chemical engineering flow models2 [compatibility mode]

18
7/25/2019 Chemical Engineering Flow Models2 [Compatibility Mode] http://slidepdf.com/reader/full/chemical-engineering-flow-models2-compatibility-mode 1/18      1) ; 2) C ; 3) C : ) ; ) ; ) C , 2, 17.10.2011

Upload: deea171

Post on 28-Feb-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chemical Engineering Flow Models2 [Compatibility Mode]

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 118

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983127983144983161 983159983141 983149983157983155983156 983157983155983141 983137 983142983148983151983159 983149983151983140983141983148 983159983144983141983150 983159983141 983144983137983158983141 983140983145983155983152983151983155983137983138983148983141 983142983151983154 983142983148983151983159 983139983144983137983154983137983139983156983141983154983145983162983137983156983145983151983150

983156983144983141 983118983137983158983145983141983154 983123983156983151983147983141983155 983141983153983157983137983156983145983151983150983155 983159983145983156983144 983156983144983141983145983154 983141983160983152983154983141983155983155983145983151983150 983145983150 983156983144983141 983139983151983149983152983157983156983137983156983145983151983150983137983148 983142983148983157983145983140 983140983161983150983137983149983145983139983155

983152983154983151983139983141983140983157983154983141983155983103

1) 983142983151983154 983156983144983141 983149983137983146983151983154983145983156983161 983151983142 983156983144983141 983155983152983141983139983145983142983145983139 983137983152983152983137983154983137983156983157983155 983156983144983141 983142983148983151983159983155 983152983154983141983155983141983150983156 983137 983156983157983154983138983157983148983141983150983156 983139983151983149983152983151983154983156983149983141983150983156 983137983150983140 983142983151983154

983137 983155983157983139983144 983142983148983151983159 983137 983150983157983149983141983154983145983139 983155983151983148983157983156983145983151983150 983145983155 983139983151983158983141983154983141983140 983138983161 983137 983144983145983143983144 983145983150983139983141983154983156983145983156983157983140983141 983140983157983141 983156983151 983156983144983141 983142983137983139983156 983156983144983137983156 983151983150983141

983144983161983152983151983156983144983141983155983141983155 983137983138983151983157983156 983156983144983141 983156983157983154983138983157983148983141983150983139983141 983137983152983152983137983154983145983156983145983151983150 983137983154983141 983137983152983154983145983151983154983145983156983161 983152983154983151983152983151983155983141983140 983137983150983140 983137983139983139983141983152983156983141983140

2) 983145983150 983137983148983148 983156983144983141 983139983137983155983141983155 983156983144983141 983154983141983137983148 983137983152983152983137983154983137983156983157983155 983144983137983155 983137 983139983151983149983152983148983145983139983137983156983141983140 983143983141983151983149983141983156983154983161 983156983144983137983156 983145983149983152983151983155983141983155 983158983141983154983161 983139983151983149983152983148983141983160

983137983150983140 983142983154983141983153983157983141983150983156983148983161 983157983150983139983141983154983156983137983145983150 983157983150983145983158983151983139983145983156983161 983139983151983150983140983145983156983145983151983150983155 983145983150 983156983144983141 983154983141983137983148 C983110983108 983138983137983155983141983140 983142983148983151983159 983139983151983149983152983157983156983137983156983145983151983150

3) 983142983151983154 983149983151983154983141 983139983137983155983141983155 983137 983142983148983151983159 983149983151983140983141983148 983145983155 983145983150 983142983137983139983156 983137 983154983141983137983148 983155983151983148983157983156983145983151983150 983151983142 983137983150 983141983153983157983145983158983137983148983141983150983156 983139983151983149983152983148983145983139983137983156983141983140 C983110983108 983149983151983140983141983148

983119983156983144983141983154 983151983152983152983151983154983156983157983150983145983156983145983141983155

983137) 983156983144983141 983155983145983149983152983148983141 983137983150983140 983154983137983152983145983140 983152983151983155983155983145983138983145983148983145983156983161 983151983142 983156983144983141983155983141 983142983148983151983159 983149983151983140983141983148983155 983156983151 983138983141 983153983157983137983148983145983156983137983156983145983158983141 983137983150983140 983153983157983137983150983156983145983156983137983156983145983158983141

983145983140983141983150983156983145983142983145983141983140 983137983155 983137 983154983141983155983157983148983156 983151983142 983141983160983152983141983154983145983149983141983150983156983137983148 983149983141983137983155983157983154983141983149983141983150983156983155 983145983150983139983148983157983155983145983158983141983148983161 983149983137983140983141 983151983142 983156983144983141 983154983141983137983148 983137983152983152983137983154983137983156983157983155

983138) 983156983144983141 983139983151983154983154983141983139983156983145983156983157983140983141 983137983150983140 983155983157983152983152983148983141983150983141983155983155 983151983142 983140983137983156983137 983152983154983151983140983157983139983141983140 983138983161 983149983151983140983141983148983145983150983143 983159983144983141983154983141 983156983144983141 983142983148983151983159983155 983149983151983140983141983148983155 983137983154983141

983137983140983141983153983157983137983156983141983148983161 983155983141983148983141983139983156983141983140 983137983150983140 983145983140983141983150983156983145983142983145983141983140

983139) 983156983144983141 983145983149983152983151983154983156983137983150983156 983156983145983149983141 983141983160983152983141983154983145983141983150983139983141 983151983142 983156983144983141983155983141 983149983151983140983141983148983155 983156983144983137983156 983150983151983154983149983137983148983148983161 983152983154983151983140983157983139983141983140 983156983144983141 983155983145983156983157983137983156983145983151983150983155 983159983144983141983154983141

983137983142983156983141983154 983137 983158983141983154983138983137983148 983140983141983155983139983154983145983152983156983145983151983150 983151983142 983156983144983141 983154983141983137983148 983142983148983151983159 983159983141 983139983137983150 983154983137983152983145983140983148983161 983137983156983156983137983139983144 983137 983149983151983140983141983148 983141983158983145983140983141983150983156983148983161 983159983145983156983144983151983157983156

983145983140983141983150983156983145983142983145983141983140 983152983137983154983137983149983141983156983141983154983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 218

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

983117983141983139983144983137983150983145983139983137983148983148983161 983149983145983160983141983140 983154983141983137983139983156983151983154 983142983151983154 983148983145983153983157983145983140 983149983141983140983145983137 983154983141983137983139983156983145983151983150983155 983080983105983152983152983148983145983139983137983156983145983151983150983081

983124983144983141 983152983144983161983155983145983139983137983148 983149983151983140983141983148 983151983142 983156983144983141 983154983141983137983139983156983151983154 983145983155 983137 983139983161983148983145983150983140983154983145983139983137983148 983137983152983152983137983154983137983156983157983155 983144983137983158983145983150983143 983137 350 983149983149

983144983141983145983143983144983156 983137983150983140 100 983149983149 983145983150 983140983145983137983149983141983156983141983154 983156983144983141 983138983151983156983156983151983149 983151983142 983156983144983141 983154983141983137983139983156983151983154 983145983155 983141983148983148983145983152983156983145983139983137983148983148983161 983154983141983139983151983154983140983141983140

983156983151 983156983144983141 983139983161983148983145983150983140983154983145983139983137983148 983152983137983154983156 983124983144983141 983154983141983137983139983156983151983154 983151983152983141983154983137983156983145983151983150 983158983151983148983157983149983141 983137983156983156983137983145983150983155 9831493 983124983144983141

983145983150983152983157983156 983146983151983145983150983156 983151983142 983154983141983137983139983156983137983150983156983155 983145983155 983152983148983137983139983141983140 983156983151 983156983144983141 983149983145983140983140983148983141 983151983142 983154983141983137983139983156983151983154 983149983151983154983141 983141983160983137983139983156983148983161 983156983151 130 983149983149

983142983154983151983149 983156983144983141 983154983141983137983139983156983151983154 983138983151983156983156983151983149 983124983144983141 983141983160983145983156 983154983141983137983139983156983151983154 983146983151983145983150983156 983145983155 983152983151983155983145983156983145983151983150983141983140 983156983151 983156983144983141 983156983151983152 983151983142 983154983141983137983139983156983151983154983138983157983156 983138983141983148983151983159 983156983144983141 983148983145983153983157983145983140 983154983141983137983139983156983151983154 983148983141983158983141983148 A 983149983145983160983141983154 983159983145983156983144 983156983144983154983141983141 983144983141983148983145983139983151983145983140983137983148983148983161 983152983137983140983140983148983141 983144983137983158983145983150983143

983156983144983137983156 983151983152983141983154983137983156983141983155 983159983145983156983144 983137 983154983151983156983137983156983145983151983150 983155983152983141983141983140 983151983142 983137 150 983149983145983150 9912511 983137983155983155983157983154983141983155 983156983144983141 983149983145983160983145983150983143 983151983142 983156983144983141

983154983141983137983139983156983145983151983150 983149983141983140983145983157983149

983127983145983156983144 983156983144983141 983152983157983154983152983151983155983141 983156983151 983141983155983156983137983138983148983145983155983144 983156983144983141 983154983141983137983139983156983151983154 983142983148983151983159 983149983151983140983141983148 983156983144983145983155 983145983155 983142983145983148983148983141983140 983159983145983156983144 983159983137983156983141983154 983137983150983140

983137 983159983137983156983141983154 983142983148983151983159 983154983137983156983141 983151983142 9831493983155 983156983154983137983158983141983154983155983141983155 983156983144983141 983154983141983137983139983156983151983154 A983156 983156983144983141 983156983145983149983141 983137 983157983150983145983156983137983154983161

983145983149983152983157983148983155983141 983151983142 983156983144983141 983118983137C983148 983155983151983148983157983156983145983151983150 983159983145983156983144 9831479831439831493 983155983156983137983154983156983155 983145983150 983156983144983141 983154983141983137983139983156983151983154 983145983150983152983157983156 983124983144983141983156983145983149983141 983141983158983151983148983157983156983145983151983150 983151983142 983118983137C983148 983139983151983150983139983141983150983156983154983137983156983145983151983150 983145983150 983156983144983141 983141983160983145983156 983142983148983151983159 983154983141983137983139983156983151983154 983145983155 983151983138983156983137983145983150983141983140 983138983161 983157983155983141 983151983142

983139983151983150983140983157983139983156983151983149983141983156983154983145983139 983149983141983137983155983157983154983141983149983141983150983156983155 983124983137983138983148983141 35 983143983145983158983141983155 983156983144983141 983140983137983156983137 983156983144983137983156 983155983144983151983159 983156983144983141 983141983158983151983148983157983156983145983151983150

983151983142 983156983144983145983155 983139983151983150983139983141983150983156983154983137983156983145983151983150 983137983156 983156983144983141 983154983141983137983139983156983151983154 983141983160983145983156

31012V

minus=

330D d =

51066

minus

0=τ

63c0 =

Table 35 The evolution of the exit reactor NaCl concentration (Application 3351)

I 1 2 3 4 5 6 7 8 9 10 11 12

τi sec 0 18 36 48 18 36 72 108 144 180 216 252

ci=c(τi) 0 0 0 018 0342 0651 1281 1828 2142 2405 2556 2772

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 318

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983125983150983145983156983137983154983161

983145983149983152983157983148983155983141

τ=0

983111983158 9831390

983111983158 983139

983126983139

983124983144983141 983142983148983151983159 983149983151983140983141983148 983155983141983148983141983139983156983145983151983150 983113983150 983137983139983139983151983154983140983137983150983139983141 983159983145983156983144 983156983144983141 983143983145983158983141983150 983140983141983155983139983154983145983152983156983145983151983150 983144983141983154983141 983145983156

983145983155 983141983160983152983141983139983156983141983140 983137 983142983148983151983159 983149983151983140983141983148 983159983144983141983154983141 983137 983155983149983137983148983148 983152983148983157983143 983142983148983151983159 983162983151983150983141 983145983155 983137983139983139983151983149983152983137983150983145983141983140 983138983161

983137983150 983145983149983152983151983154983156983137983150983156 983152983141983154983142983141983139983156 983149983145983160983145983150983143 983142983148983151983159 983162983151983150983141 983139983151983157983152983148983141983140 983159983145983156983144 983137 983155983156983137983143983150983137983150983156 983162983151983150983141 983156983144983137983156

983145983155 983152983151983155983145983156983145983151983150983141983140 983156983151 983156983144983141 983154983141983137983139983156983151983154 983138983151983156983156983151983149

9831119831582

983111983158

9831381+9831382+9831383+9831401+9831402+983149=1

983111983158 983139(τ)

9831119831584

9831119831583 9831119831581

983111983158 9831390

9831381983126

9831382983126

9831401983126

983126

9831383983126

983149983126

9831402983126

+minusminusθδτminussum τminus=θ=

3bG

G1b

G

G()k 3b

G

Gk 1b

G

Gexp(

G

GG)(C

3v

v

1v

v

m

3v

v2

1im

vi

v

2

v

3vvi )1bG

G()bi

G

G)(

mG

Gk (k 1b

G

Gexp[

mG

GG

1v

v

vi

v

v

4v

mmvi

v2

v

3v1v minusθ νminusθ+τminusτminus+

9831119831581=9831119831584=983111983158 9831119831582=9831119831583=0 9831383=9831381=9831401=0 9831381=983138 9831402=983140 983137983150983140 983138+983149+983140=1 983127983145983156983144 983147=0 (983138983141983139983137983157983155983141 983144983141983154983141

983156983144983141 983139983144983141983149983145983139983137983148 983154983141983137983139983156983145983151983150 983145983155 983150983151983156 983152983154983141983155983141983150983156) 983156983144983141

983154983141983148983137983156983145983151983150 (382) 983156983144983137983156 983143983145983158983141983155 983156983144983141 983154983141983155983152983151983150983155983141 983142983151983154 983137

983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983152983154983151983140983157983139983141983155 983137983142983156983141983154 983156983144983141 983148983151983143983137983154983145983156983144983149983145983139

983156983154983137983150983155983142983151983154983149983137983156983145983151983150 983156983144983141 983141983160983152983154983141983155983155983145983151983150

)b()b(m

1)c

)(c1ln(

0

minusθϑminusθminus=θ

minus

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 418

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983125983150983145983156983137983154983161

983145983149983152983157983148983155983141

τ=0

983111983158 9831390

983111983158 983139

983126983139

The computations for the model parameters identification are algorithmically given by a

step by step procedure So

- we start with the computation of the mean residence time value

18010666 1012G V53

vm ===τ minusminus

s

- by using the data from table 35 we build the dependencyi0ii vsc )(cc θθ=

where mii ττ=θ and 0ii c )(c)(C θ=θ Table 36 presents this dependency

Here it is supplementary computed id values as ( ) c )(c1ln0i

θminus this is

needed by the flow model equation (3119)

Table 36 The dimensionless reactor exit concentration (Application 3351)

I 1 2 3 4 5 6 7 8 9 10 11 12

iθ 0 001 002 003 01 02 04 06 08 10 12 14

0i c )(c θ 0 0 0 005 0095 0181 0356 0508 0596 0668 0713 0775

id 0 0 0 -005 -01 -02 -044 -071 -091 -11 -123 -145

00 02 04 06 08 10 12 14

-16

-14

-12

-10

-08

-06

-04

-02

00

02

Y =-000576-10683 X

i

l n ( 1 - c ( θ

i ) c

0 )

θi

983110983145983143983157983154983141 330 983124983144983141 983141983158983151983148983157983156983145983151983150

( ) ii vs)(C1ln θθminus

983142983151983154 983156983144983141 983139983137983155983141 983151983142 983137983152983152983148983145983139983137983156983145983151983150 3351

)b( minusθϑ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

- the graphic representation ( ) iii vs)(C1lnd θθminus= from figure 330 finds that

the data fall into line with the slope equal to m 1minus and with the origin

intersect m b At the same time the function )b( minusθϑ shows supplementarily

its b value- it is immediately established 006345d 000054b 9360m === fact that

shows that the described reactor contains 634 stagnant zone 0054plug flow zone and the remainder is a perfect mixing zone

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 518

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983111983137983155 983142983148983151983159 983145983150 983137 983142983148983157983145983140983145983162983141983140 983138983141983140 983154983141983137983139983156983151983154

The catalytic butane dehydrogenation has been successfully developed in a laboratory

reactor that operates to 3100C and atmospheric pressure when butane fluidize the

catalytic particles that have 310 microm in diameter and a density of 2060 kgm3 The

apparatus has a 150 mm in diameter and the fixed catalytic bed attains 500 mm When

we fluidize with a fictive velocity of 01 ms the fluidized bed height attains 750 mmWith the purpose to establish the flow model of reactor we work in the same velocity

condition by fluidizing catalytic bed with air We observe at the bottom of the fluidized

bed a slow movement of the solid without important bubbling phenomena The bubbling

phenomena associated with violent solid movement occur in the middle and superior

parts of the fluidized bed At the time 0=τ a unitary signal which consists in the

change of air with pure nitrogen has been given in the reactor input Table 37 herepresents the measured time exit bed nitrogen concentrations As in the case of

application 3351 a model proposal and its parameters identification make the object of

this new application

Table 37 The evolution of the exit reactor Nitrogen concentration (Application 3352) I 1 2 3 4 5 6 7 8 9 10 11 12

seciτ 0 1 2 3 4 5 6 7 8 9 10 11

)(cc ii τ=

0 7

9

0 7

9

0 7 9

0 7

9

0 8

7 4

0 9

2 4

0 9

4 7

0 9

7 3

0 9

8 1

0 9

8 4

0 9

9 4

0 9

9 6

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 618

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983111983137983155 983142983148983151983159 983145983150 983137 983142983148983157983145983140983145983162983141983140 983138983141983140 983154983141983137983139983156983151983154

The model selection With respect to the description given about the fluidization

unfolding we can propose a combined flow model with a plug flow zone series linked

with a perfect mixing zone We obtain this CFM starting from the general CFM from

figure 320 by putting dd0dbb 0GGGGG 21134v2vv4v1v ======== and that1dmb =++ With this consideration we have the simplified model characterized by the

relation (3119) If the data ( ) iii vs)(C1lnd θθminus= will be in line then the proposedmodel can be considered as acceptable

The computations for parameters model identification with respect the algorithmic

organization of the 3351 application So we have

- the gas fraction of the bed +=degminus+ε=ε 40H HH( 00 750 250 =066m3 gas m3 bed

- the mean residence time 510 750660w H f m ==ε=τ sec

- the dependency i0i vsc )(c νθ is computed in table 38 Here

790c00 = kmoles N2 kmoles gas and 1c0 = kmoles N2 kmoles gas

The table 38 also contains the computed line that show the

dependency of the ( ) ii vs)(C1ln θθminus

Table 38 The evolution of d imensionless exit reactor concentration (Application 3352i 1 2 3 4 5 6 7 8 9 10 11 12

iθ 0 02 04 06 08 10 12 14 16 18 20 22

000

00i

cc

c)(c

minus

minusτ

0 0 0 0 0399 0643 0747 0874 0924 0954 0975 0983

( ))(C1ln iθminus

0 0 0 0 -051 -103 -155 -207 -258 -309 -356 -403

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983111983137983155 983142983148983151983159 983145983150 983137 983142983148983157983145983140983145983162983141983140 983138983141983140 983154983141983137983139983156983151983154

00 02 04 06 08 10 12 14 16 18 20

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

m=0375 b=0039 d=0586

Y =-010294-266864 X

l n ( 1 - c ( θ

i ) c

0 )

θi

983110983145983143983157983154983141 331 983124983144983141 ( ) ii vs)(C1ln θθminus

983141983158983151983148983157983156983145983151983150 983142983151983154 983156983144983141 983139983137983155983141 983151983142 983137983152983152983148983145983139983137983156983145983151983150 3352

)b( minusθϑ

- as in the case of application 3351 we identify m= 0375 and d=0586 The value b=0039 written in figure 331 come from the origin

intersect of the line 102940X668642Y minusminus= and its has not a special

significance The d value can be increased with b value So it will be

d=o625

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983086

These models have their basis in the plug flow model The basic dispersion flow model differs from PFmodel by the fact that here is considered as various modes the perturbation of the piston distributionflow velocity If the perturbations present the random components forward and backward with respect

to the global flow direction then we have the case of axial dispersion flow (ADF)

The packed forms from a packed bed traversed by a fluid the drops moving downward or upward in aflowing or stationary fluid the bubbles that flow with a liquid the big wall roughness from pipe wherewe have a flow represent some forms responsible for the dispersion flow existence Here the dispersion

occurs because near to this forms in all the cases we have a micro flow situation completely different

with respect to the basis flow but related to the intensity of this basis flow

As for the turbulence the dispersion characterization associates to these micro-flows that give thedispersion phenomenon a coefficient named dispersion coefficient

AlAtA gradDwJ Γ minusΓ =

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 918

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983086

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

983110983145983143983157983154983141 329 983124983144983141 983140983141983155983139983154983145983152983156983145983151983150 983151983142 983156983144983141 983137983160983145983137983148 983140983145983155983152983141983154983155983145983151983150 983142983148983151983159

2

2

l

x

cDcwc

part

part+τpart

partminus=τpart

part

)r

cr(rr

D

x

cDcwc r

2

2

l partpart

partpart+

part

part+τpart

partminus=τpart

part

983124983144983141 983158983137983148983157983141983155 983151983142 983156983144983141 983140983145983155983152983141983154983155983145983151983150 983139983151983141983142983142983145983139983145983141983150983156983155 983144983137983158983141 983138983141983141983150 983151983154 983159983145983148983148 983138983141 983141983155983156983137983138983148983145983155983144983141983140 983142983151983154 983156983144983141 983149983137983146983151983154983145983156983161 983151983142 983156983144983141

983154983141983137983148 983139983137983155983141983155 983138983161 983141983160983152983141983154983145983149983141983150983156983137983148 983154983141983155983141983137983154983139983144 983156983144983137983156 983152983157983154983155983157983141983155 983156983144983141 983154983141983143983145983155983156983154983137983156983145983151983150 983137983150983140 983145983150983156983141983154983152983154983141983156983137983156983145983151983150 983151983142 983156983144983141 983141983160983145983156

983156983145983149983141 983140983145983155983156983154983145983138983157983156983145983151983150 983151983142 983137 983155983145983143983150983137983148 983156983144983137983156 983156983154983137983158983141983154983155983141983155 983137 983152983144983161983155983145983139 983149983151983140983141983148 983151983142 983156983144983141 983154983141983137983148 983140983141983158983145983139983141

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1018

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1118

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

2

2

l

x

cDcwc

part

part+τpart

partminus=τpart

part

0 Hdz 0z

cD

0 0z 0zcDcw

l

ll

f

f

τ==partpart

τ==partpartminus

0 0z cc

0 Hdz0 0c

0 f

pp

τ==

=τ=983125983150983145983156983137983154983161 983145983149983152983157983148983155983141

0 0z 0c

0 0z cc 0

fτ==

=τ==983108983145983154983137983139 983145983149983152983157983148983155983141

983110983151983154 983156983144983141 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983155983145983143983150983137983148 983156983144983141 983137983160983145983157983137983148 983140983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148 983144983137983155 983156983144983141 983137983150983137983148983161983156983145983139 983155983151983148983157983156983145983151983150

sum

θ

minus

+

λλ=

infin

==

1n

22

n

22

n

nn

Hdz0 Pe

2

Pe

2

Peexp

2

Pe

2

Pe

sin2

c

c 12k 135n Pe2

tg2 n

n +==λ

λ

2k246n Pe2

ctg2 n

n ==λ

λ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1218

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105 983152983154983151983139983141983155983155983145983150983143 983151983142 983155983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

