clase 05 energia, enzimas y metabolismo

41
Flujo de Energía en el Mundo Biológico Energía, Enzimas y Metabolismo Energía, Enzimas y Metabolismo

Upload: yocelyn-galarce

Post on 14-Jul-2015

259 views

Category:

Documents


3 download

TRANSCRIPT

Flujo de Energía en el Mundo Biológico

Energía, Enzimas y MetabolismoEnergía, Enzimas y Metabolismo

La Energía La Energía ““Es la capacidad de producir un cambio en el estado o Es la capacidad de producir un cambio en el estado o

movimiento de la materia”movimiento de la materia”Tipos de EnergíaTipos de Energía1. Energía Cinética (movimiento):1. Energía Cinética (movimiento): Movimiento de la masa o Movimiento de la masa o

de las partículasde las partículas• La La luzluz (movimiento de fotones) (movimiento de fotones)• El El calor calor (movimiento de moléculas) (movimiento de moléculas) • La La electricidad electricidad (movimiento de electrones)(movimiento de electrones)• El movimiento de objetosEl movimiento de objetos

2. Energía Potencial (almacenada): Es la capacidad de hacer trabajo en virtud de la posición o estado de una masa o partícula.

• E. Química (almacenada en los enlaces: carbohidratos y grasas)

• E. Eléctrica (almacenada en baterías)

• E. de Posición (agua en una represa)

El árbol absorbe luz E radiante solar (E cinética)El árbol convierte la E luminosa en E potencial química almacenada en enlaces y la usa para producir hojas, ramas y frutos…

La manzana, "llena" de E potencial química, cae al suelo, su E de posición (E potencial) se transforma en E cinética, la E del movimiento

Cuando manzana golpea suelo, E cinética se transforma en calor (E calórica) y sonido (E acústica), etc.

Flujo de la EnergíaFlujo de la Energía

Si alguien come la manzana, cuerpo transforma E química de manzana en movimiento muscular, reproducción, etc.

Flujo de la EnergíaFlujo de la Energía

Depende de:• Cantidad de E inicialmente disponible• Utilidad de la E • Se rige por la leyes de la Termodinámica

Leyes de la Termodinámica• Describen las propiedades y el comportamiento de la

Energía en los sistemas.

• “La cantidad total de energía del universo permanece constante”

• En otras palabras, la energía no puede ser creada ni destruida, aunque si es transformable de un tipo a otro.

Primera Ley de la TermodinámicaPrimera Ley de la Termodinámica

• “La energía tiende a difundirse de una forma más concentrada a una menos concentrada, ej. se libera como calor o luz, o ambas”.

• El desorden siempre está en aumento en el universo.

Segunda Ley de la TermodinámicaSegunda Ley de la Termodinámica

Requiere + Energía Requiere - Energía

Entropía““mide el grado de desorden o cambio de un sistema”mide el grado de desorden o cambio de un sistema”

• Entropía: Es la energía que no puede utilizarse para producir trabajo

• La energía de alta calidad, con baja entropía, es la que puede ser más utilizada por el ser humano (ej. carbón, electricidad, gasolina)

• La energía de baja calidad, con alta entropía, es la menos utilizable por el ser humano (ej. calor liberado por un animal al correr).

Fuentes de EnergíaFuentes de Energía

• El Sol proporciona el 99% de toda la energía utilizada por los seres vivos en la Tierra.

• Esta fluye a través de los ecosistemas, en procesos cíclicos de utilización y reciclaje.

HongosHongosDescomponedoresDescomponedores

AutótrofosAutótrofosFotosintetizadoresFotosintetizadores HerbívoroHerbívoro

Consumidor 1ºConsumidor 1º

DepredadorDepredadorConsumidor 2º o 3º Consumidor 2º o 3º

DepredadorDepredadorConsumidor 3º o 4ºConsumidor 3º o 4º

BacteriasBacteriasDescomponedorasDescomponedoras

Elementos BásicosElementos Básicos

HerbívoroHerbívoroConsumidor 1ºConsumidor 1º

Insectívoro Insectívoro Consumidor 2ºConsumidor 2º

• Ninguna transformación de la energía es 100% eficiente.

• La energía se pierde principalmente en forma de luz y calor.

• El calor no puede ser almacenado en las células o en ninguna parte de los seres vivos.

