaz, y menos porosa

    que su equivalente no cementado.

    Latenacidad depende en gran medida del tipo de cemento siendo las cementadas con SiO2 las

    más resistentes no sólo mecánicamente sino también a ulteriores transformaciones por

    meteorización.

    Como ya ha sido comentado, el proceso sedimentario comprende varios estadios, iniciándose con

    la alteración del material madre por parte de los agentes de meteorización o intemperismo. La

    segunda etapa es el transporte de los detritos e iones formados durante la meteorización, el cualpuede viabilizarse a través del agua (arroyos, ríos, mar, etc.), el viento, hielo, gravedad, etc. La

    última etapa del ciclo sedimentario es la depositación y es la más importante, ya que le conferirá al

    sedimento las características estructurales definitivas.

    En base al ambiente de depositación, los sedimentos se distinguen en continentales y marinos. Los

    sedimentos continentales pueden ser subaéreos, como en el caso de las areniscas eólicas

    desérticas o el loess periglacial, o subacuáticos, que a su vez pueden clasificarse en fluviales

    (depositados en ríos o arroyos), lacustres (depositados en lagos o lagunas), deltaicos, etc. Los

    sedimentos marinos se distinguen según la profundidad a la que fueron depositados y según la

    distancia a la costa.

    No es el objetivo de este documento adentrarse en la clasificación ambiental de los sedimentos y

    las estructuras asociadas a cada uno de ellos (campo de estudio de la sedimentología y

    estratigrafía), sin embargo pude ser útil conocer someramente las estructuras más comunes de las

    rocas sedimentarias, a los efectos de ser utilizadas en la descripción de campo de las rocas

    sedimentarias. En ese sentido se cree que la figura es lo suficientemente explícita para su

    interpretación.

    Principales estructuras sedimentarias:

    1- estratificación plano-paralela;

    2- estratificación cruzada;

    3- ondulitas y

    4- estructuras de canal.

  • 8/17/2019 Clase Rocas

    41/41