λ++

λλ

minus=

= 2

1

2

11

2

1

Hdz0

2

Pe

2

Pe

sin2

ln]Pe

2

Pe

2

Pe

[c

c

ln

Pe2

tg2 1

1 =λ

λ

Hd zc

c

=

0

ln

θ

For the cases where the mean flow velocity value cannot be correctly estimated as in the

case of the two or three phases contacting the Pe number will be considered by help ofthe mean residence ( mτ ) the transport trajectory length ( dH ) and the dispersion

coefficient ( )Dl

sum τminus

sum ττminus=τint

τminus=τ

=

=infin

N

1ii0

N

1iii0

0 0

m

))(cc(

))(cc(d

c

)(c1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1318

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156sum

λ

λminusθ

minusminusλλ+

+

θλminusθminusλ

=

infin

==

1k

k

2

k

2

k k

2

k k

Hdz02cos

4

Pe

4

Pe2sin

2

Pe

2

Pe1

Pe

4

4

Pe

2

Peexp2

cc

2

2k

k

k

4Pe

2

Pe

2tg

minusλ

λ=λ

983110983154983151983149 983156983144983141 983158983145983141983159983152983151983145983150983156 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983151983154983161 983156983144983145983155 983155983151983148983157983156983145983151983150 983154983141983152983154983141983155983141983150983156983155 983156983144983141 983154983141983155983145983140983141983150983139983141 983156983145983149983141

983140983145983155983156983154983145983138983157983156983145983151983150 983142983151983154 983137 983142983148983157983145983140 983152983137983154983156983145983139983148983141 983156983144983137983156 983142983148983151983159983155 983138983161 983137 983156983154983137983146983141983139983156983151983154983161 983159983144983145983139983144 983139983144983137983154983137983139983156983141983154983145983162983141983155 983156983144983141 983145983150983158983141983155983156983145983143983137983156983141983140

983140983141983158983145983139983141 983127983144983141983150 983159983141 983144983137983158983141 983156983144983141 983152983154983151983138983137983138983145983148983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983150 983159983141 983139983137983150 983139983151983149983152983148983141983156983141

983149983151983154983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983139983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983155983157983139983144 983137983155 983156983144983141 983150983151983150983085983139983141983150983156983141983154983141983140 983137983150983140 983139983141983150983156983141983154983141983140 983149983151983149983141983150983156983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1418

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156 983137983150983140 983140983137983156983137 983139983137983152983145983156983137983148983145983162983137983156983145983151983150983081

11 = ν

2

Pe

22

Pe

2e

Pe

2

Pe

21 minus++= ν

minus

3

Pe

2

Pe

323

Pe

e24

Pe

e18

Pe

24

Pe

6

Pe

61

minusminus

++minus++= ν

4

Pe

4

Pe

3

Pe

2

Pe

424

Pe

e24

Pe

e312

Pe

e360

Pe

e108

Pe

336

Pe

48

Pe

121minusminusminusminus

+++minusminus++= ν

Pe

2212

2e

Pe

2

Pe

2

Pe

2 minus+minus= νminus ν=σ

sum

sumτ=τ

i

i

iii

m c

c

1m

m

1 =τ

τ= ν

sumτ

sumτ= ν

ii

2

m

ii

2

i

2

c

c

sumτ

sumτ= ν

ii

3

m

ii

3

i

3

c

c

sumτ

sumτ= ν

ii

4

m

ii

4

i

4

c

c

1c

c

ii

2

m

ii

2

i

12

2minus

sumτ

sumτ= νminus ν=σ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1518

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The laboratory physical model of the catalytic oxidation of the sulfur dioxide is a reactor

with a 005 m in diameter that contains 015 m height of catalyst from pellets with 3 mm

in diameter and that is traversed at 4300 C by a gas flow that contains 007 kmol SO 2

kmol gas 011 kmol O2 kmol gas and 082 kmol N2 kmol gas The gas spatial velocity

is in the range of 001msWith the purpose to obtain a reactor model flow that characterizes the gas movementaround the catalyst grain the fixed catalyst bed is traversed in the same temperature and

pressure conditions by a pure nitrogen current At the time 0=τ to the reactor input we

apply a unitary impulse signal by sulfur dioxide introduction with the concentration

10c0 = kmol SO2 kmol gas To the reactor exit we measure the time evolution of the

sulfur dioxide concentration Table 39 gives these measured concentrations With

respect to the retained data it is necessary to verify if they can sustain a PF model and ifnot we require to identify the parameters of the axial mixing model that correct the PF

model

Table 3 9 The evolution of the exit reactor sulfur d ioxide concentration (Application 3353)

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iτ sec 0

1 2

2

4

3

0

3

6

4

8

6

7 2

8

4

9

6

1

0

8

1 2

1

3 2

1

4 4

)(cc ii τ=

0

0

0

0

0

0 1

0

0 3

0 0

6

0 0

8

0

0 8 5

0

0 9

0

0 9 5

0 0

9 7

0 0

9 9

0

1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1618

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The computation of the values of the following parameters and dependencies are needed

by the problem solving

- the mean residence time of a fluid particle in the catalyst bed

6010 01540w )H( l0m ==ε=τ sec

- the dimensionless dependency i0ii vsc )(c)(C θθ=θ This is containedin table 310- the graphic representation of dependency

i0ii vsc )(c)(C θθ=θ with

the purpose to appreciate if we have a flow type PF or ADF Figure 332

show clearly that here a model flow ADF type can be adequate

- for computation of the axial dispersion coefficient we use an

approximate calculus introduced by the relations (3103) and (3104)

These relations are coupled with the numeric data from table 310when we form the functional here give by the relation (3120) that

minimize the sum of the squares of the differences between )(C iθcomputed values and )(C iθ experimental measured value Thisproblem of the axial dispersion coefficient identification as we

further show is transformed to a variant of a last squares method of

parameters identification

Table 310 The dimensionless signal evolution at the reactor exit (application 3353)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iθ 0 02 04 05 06 08 10 12 14 16 18 20 22 24

0

i

c

)(c θ

0 0 0 0 01 03 0 6 08 085 090 095 098 099 100

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

0

02

04

06

08

1

12

0 02 04 06 08 1 12 14 16 18 2 22 24

983110983145983143983157983154983141 310 983124983144983141 983141983158983151983148983157983156983145983151983150 983151983142 983156983144983141 983140983145983149983141983150983155983145983151983150983148983141983155983155 983139983151983150983139983141983150983156983154983137983156983145983151983150 983142983151983154 983154983141983137983139983156983151983154 983141983160983145983156

983120983148983157983143 983142983148983151983159 983149983151983140983141983148

)(C iθ

min)c

)(cln(

2tg

2tg

sin2ln)

2tg2

12

tg()(F

2

14

1iexp

0

i14

1i

1112

1

1i

1

12

1

1 =sum

θ

minussum

λ+λ

λ

λ+θ

λ

minusλ

λ=λ

= =

a=

2tg2

12

tg

1

121

λ

minusλλ b=

1112

1

1

2tg

2tg

sin2ln

λ+λ

λ

λ and exp

0

ii )

c

)(cln(y θ

=

sum=sumθ+=

=

=

=

14N

1ii

14N

1ii yaNb

i

14N

1ii

14N

1i

2

i

14N

1ii yab θsum=sum θ+sumθ

=

=

=

=

=

=

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

983124983137983138983148983141 311 983124983144983141 983117983137983156983144CA983108 983139983151983149983152983157983156983137983156983145983151983150 983151983142 l1 DPe λ 983152983137983154983137983149983141983156983141983154983155 (9831379831529831489831459831399831379831569831459831519831503353)

983120983141=1 λ1=19 983145=5 14 983112=016 τ983149=6

Given

42220281614121018060504020

0

i

=

019909809509085080603010

0000

c

c

0

i

( )0

c

cln

2tan

2tan

sin2ln

2tan2

12

tan

2

14

5i 0

i

1

1

2

1

1

1

i

1

2

1

1

equiv

minus

λ+

λ+

λλ

λ+θ

λ

minus

λλ

sum=

Pe2

tan2 1

1equiv

λλ

( ) ( )7124819

Pe PeFind

Pe1

11 =

λλ=

λ

4

lm

2

l109532D

PeHD

minus=τ

=

9831492983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

Page 2: Chemical Engineering Flow Models2 [Compatibility Mode]

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 218

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

983117983141983139983144983137983150983145983139983137983148983148983161 983149983145983160983141983140 983154983141983137983139983156983151983154 983142983151983154 983148983145983153983157983145983140 983149983141983140983145983137 983154983141983137983139983156983145983151983150983155 983080983105983152983152983148983145983139983137983156983145983151983150983081

983124983144983141 983152983144983161983155983145983139983137983148 983149983151983140983141983148 983151983142 983156983144983141 983154983141983137983139983156983151983154 983145983155 983137 983139983161983148983145983150983140983154983145983139983137983148 983137983152983152983137983154983137983156983157983155 983144983137983158983145983150983143 983137 350 983149983149

983144983141983145983143983144983156 983137983150983140 100 983149983149 983145983150 983140983145983137983149983141983156983141983154 983156983144983141 983138983151983156983156983151983149 983151983142 983156983144983141 983154983141983137983139983156983151983154 983145983155 983141983148983148983145983152983156983145983139983137983148983148983161 983154983141983139983151983154983140983141983140

983156983151 983156983144983141 983139983161983148983145983150983140983154983145983139983137983148 983152983137983154983156 983124983144983141 983154983141983137983139983156983151983154 983151983152983141983154983137983156983145983151983150 983158983151983148983157983149983141 983137983156983156983137983145983150983155 9831493 983124983144983141

983145983150983152983157983156 983146983151983145983150983156 983151983142 983154983141983137983139983156983137983150983156983155 983145983155 983152983148983137983139983141983140 983156983151 983156983144983141 983149983145983140983140983148983141 983151983142 983154983141983137983139983156983151983154 983149983151983154983141 983141983160983137983139983156983148983161 983156983151 130 983149983149

983142983154983151983149 983156983144983141 983154983141983137983139983156983151983154 983138983151983156983156983151983149 983124983144983141 983141983160983145983156 983154983141983137983139983156983151983154 983146983151983145983150983156 983145983155 983152983151983155983145983156983145983151983150983141983140 983156983151 983156983144983141 983156983151983152 983151983142 983154983141983137983139983156983151983154983138983157983156 983138983141983148983151983159 983156983144983141 983148983145983153983157983145983140 983154983141983137983139983156983151983154 983148983141983158983141983148 A 983149983145983160983141983154 983159983145983156983144 983156983144983154983141983141 983144983141983148983145983139983151983145983140983137983148983148983161 983152983137983140983140983148983141 983144983137983158983145983150983143

983156983144983137983156 983151983152983141983154983137983156983141983155 983159983145983156983144 983137 983154983151983156983137983156983145983151983150 983155983152983141983141983140 983151983142 983137 150 983149983145983150 9912511 983137983155983155983157983154983141983155 983156983144983141 983149983145983160983145983150983143 983151983142 983156983144983141

983154983141983137983139983156983145983151983150 983149983141983140983145983157983149

983127983145983156983144 983156983144983141 983152983157983154983152983151983155983141 983156983151 983141983155983156983137983138983148983145983155983144 983156983144983141 983154983141983137983139983156983151983154 983142983148983151983159 983149983151983140983141983148 983156983144983145983155 983145983155 983142983145983148983148983141983140 983159983145983156983144 983159983137983156983141983154 983137983150983140

983137 983159983137983156983141983154 983142983148983151983159 983154983137983156983141 983151983142 9831493983155 983156983154983137983158983141983154983155983141983155 983156983144983141 983154983141983137983139983156983151983154 A983156 983156983144983141 983156983145983149983141 983137 983157983150983145983156983137983154983161

983145983149983152983157983148983155983141 983151983142 983156983144983141 983118983137C983148 983155983151983148983157983156983145983151983150 983159983145983156983144 9831479831439831493 983155983156983137983154983156983155 983145983150 983156983144983141 983154983141983137983139983156983151983154 983145983150983152983157983156 983124983144983141983156983145983149983141 983141983158983151983148983157983156983145983151983150 983151983142 983118983137C983148 983139983151983150983139983141983150983156983154983137983156983145983151983150 983145983150 983156983144983141 983141983160983145983156 983142983148983151983159 983154983141983137983139983156983151983154 983145983155 983151983138983156983137983145983150983141983140 983138983161 983157983155983141 983151983142

983139983151983150983140983157983139983156983151983149983141983156983154983145983139 983149983141983137983155983157983154983141983149983141983150983156983155 983124983137983138983148983141 35 983143983145983158983141983155 983156983144983141 983140983137983156983137 983156983144983137983156 983155983144983151983159 983156983144983141 983141983158983151983148983157983156983145983151983150

983151983142 983156983144983145983155 983139983151983150983139983141983150983156983154983137983156983145983151983150 983137983156 983156983144983141 983154983141983137983139983156983151983154 983141983160983145983156

31012V

minus=

330D d =

51066

minus

0=τ

63c0 =

Table 35 The evolution of the exit reactor NaCl concentration (Application 3351)

I 1 2 3 4 5 6 7 8 9 10 11 12

τi sec 0 18 36 48 18 36 72 108 144 180 216 252

ci=c(τi) 0 0 0 018 0342 0651 1281 1828 2142 2405 2556 2772

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 318

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983125983150983145983156983137983154983161

983145983149983152983157983148983155983141

τ=0

983111983158 9831390

983111983158 983139

983126983139

983124983144983141 983142983148983151983159 983149983151983140983141983148 983155983141983148983141983139983156983145983151983150 983113983150 983137983139983139983151983154983140983137983150983139983141 983159983145983156983144 983156983144983141 983143983145983158983141983150 983140983141983155983139983154983145983152983156983145983151983150 983144983141983154983141 983145983156

983145983155 983141983160983152983141983139983156983141983140 983137 983142983148983151983159 983149983151983140983141983148 983159983144983141983154983141 983137 983155983149983137983148983148 983152983148983157983143 983142983148983151983159 983162983151983150983141 983145983155 983137983139983139983151983149983152983137983150983145983141983140 983138983161

983137983150 983145983149983152983151983154983156983137983150983156 983152983141983154983142983141983139983156 983149983145983160983145983150983143 983142983148983151983159 983162983151983150983141 983139983151983157983152983148983141983140 983159983145983156983144 983137 983155983156983137983143983150983137983150983156 983162983151983150983141 983156983144983137983156

983145983155 983152983151983155983145983156983145983151983150983141983140 983156983151 983156983144983141 983154983141983137983139983156983151983154 983138983151983156983156983151983149

9831119831582

983111983158

9831381+9831382+9831383+9831401+9831402+983149=1

983111983158 983139(τ)

9831119831584

9831119831583 9831119831581

983111983158 9831390

9831381983126

9831382983126

9831401983126

983126

9831383983126

983149983126

9831402983126

+minusminusθδτminussum τminus=θ=

3bG

G1b

G

G()k 3b

G

Gk 1b

G

Gexp(

G

GG)(C

3v

v

1v

v

m

3v

v2

1im

vi

v

2

v

3vvi )1bG

G()bi

G

G)(

mG

Gk (k 1b

G

Gexp[

mG

GG

1v

v

vi

v

v

4v

mmvi

v2

v

3v1v minusθ νminusθ+τminusτminus+

9831119831581=9831119831584=983111983158 9831119831582=9831119831583=0 9831383=9831381=9831401=0 9831381=983138 9831402=983140 983137983150983140 983138+983149+983140=1 983127983145983156983144 983147=0 (983138983141983139983137983157983155983141 983144983141983154983141

983156983144983141 983139983144983141983149983145983139983137983148 983154983141983137983139983156983145983151983150 983145983155 983150983151983156 983152983154983141983155983141983150983156) 983156983144983141

983154983141983148983137983156983145983151983150 (382) 983156983144983137983156 983143983145983158983141983155 983156983144983141 983154983141983155983152983151983150983155983141 983142983151983154 983137

983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983152983154983151983140983157983139983141983155 983137983142983156983141983154 983156983144983141 983148983151983143983137983154983145983156983144983149983145983139

983156983154983137983150983155983142983151983154983149983137983156983145983151983150 983156983144983141 983141983160983152983154983141983155983155983145983151983150

)b()b(m

1)c

)(c1ln(

0

minusθϑminusθminus=θ

minus

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 418

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983125983150983145983156983137983154983161

983145983149983152983157983148983155983141

τ=0

983111983158 9831390

983111983158 983139

983126983139

The computations for the model parameters identification are algorithmically given by a

step by step procedure So

- we start with the computation of the mean residence time value

18010666 1012G V53

vm ===τ minusminus

s

- by using the data from table 35 we build the dependencyi0ii vsc )(cc θθ=

where mii ττ=θ and 0ii c )(c)(C θ=θ Table 36 presents this dependency

Here it is supplementary computed id values as ( ) c )(c1ln0i

θminus this is

needed by the flow model equation (3119)

Table 36 The dimensionless reactor exit concentration (Application 3351)

I 1 2 3 4 5 6 7 8 9 10 11 12

iθ 0 001 002 003 01 02 04 06 08 10 12 14

0i c )(c θ 0 0 0 005 0095 0181 0356 0508 0596 0668 0713 0775

id 0 0 0 -005 -01 -02 -044 -071 -091 -11 -123 -145

00 02 04 06 08 10 12 14

-16

-14

-12

-10

-08

-06

-04

-02

00

02

Y =-000576-10683 X

i

l n ( 1 - c ( θ

i ) c

0 )

θi

983110983145983143983157983154983141 330 983124983144983141 983141983158983151983148983157983156983145983151983150

( ) ii vs)(C1ln θθminus

983142983151983154 983156983144983141 983139983137983155983141 983151983142 983137983152983152983148983145983139983137983156983145983151983150 3351

)b( minusθϑ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

- the graphic representation ( ) iii vs)(C1lnd θθminus= from figure 330 finds that

the data fall into line with the slope equal to m 1minus and with the origin

intersect m b At the same time the function )b( minusθϑ shows supplementarily

its b value- it is immediately established 006345d 000054b 9360m === fact that

shows that the described reactor contains 634 stagnant zone 0054plug flow zone and the remainder is a perfect mixing zone

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 518

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983111983137983155 983142983148983151983159 983145983150 983137 983142983148983157983145983140983145983162983141983140 983138983141983140 983154983141983137983139983156983151983154

The catalytic butane dehydrogenation has been successfully developed in a laboratory

reactor that operates to 3100C and atmospheric pressure when butane fluidize the

catalytic particles that have 310 microm in diameter and a density of 2060 kgm3 The

apparatus has a 150 mm in diameter and the fixed catalytic bed attains 500 mm When

we fluidize with a fictive velocity of 01 ms the fluidized bed height attains 750 mmWith the purpose to establish the flow model of reactor we work in the same velocity

condition by fluidizing catalytic bed with air We observe at the bottom of the fluidized

bed a slow movement of the solid without important bubbling phenomena The bubbling

phenomena associated with violent solid movement occur in the middle and superior

parts of the fluidized bed At the time 0=τ a unitary signal which consists in the

change of air with pure nitrogen has been given in the reactor input Table 37 herepresents the measured time exit bed nitrogen concentrations As in the case of

application 3351 a model proposal and its parameters identification make the object of

this new application

Table 37 The evolution of the exit reactor Nitrogen concentration (Application 3352) I 1 2 3 4 5 6 7 8 9 10 11 12

seciτ 0 1 2 3 4 5 6 7 8 9 10 11

)(cc ii τ=

0 7

9

0 7

9

0 7 9

0 7

9

0 8

7 4

0 9

2 4

0 9

4 7

0 9

7 3

0 9

8 1

0 9

8 4

0 9

9 4

0 9

9 6

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 618

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983111983137983155 983142983148983151983159 983145983150 983137 983142983148983157983145983140983145983162983141983140 983138983141983140 983154983141983137983139983156983151983154

The model selection With respect to the description given about the fluidization

unfolding we can propose a combined flow model with a plug flow zone series linked

with a perfect mixing zone We obtain this CFM starting from the general CFM from

figure 320 by putting dd0dbb 0GGGGG 21134v2vv4v1v ======== and that1dmb =++ With this consideration we have the simplified model characterized by the

relation (3119) If the data ( ) iii vs)(C1lnd θθminus= will be in line then the proposedmodel can be considered as acceptable

The computations for parameters model identification with respect the algorithmic

organization of the 3351 application So we have

- the gas fraction of the bed +=degminus+ε=ε 40H HH( 00 750 250 =066m3 gas m3 bed

- the mean residence time 510 750660w H f m ==ε=τ sec

- the dependency i0i vsc )(c νθ is computed in table 38 Here

790c00 = kmoles N2 kmoles gas and 1c0 = kmoles N2 kmoles gas

The table 38 also contains the computed line that show the

dependency of the ( ) ii vs)(C1ln θθminus

Table 38 The evolution of d imensionless exit reactor concentration (Application 3352i 1 2 3 4 5 6 7 8 9 10 11 12

iθ 0 02 04 06 08 10 12 14 16 18 20 22

000

00i

cc

c)(c

minus

minusτ

0 0 0 0 0399 0643 0747 0874 0924 0954 0975 0983

( ))(C1ln iθminus

0 0 0 0 -051 -103 -155 -207 -258 -309 -356 -403

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983111983137983155 983142983148983151983159 983145983150 983137 983142983148983157983145983140983145983162983141983140 983138983141983140 983154983141983137983139983156983151983154

00 02 04 06 08 10 12 14 16 18 20

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

m=0375 b=0039 d=0586

Y =-010294-266864 X

l n ( 1 - c ( θ

i ) c

0 )

θi

983110983145983143983157983154983141 331 983124983144983141 ( ) ii vs)(C1ln θθminus

983141983158983151983148983157983156983145983151983150 983142983151983154 983156983144983141 983139983137983155983141 983151983142 983137983152983152983148983145983139983137983156983145983151983150 3352

)b( minusθϑ

- as in the case of application 3351 we identify m= 0375 and d=0586 The value b=0039 written in figure 331 come from the origin

intersect of the line 102940X668642Y minusminus= and its has not a special

significance The d value can be increased with b value So it will be

d=o625

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983086

These models have their basis in the plug flow model The basic dispersion flow model differs from PFmodel by the fact that here is considered as various modes the perturbation of the piston distributionflow velocity If the perturbations present the random components forward and backward with respect

to the global flow direction then we have the case of axial dispersion flow (ADF)

The packed forms from a packed bed traversed by a fluid the drops moving downward or upward in aflowing or stationary fluid the bubbles that flow with a liquid the big wall roughness from pipe wherewe have a flow represent some forms responsible for the dispersion flow existence Here the dispersion

occurs because near to this forms in all the cases we have a micro flow situation completely different

with respect to the basis flow but related to the intensity of this basis flow

As for the turbulence the dispersion characterization associates to these micro-flows that give thedispersion phenomenon a coefficient named dispersion coefficient

AlAtA gradDwJ Γ minusΓ =

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 918

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983086

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

983110983145983143983157983154983141 329 983124983144983141 983140983141983155983139983154983145983152983156983145983151983150 983151983142 983156983144983141 983137983160983145983137983148 983140983145983155983152983141983154983155983145983151983150 983142983148983151983159

2

2

l

x

cDcwc

part

part+τpart

partminus=τpart

part

)r

cr(rr

D

x

cDcwc r

2

2

l partpart

partpart+

part

part+τpart

partminus=τpart

part

983124983144983141 983158983137983148983157983141983155 983151983142 983156983144983141 983140983145983155983152983141983154983155983145983151983150 983139983151983141983142983142983145983139983145983141983150983156983155 983144983137983158983141 983138983141983141983150 983151983154 983159983145983148983148 983138983141 983141983155983156983137983138983148983145983155983144983141983140 983142983151983154 983156983144983141 983149983137983146983151983154983145983156983161 983151983142 983156983144983141

983154983141983137983148 983139983137983155983141983155 983138983161 983141983160983152983141983154983145983149983141983150983156983137983148 983154983141983155983141983137983154983139983144 983156983144983137983156 983152983157983154983155983157983141983155 983156983144983141 983154983141983143983145983155983156983154983137983156983145983151983150 983137983150983140 983145983150983156983141983154983152983154983141983156983137983156983145983151983150 983151983142 983156983144983141 983141983160983145983156

983156983145983149983141 983140983145983155983156983154983145983138983157983156983145983151983150 983151983142 983137 983155983145983143983150983137983148 983156983144983137983156 983156983154983137983158983141983154983155983141983155 983137 983152983144983161983155983145983139 983149983151983140983141983148 983151983142 983156983144983141 983154983141983137983148 983140983141983158983145983139983141