Pérdidas energéticasPérdidas energéticas

Reacciones Reacciones QuímicasQuímicas

Reacciones Endergónicas y exergónicas

Reacciones Acopladas

Energía de activación

• Para que se lleven a cabo requieren de una aportación neta de energía proveniente del exterior.

Reacciones endergónicas o no espontáneas

Los productos tienen Los productos tienen más E que los reactivos, más E que los reactivos, los reactivos necesitan E los reactivos necesitan E para llevar a cabo la para llevar a cabo la reacciónreacción

• Ejemplo la Fotosíntesis: Requiere la energía solar para formar glucosa (C6H12O6) a partir de CO2 y H2O

• Glucosa brinda 3,75 kilocalorías por cada gramo

• Ocurren sin ninguna intervención externa• Generan energía libre (disponible para hacer trabajo)

Reacciones exergónicas o espontáneas

Reactivos tienen más Reactivos tienen más E que los productos, E que los productos, se forman productos y se forman productos y se libera Ese libera E

• La Respiración, utiliza la energía contenida en la glucosa para realizar un trabajo.

Sistemas VivientesSistemas Vivientes• Las formas de vida son sistemas

altamente organizados que requieren mucha energía para mantenerse, o sea es una lucha constante contra la entropía según la segunda ley de termodinámica.

• Si la mayoría de las reacciones en seres vivos son endergónicas. ¿Cómo logramos sobrevivir?

• Las células compensan su pérdida continua de energía empleando fuentes de energía externas.

Fotosíntesis

Respiración

(Mitocondrias)

(Cloroplastos)

Reacciones Acopladas• Seres vivos utilizan reacciones

exergónicas (proporcionan energía) para impulsar las reacciones endergónicas (requieren energía).

• Ambas reacciones ocurren en lugares distintos y la energía se transfiere mediante moléculas portadoras de energía, como el ATP para llevarla donde se necesita.

• La fotosíntesis (reacción endergónica en la planta) ocurre en el cloroplasto y la Respiración (exergónica) en la mitocondria.

MetabolismoMetabolismo• La infinidad de reacciones químicas que ocurren dentro

de las células, les permite crecer, moverse, mantenerse y autorrepararse, reproducirse y reaccionar a los estímulos, integran en forma global el proceso denominado metabolismo.

• Metabolismo: todas las transformaciones químicas y energéticas que ocurren en los organismos vivos.

Funciones del Metabolismo

• La digestión de los nutrientes de los alimentos permite:– Obtener energía química de uso inmediato– Generar reservas energéticas (carbohidratos y lípidos)

• La construcción de biocompuestos y estructuras propias:– Lípidos, proteínas, carbohidratos, enzimas, ADN, etc.– Crecimiento: Construir y renovar estructuras (células, tejidos,

órganos, etc.).• La reproducción del organismo• La eliminación de residuos tóxicos producidos por la actividad

celular– Ácidos– Peróxido de hidrógeno

• Mamíferos, la regulación de la temperatura del organismo.

Vías Metabólicas

Anabolismo y Catabolismo

Anabolismo• Síntesis o formación de biomoléculas más complejas a partir

de otras moléculas más sencillas, con requerimiento de energía (reacciones endergónicas).

Biosíntesis:

• Lípidos complejosLípidos complejos

• Carbohidratos Carbohidratos complejoscomplejos

• Proteínas Proteínas

• Principal es la Principal es la FotosíntesisFotosíntesis

Catabolismo• Transformación de biomoléculas complejas en

moléculas sencillas, para obtener energía en forma de ATP (reacciones exergónicas).

Degradación: Degradación:

• Lípidos complejosLípidos complejos

• Carbohidratos Carbohidratos complejoscomplejos

• ProteínasProteínas

• Principal es la Principal es la RespiraciónRespiración

TransporteTransporte de de EnergíaEnergía: ATP: ATP

• Reacciones acopladas no necesitan ocurrir en el mismo lugar para trabajar juntas

• En células, la energía viaja también por medio de moléculas transportadoras

• El ATP es la principal molécula de alto contenido energético que conecta las reacciones productoras de energía con las que la necesita.

• Otras moléculas transportadoras: NAD y FAD

Proceso de Fotosíntesis

Estructura de la molécula de ATPTrifosfato de adenosina o adenosín trifosfatoTrifosfato de adenosina o adenosín trifosfato

• Es un nucleótido que está formado por una base nitrogenada (adenina), unida al carbono 1 de un azúcar de tipo pentosa, la ribosa, que en su carbono 5 tiene enlazados tres grupos fosfato.

• Se produce durante la fotosíntesis y la respiración celular, y es consumida por muchos enzimas y proteínas en numerosos procesos químicos para liberar energía.

• Su fórmula es C10 H16 N5 O13 P3.

Enlaces de alta energía

¿Cómo produce energía el ATP?¿Cómo produce energía el ATP?• Rompiéndose el enlace fosfato• En los procesos REDUCTIVOS se libera energía, cual

es utilizada para el metabolismo:

ATP --------------------->  ADP + Pi  (ΔG = -7.7 kcal/mol)

Se liberan 7.7 kcal/mol)

Procesos donde participa el ATPProcesos donde participa el ATP• Anabolismo

– Biosíntesis de lípidos, carbohidratos, proteínas, enzimas, etc.

• Transporte activo a través de la membrana plasmática– Energía a proteínas integrales transportadoras

• Contracción muscular– Bomba de Sodio (Na) y Potasio (K)

• Transferencia genética y reproducción celular– Mitosis y meiosis

Enzimas

Propiedades y Cinética

Barreras energéticas

• Una taza de glucosa aún en condiciones favorables de O2 tardaría muchos años para transformarse espontáneamente en H2O y CO2.

• Los seres vivos no pueden esperar tanto tiempo, por eso intervienen catalizadores biológicos denominados enzimas.

Energía de ActivaciónEnergía de Activación

• Las reacciones químicas no ocurren espontáneamente, requieren E inicial (un “empujón”) para comenzar.

• E de activación ⇒ E cinética mínima que necesita un sistema para poder iniciar un determinado proceso o reacción.

• Calor: Por sí solos el combustible y el comburente no producen fuego, es necesario un primer aporte de energía (calor) para iniciar la combustión autosostenida.

• Son biocatalizadores de naturaleza proteica, que aceleran la velocidad de una reacción química al bajar la energía de activación necesaria para que esta ocurra.

• Todas las reacciones del metabolismo celular se realizan gracias a la acción de catalizadores o enzimas

EnzimasEnzimas“Catalizadores Biológicos”“Catalizadores Biológicos”

Producto

Reactivo

Producto

Reactivo

Energía de Activación

En

erg

ía

liber

ada

En

erg

ía

aplic

ada

Sin Catalizar

Catalizada

Energía de Activación

Características de las Enzimas

• Aceleran de cientos a millones de veces la velocidad una reacción que tardaría mucho en darse por sí sola.

• Las enzimas no se modifican o se pierden cuando intervienen en una reacción.

• El mismo tipo de enzima cataliza hacia la derecha y hacia la izquierda cuando es reversible.

• La enzimas tienen sustratos específicos, son selectivas.

• Enzimas son selectivas– Su selectividad determina cuáles son los procesos

químicos que se llevan a cabo en una célula.– Cada enzima posee una forma tridimensional única, y

dicha forma determina la especificidad de esa enzima.– Sustrato - enzima (centro activo)

Selectividad de las EnzimasSelectividad de las Enzimas

Amilasa Almidón Lipasa Lípidos

¿Cómo trabaja una enzima?¿Cómo trabaja una enzima?• La enzima (E), tiene uno o

varios sitios activos, donde se combinan con el sustrato (S) formando el complejo de transición (reacción reversible), enzima - sustrato (E-S).

• Cuando se forman los productos (P) de la reacción, enzima se regenera de nuevo y queda libre para volver a combinarse con otra molécula de sustrato

• La enzima puede actuar sobre millones de moléculas de sustrato.

Enzima(sacarasa) Sitio

activo

1

2

3

Sustrato “S”(sacarosa)

Enzima “E” disponible con sitio activo

vacío

Sustrato se une a enzima

Complejo “E-S”

SustratoConvertido enProductos “P”

4

Productos

liberados

GlucosaFructosa

son

• La actividad de la enzima es influenciada por los siguientes factores:– Temperatura– pH– Cofactores o Activadores– Inhibidores

El ambiente celular afecta la El ambiente celular afecta la actividad enzimáticaactividad enzimática

TemperaturaTemperatura• Las enzimas son desactivadas por las altas temperaturas

(50 a 60 °C) ⇒ Se desnaturalizan.• Las reacciones ocurren muy lento o se suspenden a bajas

temperaturas.