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1018

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1118

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

2

2

l

x

cDcwc

part

part+τpart

partminus=τpart

part

0 Hdz 0z

cD

0 0z 0zcDcw

l

ll

f

f

τ==partpart

τ==partpartminus

0 0z cc

0 Hdz0 0c

0 f

pp

τ==

=τ=983125983150983145983156983137983154983161 983145983149983152983157983148983155983141

0 0z 0c

0 0z cc 0

fτ==

=τ==983108983145983154983137983139 983145983149983152983157983148983155983141

983110983151983154 983156983144983141 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983155983145983143983150983137983148 983156983144983141 983137983160983145983157983137983148 983140983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148 983144983137983155 983156983144983141 983137983150983137983148983161983156983145983139 983155983151983148983157983156983145983151983150

sum

θ

minus

+

λλ=

infin

==

1n

22

n

22

n

nn

Hdz0 Pe

2

Pe

2

Peexp

2

Pe

2

Pe

sin2

c

c 12k 135n Pe2

tg2 n

n +==λ

λ

2k246n Pe2

ctg2 n

n ==λ

λ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1218

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105 983152983154983151983139983141983155983155983145983150983143 983151983142 983155983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

λ++

λλ

minus=

= 2

1

2

11

2

1

Hdz0

2

Pe

2

Pe

sin2

ln]Pe

2

Pe

2

Pe

[c

c

ln

Pe2

tg2 1

1 =λ

λ

Hd zc

c

=

0

ln

θ

For the cases where the mean flow velocity value cannot be correctly estimated as in the

case of the two or three phases contacting the Pe number will be considered by help ofthe mean residence ( mτ ) the transport trajectory length ( dH ) and the dispersion

coefficient ( )Dl

sum τminus

sum ττminus=τint

τminus=τ

=

=infin

N

1ii0

N

1iii0

0 0

m

))(cc(

))(cc(d

c

)(c1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1318

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156sum

λ

λminusθ

minusminusλλ+

+

θλminusθminusλ

=

infin

==

1k

k

2

k

2

k k

2

k k

Hdz02cos

4

Pe

4

Pe2sin

2

Pe

2

Pe1

Pe

4

4

Pe

2

Peexp2

cc

2

2k

k

k

4Pe

2

Pe

2tg

minusλ

λ=λ

983110983154983151983149 983156983144983141 983158983145983141983159983152983151983145983150983156 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983151983154983161 983156983144983145983155 983155983151983148983157983156983145983151983150 983154983141983152983154983141983155983141983150983156983155 983156983144983141 983154983141983155983145983140983141983150983139983141 983156983145983149983141

983140983145983155983156983154983145983138983157983156983145983151983150 983142983151983154 983137 983142983148983157983145983140 983152983137983154983156983145983139983148983141 983156983144983137983156 983142983148983151983159983155 983138983161 983137 983156983154983137983146983141983139983156983151983154983161 983159983144983145983139983144 983139983144983137983154983137983139983156983141983154983145983162983141983155 983156983144983141 983145983150983158983141983155983156983145983143983137983156983141983140

983140983141983158983145983139983141 983127983144983141983150 983159983141 983144983137983158983141 983156983144983141 983152983154983151983138983137983138983145983148983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983150 983159983141 983139983137983150 983139983151983149983152983148983141983156983141

983149983151983154983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983139983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983155983157983139983144 983137983155 983156983144983141 983150983151983150983085983139983141983150983156983141983154983141983140 983137983150983140 983139983141983150983156983141983154983141983140 983149983151983149983141983150983156983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1418

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156 983137983150983140 983140983137983156983137 983139983137983152983145983156983137983148983145983162983137983156983145983151983150983081

11 = ν

2

Pe

22

Pe

2e

Pe

2

Pe

21 minus++= ν

minus

3

Pe

2

Pe

323

Pe

e24

Pe

e18

Pe

24

Pe

6

Pe

61

minusminus

++minus++= ν

4

Pe

4

Pe

3

Pe

2

Pe

424

Pe

e24

Pe

e312

Pe

e360

Pe

e108

Pe

336

Pe

48

Pe

121minusminusminusminus

+++minusminus++= ν

Pe

2212

2e

Pe

2

Pe

2

Pe

2 minus+minus= νminus ν=σ

sum

sumτ=τ

i

i

iii

m c

c

1m

m

1 =τ

τ= ν

sumτ

sumτ= ν

ii

2

m

ii

2

i

2

c

c

sumτ

sumτ= ν

ii

3

m

ii

3

i

3

c

c

sumτ

sumτ= ν

ii

4

m

ii

4

i

4

c

c

1c

c

ii

2

m

ii

2

i

12

2minus

sumτ

sumτ= νminus ν=σ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1518

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The laboratory physical model of the catalytic oxidation of the sulfur dioxide is a reactor

with a 005 m in diameter that contains 015 m height of catalyst from pellets with 3 mm

in diameter and that is traversed at 4300 C by a gas flow that contains 007 kmol SO 2

kmol gas 011 kmol O2 kmol gas and 082 kmol N2 kmol gas The gas spatial velocity

is in the range of 001msWith the purpose to obtain a reactor model flow that characterizes the gas movementaround the catalyst grain the fixed catalyst bed is traversed in the same temperature and

pressure conditions by a pure nitrogen current At the time 0=τ to the reactor input we

apply a unitary impulse signal by sulfur dioxide introduction with the concentration

10c0 = kmol SO2 kmol gas To the reactor exit we measure the time evolution of the

sulfur dioxide concentration Table 39 gives these measured concentrations With

respect to the retained data it is necessary to verify if they can sustain a PF model and ifnot we require to identify the parameters of the axial mixing model that correct the PF

model

Table 3 9 The evolution of the exit reactor sulfur d ioxide concentration (Application 3353)

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iτ sec 0

1 2

2

4

3

0

3

6

4

8

6

7 2

8

4

9

6

1

0

8

1 2

1

3 2

1

4 4

)(cc ii τ=

0

0

0

0

0

0 1

0

0 3

0 0

6

0 0

8

0

0 8 5

0

0 9

0

0 9 5

0 0

9 7

0 0

9 9

0

1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1618

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The computation of the values of the following parameters and dependencies are needed

by the problem solving

- the mean residence time of a fluid particle in the catalyst bed

6010 01540w )H( l0m ==ε=τ sec

- the dimensionless dependency i0ii vsc )(c)(C θθ=θ This is containedin table 310- the graphic representation of dependency

i0ii vsc )(c)(C θθ=θ with

the purpose to appreciate if we have a flow type PF or ADF Figure 332

show clearly that here a model flow ADF type can be adequate

- for computation of the axial dispersion coefficient we use an

approximate calculus introduced by the relations (3103) and (3104)

These relations are coupled with the numeric data from table 310when we form the functional here give by the relation (3120) that

minimize the sum of the squares of the differences between )(C iθcomputed values and )(C iθ experimental measured value Thisproblem of the axial dispersion coefficient identification as we

further show is transformed to a variant of a last squares method of

parameters identification

Table 310 The dimensionless signal evolution at the reactor exit (application 3353)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iθ 0 02 04 05 06 08 10 12 14 16 18 20 22 24

0

i

c

)(c θ

0 0 0 0 01 03 0 6 08 085 090 095 098 099 100

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

0

02

04

06

08

1

12

0 02 04 06 08 1 12 14 16 18 2 22 24

983110983145983143983157983154983141 310 983124983144983141 983141983158983151983148983157983156983145983151983150 983151983142 983156983144983141 983140983145983149983141983150983155983145983151983150983148983141983155983155 983139983151983150983139983141983150983156983154983137983156983145983151983150 983142983151983154 983154983141983137983139983156983151983154 983141983160983145983156

983120983148983157983143 983142983148983151983159 983149983151983140983141983148

)(C iθ

min)c

)(cln(

2tg

2tg

sin2ln)

2tg2

12

tg()(F

2

14

1iexp

0

i14

1i

1112

1

1i

1

12

1

1 =sum

θ

minussum

λ+λ

λ

λ+θ

λ

minusλ

λ=λ

= =

a=

2tg2

12

tg

1

121

λ

minusλλ b=

1112

1

1

2tg

2tg

sin2ln

λ+λ

λ

λ and exp

0

ii )

c

)(cln(y θ

=

sum=sumθ+=

=

=

=

14N

1ii

14N

1ii yaNb

i

14N

1ii

14N

1i

2

i

14N

1ii yab θsum=sum θ+sumθ

=

=

=

=

=

=

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

983124983137983138983148983141 311 983124983144983141 983117983137983156983144CA983108 983139983151983149983152983157983156983137983156983145983151983150 983151983142 l1 DPe λ 983152983137983154983137983149983141983156983141983154983155 (9831379831529831489831459831399831379831569831459831519831503353)

983120983141=1 λ1=19 983145=5 14 983112=016 τ983149=6

Given

42220281614121018060504020

0

i

=

019909809509085080603010

0000

c

c

0

i

( )0

c

cln

2tan

2tan

sin2ln

2tan2

12

tan

2

14

5i 0

i

1

1

2

1

1

1

i

1

2

1

1

equiv

minus

λ+

λ+

λλ

λ+θ

λ

minus

λλ

sum=

Pe2

tan2 1

1equiv

λλ

( ) ( )7124819

Pe PeFind

Pe1

11 =

λλ=

λ

4

lm

2

l109532D

PeHD

minus=τ

=

9831492983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

Page 3: Chemical Engineering Flow Models2 [Compatibility Mode]

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 318

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983125983150983145983156983137983154983161

983145983149983152983157983148983155983141

τ=0

983111983158 9831390

983111983158 983139

983126983139

983124983144983141 983142983148983151983159 983149983151983140983141983148 983155983141983148983141983139983156983145983151983150 983113983150 983137983139983139983151983154983140983137983150983139983141 983159983145983156983144 983156983144983141 983143983145983158983141983150 983140983141983155983139983154983145983152983156983145983151983150 983144983141983154983141 983145983156

983145983155 983141983160983152983141983139983156983141983140 983137 983142983148983151983159 983149983151983140983141983148 983159983144983141983154983141 983137 983155983149983137983148983148 983152983148983157983143 983142983148983151983159 983162983151983150983141 983145983155 983137983139983139983151983149983152983137983150983145983141983140 983138983161

983137983150 983145983149983152983151983154983156983137983150983156 983152983141983154983142983141983139983156 983149983145983160983145983150983143 983142983148983151983159 983162983151983150983141 983139983151983157983152983148983141983140 983159983145983156983144 983137 983155983156983137983143983150983137983150983156 983162983151983150983141 983156983144983137983156

983145983155 983152983151983155983145983156983145983151983150983141983140 983156983151 983156983144983141 983154983141983137983139983156983151983154 983138983151983156983156983151983149

9831119831582

983111983158

9831381+9831382+9831383+9831401+9831402+983149=1

983111983158 983139(τ)

9831119831584

9831119831583 9831119831581

983111983158 9831390

9831381983126

9831382983126

9831401983126

983126

9831383983126

983149983126

9831402983126

+minusminusθδτminussum τminus=θ=

3bG

G1b

G

G()k 3b

G

Gk 1b

G

Gexp(

G

GG)(C

3v

v

1v

v

m

3v

v2

1im

vi

v

2

v

3vvi )1bG

G()bi

G

G)(

mG

Gk (k 1b

G

Gexp[

mG

GG

1v

v

vi

v

v

4v

mmvi

v2

v

3v1v minusθ νminusθ+τminusτminus+

9831119831581=9831119831584=983111983158 9831119831582=9831119831583=0 9831383=9831381=9831401=0 9831381=983138 9831402=983140 983137983150983140 983138+983149+983140=1 983127983145983156983144 983147=0 (983138983141983139983137983157983155983141 983144983141983154983141

983156983144983141 983139983144983141983149983145983139983137983148 983154983141983137983139983156983145983151983150 983145983155 983150983151983156 983152983154983141983155983141983150983156) 983156983144983141

983154983141983148983137983156983145983151983150 (382) 983156983144983137983156 983143983145983158983141983155 983156983144983141 983154983141983155983152983151983150983155983141 983142983151983154 983137

983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983152983154983151983140983157983139983141983155 983137983142983156983141983154 983156983144983141 983148983151983143983137983154983145983156983144983149983145983139

983156983154983137983150983155983142983151983154983149983137983156983145983151983150 983156983144983141 983141983160983152983154983141983155983155983145983151983150

)b()b(m

1)c

)(c1ln(

0

minusθϑminusθminus=θ

minus

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 418

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983125983150983145983156983137983154983161

983145983149983152983157983148983155983141

τ=0

983111983158 9831390

983111983158 983139

983126983139

The computations for the model parameters identification are algorithmically given by a

step by step procedure So

- we start with the computation of the mean residence time value

18010666 1012G V53

vm ===τ minusminus

s

- by using the data from table 35 we build the dependencyi0ii vsc )(cc θθ=

where mii ττ=θ and 0ii c )(c)(C θ=θ Table 36 presents this dependency

Here it is supplementary computed id values as ( ) c )(c1ln0i

θminus this is

needed by the flow model equation (3119)

Table 36 The dimensionless reactor exit concentration (Application 3351)

I 1 2 3 4 5 6 7 8 9 10 11 12

iθ 0 001 002 003 01 02 04 06 08 10 12 14

0i c )(c θ 0 0 0 005 0095 0181 0356 0508 0596 0668 0713 0775

id 0 0 0 -005 -01 -02 -044 -071 -091 -11 -123 -145

00 02 04 06 08 10 12 14

-16

-14

-12

-10

-08

-06

-04

-02

00

02

Y =-000576-10683 X

i

l n ( 1 - c ( θ

i ) c

0 )

θi

983110983145983143983157983154983141 330 983124983144983141 983141983158983151983148983157983156983145983151983150

( ) ii vs)(C1ln θθminus

983142983151983154 983156983144983141 983139983137983155983141 983151983142 983137983152983152983148983145983139983137983156983145983151983150 3351

)b( minusθϑ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

- the graphic representation ( ) iii vs)(C1lnd θθminus= from figure 330 finds that

the data fall into line with the slope equal to m 1minus and with the origin

intersect m b At the same time the function )b( minusθϑ shows supplementarily

its b value- it is immediately established 006345d 000054b 9360m === fact that

shows that the described reactor contains 634 stagnant zone 0054plug flow zone and the remainder is a perfect mixing zone

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 518

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983111983137983155 983142983148983151983159 983145983150 983137 983142983148983157983145983140983145983162983141983140 983138983141983140 983154983141983137983139983156983151983154

The catalytic butane dehydrogenation has been successfully developed in a laboratory

reactor that operates to 3100C and atmospheric pressure when butane fluidize the

catalytic particles that have 310 microm in diameter and a density of 2060 kgm3 The

apparatus has a 150 mm in diameter and the fixed catalytic bed attains 500 mm When

we fluidize with a fictive velocity of 01 ms the fluidized bed height attains 750 mmWith the purpose to establish the flow model of reactor we work in the same velocity

condition by fluidizing catalytic bed with air We observe at the bottom of the fluidized

bed a slow movement of the solid without important bubbling phenomena The bubbling

phenomena associated with violent solid movement occur in the middle and superior

parts of the fluidized bed At the time 0=τ a unitary signal which consists in the

change of air with pure nitrogen has been given in the reactor input Table 37 herepresents the measured time exit bed nitrogen concentrations As in the case of

application 3351 a model proposal and its parameters identification make the object of

this new application

Table 37 The evolution of the exit reactor Nitrogen concentration (Application 3352) I 1 2 3 4 5 6 7 8 9 10 11 12

seciτ 0 1 2 3 4 5 6 7 8 9 10 11

)(cc ii τ=

0 7

9

0 7

9

0 7 9

0 7

9

0 8

7 4

0 9

2 4

0 9

4 7

0 9

7 3

0 9

8 1

0 9

8 4

0 9

9 4

0 9

9 6

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 618

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983111983137983155 983142983148983151983159 983145983150 983137 983142983148983157983145983140983145983162983141983140 983138983141983140 983154983141983137983139983156983151983154

The model selection With respect to the description given about the fluidization

unfolding we can propose a combined flow model with a plug flow zone series linked

with a perfect mixing zone We obtain this CFM starting from the general CFM from

figure 320 by putting dd0dbb 0GGGGG 21134v2vv4v1v ======== and that1dmb =++ With this consideration we have the simplified model characterized by the

relation (3119) If the data ( ) iii vs)(C1lnd θθminus= will be in line then the proposedmodel can be considered as acceptable

The computations for parameters model identification with respect the algorithmic

organization of the 3351 application So we have

- the gas fraction of the bed +=degminus+ε=ε 40H HH( 00 750 250 =066m3 gas m3 bed

- the mean residence time 510 750660w H f m ==ε=τ sec

- the dependency i0i vsc )(c νθ is computed in table 38 Here

790c00 = kmoles N2 kmoles gas and 1c0 = kmoles N2 kmoles gas

The table 38 also contains the computed line that show the

dependency of the ( ) ii vs)(C1ln θθminus

Table 38 The evolution of d imensionless exit reactor concentration (Application 3352i 1 2 3 4 5 6 7 8 9 10 11 12

iθ 0 02 04 06 08 10 12 14 16 18 20 22

000

00i

cc

c)(c

minus

minusτ

0 0 0 0 0399 0643 0747 0874 0924 0954 0975 0983

( ))(C1ln iθminus

0 0 0 0 -051 -103 -155 -207 -258 -309 -356 -403

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983111983137983155 983142983148983151983159 983145983150 983137 983142983148983157983145983140983145983162983141983140 983138983141983140 983154983141983137983139983156983151983154

00 02 04 06 08 10 12 14 16 18 20

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

m=0375 b=0039 d=0586

Y =-010294-266864 X

l n ( 1 - c ( θ

i ) c

0 )

θi

983110983145983143983157983154983141 331 983124983144983141 ( ) ii vs)(C1ln θθminus

983141983158983151983148983157983156983145983151983150 983142983151983154 983156983144983141 983139983137983155983141 983151983142 983137983152983152983148983145983139983137983156983145983151983150 3352

)b( minusθϑ

- as in the case of application 3351 we identify m= 0375 and d=0586 The value b=0039 written in figure 331 come from the origin

intersect of the line 102940X668642Y minusminus= and its has not a special

significance The d value can be increased with b value So it will be

d=o625

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983086

These models have their basis in the plug flow model The basic dispersion flow model differs from PFmodel by the fact that here is considered as various modes the perturbation of the piston distributionflow velocity If the perturbations present the random components forward and backward with respect

to the global flow direction then we have the case of axial dispersion flow (ADF)

The packed forms from a packed bed traversed by a fluid the drops moving downward or upward in aflowing or stationary fluid the bubbles that flow with a liquid the big wall roughness from pipe wherewe have a flow represent some forms responsible for the dispersion flow existence Here the dispersion

occurs because near to this forms in all the cases we have a micro flow situation completely different

with respect to the basis flow but related to the intensity of this basis flow

As for the turbulence the dispersion characterization associates to these micro-flows that give thedispersion phenomenon a coefficient named dispersion coefficient

AlAtA gradDwJ Γ minusΓ =

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 918

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983086

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

983110983145983143983157983154983141 329 983124983144983141 983140983141983155983139983154983145983152983156983145983151983150 983151983142 983156983144983141 983137983160983145983137983148 983140983145983155983152983141983154983155983145983151983150 983142983148983151983159

2

2

l

x

cDcwc

part

part+τpart

partminus=τpart

part

)r

cr(rr

D

x

cDcwc r

2

2

l partpart

partpart+

part

part+τpart

partminus=τpart

part

983124983144983141 983158983137983148983157983141983155 983151983142 983156983144983141 983140983145983155983152983141983154983155983145983151983150 983139983151983141983142983142983145983139983145983141983150983156983155 983144983137983158983141 983138983141983141983150 983151983154 983159983145983148983148 983138983141 983141983155983156983137983138983148983145983155983144983141983140 983142983151983154 983156983144983141 983149983137983146983151983154983145983156983161 983151983142 983156983144983141

983154983141983137983148 983139983137983155983141983155 983138983161 983141983160983152983141983154983145983149983141983150983156983137983148 983154983141983155983141983137983154983139983144 983156983144983137983156 983152983157983154983155983157983141983155 983156983144983141 983154983141983143983145983155983156983154983137983156983145983151983150 983137983150983140 983145983150983156983141983154983152983154983141983156983137983156983145983151983150 983151983142 983156983144983141 983141983160983145983156

983156983145983149983141 983140983145983155983156983154983145983138983157983156983145983151983150 983151983142 983137 983155983145983143983150983137983148 983156983144983137983156 983156983154983137983158983141983154983155983141983155 983137 983152983144983161983155983145983139 983149983151983140983141983148 983151983142 983156983144983141 983154983141983137983148 983140983141983158983145983139983141

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1018

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1118

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

2

2

l

x

cDcwc

part

part+τpart

partminus=τpart

part

0 Hdz 0z

cD

0 0z 0zcDcw

l

ll

f

f

τ==partpart

τ==partpartminus

0 0z cc

0 Hdz0 0c

0 f

pp

τ==

=τ=983125983150983145983156983137983154983161 983145983149983152983157983148983155983141

0 0z 0c

0 0z cc 0

fτ==

=τ==983108983145983154983137983139 983145983149983152983157983148983155983141

983110983151983154 983156983144983141 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983155983145983143983150983137983148 983156983144983141 983137983160983145983157983137983148 983140983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148 983144983137983155 983156983144983141 983137983150983137983148983161983156983145983139 983155983151983148983157983156983145983151983150

sum

θ

minus

+

λλ=

infin

==

1n

22

n

22

n

nn

Hdz0 Pe

2

Pe

2

Peexp

2

Pe

2

Pe

sin2

c

c 12k 135n Pe2

tg2 n

n +==λ

λ

2k246n Pe2

ctg2 n

n ==λ

λ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1218

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105 983152983154983151983139983141983155983155983145983150983143 983151983142 983155983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

λ++

λλ

minus=

= 2

1

2

11

2

1

Hdz0

2

Pe

2

Pe

sin2

ln]Pe

2

Pe

2

Pe

[c

c

ln

Pe2

tg2 1

1 =λ

λ

Hd zc

c

=

0

ln

θ

For the cases where the mean flow velocity value cannot be correctly estimated as in the

case of the two or three phases contacting the Pe number will be considered by help ofthe mean residence ( mτ ) the transport trajectory length ( dH ) and the dispersion

coefficient ( )Dl

sum τminus

sum ττminus=τint

τminus=τ

=

=infin

N

1ii0

N

1iii0

0 0

m

))(cc(

))(cc(d

c

)(c1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1318

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156sum

λ

λminusθ

minusminusλλ+

+

θλminusθminusλ

=

infin

==

1k

k

2

k

2

k k

2

k k

Hdz02cos

4

Pe

4

Pe2sin

2

Pe

2

Pe1

Pe

4

4

Pe

2

Peexp2

cc

2

2k

k

k

4Pe

2

Pe

2tg

minusλ

λ=λ

983110983154983151983149 983156983144983141 983158983145983141983159983152983151983145983150983156 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983151983154983161 983156983144983145983155 983155983151983148983157983156983145983151983150 983154983141983152983154983141983155983141983150983156983155 983156983144983141 983154983141983155983145983140983141983150983139983141 983156983145983149983141

983140983145983155983156983154983145983138983157983156983145983151983150 983142983151983154 983137 983142983148983157983145983140 983152983137983154983156983145983139983148983141 983156983144983137983156 983142983148983151983159983155 983138983161 983137 983156983154983137983146983141983139983156983151983154983161 983159983144983145983139983144 983139983144983137983154983137983139983156983141983154983145983162983141983155 983156983144983141 983145983150983158983141983155983156983145983143983137983156983141983140

983140983141983158983145983139983141 983127983144983141983150 983159983141 983144983137983158983141 983156983144983141 983152983154983151983138983137983138983145983148983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983150 983159983141 983139983137983150 983139983151983149983152983148983141983156983141

983149983151983154983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983139983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983155983157983139983144 983137983155 983156983144983141 983150983151983150983085983139983141983150983156983141983154983141983140 983137983150983140 983139983141983150983156983141983154983141983140 983149983151983149983141983150983156983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1418

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156 983137983150983140 983140983137983156983137 983139983137983152983145983156983137983148983145983162983137983156983145983151983150983081

11 = ν

2

Pe

22

Pe

2e

Pe

2

Pe

21 minus++= ν

minus

3

Pe

2

Pe

323

Pe

e24

Pe

e18

Pe

24

Pe

6

Pe

61

minusminus

++minus++= ν

4

Pe

4

Pe

3

Pe

2

Pe

424

Pe

e24

Pe

e312

Pe

e360

Pe

e108

Pe

336

Pe

48

Pe

121minusminusminusminus

+++minusminus++= ν

Pe

2212

2e

Pe

2

Pe

2

Pe

2 minus+minus= νminus ν=σ

sum

sumτ=τ

i

i

iii

m c

c

1m

m

1 =τ

τ= ν

sumτ

sumτ= ν

ii

2

m

ii

2

i

2

c

c

sumτ

sumτ= ν

ii

3

m

ii

3

i

3

c

c

sumτ

sumτ= ν

ii

4

m

ii

4

i

4

c

c

1c

c

ii

2

m

ii

2

i

12

2minus

sumτ

sumτ= νminus ν=σ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1518

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The laboratory physical model of the catalytic oxidation of the sulfur dioxide is a reactor

with a 005 m in diameter that contains 015 m height of catalyst from pellets with 3 mm

in diameter and that is traversed at 4300 C by a gas flow that contains 007 kmol SO 2

kmol gas 011 kmol O2 kmol gas and 082 kmol N2 kmol gas The gas spatial velocity

is in the range of 001msWith the purpose to obtain a reactor model flow that characterizes the gas movementaround the catalyst grain the fixed catalyst bed is traversed in the same temperature and

pressure conditions by a pure nitrogen current At the time 0=τ to the reactor input we

apply a unitary impulse signal by sulfur dioxide introduction with the concentration

10c0 = kmol SO2 kmol gas To the reactor exit we measure the time evolution of the

sulfur dioxide concentration Table 39 gives these measured concentrations With

respect to the retained data it is necessary to verify if they can sustain a PF model and ifnot we require to identify the parameters of the axial mixing model that correct the PF

model

Table 3 9 The evolution of the exit reactor sulfur d ioxide concentration (Application 3353)

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iτ sec 0

1 2

2

4

3

0

3

6

4

8

6

7 2

8

4

9

6

1

0

8

1 2

1

3 2

1

4 4

)(cc ii τ=

0

0

0

0

0

0 1

0

0 3

0 0

6

0 0

8

0

0 8 5

0

0 9

0

0 9 5

0 0

9 7

0 0

9 9

0

1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1618

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The computation of the values of the following parameters and dependencies are needed

by the problem solving

- the mean residence time of a fluid particle in the catalyst bed

6010 01540w )H( l0m ==ε=τ sec

- the dimensionless dependency i0ii vsc )(c)(C θθ=θ This is containedin table 310- the graphic representation of dependency

i0ii vsc )(c)(C θθ=θ with

the purpose to appreciate if we have a flow type PF or ADF Figure 332

show clearly that here a model flow ADF type can be adequate

- for computation of the axial dispersion coefficient we use an

approximate calculus introduced by the relations (3103) and (3104)

These relations are coupled with the numeric data from table 310when we form the functional here give by the relation (3120) that

minimize the sum of the squares of the differences between )(C iθcomputed values and )(C iθ experimental measured value Thisproblem of the axial dispersion coefficient identification as we

further show is transformed to a variant of a last squares method of

parameters identification

Table 310 The dimensionless signal evolution at the reactor exit (application 3353)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iθ 0 02 04 05 06 08 10 12 14 16 18 20 22 24

0

i

c

)(c θ

0 0 0 0 01 03 0 6 08 085 090 095 098 099 100

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

0

02

04

06

08

1

12

0 02 04 06 08 1 12 14 16 18 2 22 24

983110983145983143983157983154983141 310 983124983144983141 983141983158983151983148983157983156983145983151983150 983151983142 983156983144983141 983140983145983149983141983150983155983145983151983150983148983141983155983155 983139983151983150983139983141983150983156983154983137983156983145983151983150 983142983151983154 983154983141983137983139983156983151983154 983141983160983145983156

983120983148983157983143 983142983148983151983159 983149983151983140983141983148

)(C iθ

min)c

)(cln(

2tg

2tg

sin2ln)

2tg2

12

tg()(F

2

14

1iexp

0

i14

1i

1112

1

1i

1

12

1

1 =sum

θ

minussum

λ+λ

λ

λ+θ

λ

minusλ

λ=λ

= =

a=

2tg2

12

tg

1

121

λ

minusλλ b=

1112

1

1

2tg

2tg

sin2ln

λ+λ

λ

λ and exp

0

ii )

c

)(cln(y θ

=

sum=sumθ+=

=

=

=

14N

1ii

14N

1ii yaNb

i

14N

1ii

14N

1i

2

i

14N

1ii yab θsum=sum θ+sumθ

=

=

=

=

=

=

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

983124983137983138983148983141 311 983124983144983141 983117983137983156983144CA983108 983139983151983149983152983157983156983137983156983145983151983150 983151983142 l1 DPe λ 983152983137983154983137983149983141983156983141983154983155 (9831379831529831489831459831399831379831569831459831519831503353)

983120983141=1 λ1=19 983145=5 14 983112=016 τ983149=6

Given

42220281614121018060504020

0

i

=

019909809509085080603010

0000

c

c

0

i

( )0

c

cln

2tan

2tan

sin2ln

2tan2

12

tan

2

14

5i 0

i

1

1

2

1

1

1

i

1

2

1

1

equiv

minus

λ+

λ+

λλ

λ+θ

λ

minus

λλ

sum=

Pe2

tan2 1

1equiv

λλ

( ) ( )7124819

Pe PeFind

Pe1

11 =

λλ=

λ

4

lm

2

l109532D

PeHD

minus=τ

=

9831492983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

Page 4: Chemical Engineering Flow Models2 [Compatibility Mode]

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 418

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983125983150983145983156983137983154983161

983145983149983152983157983148983155983141

τ=0

983111983158 9831390

983111983158 983139

983126983139

The computations for the model parameters identification are algorithmically given by a

step by step procedure So

- we start with the computation of the mean residence time value

18010666 1012G V53

vm ===τ minusminus

s

- by using the data from table 35 we build the dependencyi0ii vsc )(cc θθ=

where mii ττ=θ and 0ii c )(c)(C θ=θ Table 36 presents this dependency

Here it is supplementary computed id values as ( ) c )(c1ln0i

θminus this is

needed by the flow model equation (3119)

Table 36 The dimensionless reactor exit concentration (Application 3351)

I 1 2 3 4 5 6 7 8 9 10 11 12

iθ 0 001 002 003 01 02 04 06 08 10 12 14

0i c )(c θ 0 0 0 005 0095 0181 0356 0508 0596 0668 0713 0775

id 0 0 0 -005 -01 -02 -044 -071 -091 -11 -123 -145

00 02 04 06 08 10 12 14

-16

-14

-12

-10

-08

-06

-04

-02

00

02

Y =-000576-10683 X

i

l n ( 1 - c ( θ

i ) c

0 )

θi

983110983145983143983157983154983141 330 983124983144983141 983141983158983151983148983157983156983145983151983150

( ) ii vs)(C1ln θθminus

983142983151983154 983156983144983141 983139983137983155983141 983151983142 983137983152983152983148983145983139983137983156983145983151983150 3351

)b( minusθϑ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

- the graphic representation ( ) iii vs)(C1lnd θθminus= from figure 330 finds that

the data fall into line with the slope equal to m 1minus and with the origin

intersect m b At the same time the function )b( minusθϑ shows supplementarily

its b value- it is immediately established 006345d 000054b 9360m === fact that

shows that the described reactor contains 634 stagnant zone 0054plug flow zone and the remainder is a perfect mixing zone

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 518

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983111983137983155 983142983148983151983159 983145983150 983137 983142983148983157983145983140983145983162983141983140 983138983141983140 983154983141983137983139983156983151983154

The catalytic butane dehydrogenation has been successfully developed in a laboratory

reactor that operates to 3100C and atmospheric pressure when butane fluidize the

catalytic particles that have 310 microm in diameter and a density of 2060 kgm3 The

apparatus has a 150 mm in diameter and the fixed catalytic bed attains 500 mm When

we fluidize with a fictive velocity of 01 ms the fluidized bed height attains 750 mmWith the purpose to establish the flow model of reactor we work in the same velocity

condition by fluidizing catalytic bed with air We observe at the bottom of the fluidized

bed a slow movement of the solid without important bubbling phenomena The bubbling

phenomena associated with violent solid movement occur in the middle and superior

parts of the fluidized bed At the time 0=τ a unitary signal which consists in the

change of air with pure nitrogen has been given in the reactor input Table 37 herepresents the measured time exit bed nitrogen concentrations As in the case of

application 3351 a model proposal and its parameters identification make the object of

this new application

Table 37 The evolution of the exit reactor Nitrogen concentration (Application 3352) I 1 2 3 4 5 6 7 8 9 10 11 12

seciτ 0 1 2 3 4 5 6 7 8 9 10 11

)(cc ii τ=

0 7

9

0 7

9

0 7 9

0 7

9

0 8

7 4

0 9

2 4

0 9

4 7

0 9

7 3

0 9

8 1

0 9

8 4

0 9

9 4

0 9

9 6

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 618

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983111983137983155 983142983148983151983159 983145983150 983137 983142983148983157983145983140983145983162983141983140 983138983141983140 983154983141983137983139983156983151983154

The model selection With respect to the description given about the fluidization

unfolding we can propose a combined flow model with a plug flow zone series linked

with a perfect mixing zone We obtain this CFM starting from the general CFM from

figure 320 by putting dd0dbb 0GGGGG 21134v2vv4v1v ======== and that1dmb =++ With this consideration we have the simplified model characterized by the

relation (3119) If the data ( ) iii vs)(C1lnd θθminus= will be in line then the proposedmodel can be considered as acceptable

The computations for parameters model identification with respect the algorithmic

organization of the 3351 application So we have

- the gas fraction of the bed +=degminus+ε=ε 40H HH( 00 750 250 =066m3 gas m3 bed

- the mean residence time 510 750660w H f m ==ε=τ sec

- the dependency i0i vsc )(c νθ is computed in table 38 Here

790c00 = kmoles N2 kmoles gas and 1c0 = kmoles N2 kmoles gas

The table 38 also contains the computed line that show the

dependency of the ( ) ii vs)(C1ln θθminus

Table 38 The evolution of d imensionless exit reactor concentration (Application 3352i 1 2 3 4 5 6 7 8 9 10 11 12

iθ 0 02 04 06 08 10 12 14 16 18 20 22

000

00i

cc

c)(c

minus

minusτ

0 0 0 0 0399 0643 0747 0874 0924 0954 0975 0983

( ))(C1ln iθminus

0 0 0 0 -051 -103 -155 -207 -258 -309 -356 -403

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983111983137983155 983142983148983151983159 983145983150 983137 983142983148983157983145983140983145983162983141983140 983138983141983140 983154983141983137983139983156983151983154

00 02 04 06 08 10 12 14 16 18 20

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

m=0375 b=0039 d=0586

Y =-010294-266864 X

l n ( 1 - c ( θ

i ) c

0 )

θi

983110983145983143983157983154983141 331 983124983144983141 ( ) ii vs)(C1ln θθminus

983141983158983151983148983157983156983145983151983150 983142983151983154 983156983144983141 983139983137983155983141 983151983142 983137983152983152983148983145983139983137983156983145983151983150 3352

)b( minusθϑ

- as in the case of application 3351 we identify m= 0375 and d=0586 The value b=0039 written in figure 331 come from the origin

intersect of the line 102940X668642Y minusminus= and its has not a special

significance The d value can be increased with b value So it will be

d=o625

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983086

These models have their basis in the plug flow model The basic dispersion flow model differs from PFmodel by the fact that here is considered as various modes the perturbation of the piston distributionflow velocity If the perturbations present the random components forward and backward with respect

to the global flow direction then we have the case of axial dispersion flow (ADF)

The packed forms from a packed bed traversed by a fluid the drops moving downward or upward in aflowing or stationary fluid the bubbles that flow with a liquid the big wall roughness from pipe wherewe have a flow represent some forms responsible for the dispersion flow existence Here the dispersion

occurs because near to this forms in all the cases we have a micro flow situation completely different

with respect to the basis flow but related to the intensity of this basis flow

As for the turbulence the dispersion characterization associates to these micro-flows that give thedispersion phenomenon a coefficient named dispersion coefficient

AlAtA gradDwJ Γ minusΓ =

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 918

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983086

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

983110983145983143983157983154983141 329 983124983144983141 983140983141983155983139983154983145983152983156983145983151983150 983151983142 983156983144983141 983137983160983145983137983148 983140983145983155983152983141983154983155983145983151983150 983142983148983151983159

2

2

l

x

cDcwc

part

part+τpart

partminus=τpart

part

)r

cr(rr

D

x

cDcwc r

2

2

l partpart

partpart+

part

part+τpart

partminus=τpart

part

983124983144983141 983158983137983148983157983141983155 983151983142 983156983144983141 983140983145983155983152983141983154983155983145983151983150 983139983151983141983142983142983145983139983145983141983150983156983155 983144983137983158983141 983138983141983141983150 983151983154 983159983145983148983148 983138983141 983141983155983156983137983138983148983145983155983144983141983140 983142983151983154 983156983144983141 983149983137983146983151983154983145983156983161 983151983142 983156983144983141

983154983141983137983148 983139983137983155983141983155 983138983161 983141983160983152983141983154983145983149983141983150983156983137983148 983154983141983155983141983137983154983139983144 983156983144983137983156 983152983157983154983155983157983141983155 983156983144983141 983154983141983143983145983155983156983154983137983156983145983151983150 983137983150983140 983145983150983156983141983154983152983154983141983156983137983156983145983151983150 983151983142 983156983144983141 983141983160983145983156

983156983145983149983141 983140983145983155983156983154983145983138983157983156983145983151983150 983151983142 983137 983155983145983143983150983137983148 983156983144983137983156 983156983154983137983158983141983154983155983141983155 983137 983152983144983161983155983145983139 983149983151983140983141983148 983151983142 983156983144983141 983154983141983137983148 983140983141983158983145983139983141

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1018

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1118

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

2

2

l

x

cDcwc

part

part+τpart

partminus=τpart

part

0 Hdz 0z

cD

0 0z 0zcDcw

l

ll

f

f

τ==partpart

τ==partpartminus

0 0z cc

0 Hdz0 0c

0 f

pp

τ==

=τ=983125983150983145983156983137983154983161 983145983149983152983157983148983155983141

0 0z 0c

0 0z cc 0

fτ==

=τ==983108983145983154983137983139 983145983149983152983157983148983155983141

983110983151983154 983156983144983141 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983155983145983143983150983137983148 983156983144983141 983137983160983145983157983137983148 983140983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148 983144983137983155 983156983144983141 983137983150983137983148983161983156983145983139 983155983151983148983157983156983145983151983150

sum

θ

minus

+

λλ=

infin

==

1n

22

n

22

n

nn

Hdz0 Pe

2

Pe

2

Peexp

2

Pe

2

Pe

sin2

c

c 12k 135n Pe2

tg2 n

n +==λ

λ

2k246n Pe2

ctg2 n

n ==λ

λ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1218

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105 983152983154983151983139983141983155983155983145983150983143 983151983142 983155983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

λ++

λλ

minus=

= 2

1

2

11

2

1

Hdz0

2

Pe

2

Pe

sin2

ln]Pe

2

Pe

2

Pe

[c

c

ln

Pe2

tg2 1

1 =λ

λ

Hd zc

c

=

0

ln

θ

For the cases where the mean flow velocity value cannot be correctly estimated as in the

case of the two or three phases contacting the Pe number will be considered by help ofthe mean residence ( mτ ) the transport trajectory length ( dH ) and the dispersion

coefficient ( )Dl

sum τminus

sum ττminus=τint

τminus=τ

=

=infin

N

1ii0

N

1iii0

0 0

m

))(cc(

))(cc(d

c

)(c1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1318

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156sum

λ

λminusθ

minusminusλλ+

+

θλminusθminusλ

=

infin

==

1k

k

2

k

2

k k

2

k k

Hdz02cos

4

Pe

4

Pe2sin

2

Pe

2

Pe1

Pe

4

4

Pe

2

Peexp2

cc

2

2k

k

k

4Pe

2

Pe

2tg

minusλ

λ=λ

983110983154983151983149 983156983144983141 983158983145983141983159983152983151983145983150983156 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983151983154983161 983156983144983145983155 983155983151983148983157983156983145983151983150 983154983141983152983154983141983155983141983150983156983155 983156983144983141 983154983141983155983145983140983141983150983139983141 983156983145983149983141

983140983145983155983156983154983145983138983157983156983145983151983150 983142983151983154 983137 983142983148983157983145983140 983152983137983154983156983145983139983148983141 983156983144983137983156 983142983148983151983159983155 983138983161 983137 983156983154983137983146983141983139983156983151983154983161 983159983144983145983139983144 983139983144983137983154983137983139983156983141983154983145983162983141983155 983156983144983141 983145983150983158983141983155983156983145983143983137983156983141983140

983140983141983158983145983139983141 983127983144983141983150 983159983141 983144983137983158983141 983156983144983141 983152983154983151983138983137983138983145983148983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983150 983159983141 983139983137983150 983139983151983149983152983148983141983156983141

983149983151983154983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983139983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983155983157983139983144 983137983155 983156983144983141 983150983151983150983085983139983141983150983156983141983154983141983140 983137983150983140 983139983141983150983156983141983154983141983140 983149983151983149983141983150983156983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1418

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156 983137983150983140 983140983137983156983137 983139983137983152983145983156983137983148983145983162983137983156983145983151983150983081

11 = ν

2

Pe

22

Pe

2e

Pe

2

Pe

21 minus++= ν

minus

3

Pe

2

Pe

323

Pe

e24

Pe

e18

Pe

24

Pe

6

Pe

61

minusminus

++minus++= ν

4

Pe

4

Pe

3

Pe

2

Pe

424

Pe

e24

Pe

e312

Pe

e360

Pe

e108

Pe

336

Pe

48

Pe

121minusminusminusminus

+++minusminus++= ν

Pe

2212

2e

Pe

2

Pe

2

Pe

2 minus+minus= νminus ν=σ

sum

sumτ=τ

i

i

iii

m c

c

1m

m

1 =τ

τ= ν

sumτ

sumτ= ν

ii

2

m

ii

2

i

2

c

c

sumτ

sumτ= ν

ii

3

m

ii

3

i

3

c

c

sumτ

sumτ= ν

ii

4

m

ii

4

i

4

c

c

1c

c

ii

2

m

ii

2

i

12

2minus

sumτ

sumτ= νminus ν=σ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1518

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The laboratory physical model of the catalytic oxidation of the sulfur dioxide is a reactor

with a 005 m in diameter that contains 015 m height of catalyst from pellets with 3 mm

in diameter and that is traversed at 4300 C by a gas flow that contains 007 kmol SO 2

kmol gas 011 kmol O2 kmol gas and 082 kmol N2 kmol gas The gas spatial velocity

is in the range of 001msWith the purpose to obtain a reactor model flow that characterizes the gas movementaround the catalyst grain the fixed catalyst bed is traversed in the same temperature and

pressure conditions by a pure nitrogen current At the time 0=τ to the reactor input we

apply a unitary impulse signal by sulfur dioxide introduction with the concentration

10c0 = kmol SO2 kmol gas To the reactor exit we measure the time evolution of the

sulfur dioxide concentration Table 39 gives these measured concentrations With

respect to the retained data it is necessary to verify if they can sustain a PF model and ifnot we require to identify the parameters of the axial mixing model that correct the PF

model

Table 3 9 The evolution of the exit reactor sulfur d ioxide concentration (Application 3353)

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iτ sec 0

1 2

2

4

3

0

3

6

4

8

6

7 2

8

4

9

6

1

0

8

1 2

1

3 2

1

4 4

)(cc ii τ=

0

0

0

0

0

0 1

0

0 3

0 0

6

0 0

8

0

0 8 5

0

0 9

0

0 9 5

0 0

9 7

0 0

9 9

0

1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1618

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The computation of the values of the following parameters and dependencies are needed

by the problem solving

- the mean residence time of a fluid particle in the catalyst bed

6010 01540w )H( l0m ==ε=τ sec

- the dimensionless dependency i0ii vsc )(c)(C θθ=θ This is containedin table 310- the graphic representation of dependency

i0ii vsc )(c)(C θθ=θ with

the purpose to appreciate if we have a flow type PF or ADF Figure 332

show clearly that here a model flow ADF type can be adequate

- for computation of the axial dispersion coefficient we use an

approximate calculus introduced by the relations (3103) and (3104)

These relations are coupled with the numeric data from table 310when we form the functional here give by the relation (3120) that

minimize the sum of the squares of the differences between )(C iθcomputed values and )(C iθ experimental measured value Thisproblem of the axial dispersion coefficient identification as we

further show is transformed to a variant of a last squares method of

parameters identification

Table 310 The dimensionless signal evolution at the reactor exit (application 3353)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iθ 0 02 04 05 06 08 10 12 14 16 18 20 22 24

0

i

c

)(c θ

0 0 0 0 01 03 0 6 08 085 090 095 098 099 100

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

0

02

04

06

08

1

12

0 02 04 06 08 1 12 14 16 18 2 22 24

983110983145983143983157983154983141 310 983124983144983141 983141983158983151983148983157983156983145983151983150 983151983142 983156983144983141 983140983145983149983141983150983155983145983151983150983148983141983155983155 983139983151983150983139983141983150983156983154983137983156983145983151983150 983142983151983154 983154983141983137983139983156983151983154 983141983160983145983156

983120983148983157983143 983142983148983151983159 983149983151983140983141983148

)(C iθ

min)c

)(cln(

2tg

2tg

sin2ln)

2tg2

12

tg()(F

2

14

1iexp

0

i14

1i

1112

1

1i

1

12

1

1 =sum

θ

minussum

λ+λ

λ

λ+θ

λ

minusλ

λ=λ

= =

a=

2tg2

12

tg

1

121

λ

minusλλ b=

1112

1

1

2tg

2tg

sin2ln

λ+λ

λ

λ and exp

0

ii )

c

)(cln(y θ

=

sum=sumθ+=

=

=

=

14N

1ii

14N

1ii yaNb

i

14N

1ii

14N

1i

2

i

14N

1ii yab θsum=sum θ+sumθ

=

=

=

=

=

=

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

983124983137983138983148983141 311 983124983144983141 983117983137983156983144CA983108 983139983151983149983152983157983156983137983156983145983151983150 983151983142 l1 DPe λ 983152983137983154983137983149983141983156983141983154983155 (9831379831529831489831459831399831379831569831459831519831503353)

983120983141=1 λ1=19 983145=5 14 983112=016 τ983149=6

Given

42220281614121018060504020

0

i

=

019909809509085080603010

0000

c

c

0

i

( )0

c

cln

2tan

2tan

sin2ln

2tan2

12

tan

2

14

5i 0

i

1

1

2

1

1

1

i

1

2

1

1

equiv

minus

λ+

λ+

λλ

λ+θ

λ

minus

λλ

sum=

Pe2

tan2 1

1equiv

λλ

( ) ( )7124819

Pe PeFind

Pe1

11 =

λλ=

λ

4

lm

2

l109532D

PeHD

minus=τ

=

9831492983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

Page 5: Chemical Engineering Flow Models2 [Compatibility Mode]

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 518

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983111983137983155 983142983148983151983159 983145983150 983137 983142983148983157983145983140983145983162983141983140 983138983141983140 983154983141983137983139983156983151983154