Acidez o alcalinidad del Acidez o alcalinidad del medio de reacción (pH)medio de reacción (pH)

• Un pH alto o bajo se puede producir la desnaturalización de la enzima y en consecuencia su inactivación

• Su máxima actividad esta cerca de la neutralidad en un rango de pH de 6 a 8.

Según el sitio:• Tripsina en el

intestino, pH cerca a 8.

• Pepsina, digiere proteínas en el estómago, pH entre 1 - 2

Cofactores o ActivadoresCofactores o Activadores• Muchas enzimas requieren cofactores no proteicos para

realizar sus actividades:– Muchos cofactores son moléculas orgánicas (ARN)

llamadas coenzimas – Otros son sustancias inorgánicas: iones de zinc, hierro,

magnesio, manganeso, cobre

• Hay dos tipos de inhibidores: – El inhibidor competitivo se

asemeja al sustrato normal ý se une en el sitio activo de la enzima

– El inhibidor no competitivo se une a la enzima en un lugar diferente al sitio activo pero modifica la conformación espacial de la enzima

Los inhibidores enzimáticos Los inhibidores enzimáticos bloquean la acción enzimáticabloquean la acción enzimática

Sustrato

Enzima

Sitioactivo

UNION NORMAL DEL SUSTRATO

Inhibidorcompetitivo

Inhibidor nocompetitivo

INHIBICION ENZIMÁTICA

• Ciertos pesticidas son tóxicos para los insectos porque inhiben irreversiblemente ciertas enzimas claves en el sistema nervioso. (malatión)

• Muchos antibióticos también inhiben enzimas que son esenciales para la supervivencia de las bacterias que causan enfermedades– Penicilina inhibe a una enzima que las bacterias usan

para construir sus paredes celulares

Algunos pesticidas y antibioticos Algunos pesticidas y antibioticos inhiben las enzimasinhiben las enzimas

• Más sistemática debido al gran número de enzimas conocidas en la actualidad.

• Se refiere a la función que desempeñan las enzimas:- Oxidorrectasas: transferencia de electrones- Transferasas: transferencia de grupos funcionales- Hidrolasas: reacciones de hidrólisis (celulasa)- Liasas: adición de dobles enlaces (carboxilasa)- Isomerasas: reacciones de isomerización- Ligasas: formación de enlaces de ATP

Clasificación y nomenclatura modernaClasificación y nomenclatura moderna

Grupo Acción ejemplos

1. Oxidoreductasas Catalizan reacciones de oxidorreducción. Tras la acción catálica quedan modificados en su grado de oxidación por lo que debe ser transformados antes de volver a actuar de nuevo.

DehidrogenasasAminooxidasaDeaminasasCatalasas

2. Transferasas Transfieren grupos activos (obtenidos de la ruptura de ciertas moléculas) a otras sustancias receptoras. Suelen actuar en procesos de interconversiones de azucares, de aminoácidos, etc

TransaldolasasTranscetolasasTransaminasas

3. Hidrolasas Verifican reacciones de hidrólisis con la consiguiente obtención de monómeros a partir de polímeros. Suele ser de tipo digestivo, por lo que normalmente actúan en primer lugar

GlucosidasasLipasasPeptidasasEsterasasFosfatasas

4. Isomerasas Actúan sobre determinadas moléculas obteniendo de ellas sus isómeros de función o de posición. Suelen actuar en procesos de interconversion

Isomerasas de azúcarEpimerasasMutasas

5. Liasas Realizan la degradación o síntesis (entonces se llaman sintetasas) de los enlaces denominados fuertes sin ir acoplados a sustancias de alto valor energético.

AldolasasDecarboxilasas

6. Ligasas Realizan la degradación o síntesis de los enlaces fuertes mediante el acoplamiento a sustancias ricas en energía como los nucleosidos del ATP

CarboxilasasPeptidosintetasas

Grupos enzimáticos, funciones y ejemplos

¿Preguntas?¿Preguntas?