The catalytic butane dehydrogenation has been successfully developed in a laboratory

reactor that operates to 3100C and atmospheric pressure when butane fluidize the

catalytic particles that have 310 microm in diameter and a density of 2060 kgm3 The

apparatus has a 150 mm in diameter and the fixed catalytic bed attains 500 mm When

we fluidize with a fictive velocity of 01 ms the fluidized bed height attains 750 mmWith the purpose to establish the flow model of reactor we work in the same velocity

condition by fluidizing catalytic bed with air We observe at the bottom of the fluidized

bed a slow movement of the solid without important bubbling phenomena The bubbling

phenomena associated with violent solid movement occur in the middle and superior

parts of the fluidized bed At the time 0=τ a unitary signal which consists in the

change of air with pure nitrogen has been given in the reactor input Table 37 herepresents the measured time exit bed nitrogen concentrations As in the case of

application 3351 a model proposal and its parameters identification make the object of

this new application

Table 37 The evolution of the exit reactor Nitrogen concentration (Application 3352) I 1 2 3 4 5 6 7 8 9 10 11 12

seciτ 0 1 2 3 4 5 6 7 8 9 10 11

)(cc ii τ=

0 7

9

0 7

9

0 7 9

0 7

9

0 8

7 4

0 9

2 4

0 9

4 7

0 9

7 3

0 9

8 1

0 9

8 4

0 9

9 4

0 9

9 6

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 618

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983111983137983155 983142983148983151983159 983145983150 983137 983142983148983157983145983140983145983162983141983140 983138983141983140 983154983141983137983139983156983151983154

The model selection With respect to the description given about the fluidization

unfolding we can propose a combined flow model with a plug flow zone series linked

with a perfect mixing zone We obtain this CFM starting from the general CFM from

figure 320 by putting dd0dbb 0GGGGG 21134v2vv4v1v ======== and that1dmb =++ With this consideration we have the simplified model characterized by the

relation (3119) If the data ( ) iii vs)(C1lnd θθminus= will be in line then the proposedmodel can be considered as acceptable

The computations for parameters model identification with respect the algorithmic

organization of the 3351 application So we have

- the gas fraction of the bed +=degminus+ε=ε 40H HH( 00 750 250 =066m3 gas m3 bed

- the mean residence time 510 750660w H f m ==ε=τ sec

- the dependency i0i vsc )(c νθ is computed in table 38 Here

790c00 = kmoles N2 kmoles gas and 1c0 = kmoles N2 kmoles gas

The table 38 also contains the computed line that show the

dependency of the ( ) ii vs)(C1ln θθminus

Table 38 The evolution of d imensionless exit reactor concentration (Application 3352i 1 2 3 4 5 6 7 8 9 10 11 12

iθ 0 02 04 06 08 10 12 14 16 18 20 22

000

00i

cc

c)(c

minus

minusτ

0 0 0 0 0399 0643 0747 0874 0924 0954 0975 0983

( ))(C1ln iθminus

0 0 0 0 -051 -103 -155 -207 -258 -309 -356 -403

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983111983137983155 983142983148983151983159 983145983150 983137 983142983148983157983145983140983145983162983141983140 983138983141983140 983154983141983137983139983156983151983154

00 02 04 06 08 10 12 14 16 18 20

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

m=0375 b=0039 d=0586

Y =-010294-266864 X

l n ( 1 - c ( θ

i ) c

0 )

θi

983110983145983143983157983154983141 331 983124983144983141 ( ) ii vs)(C1ln θθminus

983141983158983151983148983157983156983145983151983150 983142983151983154 983156983144983141 983139983137983155983141 983151983142 983137983152983152983148983145983139983137983156983145983151983150 3352

)b( minusθϑ

- as in the case of application 3351 we identify m= 0375 and d=0586 The value b=0039 written in figure 331 come from the origin

intersect of the line 102940X668642Y minusminus= and its has not a special

significance The d value can be increased with b value So it will be

d=o625

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983086

These models have their basis in the plug flow model The basic dispersion flow model differs from PFmodel by the fact that here is considered as various modes the perturbation of the piston distributionflow velocity If the perturbations present the random components forward and backward with respect

to the global flow direction then we have the case of axial dispersion flow (ADF)

The packed forms from a packed bed traversed by a fluid the drops moving downward or upward in aflowing or stationary fluid the bubbles that flow with a liquid the big wall roughness from pipe wherewe have a flow represent some forms responsible for the dispersion flow existence Here the dispersion

occurs because near to this forms in all the cases we have a micro flow situation completely different

with respect to the basis flow but related to the intensity of this basis flow

As for the turbulence the dispersion characterization associates to these micro-flows that give thedispersion phenomenon a coefficient named dispersion coefficient

AlAtA gradDwJ Γ minusΓ =

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 918

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983086

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

983110983145983143983157983154983141 329 983124983144983141 983140983141983155983139983154983145983152983156983145983151983150 983151983142 983156983144983141 983137983160983145983137983148 983140983145983155983152983141983154983155983145983151983150 983142983148983151983159

2

2

l

x

cDcwc

part

part+τpart

partminus=τpart

part

)r

cr(rr

D

x

cDcwc r

2

2

l partpart

partpart+

part

part+τpart

partminus=τpart

part

983124983144983141 983158983137983148983157983141983155 983151983142 983156983144983141 983140983145983155983152983141983154983155983145983151983150 983139983151983141983142983142983145983139983145983141983150983156983155 983144983137983158983141 983138983141983141983150 983151983154 983159983145983148983148 983138983141 983141983155983156983137983138983148983145983155983144983141983140 983142983151983154 983156983144983141 983149983137983146983151983154983145983156983161 983151983142 983156983144983141

983154983141983137983148 983139983137983155983141983155 983138983161 983141983160983152983141983154983145983149983141983150983156983137983148 983154983141983155983141983137983154983139983144 983156983144983137983156 983152983157983154983155983157983141983155 983156983144983141 983154983141983143983145983155983156983154983137983156983145983151983150 983137983150983140 983145983150983156983141983154983152983154983141983156983137983156983145983151983150 983151983142 983156983144983141 983141983160983145983156

983156983145983149983141 983140983145983155983156983154983145983138983157983156983145983151983150 983151983142 983137 983155983145983143983150983137983148 983156983144983137983156 983156983154983137983158983141983154983155983141983155 983137 983152983144983161983155983145983139 983149983151983140983141983148 983151983142 983156983144983141 983154983141983137983148 983140983141983158983145983139983141

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1018

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1118

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

2

2

l

x

cDcwc

part

part+τpart

partminus=τpart

part

0 Hdz 0z

cD

0 0z 0zcDcw

l

ll

f

f

τ==partpart

τ==partpartminus

0 0z cc

0 Hdz0 0c

0 f

pp

τ==

=τ=983125983150983145983156983137983154983161 983145983149983152983157983148983155983141

0 0z 0c

0 0z cc 0

fτ==

=τ==983108983145983154983137983139 983145983149983152983157983148983155983141

983110983151983154 983156983144983141 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983155983145983143983150983137983148 983156983144983141 983137983160983145983157983137983148 983140983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148 983144983137983155 983156983144983141 983137983150983137983148983161983156983145983139 983155983151983148983157983156983145983151983150

sum

θ

minus

+

λλ=

infin

==

1n

22

n

22

n

nn

Hdz0 Pe

2

Pe

2

Peexp

2

Pe

2

Pe

sin2

c

c 12k 135n Pe2

tg2 n

n +==λ

λ

2k246n Pe2

ctg2 n

n ==λ

λ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1218

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105 983152983154983151983139983141983155983155983145983150983143 983151983142 983155983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

λ++

λλ

minus=

= 2

1

2

11

2

1

Hdz0

2

Pe

2

Pe

sin2

ln]Pe

2

Pe

2

Pe

[c

c

ln

Pe2

tg2 1

1 =λ

λ

Hd zc

c

=

0

ln

θ

For the cases where the mean flow velocity value cannot be correctly estimated as in the

case of the two or three phases contacting the Pe number will be considered by help ofthe mean residence ( mτ ) the transport trajectory length ( dH ) and the dispersion

coefficient ( )Dl

sum τminus

sum ττminus=τint

τminus=τ

=

=infin

N

1ii0

N

1iii0

0 0

m

))(cc(

))(cc(d

c

)(c1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1318

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156sum

λ

λminusθ

minusminusλλ+

+

θλminusθminusλ

=

infin

==

1k

k

2

k

2

k k

2

k k

Hdz02cos

4

Pe

4

Pe2sin

2

Pe

2

Pe1

Pe

4

4

Pe

2

Peexp2

cc

2

2k

k

k

4Pe

2

Pe

2tg

minusλ

λ=λ

983110983154983151983149 983156983144983141 983158983145983141983159983152983151983145983150983156 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983151983154983161 983156983144983145983155 983155983151983148983157983156983145983151983150 983154983141983152983154983141983155983141983150983156983155 983156983144983141 983154983141983155983145983140983141983150983139983141 983156983145983149983141

983140983145983155983156983154983145983138983157983156983145983151983150 983142983151983154 983137 983142983148983157983145983140 983152983137983154983156983145983139983148983141 983156983144983137983156 983142983148983151983159983155 983138983161 983137 983156983154983137983146983141983139983156983151983154983161 983159983144983145983139983144 983139983144983137983154983137983139983156983141983154983145983162983141983155 983156983144983141 983145983150983158983141983155983156983145983143983137983156983141983140

983140983141983158983145983139983141 983127983144983141983150 983159983141 983144983137983158983141 983156983144983141 983152983154983151983138983137983138983145983148983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983150 983159983141 983139983137983150 983139983151983149983152983148983141983156983141

983149983151983154983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983139983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983155983157983139983144 983137983155 983156983144983141 983150983151983150983085983139983141983150983156983141983154983141983140 983137983150983140 983139983141983150983156983141983154983141983140 983149983151983149983141983150983156983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1418

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156 983137983150983140 983140983137983156983137 983139983137983152983145983156983137983148983145983162983137983156983145983151983150983081

11 = ν

2

Pe

22

Pe

2e

Pe

2

Pe

21 minus++= ν

minus

3

Pe

2

Pe

323

Pe

e24

Pe

e18

Pe

24

Pe

6

Pe

61

minusminus

++minus++= ν

4

Pe

4

Pe

3

Pe

2

Pe

424

Pe

e24

Pe

e312

Pe

e360

Pe

e108

Pe

336

Pe

48

Pe

121minusminusminusminus

+++minusminus++= ν

Pe

2212

2e

Pe

2

Pe

2

Pe

2 minus+minus= νminus ν=σ

sum

sumτ=τ

i

i

iii

m c

c

1m

m

1 =τ

τ= ν

sumτ

sumτ= ν

ii

2

m

ii

2

i

2

c

c

sumτ

sumτ= ν

ii

3

m

ii

3

i

3

c

c

sumτ

sumτ= ν

ii

4

m

ii

4

i

4

c

c

1c

c

ii

2

m

ii

2

i

12

2minus

sumτ

sumτ= νminus ν=σ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1518

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The laboratory physical model of the catalytic oxidation of the sulfur dioxide is a reactor

with a 005 m in diameter that contains 015 m height of catalyst from pellets with 3 mm

in diameter and that is traversed at 4300 C by a gas flow that contains 007 kmol SO 2

kmol gas 011 kmol O2 kmol gas and 082 kmol N2 kmol gas The gas spatial velocity

is in the range of 001msWith the purpose to obtain a reactor model flow that characterizes the gas movementaround the catalyst grain the fixed catalyst bed is traversed in the same temperature and

pressure conditions by a pure nitrogen current At the time 0=τ to the reactor input we

apply a unitary impulse signal by sulfur dioxide introduction with the concentration

10c0 = kmol SO2 kmol gas To the reactor exit we measure the time evolution of the

sulfur dioxide concentration Table 39 gives these measured concentrations With

respect to the retained data it is necessary to verify if they can sustain a PF model and ifnot we require to identify the parameters of the axial mixing model that correct the PF

model

Table 3 9 The evolution of the exit reactor sulfur d ioxide concentration (Application 3353)

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iτ sec 0

1 2

2

4

3

0

3

6

4

8

6

7 2

8

4

9

6

1

0

8

1 2

1

3 2

1

4 4

)(cc ii τ=

0

0

0

0

0

0 1

0

0 3

0 0

6

0 0

8

0

0 8 5

0

0 9

0

0 9 5

0 0

9 7

0 0

9 9

0

1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1618

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The computation of the values of the following parameters and dependencies are needed

by the problem solving

- the mean residence time of a fluid particle in the catalyst bed

6010 01540w )H( l0m ==ε=τ sec

- the dimensionless dependency i0ii vsc )(c)(C θθ=θ This is containedin table 310- the graphic representation of dependency

i0ii vsc )(c)(C θθ=θ with

the purpose to appreciate if we have a flow type PF or ADF Figure 332

show clearly that here a model flow ADF type can be adequate

- for computation of the axial dispersion coefficient we use an

approximate calculus introduced by the relations (3103) and (3104)

These relations are coupled with the numeric data from table 310when we form the functional here give by the relation (3120) that

minimize the sum of the squares of the differences between )(C iθcomputed values and )(C iθ experimental measured value Thisproblem of the axial dispersion coefficient identification as we

further show is transformed to a variant of a last squares method of

parameters identification

Table 310 The dimensionless signal evolution at the reactor exit (application 3353)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iθ 0 02 04 05 06 08 10 12 14 16 18 20 22 24

0

i

c

)(c θ

0 0 0 0 01 03 0 6 08 085 090 095 098 099 100

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

0

02

04

06

08

1

12

0 02 04 06 08 1 12 14 16 18 2 22 24

983110983145983143983157983154983141 310 983124983144983141 983141983158983151983148983157983156983145983151983150 983151983142 983156983144983141 983140983145983149983141983150983155983145983151983150983148983141983155983155 983139983151983150983139983141983150983156983154983137983156983145983151983150 983142983151983154 983154983141983137983139983156983151983154 983141983160983145983156

983120983148983157983143 983142983148983151983159 983149983151983140983141983148

)(C iθ

min)c

)(cln(

2tg

2tg

sin2ln)

2tg2

12

tg()(F

2

14

1iexp

0

i14

1i

1112

1

1i

1

12

1

1 =sum

θ

minussum

λ+λ

λ

λ+θ

λ

minusλ

λ=λ

= =

a=

2tg2

12

tg

1

121

λ

minusλλ b=

1112

1

1

2tg

2tg

sin2ln

λ+λ

λ

λ and exp

0

ii )

c

)(cln(y θ

=

sum=sumθ+=

=

=

=

14N

1ii

14N

1ii yaNb

i

14N

1ii

14N

1i

2

i

14N

1ii yab θsum=sum θ+sumθ

=

=

=

=

=

=

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

983124983137983138983148983141 311 983124983144983141 983117983137983156983144CA983108 983139983151983149983152983157983156983137983156983145983151983150 983151983142 l1 DPe λ 983152983137983154983137983149983141983156983141983154983155 (9831379831529831489831459831399831379831569831459831519831503353)

983120983141=1 λ1=19 983145=5 14 983112=016 τ983149=6

Given

42220281614121018060504020

0

i

=

019909809509085080603010

0000

c

c

0

i

( )0

c

cln

2tan

2tan

sin2ln

2tan2

12

tan

2

14

5i 0

i

1

1

2

1

1

1

i

1

2

1

1

equiv

minus

λ+

λ+

λλ

λ+θ

λ

minus

λλ

sum=

Pe2

tan2 1

1equiv

λλ

( ) ( )7124819

Pe PeFind

Pe1

11 =

λλ=

λ

4

lm

2

l109532D

PeHD

minus=τ

=

9831492983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

Page 6: Chemical Engineering Flow Models2 [Compatibility Mode]

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 618

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983111983137983155 983142983148983151983159 983145983150 983137 983142983148983157983145983140983145983162983141983140 983138983141983140 983154983141983137983139983156983151983154

The model selection With respect to the description given about the fluidization

unfolding we can propose a combined flow model with a plug flow zone series linked

with a perfect mixing zone We obtain this CFM starting from the general CFM from

figure 320 by putting dd0dbb 0GGGGG 21134v2vv4v1v ======== and that1dmb =++ With this consideration we have the simplified model characterized by the

relation (3119) If the data ( ) iii vs)(C1lnd θθminus= will be in line then the proposedmodel can be considered as acceptable

The computations for parameters model identification with respect the algorithmic

organization of the 3351 application So we have

- the gas fraction of the bed +=degminus+ε=ε 40H HH( 00 750 250 =066m3 gas m3 bed

- the mean residence time 510 750660w H f m ==ε=τ sec

- the dependency i0i vsc )(c νθ is computed in table 38 Here

790c00 = kmoles N2 kmoles gas and 1c0 = kmoles N2 kmoles gas

The table 38 also contains the computed line that show the

dependency of the ( ) ii vs)(C1ln θθminus

Table 38 The evolution of d imensionless exit reactor concentration (Application 3352i 1 2 3 4 5 6 7 8 9 10 11 12

iθ 0 02 04 06 08 10 12 14 16 18 20 22

000

00i

cc

c)(c

minus

minusτ

0 0 0 0 0399 0643 0747 0874 0924 0954 0975 0983

( ))(C1ln iθminus

0 0 0 0 -051 -103 -155 -207 -258 -309 -356 -403

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983111983137983155 983142983148983151983159 983145983150 983137 983142983148983157983145983140983145983162983141983140 983138983141983140 983154983141983137983139983156983151983154

00 02 04 06 08 10 12 14 16 18 20

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

m=0375 b=0039 d=0586

Y =-010294-266864 X

l n ( 1 - c ( θ

i ) c

0 )

θi

983110983145983143983157983154983141 331 983124983144983141 ( ) ii vs)(C1ln θθminus

983141983158983151983148983157983156983145983151983150 983142983151983154 983156983144983141 983139983137983155983141 983151983142 983137983152983152983148983145983139983137983156983145983151983150 3352

)b( minusθϑ

- as in the case of application 3351 we identify m= 0375 and d=0586 The value b=0039 written in figure 331 come from the origin

intersect of the line 102940X668642Y minusminus= and its has not a special

significance The d value can be increased with b value So it will be

d=o625

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983086

These models have their basis in the plug flow model The basic dispersion flow model differs from PFmodel by the fact that here is considered as various modes the perturbation of the piston distributionflow velocity If the perturbations present the random components forward and backward with respect

to the global flow direction then we have the case of axial dispersion flow (ADF)

The packed forms from a packed bed traversed by a fluid the drops moving downward or upward in aflowing or stationary fluid the bubbles that flow with a liquid the big wall roughness from pipe wherewe have a flow represent some forms responsible for the dispersion flow existence Here the dispersion

occurs because near to this forms in all the cases we have a micro flow situation completely different

with respect to the basis flow but related to the intensity of this basis flow

As for the turbulence the dispersion characterization associates to these micro-flows that give thedispersion phenomenon a coefficient named dispersion coefficient

AlAtA gradDwJ Γ minusΓ =

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 918

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983086

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

983110983145983143983157983154983141 329 983124983144983141 983140983141983155983139983154983145983152983156983145983151983150 983151983142 983156983144983141 983137983160983145983137983148 983140983145983155983152983141983154983155983145983151983150 983142983148983151983159

2

2

l

x

cDcwc

part

part+τpart

partminus=τpart

part

)r

cr(rr

D

x

cDcwc r

2

2

l partpart

partpart+

part

part+τpart

partminus=τpart

part

983124983144983141 983158983137983148983157983141983155 983151983142 983156983144983141 983140983145983155983152983141983154983155983145983151983150 983139983151983141983142983142983145983139983145983141983150983156983155 983144983137983158983141 983138983141983141983150 983151983154 983159983145983148983148 983138983141 983141983155983156983137983138983148983145983155983144983141983140 983142983151983154 983156983144983141 983149983137983146983151983154983145983156983161 983151983142 983156983144983141

983154983141983137983148 983139983137983155983141983155 983138983161 983141983160983152983141983154983145983149983141983150983156983137983148 983154983141983155983141983137983154983139983144 983156983144983137983156 983152983157983154983155983157983141983155 983156983144983141 983154983141983143983145983155983156983154983137983156983145983151983150 983137983150983140 983145983150983156983141983154983152983154983141983156983137983156983145983151983150 983151983142 983156983144983141 983141983160983145983156

983156983145983149983141 983140983145983155983156983154983145983138983157983156983145983151983150 983151983142 983137 983155983145983143983150983137983148 983156983144983137983156 983156983154983137983158983141983154983155983141983155 983137 983152983144983161983155983145983139 983149983151983140983141983148 983151983142 983156983144983141 983154983141983137983148 983140983141983158983145983139983141

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1018

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1118

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

2

2

l

x

cDcwc

part

part+τpart

partminus=τpart

part

0 Hdz 0z

cD

0 0z 0zcDcw

l

ll

f

f

τ==partpart

τ==partpartminus

0 0z cc

0 Hdz0 0c

0 f

pp

τ==

=τ=983125983150983145983156983137983154983161 983145983149983152983157983148983155983141

0 0z 0c

0 0z cc 0

fτ==

=τ==983108983145983154983137983139 983145983149983152983157983148983155983141

983110983151983154 983156983144983141 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983155983145983143983150983137983148 983156983144983141 983137983160983145983157983137983148 983140983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148 983144983137983155 983156983144983141 983137983150983137983148983161983156983145983139 983155983151983148983157983156983145983151983150

sum

θ

minus

+

λλ=

infin

==

1n

22

n

22

n

nn

Hdz0 Pe

2

Pe

2

Peexp

2

Pe

2

Pe

sin2

c

c 12k 135n Pe2

tg2 n

n +==λ

λ

2k246n Pe2

ctg2 n

n ==λ

λ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1218

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105 983152983154983151983139983141983155983155983145983150983143 983151983142 983155983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

λ++

λλ

minus=

= 2

1

2

11

2

1

Hdz0

2

Pe

2

Pe

sin2

ln]Pe

2

Pe

2

Pe

[c

c

ln

Pe2

tg2 1

1 =λ

λ

Hd zc

c

=

0

ln

θ

For the cases where the mean flow velocity value cannot be correctly estimated as in the

case of the two or three phases contacting the Pe number will be considered by help ofthe mean residence ( mτ ) the transport trajectory length ( dH ) and the dispersion

coefficient ( )Dl

sum τminus

sum ττminus=τint

τminus=τ

=

=infin

N

1ii0

N

1iii0

0 0

m

))(cc(

))(cc(d

c

)(c1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1318

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156sum

λ

λminusθ

minusminusλλ+

+

θλminusθminusλ

=

infin

==

1k

k

2

k

2

k k

2

k k

Hdz02cos

4

Pe

4

Pe2sin

2

Pe

2

Pe1

Pe

4

4

Pe

2

Peexp2

cc

2

2k

k

k

4Pe

2

Pe

2tg

minusλ

λ=λ

983110983154983151983149 983156983144983141 983158983145983141983159983152983151983145983150983156 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983151983154983161 983156983144983145983155 983155983151983148983157983156983145983151983150 983154983141983152983154983141983155983141983150983156983155 983156983144983141 983154983141983155983145983140983141983150983139983141 983156983145983149983141

983140983145983155983156983154983145983138983157983156983145983151983150 983142983151983154 983137 983142983148983157983145983140 983152983137983154983156983145983139983148983141 983156983144983137983156 983142983148983151983159983155 983138983161 983137 983156983154983137983146983141983139983156983151983154983161 983159983144983145983139983144 983139983144983137983154983137983139983156983141983154983145983162983141983155 983156983144983141 983145983150983158983141983155983156983145983143983137983156983141983140

983140983141983158983145983139983141 983127983144983141983150 983159983141 983144983137983158983141 983156983144983141 983152983154983151983138983137983138983145983148983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983150 983159983141 983139983137983150 983139983151983149983152983148983141983156983141

983149983151983154983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983139983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983155983157983139983144 983137983155 983156983144983141 983150983151983150983085983139983141983150983156983141983154983141983140 983137983150983140 983139983141983150983156983141983154983141983140 983149983151983149983141983150983156983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1418

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156 983137983150983140 983140983137983156983137 983139983137983152983145983156983137983148983145983162983137983156983145983151983150983081

11 = ν

2

Pe

22

Pe

2e

Pe

2

Pe

21 minus++= ν

minus

3

Pe

2

Pe

323

Pe

e24

Pe

e18

Pe

24

Pe

6

Pe

61

minusminus

++minus++= ν

4

Pe

4

Pe

3

Pe

2

Pe

424

Pe

e24

Pe

e312

Pe

e360

Pe

e108

Pe

336

Pe

48

Pe

121minusminusminusminus

+++minusminus++= ν

Pe

2212

2e

Pe

2

Pe

2

Pe

2 minus+minus= νminus ν=σ

sum

sumτ=τ

i

i

iii

m c

c

1m

m

1 =τ

τ= ν

sumτ

sumτ= ν

ii

2

m

ii

2

i

2

c

c

sumτ

sumτ= ν

ii

3

m

ii

3

i

3

c

c

sumτ

sumτ= ν

ii

4

m

ii

4

i

4

c

c

1c

c

ii

2

m

ii

2

i

12

2minus

sumτ

sumτ= νminus ν=σ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1518

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The laboratory physical model of the catalytic oxidation of the sulfur dioxide is a reactor

with a 005 m in diameter that contains 015 m height of catalyst from pellets with 3 mm

in diameter and that is traversed at 4300 C by a gas flow that contains 007 kmol SO 2

kmol gas 011 kmol O2 kmol gas and 082 kmol N2 kmol gas The gas spatial velocity

is in the range of 001msWith the purpose to obtain a reactor model flow that characterizes the gas movementaround the catalyst grain the fixed catalyst bed is traversed in the same temperature and

pressure conditions by a pure nitrogen current At the time 0=τ to the reactor input we

apply a unitary impulse signal by sulfur dioxide introduction with the concentration

10c0 = kmol SO2 kmol gas To the reactor exit we measure the time evolution of the

sulfur dioxide concentration Table 39 gives these measured concentrations With

respect to the retained data it is necessary to verify if they can sustain a PF model and ifnot we require to identify the parameters of the axial mixing model that correct the PF

model

Table 3 9 The evolution of the exit reactor sulfur d ioxide concentration (Application 3353)

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iτ sec 0

1 2

2

4

3

0

3

6

4

8

6

7 2

8

4

9

6

1

0

8

1 2

1

3 2

1

4 4

)(cc ii τ=

0

0

0

0

0

0 1

0

0 3

0 0

6

0 0

8

0

0 8 5

0

0 9

0

0 9 5

0 0

9 7

0 0

9 9

0

1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1618

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The computation of the values of the following parameters and dependencies are needed

by the problem solving

- the mean residence time of a fluid particle in the catalyst bed

6010 01540w )H( l0m ==ε=τ sec

- the dimensionless dependency i0ii vsc )(c)(C θθ=θ This is containedin table 310- the graphic representation of dependency

i0ii vsc )(c)(C θθ=θ with

the purpose to appreciate if we have a flow type PF or ADF Figure 332

show clearly that here a model flow ADF type can be adequate

- for computation of the axial dispersion coefficient we use an

approximate calculus introduced by the relations (3103) and (3104)

These relations are coupled with the numeric data from table 310when we form the functional here give by the relation (3120) that

minimize the sum of the squares of the differences between )(C iθcomputed values and )(C iθ experimental measured value Thisproblem of the axial dispersion coefficient identification as we

further show is transformed to a variant of a last squares method of

parameters identification

Table 310 The dimensionless signal evolution at the reactor exit (application 3353)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iθ 0 02 04 05 06 08 10 12 14 16 18 20 22 24

0

i

c

)(c θ

0 0 0 0 01 03 0 6 08 085 090 095 098 099 100

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

0

02

04

06

08

1

12

0 02 04 06 08 1 12 14 16 18 2 22 24

983110983145983143983157983154983141 310 983124983144983141 983141983158983151983148983157983156983145983151983150 983151983142 983156983144983141 983140983145983149983141983150983155983145983151983150983148983141983155983155 983139983151983150983139983141983150983156983154983137983156983145983151983150 983142983151983154 983154983141983137983139983156983151983154 983141983160983145983156

983120983148983157983143 983142983148983151983159 983149983151983140983141983148

)(C iθ

min)c

)(cln(

2tg

2tg

sin2ln)

2tg2

12

tg()(F

2

14

1iexp

0

i14

1i

1112

1

1i

1

12

1

1 =sum

θ

minussum

λ+λ

λ

λ+θ

λ

minusλ

λ=λ

= =

a=

2tg2

12

tg

1

121

λ

minusλλ b=

1112

1

1

2tg

2tg

sin2ln

λ+λ

λ

λ and exp

0

ii )

c

)(cln(y θ

=

sum=sumθ+=

=

=

=

14N

1ii

14N

1ii yaNb

i

14N

1ii

14N

1i

2

i

14N

1ii yab θsum=sum θ+sumθ

=

=

=

=

=

=

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

983124983137983138983148983141 311 983124983144983141 983117983137983156983144CA983108 983139983151983149983152983157983156983137983156983145983151983150 983151983142 l1 DPe λ 983152983137983154983137983149983141983156983141983154983155 (9831379831529831489831459831399831379831569831459831519831503353)

983120983141=1 λ1=19 983145=5 14 983112=016 τ983149=6

Given

42220281614121018060504020

0

i

=

019909809509085080603010

0000

c

c

0

i

( )0

c

cln

2tan

2tan

sin2ln

2tan2

12

tan

2

14

5i 0

i

1

1

2

1

1

1

i

1

2

1

1

equiv

minus

λ+

λ+

λλ

λ+θ

λ

minus

λλ

sum=

Pe2

tan2 1

1equiv

λλ

( ) ( )7124819

Pe PeFind

Pe1

11 =

λλ=

λ

4

lm

2

l109532D

PeHD

minus=τ

=

9831492983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

Page 7: Chemical Engineering Flow Models2 [Compatibility Mode]

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983111983137983155 983142983148983151983159 983145983150 983137 983142983148983157983145983140983145983162983141983140 983138983141983140 983154983141983137983139983156983151983154

00 02 04 06 08 10 12 14 16 18 20

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

m=0375 b=0039 d=0586

Y =-010294-266864 X

l n ( 1 - c ( θ

i ) c

0 )

θi

983110983145983143983157983154983141 331 983124983144983141 ( ) ii vs)(C1ln θθminus

983141983158983151983148983157983156983145983151983150 983142983151983154 983156983144983141 983139983137983155983141 983151983142 983137983152983152983148983145983139983137983156983145983151983150 3352

)b( minusθϑ

- as in the case of application 3351 we identify m= 0375 and d=0586 The value b=0039 written in figure 331 come from the origin

intersect of the line 102940X668642Y minusminus= and its has not a special

significance The d value can be increased with b value So it will be

d=o625

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983086

These models have their basis in the plug flow model The basic dispersion flow model differs from PFmodel by the fact that here is considered as various modes the perturbation of the piston distributionflow velocity If the perturbations present the random components forward and backward with respect

to the global flow direction then we have the case of axial dispersion flow (ADF)

The packed forms from a packed bed traversed by a fluid the drops moving downward or upward in aflowing or stationary fluid the bubbles that flow with a liquid the big wall roughness from pipe wherewe have a flow represent some forms responsible for the dispersion flow existence Here the dispersion

occurs because near to this forms in all the cases we have a micro flow situation completely different

with respect to the basis flow but related to the intensity of this basis flow

As for the turbulence the dispersion characterization associates to these micro-flows that give thedispersion phenomenon a coefficient named dispersion coefficient

AlAtA gradDwJ Γ minusΓ =

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 918

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983086

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

983110983145983143983157983154983141 329 983124983144983141 983140983141983155983139983154983145983152983156983145983151983150 983151983142 983156983144983141 983137983160983145983137983148 983140983145983155983152983141983154983155983145983151983150 983142983148983151983159

2

2

l

x

cDcwc

part

part+τpart

partminus=τpart

part

)r

cr(rr

D

x

cDcwc r

2

2

l partpart

partpart+

part

part+τpart

partminus=τpart

part

983124983144983141 983158983137983148983157983141983155 983151983142 983156983144983141 983140983145983155983152983141983154983155983145983151983150 983139983151983141983142983142983145983139983145983141983150983156983155 983144983137983158983141 983138983141983141983150 983151983154 983159983145983148983148 983138983141 983141983155983156983137983138983148983145983155983144983141983140 983142983151983154 983156983144983141 983149983137983146983151983154983145983156983161 983151983142 983156983144983141

983154983141983137983148 983139983137983155983141983155 983138983161 983141983160983152983141983154983145983149983141983150983156983137983148 983154983141983155983141983137983154983139983144 983156983144983137983156 983152983157983154983155983157983141983155 983156983144983141 983154983141983143983145983155983156983154983137983156983145983151983150 983137983150983140 983145983150983156983141983154983152983154983141983156983137983156983145983151983150 983151983142 983156983144983141 983141983160983145983156

983156983145983149983141 983140983145983155983156983154983145983138983157983156983145983151983150 983151983142 983137 983155983145983143983150983137983148 983156983144983137983156 983156983154983137983158983141983154983155983141983155 983137 983152983144983161983155983145983139 983149983151983140983141983148 983151983142 983156983144983141 983154983141983137983148 983140983141983158983145983139983141

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1018

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1118

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

2

2

l

x

cDcwc

part

part+τpart

partminus=τpart

part

0 Hdz 0z

cD

0 0z 0zcDcw

l

ll

f

f

τ==partpart

τ==partpartminus

0 0z cc

0 Hdz0 0c

0 f

pp

τ==

=τ=983125983150983145983156983137983154983161 983145983149983152983157983148983155983141

0 0z 0c

0 0z cc 0

fτ==

=τ==983108983145983154983137983139 983145983149983152983157983148983155983141

983110983151983154 983156983144983141 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983155983145983143983150983137983148 983156983144983141 983137983160983145983157983137983148 983140983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148 983144983137983155 983156983144983141 983137983150983137983148983161983156983145983139 983155983151983148983157983156983145983151983150

sum

θ

minus

+

λλ=

infin

==

1n

22

n

22

n

nn

Hdz0 Pe

2

Pe

2

Peexp

2

Pe

2

Pe

sin2

c

c 12k 135n Pe2

tg2 n

n +==λ

λ

2k246n Pe2

ctg2 n

n ==λ

λ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1218

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105 983152983154983151983139983141983155983155983145983150983143 983151983142 983155983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

λ++

λλ

minus=

= 2

1

2

11

2

1

Hdz0

2

Pe

2

Pe

sin2

ln]Pe

2

Pe

2

Pe

[c

c

ln

Pe2

tg2 1

1 =λ

λ

Hd zc

c

=

0

ln

θ

For the cases where the mean flow velocity value cannot be correctly estimated as in the

case of the two or three phases contacting the Pe number will be considered by help ofthe mean residence ( mτ ) the transport trajectory length ( dH ) and the dispersion

coefficient ( )Dl

sum τminus

sum ττminus=τint

τminus=τ

=

=infin

N

1ii0

N

1iii0

0 0

m

))(cc(

))(cc(d

c

)(c1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1318

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156sum

λ

λminusθ

minusminusλλ+

+

θλminusθminusλ

=

infin

==

1k

k

2

k

2

k k

2

k k

Hdz02cos

4

Pe

4

Pe2sin

2

Pe

2

Pe1

Pe

4

4

Pe

2

Peexp2

cc

2

2k

k

k

4Pe

2

Pe

2tg

minusλ

λ=λ

983110983154983151983149 983156983144983141 983158983145983141983159983152983151983145983150983156 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983151983154983161 983156983144983145983155 983155983151983148983157983156983145983151983150 983154983141983152983154983141983155983141983150983156983155 983156983144983141 983154983141983155983145983140983141983150983139983141 983156983145983149983141

983140983145983155983156983154983145983138983157983156983145983151983150 983142983151983154 983137 983142983148983157983145983140 983152983137983154983156983145983139983148983141 983156983144983137983156 983142983148983151983159983155 983138983161 983137 983156983154983137983146983141983139983156983151983154983161 983159983144983145983139983144 983139983144983137983154983137983139983156983141983154983145983162983141983155 983156983144983141 983145983150983158983141983155983156983145983143983137983156983141983140

983140983141983158983145983139983141 983127983144983141983150 983159983141 983144983137983158983141 983156983144983141 983152983154983151983138983137983138983145983148983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983150 983159983141 983139983137983150 983139983151983149983152983148983141983156983141

983149983151983154983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983139983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983155983157983139983144 983137983155 983156983144983141 983150983151983150983085983139983141983150983156983141983154983141983140 983137983150983140 983139983141983150983156983141983154983141983140 983149983151983149983141983150983156983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1418

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156 983137983150983140 983140983137983156983137 983139983137983152983145983156983137983148983145983162983137983156983145983151983150983081

11 = ν

2

Pe

22

Pe

2e

Pe

2

Pe

21 minus++= ν

minus

3

Pe

2

Pe

323

Pe

e24

Pe

e18

Pe

24

Pe

6

Pe

61

minusminus

++minus++= ν

4

Pe

4

Pe

3

Pe

2

Pe

424

Pe

e24

Pe

e312

Pe

e360

Pe

e108

Pe

336

Pe

48

Pe

121minusminusminusminus

+++minusminus++= ν

Pe

2212

2e

Pe

2

Pe

2

Pe

2 minus+minus= νminus ν=σ

sum

sumτ=τ

i

i

iii

m c

c

1m

m

1 =τ

τ= ν

sumτ

sumτ= ν

ii

2

m

ii

2

i

2

c

c

sumτ

sumτ= ν

ii

3

m

ii

3

i

3

c

c

sumτ

sumτ= ν

ii

4

m

ii

4

i

4

c

c

1c

c

ii

2

m

ii

2

i

12

2minus

sumτ

sumτ= νminus ν=σ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1518

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The laboratory physical model of the catalytic oxidation of the sulfur dioxide is a reactor

with a 005 m in diameter that contains 015 m height of catalyst from pellets with 3 mm

in diameter and that is traversed at 4300 C by a gas flow that contains 007 kmol SO 2

kmol gas 011 kmol O2 kmol gas and 082 kmol N2 kmol gas The gas spatial velocity

is in the range of 001msWith the purpose to obtain a reactor model flow that characterizes the gas movementaround the catalyst grain the fixed catalyst bed is traversed in the same temperature and

pressure conditions by a pure nitrogen current At the time 0=τ to the reactor input we

apply a unitary impulse signal by sulfur dioxide introduction with the concentration

10c0 = kmol SO2 kmol gas To the reactor exit we measure the time evolution of the

sulfur dioxide concentration Table 39 gives these measured concentrations With

respect to the retained data it is necessary to verify if they can sustain a PF model and ifnot we require to identify the parameters of the axial mixing model that correct the PF

model

Table 3 9 The evolution of the exit reactor sulfur d ioxide concentration (Application 3353)

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iτ sec 0

1 2

2

4

3

0

3

6

4

8

6

7 2

8

4

9

6

1

0

8

1 2

1

3 2

1

4 4

)(cc ii τ=

0

0

0

0

0

0 1

0

0 3

0 0

6

0 0

8

0

0 8 5

0

0 9

0

0 9 5

0 0

9 7

0 0

9 9

0

1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1618

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The computation of the values of the following parameters and dependencies are needed

by the problem solving

- the mean residence time of a fluid particle in the catalyst bed

6010 01540w )H( l0m ==ε=τ sec

- the dimensionless dependency i0ii vsc )(c)(C θθ=θ This is containedin table 310- the graphic representation of dependency

i0ii vsc )(c)(C θθ=θ with

the purpose to appreciate if we have a flow type PF or ADF Figure 332

show clearly that here a model flow ADF type can be adequate

- for computation of the axial dispersion coefficient we use an

approximate calculus introduced by the relations (3103) and (3104)

These relations are coupled with the numeric data from table 310when we form the functional here give by the relation (3120) that

minimize the sum of the squares of the differences between )(C iθcomputed values and )(C iθ experimental measured value Thisproblem of the axial dispersion coefficient identification as we

further show is transformed to a variant of a last squares method of

parameters identification

Table 310 The dimensionless signal evolution at the reactor exit (application 3353)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iθ 0 02 04 05 06 08 10 12 14 16 18 20 22 24

0

i

c

)(c θ

0 0 0 0 01 03 0 6 08 085 090 095 098 099 100

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

0

02

04

06

08

1

12

0 02 04 06 08 1 12 14 16 18 2 22 24

983110983145983143983157983154983141 310 983124983144983141 983141983158983151983148983157983156983145983151983150 983151983142 983156983144983141 983140983145983149983141983150983155983145983151983150983148983141983155983155 983139983151983150983139983141983150983156983154983137983156983145983151983150 983142983151983154 983154983141983137983139983156983151983154 983141983160983145983156

983120983148983157983143 983142983148983151983159 983149983151983140983141983148

)(C iθ

min)c

)(cln(

2tg

2tg

sin2ln)

2tg2

12

tg()(F

2

14

1iexp

0

i14

1i

1112

1

1i

1

12

1

1 =sum

θ

minussum

λ+λ

λ

λ+θ

λ

minusλ

λ=λ

= =

a=

2tg2

12

tg

1

121

λ

minusλλ b=

1112

1

1

2tg

2tg

sin2ln

λ+λ

λ

λ and exp

0

ii )

c

)(cln(y θ

=

sum=sumθ+=

=

=

=

14N

1ii

14N

1ii yaNb

i

14N

1ii

14N

1i

2

i

14N

1ii yab θsum=sum θ+sumθ

=

=

=

=

=

=

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

983124983137983138983148983141 311 983124983144983141 983117983137983156983144CA983108 983139983151983149983152983157983156983137983156983145983151983150 983151983142 l1 DPe λ 983152983137983154983137983149983141983156983141983154983155 (9831379831529831489831459831399831379831569831459831519831503353)

983120983141=1 λ1=19 983145=5 14 983112=016 τ983149=6

Given

42220281614121018060504020

0

i

=

019909809509085080603010

0000

c

c

0

i

( )0

c

cln

2tan

2tan

sin2ln

2tan2

12

tan

2

14

5i 0

i

1

1

2

1

1

1

i

1

2

1

1

equiv

minus

λ+

λ+

λλ

λ+θ

λ

minus

λλ

sum=

Pe2

tan2 1

1equiv

λλ

( ) ( )7124819

Pe PeFind

Pe1

11 =

λλ=

λ

4

lm

2

l109532D

PeHD

minus=τ

=

9831492983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

Page 8: Chemical Engineering Flow Models2 [Compatibility Mode]

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983086

These models have their basis in the plug flow model The basic dispersion flow model differs from PFmodel by the fact that here is considered as various modes the perturbation of the piston distributionflow velocity If the perturbations present the random components forward and backward with respect

to the global flow direction then we have the case of axial dispersion flow (ADF)

The packed forms from a packed bed traversed by a fluid the drops moving downward or upward in aflowing or stationary fluid the bubbles that flow with a liquid the big wall roughness from pipe wherewe have a flow represent some forms responsible for the dispersion flow existence Here the dispersion

occurs because near to this forms in all the cases we have a micro flow situation completely different

with respect to the basis flow but related to the intensity of this basis flow

As for the turbulence the dispersion characterization associates to these micro-flows that give thedispersion phenomenon a coefficient named dispersion coefficient

AlAtA gradDwJ Γ minusΓ =

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 918

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983086

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

983110983145983143983157983154983141 329 983124983144983141 983140983141983155983139983154983145983152983156983145983151983150 983151983142 983156983144983141 983137983160983145983137983148 983140983145983155983152983141983154983155983145983151983150 983142983148983151983159

2

2

l

x

cDcwc

part

part+τpart

partminus=τpart

part

)r

cr(rr

D

x

cDcwc r

2

2

l partpart

partpart+

part

part+τpart

partminus=τpart

part

983124983144983141 983158983137983148983157983141983155 983151983142 983156983144983141 983140983145983155983152983141983154983155983145983151983150 983139983151983141983142983142983145983139983145983141983150983156983155 983144983137983158983141 983138983141983141983150 983151983154 983159983145983148983148 983138983141 983141983155983156983137983138983148983145983155983144983141983140 983142983151983154 983156983144983141 983149983137983146983151983154983145983156983161 983151983142 983156983144983141

983154983141983137983148 983139983137983155983141983155 983138983161 983141983160983152983141983154983145983149983141983150983156983137983148 983154983141983155983141983137983154983139983144 983156983144983137983156 983152983157983154983155983157983141983155 983156983144983141 983154983141983143983145983155983156983154983137983156983145983151983150 983137983150983140 983145983150983156983141983154983152983154983141983156983137983156983145983151983150 983151983142 983156983144983141 983141983160983145983156

983156983145983149983141 983140983145983155983156983154983145983138983157983156983145983151983150 983151983142 983137 983155983145983143983150983137983148 983156983144983137983156 983156983154983137983158983141983154983155983141983155 983137 983152983144983161983155983145983139 983149983151983140983141983148 983151983142 983156983144983141 983154983141983137983148 983140983141983158983145983139983141

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1018

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1118

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

2

2

l

x

cDcwc

part

part+τpart

partminus=τpart

part

0 Hdz 0z

cD

0 0z 0zcDcw

l

ll

f

f

τ==partpart

τ==partpartminus

0 0z cc

0 Hdz0 0c

0 f

pp

τ==

=τ=983125983150983145983156983137983154983161 983145983149983152983157983148983155983141

0 0z 0c

0 0z cc 0

fτ==

=τ==983108983145983154983137983139 983145983149983152983157983148983155983141

983110983151983154 983156983144983141 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983155983145983143983150983137983148 983156983144983141 983137983160983145983157983137983148 983140983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148 983144983137983155 983156983144983141 983137983150983137983148983161983156983145983139 983155983151983148983157983156983145983151983150

sum

θ

minus

+

λλ=

infin

==

1n

22

n

22

n

nn

Hdz0 Pe

2

Pe

2

Peexp

2

Pe

2

Pe

sin2

c

c 12k 135n Pe2

tg2 n

n +==λ

λ

2k246n Pe2

ctg2 n

n ==λ

λ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1218

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105 983152983154983151983139983141983155983155983145983150983143 983151983142 983155983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

λ++

λλ

minus=

= 2

1

2

11

2

1

Hdz0

2

Pe

2

Pe

sin2

ln]Pe

2

Pe

2

Pe

[c

c

ln

Pe2

tg2 1

1 =λ

λ

Hd zc

c

=

0

ln

θ

For the cases where the mean flow velocity value cannot be correctly estimated as in the

case of the two or three phases contacting the Pe number will be considered by help ofthe mean residence ( mτ ) the transport trajectory length ( dH ) and the dispersion

coefficient ( )Dl

sum τminus

sum ττminus=τint

τminus=τ

=

=infin

N

1ii0

N

1iii0

0 0

m

))(cc(

))(cc(d

c

)(c1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1318

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156sum

λ

λminusθ

minusminusλλ+

+

θλminusθminusλ

=

infin

==

1k

k

2

k

2

k k

2

k k

Hdz02cos

4

Pe

4

Pe2sin

2

Pe

2

Pe1

Pe

4

4

Pe

2

Peexp2

cc

2

2k

k

k

4Pe

2

Pe

2tg

minusλ

λ=λ

983110983154983151983149 983156983144983141 983158983145983141983159983152983151983145983150983156 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983151983154983161 983156983144983145983155 983155983151983148983157983156983145983151983150 983154983141983152983154983141983155983141983150983156983155 983156983144983141 983154983141983155983145983140983141983150983139983141 983156983145983149983141

983140983145983155983156983154983145983138983157983156983145983151983150 983142983151983154 983137 983142983148983157983145983140 983152983137983154983156983145983139983148983141 983156983144983137983156 983142983148983151983159983155 983138983161 983137 983156983154983137983146983141983139983156983151983154983161 983159983144983145983139983144 983139983144983137983154983137983139983156983141983154983145983162983141983155 983156983144983141 983145983150983158983141983155983156983145983143983137983156983141983140

983140983141983158983145983139983141 983127983144983141983150 983159983141 983144983137983158983141 983156983144983141 983152983154983151983138983137983138983145983148983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983150 983159983141 983139983137983150 983139983151983149983152983148983141983156983141

983149983151983154983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983139983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983155983157983139983144 983137983155 983156983144983141 983150983151983150983085983139983141983150983156983141983154983141983140 983137983150983140 983139983141983150983156983141983154983141983140 983149983151983149983141983150983156983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1418

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156 983137983150983140 983140983137983156983137 983139983137983152983145983156983137983148983145983162983137983156983145983151983150983081

11 = ν

2

Pe

22

Pe

2e

Pe

2

Pe

21 minus++= ν

minus

3

Pe

2

Pe

323

Pe

e24

Pe

e18

Pe

24

Pe

6

Pe

61

minusminus

++minus++= ν

4

Pe

4

Pe

3

Pe

2

Pe

424

Pe

e24

Pe

e312

Pe

e360

Pe

e108

Pe

336

Pe

48

Pe

121minusminusminusminus

+++minusminus++= ν

Pe

2212

2e

Pe

2

Pe

2

Pe

2 minus+minus= νminus ν=σ

sum

sumτ=τ

i

i

iii

m c

c

1m

m

1 =τ

τ= ν

sumτ

sumτ= ν

ii

2

m

ii

2

i

2

c

c

sumτ

sumτ= ν

ii

3

m

ii

3

i

3

c

c

sumτ

sumτ= ν

ii

4

m

ii

4

i

4

c

c

1c

c

ii

2

m

ii

2

i

12

2minus

sumτ

sumτ= νminus ν=σ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1518

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The laboratory physical model of the catalytic oxidation of the sulfur dioxide is a reactor

with a 005 m in diameter that contains 015 m height of catalyst from pellets with 3 mm

in diameter and that is traversed at 4300 C by a gas flow that contains 007 kmol SO 2

kmol gas 011 kmol O2 kmol gas and 082 kmol N2 kmol gas The gas spatial velocity

is in the range of 001msWith the purpose to obtain a reactor model flow that characterizes the gas movementaround the catalyst grain the fixed catalyst bed is traversed in the same temperature and

pressure conditions by a pure nitrogen current At the time 0=τ to the reactor input we

apply a unitary impulse signal by sulfur dioxide introduction with the concentration

10c0 = kmol SO2 kmol gas To the reactor exit we measure the time evolution of the

sulfur dioxide concentration Table 39 gives these measured concentrations With

respect to the retained data it is necessary to verify if they can sustain a PF model and ifnot we require to identify the parameters of the axial mixing model that correct the PF

model

Table 3 9 The evolution of the exit reactor sulfur d ioxide concentration (Application 3353)

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iτ sec 0

1 2

2

4

3

0

3

6

4

8

6

7 2

8

4

9

6

1

0

8

1 2

1

3 2

1

4 4

)(cc ii τ=

0

0

0

0

0

0 1

0

0 3

0 0

6

0 0

8

0

0 8 5

0

0 9

0

0 9 5

0 0

9 7

0 0

9 9

0

1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1618

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The computation of the values of the following parameters and dependencies are needed

by the problem solving

- the mean residence time of a fluid particle in the catalyst bed

6010 01540w )H( l0m ==ε=τ sec

- the dimensionless dependency i0ii vsc )(c)(C θθ=θ This is containedin table 310- the graphic representation of dependency

i0ii vsc )(c)(C θθ=θ with

the purpose to appreciate if we have a flow type PF or ADF Figure 332

show clearly that here a model flow ADF type can be adequate

- for computation of the axial dispersion coefficient we use an

approximate calculus introduced by the relations (3103) and (3104)

These relations are coupled with the numeric data from table 310when we form the functional here give by the relation (3120) that

minimize the sum of the squares of the differences between )(C iθcomputed values and )(C iθ experimental measured value Thisproblem of the axial dispersion coefficient identification as we

further show is transformed to a variant of a last squares method of

parameters identification

Table 310 The dimensionless signal evolution at the reactor exit (application 3353)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iθ 0 02 04 05 06 08 10 12 14 16 18 20 22 24

0

i

c

)(c θ

0 0 0 0 01 03 0 6 08 085 090 095 098 099 100

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

0

02

04

06

08

1

12

0 02 04 06 08 1 12 14 16 18 2 22 24

983110983145983143983157983154983141 310 983124983144983141 983141983158983151983148983157983156983145983151983150 983151983142 983156983144983141 983140983145983149983141983150983155983145983151983150983148983141983155983155 983139983151983150983139983141983150983156983154983137983156983145983151983150 983142983151983154 983154983141983137983139983156983151983154 983141983160983145983156

983120983148983157983143 983142983148983151983159 983149983151983140983141983148

)(C iθ

min)c

)(cln(

2tg

2tg

sin2ln)

2tg2

12

tg()(F

2

14

1iexp

0

i14

1i

1112

1

1i

1

12

1

1 =sum

θ

minussum

λ+λ

λ

λ+θ

λ

minusλ

λ=λ

= =

a=

2tg2

12

tg

1

121

λ

minusλλ b=

1112

1

1

2tg

2tg

sin2ln

λ+λ

λ

λ and exp

0

ii )

c

)(cln(y θ

=

sum=sumθ+=

=

=

=

14N

1ii

14N

1ii yaNb

i

14N

1ii

14N

1i

2

i

14N

1ii yab θsum=sum θ+sumθ

=

=

=

=

=

=

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

983124983137983138983148983141 311 983124983144983141 983117983137983156983144CA983108 983139983151983149983152983157983156983137983156983145983151983150 983151983142 l1 DPe λ 983152983137983154983137983149983141983156983141983154983155 (9831379831529831489831459831399831379831569831459831519831503353)

983120983141=1 λ1=19 983145=5 14 983112=016 τ983149=6

Given

42220281614121018060504020

0

i

=

019909809509085080603010

0000

c

c

0

i

( )0

c

cln

2tan

2tan

sin2ln

2tan2

12

tan

2

14

5i 0

i

1

1

2

1

1

1

i

1

2

1

1

equiv

minus

λ+

λ+

λλ

λ+θ

λ

minus

λλ

sum=

Pe2

tan2 1

1equiv

λλ

( ) ( )7124819

Pe PeFind

Pe1

11 =

λλ=

λ

4

lm

2

l109532D

PeHD

minus=τ

=

9831492983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

Page 9: Chemical Engineering Flow Models2 [Compatibility Mode]

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 918

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983086

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

983110983145983143983157983154983141 329 983124983144983141 983140983141983155983139983154983145983152983156983145983151983150 983151983142 983156983144983141 983137983160983145983137983148 983140983145983155983152983141983154983155983145983151983150 983142983148983151983159

2

2

l

x

cDcwc

part

part+τpart

partminus=τpart

part

)r

cr(rr

D

x

cDcwc r

2

2

l partpart

partpart+

part

part+τpart

partminus=τpart

part

983124983144983141 983158983137983148983157983141983155 983151983142 983156983144983141 983140983145983155983152983141983154983155983145983151983150 983139983151983141983142983142983145983139983145983141983150983156983155 983144983137983158983141 983138983141983141983150 983151983154 983159983145983148983148 983138983141 983141983155983156983137983138983148983145983155983144983141983140 983142983151983154 983156983144983141 983149983137983146983151983154983145983156983161 983151983142 983156983144983141

983154983141983137983148 983139983137983155983141983155 983138983161 983141983160983152983141983154983145983149983141983150983156983137983148 983154983141983155983141983137983154983139983144 983156983144983137983156 983152983157983154983155983157983141983155 983156983144983141 983154983141983143983145983155983156983154983137983156983145983151983150 983137983150983140 983145983150983156983141983154983152983154983141983156983137983156983145983151983150 983151983142 983156983144983141 983141983160983145983156

983156983145983149983141 983140983145983155983156983154983145983138983157983156983145983151983150 983151983142 983137 983155983145983143983150983137983148 983156983144983137983156 983156983154983137983158983141983154983155983141983155 983137 983152983144983161983155983145983139 983149983151983140983141983148 983151983142 983156983144983141 983154983141983137983148 983140983141983158983145983139983141

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1018

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1118

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

2

2

l

x

cDcwc

part

part+τpart

partminus=τpart

part

0 Hdz 0z

cD

0 0z 0zcDcw

l

ll

f

f

τ==partpart

τ==partpartminus

0 0z cc

0 Hdz0 0c

0 f

pp

τ==

=τ=983125983150983145983156983137983154983161 983145983149983152983157983148983155983141

0 0z 0c

0 0z cc 0

fτ==

=τ==983108983145983154983137983139 983145983149983152983157983148983155983141

983110983151983154 983156983144983141 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983155983145983143983150983137983148 983156983144983141 983137983160983145983157983137983148 983140983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148 983144983137983155 983156983144983141 983137983150983137983148983161983156983145983139 983155983151983148983157983156983145983151983150

sum

θ

minus

+

λλ=

infin

==

1n

22

n

22

n

nn

Hdz0 Pe

2

Pe

2

Peexp

2

Pe

2

Pe

sin2

c

c 12k 135n Pe2

tg2 n

n +==λ

λ

2k246n Pe2

ctg2 n

n ==λ

λ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1218

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105 983152983154983151983139983141983155983155983145983150983143 983151983142 983155983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

λ++

λλ

minus=

= 2

1

2

11

2

1

Hdz0

2

Pe

2

Pe

sin2

ln]Pe

2

Pe

2

Pe

[c

c

ln

Pe2

tg2 1

1 =λ

λ

Hd zc

c

=

0

ln

θ

For the cases where the mean flow velocity value cannot be correctly estimated as in the

case of the two or three phases contacting the Pe number will be considered by help ofthe mean residence ( mτ ) the transport trajectory length ( dH ) and the dispersion

coefficient ( )Dl

sum τminus

sum ττminus=τint

τminus=τ

=

=infin

N

1ii0

N

1iii0

0 0

m

))(cc(

))(cc(d

c

)(c1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1318

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156sum

λ

λminusθ

minusminusλλ+

+

θλminusθminusλ

=

infin

==

1k

k

2

k

2

k k

2

k k

Hdz02cos

4

Pe

4

Pe2sin

2

Pe

2

Pe1

Pe

4

4

Pe

2

Peexp2

cc

2

2k

k

k

4Pe

2

Pe

2tg

minusλ

λ=λ

983110983154983151983149 983156983144983141 983158983145983141983159983152983151983145983150983156 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983151983154983161 983156983144983145983155 983155983151983148983157983156983145983151983150 983154983141983152983154983141983155983141983150983156983155 983156983144983141 983154983141983155983145983140983141983150983139983141 983156983145983149983141

983140983145983155983156983154983145983138983157983156983145983151983150 983142983151983154 983137 983142983148983157983145983140 983152983137983154983156983145983139983148983141 983156983144983137983156 983142983148983151983159983155 983138983161 983137 983156983154983137983146983141983139983156983151983154983161 983159983144983145983139983144 983139983144983137983154983137983139983156983141983154983145983162983141983155 983156983144983141 983145983150983158983141983155983156983145983143983137983156983141983140

983140983141983158983145983139983141 983127983144983141983150 983159983141 983144983137983158983141 983156983144983141 983152983154983151983138983137983138983145983148983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983150 983159983141 983139983137983150 983139983151983149983152983148983141983156983141

983149983151983154983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983139983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983155983157983139983144 983137983155 983156983144983141 983150983151983150983085983139983141983150983156983141983154983141983140 983137983150983140 983139983141983150983156983141983154983141983140 983149983151983149983141983150983156983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1418

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156 983137983150983140 983140983137983156983137 983139983137983152983145983156983137983148983145983162983137983156983145983151983150983081

11 = ν

2

Pe

22

Pe

2e

Pe

2

Pe

21 minus++= ν

minus

3

Pe

2

Pe

323

Pe

e24

Pe

e18

Pe

24

Pe

6

Pe

61

minusminus

++minus++= ν

4

Pe

4

Pe

3

Pe

2

Pe

424

Pe

e24

Pe

e312

Pe

e360

Pe

e108

Pe

336

Pe

48

Pe

121minusminusminusminus

+++minusminus++= ν

Pe

2212

2e

Pe

2

Pe

2

Pe

2 minus+minus= νminus ν=σ

sum

sumτ=τ

i

i

iii

m c

c

1m

m

1 =τ

τ= ν

sumτ

sumτ= ν

ii

2

m

ii

2

i

2

c

c

sumτ

sumτ= ν

ii

3

m

ii

3

i

3

c

c

sumτ

sumτ= ν

ii

4

m

ii

4

i

4

c

c

1c

c

ii

2

m

ii

2

i

12

2minus

sumτ

sumτ= νminus ν=σ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1518

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The laboratory physical model of the catalytic oxidation of the sulfur dioxide is a reactor

with a 005 m in diameter that contains 015 m height of catalyst from pellets with 3 mm

in diameter and that is traversed at 4300 C by a gas flow that contains 007 kmol SO 2

kmol gas 011 kmol O2 kmol gas and 082 kmol N2 kmol gas The gas spatial velocity

is in the range of 001msWith the purpose to obtain a reactor model flow that characterizes the gas movementaround the catalyst grain the fixed catalyst bed is traversed in the same temperature and

pressure conditions by a pure nitrogen current At the time 0=τ to the reactor input we

apply a unitary impulse signal by sulfur dioxide introduction with the concentration

10c0 = kmol SO2 kmol gas To the reactor exit we measure the time evolution of the

sulfur dioxide concentration Table 39 gives these measured concentrations With

respect to the retained data it is necessary to verify if they can sustain a PF model and ifnot we require to identify the parameters of the axial mixing model that correct the PF

model

Table 3 9 The evolution of the exit reactor sulfur d ioxide concentration (Application 3353)

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iτ sec 0

1 2

2

4

3

0

3

6

4

8

6

7 2

8

4

9

6

1

0

8

1 2

1

3 2

1

4 4

)(cc ii τ=

0

0

0

0

0

0 1

0

0 3

0 0

6

0 0

8

0

0 8 5

0

0 9

0

0 9 5

0 0

9 7

0 0

9 9

0

1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1618

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The computation of the values of the following parameters and dependencies are needed

by the problem solving

- the mean residence time of a fluid particle in the catalyst bed

6010 01540w )H( l0m ==ε=τ sec

- the dimensionless dependency i0ii vsc )(c)(C θθ=θ This is containedin table 310- the graphic representation of dependency

i0ii vsc )(c)(C θθ=θ with

the purpose to appreciate if we have a flow type PF or ADF Figure 332

show clearly that here a model flow ADF type can be adequate

- for computation of the axial dispersion coefficient we use an

approximate calculus introduced by the relations (3103) and (3104)

These relations are coupled with the numeric data from table 310when we form the functional here give by the relation (3120) that

minimize the sum of the squares of the differences between )(C iθcomputed values and )(C iθ experimental measured value Thisproblem of the axial dispersion coefficient identification as we

further show is transformed to a variant of a last squares method of

parameters identification

Table 310 The dimensionless signal evolution at the reactor exit (application 3353)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iθ 0 02 04 05 06 08 10 12 14 16 18 20 22 24

0

i

c

)(c θ

0 0 0 0 01 03 0 6 08 085 090 095 098 099 100

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

0

02

04

06

08

1

12

0 02 04 06 08 1 12 14 16 18 2 22 24

983110983145983143983157983154983141 310 983124983144983141 983141983158983151983148983157983156983145983151983150 983151983142 983156983144983141 983140983145983149983141983150983155983145983151983150983148983141983155983155 983139983151983150983139983141983150983156983154983137983156983145983151983150 983142983151983154 983154983141983137983139983156983151983154 983141983160983145983156

983120983148983157983143 983142983148983151983159 983149983151983140983141983148

)(C iθ

min)c

)(cln(

2tg

2tg

sin2ln)

2tg2

12

tg()(F

2

14

1iexp

0

i14

1i

1112

1

1i

1

12

1

1 =sum

θ

minussum

λ+λ

λ

λ+θ

λ

minusλ

λ=λ

= =

a=

2tg2

12

tg

1

121

λ

minusλλ b=

1112

1

1

2tg

2tg

sin2ln

λ+λ

λ

λ and exp

0

ii )

c

)(cln(y θ

=

sum=sumθ+=

=

=

=

14N

1ii

14N

1ii yaNb

i

14N

1ii

14N

1i

2

i

14N

1ii yab θsum=sum θ+sumθ

=

=

=

=

=

=

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

983124983137983138983148983141 311 983124983144983141 983117983137983156983144CA983108 983139983151983149983152983157983156983137983156983145983151983150 983151983142 l1 DPe λ 983152983137983154983137983149983141983156983141983154983155 (9831379831529831489831459831399831379831569831459831519831503353)

983120983141=1 λ1=19 983145=5 14 983112=016 τ983149=6

Given

42220281614121018060504020

0

i

=

019909809509085080603010

0000

c

c

0

i

( )0

c

cln

2tan

2tan

sin2ln

2tan2

12

tan

2

14

5i 0

i

1

1

2

1

1

1

i

1

2

1

1

equiv

minus

λ+

λ+

λλ

λ+θ

λ

minus

λλ

sum=

Pe2

tan2 1

1equiv

λλ

( ) ( )7124819

Pe PeFind

Pe1

11 =

λλ=

λ

4

lm

2

l109532D

PeHD

minus=τ

=

9831492983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

Page 10: Chemical Engineering Flow Models2 [Compatibility Mode]

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1018

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1118

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

2

2

l

x

cDcwc

part

part+τpart

partminus=τpart

part

0 Hdz 0z

cD

0 0z 0zcDcw

l

ll

f

f

τ==partpart

τ==partpartminus

0 0z cc

0 Hdz0 0c

0 f

pp

τ==

=τ=983125983150983145983156983137983154983161 983145983149983152983157983148983155983141

0 0z 0c

0 0z cc 0

fτ==

=τ==983108983145983154983137983139 983145983149983152983157983148983155983141

983110983151983154 983156983144983141 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983155983145983143983150983137983148 983156983144983141 983137983160983145983157983137983148 983140983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148 983144983137983155 983156983144983141 983137983150983137983148983161983156983145983139 983155983151983148983157983156983145983151983150

sum

θ

minus

+

λλ=

infin

==

1n

22

n

22

n

nn

Hdz0 Pe

2

Pe

2

Peexp

2

Pe

2

Pe

sin2

c

c 12k 135n Pe2

tg2 n

n +==λ

λ

2k246n Pe2

ctg2 n

n ==λ

λ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1218

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105 983152983154983151983139983141983155983155983145983150983143 983151983142 983155983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

λ++

λλ

minus=

= 2

1

2

11

2

1

Hdz0

2

Pe

2

Pe

sin2

ln]Pe

2

Pe

2

Pe

[c

c

ln

Pe2

tg2 1

1 =λ

λ

Hd zc

c

=

0

ln

θ

For the cases where the mean flow velocity value cannot be correctly estimated as in the

case of the two or three phases contacting the Pe number will be considered by help ofthe mean residence ( mτ ) the transport trajectory length ( dH ) and the dispersion

coefficient ( )Dl

sum τminus

sum ττminus=τint

τminus=τ

=

=infin

N

1ii0

N

1iii0

0 0

m

))(cc(

))(cc(d

c

)(c1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1318

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156sum

λ

λminusθ

minusminusλλ+

+

θλminusθminusλ

=

infin

==

1k

k

2

k

2

k k

2

k k

Hdz02cos

4

Pe

4

Pe2sin

2

Pe

2

Pe1

Pe

4

4

Pe

2

Peexp2

cc

2

2k

k

k

4Pe

2

Pe

2tg

minusλ

λ=λ

983110983154983151983149 983156983144983141 983158983145983141983159983152983151983145983150983156 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983151983154983161 983156983144983145983155 983155983151983148983157983156983145983151983150 983154983141983152983154983141983155983141983150983156983155 983156983144983141 983154983141983155983145983140983141983150983139983141 983156983145983149983141

983140983145983155983156983154983145983138983157983156983145983151983150 983142983151983154 983137 983142983148983157983145983140 983152983137983154983156983145983139983148983141 983156983144983137983156 983142983148983151983159983155 983138983161 983137 983156983154983137983146983141983139983156983151983154983161 983159983144983145983139983144 983139983144983137983154983137983139983156983141983154983145983162983141983155 983156983144983141 983145983150983158983141983155983156983145983143983137983156983141983140

983140983141983158983145983139983141 983127983144983141983150 983159983141 983144983137983158983141 983156983144983141 983152983154983151983138983137983138983145983148983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983150 983159983141 983139983137983150 983139983151983149983152983148983141983156983141

983149983151983154983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983139983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983155983157983139983144 983137983155 983156983144983141 983150983151983150983085983139983141983150983156983141983154983141983140 983137983150983140 983139983141983150983156983141983154983141983140 983149983151983149983141983150983156983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1418

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156 983137983150983140 983140983137983156983137 983139983137983152983145983156983137983148983145983162983137983156983145983151983150983081

11 = ν

2

Pe

22

Pe

2e

Pe

2

Pe

21 minus++= ν

minus

3

Pe

2

Pe

323

Pe

e24

Pe

e18

Pe

24

Pe

6

Pe

61

minusminus

++minus++= ν

4

Pe

4

Pe

3

Pe

2

Pe

424

Pe

e24

Pe

e312

Pe

e360

Pe

e108

Pe

336

Pe

48

Pe

121minusminusminusminus

+++minusminus++= ν

Pe

2212

2e

Pe

2

Pe

2

Pe

2 minus+minus= νminus ν=σ

sum

sumτ=τ

i

i

iii

m c

c

1m

m

1 =τ

τ= ν

sumτ

sumτ= ν

ii

2

m

ii

2

i

2

c

c

sumτ

sumτ= ν

ii

3

m

ii

3

i

3

c

c

sumτ

sumτ= ν

ii

4

m

ii

4

i

4

c

c

1c

c

ii

2

m

ii

2

i

12

2minus

sumτ

sumτ= νminus ν=σ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1518

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The laboratory physical model of the catalytic oxidation of the sulfur dioxide is a reactor

with a 005 m in diameter that contains 015 m height of catalyst from pellets with 3 mm

in diameter and that is traversed at 4300 C by a gas flow that contains 007 kmol SO 2

kmol gas 011 kmol O2 kmol gas and 082 kmol N2 kmol gas The gas spatial velocity

is in the range of 001msWith the purpose to obtain a reactor model flow that characterizes the gas movementaround the catalyst grain the fixed catalyst bed is traversed in the same temperature and

pressure conditions by a pure nitrogen current At the time 0=τ to the reactor input we

apply a unitary impulse signal by sulfur dioxide introduction with the concentration

10c0 = kmol SO2 kmol gas To the reactor exit we measure the time evolution of the

sulfur dioxide concentration Table 39 gives these measured concentrations With

respect to the retained data it is necessary to verify if they can sustain a PF model and ifnot we require to identify the parameters of the axial mixing model that correct the PF

model

Table 3 9 The evolution of the exit reactor sulfur d ioxide concentration (Application 3353)

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iτ sec 0

1 2

2

4

3

0

3

6

4

8

6

7 2

8

4

9

6

1

0

8

1 2

1

3 2

1

4 4

)(cc ii τ=

0

0

0

0

0

0 1

0

0 3

0 0

6

0 0

8

0

0 8 5

0

0 9

0

0 9 5

0 0

9 7

0 0

9 9

0

1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1618

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The computation of the values of the following parameters and dependencies are needed

by the problem solving

- the mean residence time of a fluid particle in the catalyst bed

6010 01540w )H( l0m ==ε=τ sec

- the dimensionless dependency i0ii vsc )(c)(C θθ=θ This is containedin table 310- the graphic representation of dependency

i0ii vsc )(c)(C θθ=θ with

the purpose to appreciate if we have a flow type PF or ADF Figure 332

show clearly that here a model flow ADF type can be adequate

- for computation of the axial dispersion coefficient we use an

approximate calculus introduced by the relations (3103) and (3104)

These relations are coupled with the numeric data from table 310when we form the functional here give by the relation (3120) that

minimize the sum of the squares of the differences between )(C iθcomputed values and )(C iθ experimental measured value Thisproblem of the axial dispersion coefficient identification as we

further show is transformed to a variant of a last squares method of

parameters identification

Table 310 The dimensionless signal evolution at the reactor exit (application 3353)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iθ 0 02 04 05 06 08 10 12 14 16 18 20 22 24

0

i

c

)(c θ

0 0 0 0 01 03 0 6 08 085 090 095 098 099 100

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

0

02

04

06

08

1

12

0 02 04 06 08 1 12 14 16 18 2 22 24

983110983145983143983157983154983141 310 983124983144983141 983141983158983151983148983157983156983145983151983150 983151983142 983156983144983141 983140983145983149983141983150983155983145983151983150983148983141983155983155 983139983151983150983139983141983150983156983154983137983156983145983151983150 983142983151983154 983154983141983137983139983156983151983154 983141983160983145983156

983120983148983157983143 983142983148983151983159 983149983151983140983141983148

)(C iθ

min)c

)(cln(

2tg

2tg

sin2ln)

2tg2

12

tg()(F

2

14

1iexp

0

i14

1i

1112

1

1i

1

12

1

1 =sum

θ

minussum

λ+λ

λ

λ+θ

λ

minusλ

λ=λ

= =

a=

2tg2

12

tg

1

121

λ

minusλλ b=

1112

1

1

2tg

2tg

sin2ln

λ+λ

λ

λ and exp

0

ii )

c

)(cln(y θ

=

sum=sumθ+=

=

=

=

14N

1ii

14N

1ii yaNb

i

14N

1ii

14N

1i

2

i

14N

1ii yab θsum=sum θ+sumθ

=

=

=

=

=

=

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

983124983137983138983148983141 311 983124983144983141 983117983137983156983144CA983108 983139983151983149983152983157983156983137983156983145983151983150 983151983142 l1 DPe λ 983152983137983154983137983149983141983156983141983154983155 (9831379831529831489831459831399831379831569831459831519831503353)

983120983141=1 λ1=19 983145=5 14 983112=016 τ983149=6

Given

42220281614121018060504020

0

i

=

019909809509085080603010

0000

c

c

0

i

( )0

c

cln

2tan

2tan

sin2ln

2tan2

12

tan

2

14

5i 0

i

1

1

2

1

1

1

i

1

2

1

1

equiv

minus

λ+

λ+

λλ

λ+θ

λ

minus

λλ

sum=

Pe2

tan2 1

1equiv

λλ

( ) ( )7124819

Pe PeFind

Pe1

11 =

λλ=

λ

4

lm

2

l109532D

PeHD

minus=τ

=

9831492983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

Page 11: Chemical Engineering Flow Models2 [Compatibility Mode]

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1118

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

2

2

l

x

cDcwc

part

part+τpart

partminus=τpart

part

0 Hdz 0z

cD

0 0z 0zcDcw

l

ll

f

f

τ==partpart

τ==partpartminus

0 0z cc

0 Hdz0 0c

0 f

pp

τ==

=τ=983125983150983145983156983137983154983161 983145983149983152983157983148983155983141

0 0z 0c

0 0z cc 0

fτ==

=τ==983108983145983154983137983139 983145983149983152983157983148983155983141

983110983151983154 983156983144983141 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983155983145983143983150983137983148 983156983144983141 983137983160983145983157983137983148 983140983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148 983144983137983155 983156983144983141 983137983150983137983148983161983156983145983139 983155983151983148983157983156983145983151983150

sum

θ

minus

+

λλ=

infin

==

1n

22

n

22

n

nn

Hdz0 Pe

2

Pe

2

Peexp

2

Pe

2

Pe

sin2

c

c 12k 135n Pe2

tg2 n

n +==λ

λ

2k246n Pe2

ctg2 n

n ==λ

λ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1218

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105 983152983154983151983139983141983155983155983145983150983143 983151983142 983155983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

λ++

λλ

minus=

= 2

1

2

11

2

1

Hdz0

2

Pe

2

Pe

sin2

ln]Pe

2

Pe

2

Pe

[c

c

ln

Pe2

tg2 1

1 =λ

λ

Hd zc

c

=

0

ln

θ

For the cases where the mean flow velocity value cannot be correctly estimated as in the

case of the two or three phases contacting the Pe number will be considered by help ofthe mean residence ( mτ ) the transport trajectory length ( dH ) and the dispersion

coefficient ( )Dl

sum τminus

sum ττminus=τint

τminus=τ

=

=infin

N

1ii0

N

1iii0

0 0

m

))(cc(

))(cc(d

c

)(c1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1318

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156sum

λ

λminusθ

minusminusλλ+

+

θλminusθminusλ

=

infin

==

1k

k

2

k

2

k k

2

k k

Hdz02cos

4

Pe

4

Pe2sin

2

Pe

2

Pe1

Pe

4

4

Pe

2

Peexp2

cc

2

2k

k

k

4Pe

2

Pe

2tg

minusλ

λ=λ

983110983154983151983149 983156983144983141 983158983145983141983159983152983151983145983150983156 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983151983154983161 983156983144983145983155 983155983151983148983157983156983145983151983150 983154983141983152983154983141983155983141983150983156983155 983156983144983141 983154983141983155983145983140983141983150983139983141 983156983145983149983141

983140983145983155983156983154983145983138983157983156983145983151983150 983142983151983154 983137 983142983148983157983145983140 983152983137983154983156983145983139983148983141 983156983144983137983156 983142983148983151983159983155 983138983161 983137 983156983154983137983146983141983139983156983151983154983161 983159983144983145983139983144 983139983144983137983154983137983139983156983141983154983145983162983141983155 983156983144983141 983145983150983158983141983155983156983145983143983137983156983141983140

983140983141983158983145983139983141 983127983144983141983150 983159983141 983144983137983158983141 983156983144983141 983152983154983151983138983137983138983145983148983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983150 983159983141 983139983137983150 983139983151983149983152983148983141983156983141

983149983151983154983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983139983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983155983157983139983144 983137983155 983156983144983141 983150983151983150983085983139983141983150983156983141983154983141983140 983137983150983140 983139983141983150983156983141983154983141983140 983149983151983149983141983150983156983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1418

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156 983137983150983140 983140983137983156983137 983139983137983152983145983156983137983148983145983162983137983156983145983151983150983081

11 = ν

2

Pe

22

Pe

2e

Pe

2

Pe

21 minus++= ν

minus

3

Pe

2

Pe

323

Pe

e24

Pe

e18

Pe

24

Pe

6

Pe

61

minusminus

++minus++= ν

4

Pe

4

Pe

3

Pe

2

Pe

424

Pe

e24

Pe

e312

Pe

e360

Pe

e108

Pe

336

Pe

48

Pe

121minusminusminusminus

+++minusminus++= ν

Pe

2212

2e

Pe

2

Pe

2

Pe

2 minus+minus= νminus ν=σ

sum

sumτ=τ

i

i

iii

m c

c

1m

m

1 =τ

τ= ν

sumτ

sumτ= ν

ii

2

m

ii

2

i

2

c

c

sumτ

sumτ= ν

ii

3

m

ii

3

i

3

c

c

sumτ

sumτ= ν

ii

4

m

ii

4

i

4

c

c

1c

c

ii

2

m

ii

2

i

12

2minus

sumτ

sumτ= νminus ν=σ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1518

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The laboratory physical model of the catalytic oxidation of the sulfur dioxide is a reactor

with a 005 m in diameter that contains 015 m height of catalyst from pellets with 3 mm

in diameter and that is traversed at 4300 C by a gas flow that contains 007 kmol SO 2

kmol gas 011 kmol O2 kmol gas and 082 kmol N2 kmol gas The gas spatial velocity

is in the range of 001msWith the purpose to obtain a reactor model flow that characterizes the gas movementaround the catalyst grain the fixed catalyst bed is traversed in the same temperature and

pressure conditions by a pure nitrogen current At the time 0=τ to the reactor input we

apply a unitary impulse signal by sulfur dioxide introduction with the concentration

10c0 = kmol SO2 kmol gas To the reactor exit we measure the time evolution of the

sulfur dioxide concentration Table 39 gives these measured concentrations With

respect to the retained data it is necessary to verify if they can sustain a PF model and ifnot we require to identify the parameters of the axial mixing model that correct the PF

model

Table 3 9 The evolution of the exit reactor sulfur d ioxide concentration (Application 3353)

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iτ sec 0

1 2

2

4

3

0

3

6

4

8

6

7 2

8

4

9

6

1

0

8

1 2

1

3 2

1

4 4

)(cc ii τ=

0

0

0

0

0

0 1

0

0 3

0 0

6

0 0

8

0

0 8 5

0

0 9

0

0 9 5

0 0

9 7

0 0

9 9

0

1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1618

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The computation of the values of the following parameters and dependencies are needed

by the problem solving

- the mean residence time of a fluid particle in the catalyst bed

6010 01540w )H( l0m ==ε=τ sec

- the dimensionless dependency i0ii vsc )(c)(C θθ=θ This is containedin table 310- the graphic representation of dependency

i0ii vsc )(c)(C θθ=θ with

the purpose to appreciate if we have a flow type PF or ADF Figure 332

show clearly that here a model flow ADF type can be adequate

- for computation of the axial dispersion coefficient we use an

approximate calculus introduced by the relations (3103) and (3104)

These relations are coupled with the numeric data from table 310when we form the functional here give by the relation (3120) that

minimize the sum of the squares of the differences between )(C iθcomputed values and )(C iθ experimental measured value Thisproblem of the axial dispersion coefficient identification as we

further show is transformed to a variant of a last squares method of

parameters identification

Table 310 The dimensionless signal evolution at the reactor exit (application 3353)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iθ 0 02 04 05 06 08 10 12 14 16 18 20 22 24

0

i

c

)(c θ

0 0 0 0 01 03 0 6 08 085 090 095 098 099 100

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

0

02

04

06

08

1

12

0 02 04 06 08 1 12 14 16 18 2 22 24

983110983145983143983157983154983141 310 983124983144983141 983141983158983151983148983157983156983145983151983150 983151983142 983156983144983141 983140983145983149983141983150983155983145983151983150983148983141983155983155 983139983151983150983139983141983150983156983154983137983156983145983151983150 983142983151983154 983154983141983137983139983156983151983154 983141983160983145983156

983120983148983157983143 983142983148983151983159 983149983151983140983141983148

)(C iθ

min)c

)(cln(

2tg

2tg

sin2ln)

2tg2

12

tg()(F

2

14

1iexp

0

i14

1i

1112

1

1i

1

12

1

1 =sum

θ

minussum

λ+λ

λ

λ+θ

λ

minusλ

λ=λ

= =

a=

2tg2

12

tg

1

121

λ

minusλλ b=

1112

1

1

2tg

2tg

sin2ln

λ+λ

λ

λ and exp

0

ii )

c

)(cln(y θ

=

sum=sumθ+=

=

=

=

14N

1ii

14N

1ii yaNb

i

14N

1ii

14N

1i

2

i

14N

1ii yab θsum=sum θ+sumθ

=

=

=

=

=

=

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

983124983137983138983148983141 311 983124983144983141 983117983137983156983144CA983108 983139983151983149983152983157983156983137983156983145983151983150 983151983142 l1 DPe λ 983152983137983154983137983149983141983156983141983154983155 (9831379831529831489831459831399831379831569831459831519831503353)

983120983141=1 λ1=19 983145=5 14 983112=016 τ983149=6

Given

42220281614121018060504020

0

i

=

019909809509085080603010

0000

c

c

0

i

( )0

c

cln

2tan

2tan

sin2ln

2tan2

12

tan

2

14

5i 0

i

1

1

2

1

1

1

i

1

2

1

1

equiv

minus

λ+

λ+

λλ

λ+θ

λ

minus

λλ

sum=

Pe2

tan2 1

1equiv

λλ

( ) ( )7124819

Pe PeFind

Pe1

11 =

λλ=

λ

4

lm

2

l109532D

PeHD

minus=τ

=

9831492983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

Page 12: Chemical Engineering Flow Models2 [Compatibility Mode]

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1218

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105 983152983154983151983139983141983155983155983145983150983143 983151983142 983155983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156

λ++

λλ

minus=

= 2

1

2

11

2

1

Hdz0

2

Pe

2

Pe

sin2

ln]Pe

2

Pe

2

Pe

[c

c

ln

Pe2

tg2 1

1 =λ

λ

Hd zc

c

=

0

ln

θ

For the cases where the mean flow velocity value cannot be correctly estimated as in the

case of the two or three phases contacting the Pe number will be considered by help ofthe mean residence ( mτ ) the transport trajectory length ( dH ) and the dispersion

coefficient ( )Dl

sum τminus

sum ττminus=τint

τminus=τ

=

=infin

N

1ii0

N

1iii0

0 0

m

))(cc(

))(cc(d

c

)(c1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1318

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156sum

λ

λminusθ

minusminusλλ+

+

θλminusθminusλ

=

infin

==

1k

k

2

k

2

k k

2

k k

Hdz02cos

4

Pe

4

Pe2sin

2

Pe

2

Pe1

Pe

4

4

Pe

2

Peexp2

cc

2

2k

k

k

4Pe

2

Pe

2tg

minusλ

λ=λ

983110983154983151983149 983156983144983141 983158983145983141983159983152983151983145983150983156 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983151983154983161 983156983144983145983155 983155983151983148983157983156983145983151983150 983154983141983152983154983141983155983141983150983156983155 983156983144983141 983154983141983155983145983140983141983150983139983141 983156983145983149983141

983140983145983155983156983154983145983138983157983156983145983151983150 983142983151983154 983137 983142983148983157983145983140 983152983137983154983156983145983139983148983141 983156983144983137983156 983142983148983151983159983155 983138983161 983137 983156983154983137983146983141983139983156983151983154983161 983159983144983145983139983144 983139983144983137983154983137983139983156983141983154983145983162983141983155 983156983144983141 983145983150983158983141983155983156983145983143983137983156983141983140

983140983141983158983145983139983141 983127983144983141983150 983159983141 983144983137983158983141 983156983144983141 983152983154983151983138983137983138983145983148983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983150 983159983141 983139983137983150 983139983151983149983152983148983141983156983141

983149983151983154983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983139983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983155983157983139983144 983137983155 983156983144983141 983150983151983150983085983139983141983150983156983141983154983141983140 983137983150983140 983139983141983150983156983141983154983141983140 983149983151983149983141983150983156983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1418

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156 983137983150983140 983140983137983156983137 983139983137983152983145983156983137983148983145983162983137983156983145983151983150983081

11 = ν

2

Pe

22

Pe

2e

Pe

2

Pe

21 minus++= ν

minus

3

Pe

2

Pe

323

Pe

e24

Pe

e18

Pe

24

Pe

6

Pe

61

minusminus

++minus++= ν

4

Pe

4

Pe

3

Pe

2

Pe

424

Pe

e24

Pe

e312

Pe

e360

Pe

e108

Pe

336

Pe

48

Pe

121minusminusminusminus

+++minusminus++= ν

Pe

2212

2e

Pe

2

Pe

2

Pe

2 minus+minus= νminus ν=σ

sum

sumτ=τ

i

i

iii

m c

c

1m

m

1 =τ

τ= ν

sumτ

sumτ= ν

ii

2

m

ii

2

i

2

c

c

sumτ

sumτ= ν

ii

3

m

ii

3

i

3

c

c

sumτ

sumτ= ν

ii

4

m

ii

4

i

4

c

c

1c

c

ii

2

m

ii

2

i

12

2minus

sumτ

sumτ= νminus ν=σ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1518

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The laboratory physical model of the catalytic oxidation of the sulfur dioxide is a reactor

with a 005 m in diameter that contains 015 m height of catalyst from pellets with 3 mm

in diameter and that is traversed at 4300 C by a gas flow that contains 007 kmol SO 2

kmol gas 011 kmol O2 kmol gas and 082 kmol N2 kmol gas The gas spatial velocity

is in the range of 001msWith the purpose to obtain a reactor model flow that characterizes the gas movementaround the catalyst grain the fixed catalyst bed is traversed in the same temperature and

pressure conditions by a pure nitrogen current At the time 0=τ to the reactor input we

apply a unitary impulse signal by sulfur dioxide introduction with the concentration

10c0 = kmol SO2 kmol gas To the reactor exit we measure the time evolution of the

sulfur dioxide concentration Table 39 gives these measured concentrations With

respect to the retained data it is necessary to verify if they can sustain a PF model and ifnot we require to identify the parameters of the axial mixing model that correct the PF

model

Table 3 9 The evolution of the exit reactor sulfur d ioxide concentration (Application 3353)

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iτ sec 0

1 2

2

4

3

0

3

6

4

8

6

7 2

8

4

9

6

1

0

8

1 2

1

3 2

1

4 4

)(cc ii τ=

0

0

0

0

0

0 1

0

0 3

0 0

6

0 0

8

0

0 8 5

0

0 9

0

0 9 5

0 0

9 7

0 0

9 9

0

1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1618

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The computation of the values of the following parameters and dependencies are needed

by the problem solving

- the mean residence time of a fluid particle in the catalyst bed

6010 01540w )H( l0m ==ε=τ sec

- the dimensionless dependency i0ii vsc )(c)(C θθ=θ This is containedin table 310- the graphic representation of dependency

i0ii vsc )(c)(C θθ=θ with

the purpose to appreciate if we have a flow type PF or ADF Figure 332

show clearly that here a model flow ADF type can be adequate

- for computation of the axial dispersion coefficient we use an

approximate calculus introduced by the relations (3103) and (3104)

These relations are coupled with the numeric data from table 310when we form the functional here give by the relation (3120) that

minimize the sum of the squares of the differences between )(C iθcomputed values and )(C iθ experimental measured value Thisproblem of the axial dispersion coefficient identification as we

further show is transformed to a variant of a last squares method of

parameters identification

Table 310 The dimensionless signal evolution at the reactor exit (application 3353)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iθ 0 02 04 05 06 08 10 12 14 16 18 20 22 24

0

i

c

)(c θ

0 0 0 0 01 03 0 6 08 085 090 095 098 099 100

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

0

02

04

06

08

1

12

0 02 04 06 08 1 12 14 16 18 2 22 24

983110983145983143983157983154983141 310 983124983144983141 983141983158983151983148983157983156983145983151983150 983151983142 983156983144983141 983140983145983149983141983150983155983145983151983150983148983141983155983155 983139983151983150983139983141983150983156983154983137983156983145983151983150 983142983151983154 983154983141983137983139983156983151983154 983141983160983145983156

983120983148983157983143 983142983148983151983159 983149983151983140983141983148

)(C iθ

min)c

)(cln(

2tg

2tg

sin2ln)

2tg2

12

tg()(F

2

14

1iexp

0

i14

1i

1112

1

1i

1

12

1

1 =sum

θ

minussum

λ+λ

λ

λ+θ

λ

minusλ

λ=λ

= =

a=

2tg2

12

tg

1

121

λ

minusλλ b=

1112

1

1

2tg

2tg

sin2ln

λ+λ

λ

λ and exp

0

ii )

c

)(cln(y θ

=

sum=sumθ+=

=

=

=

14N

1ii

14N

1ii yaNb

i

14N

1ii

14N

1i

2

i

14N

1ii yab θsum=sum θ+sumθ

=

=

=

=

=

=

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

983124983137983138983148983141 311 983124983144983141 983117983137983156983144CA983108 983139983151983149983152983157983156983137983156983145983151983150 983151983142 l1 DPe λ 983152983137983154983137983149983141983156983141983154983155 (9831379831529831489831459831399831379831569831459831519831503353)

983120983141=1 λ1=19 983145=5 14 983112=016 τ983149=6

Given

42220281614121018060504020

0

i

=

019909809509085080603010

0000

c

c

0

i

( )0

c

cln

2tan

2tan

sin2ln

2tan2

12

tan

2

14

5i 0

i

1

1

2

1

1

1

i

1

2

1

1

equiv

minus

λ+

λ+

λλ

λ+θ

λ

minus

λλ

sum=

Pe2

tan2 1

1equiv

λλ

( ) ( )7124819

Pe PeFind

Pe1

11 =

λλ=

λ

4

lm

2

l109532D

PeHD

minus=τ

=

9831492983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

Page 13: Chemical Engineering Flow Models2 [Compatibility Mode]

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1318

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156983081

dx

)dcc(dSDl

minus

983126983141983148983151983139983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150

983123

dxdcSD

l

983159983123983139 )dcc(wS minus

983140983160

983113983150983152983157983156sum

λ

λminusθ

minusminusλλ+

+

θλminusθminusλ

=

infin

==

1k

k

2

k

2

k k

2

k k

Hdz02cos

4

Pe

4

Pe2sin

2

Pe

2

Pe1

Pe

4

4

Pe

2

Peexp2

cc

2

2k

k

k

4Pe

2

Pe

2tg

minusλ

λ=λ

983110983154983151983149 983156983144983141 983158983145983141983159983152983151983145983150983156 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983151983154983161 983156983144983145983155 983155983151983148983157983156983145983151983150 983154983141983152983154983141983155983141983150983156983155 983156983144983141 983154983141983155983145983140983141983150983139983141 983156983145983149983141

983140983145983155983156983154983145983138983157983156983145983151983150 983142983151983154 983137 983142983148983157983145983140 983152983137983154983156983145983139983148983141 983156983144983137983156 983142983148983151983159983155 983138983161 983137 983156983154983137983146983141983139983156983151983154983161 983159983144983145983139983144 983139983144983137983154983137983139983156983141983154983145983162983141983155 983156983144983141 983145983150983158983141983155983156983145983143983137983156983141983140

983140983141983158983145983139983141 983127983144983141983150 983159983141 983144983137983158983141 983156983144983141 983152983154983151983138983137983138983145983148983145983156983161 983140983145983155983156983154983145983138983157983156983145983151983150 983151983142 983156983144983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983156983144983141983150 983159983141 983139983137983150 983139983151983149983152983148983141983156983141

983149983151983154983141 983154983137983150983140983151983149 983158983137983154983145983137983138983148983141 983139983144983137983154983137983139983156983141983154983145983155983156983145983139983155 983155983157983139983144 983137983155 983156983144983141 983150983151983150983085983139983141983150983156983141983154983141983140 983137983150983140 983139983141983150983156983141983154983141983140 983149983151983149983141983150983156983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1418

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156 983137983150983140 983140983137983156983137 983139983137983152983145983156983137983148983145983162983137983156983145983151983150983081

11 = ν

2

Pe

22

Pe

2e

Pe

2

Pe

21 minus++= ν

minus

3

Pe

2

Pe

323

Pe

e24

Pe

e18

Pe

24

Pe

6

Pe

61

minusminus

++minus++= ν

4

Pe

4

Pe

3

Pe

2

Pe

424

Pe

e24

Pe

e312

Pe

e360

Pe

e108

Pe

336

Pe

48

Pe

121minusminusminusminus

+++minusminus++= ν

Pe

2212

2e

Pe

2

Pe

2

Pe

2 minus+minus= νminus ν=σ

sum

sumτ=τ

i

i

iii

m c

c

1m

m

1 =τ

τ= ν

sumτ

sumτ= ν

ii

2

m

ii

2

i

2

c

c

sumτ

sumτ= ν

ii

3

m

ii

3

i

3

c

c

sumτ

sumτ= ν

ii

4

m

ii

4

i

4

c

c

1c

c

ii

2

m

ii

2

i

12

2minus

sumτ

sumτ= νminus ν=σ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1518

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The laboratory physical model of the catalytic oxidation of the sulfur dioxide is a reactor

with a 005 m in diameter that contains 015 m height of catalyst from pellets with 3 mm

in diameter and that is traversed at 4300 C by a gas flow that contains 007 kmol SO 2

kmol gas 011 kmol O2 kmol gas and 082 kmol N2 kmol gas The gas spatial velocity

is in the range of 001msWith the purpose to obtain a reactor model flow that characterizes the gas movementaround the catalyst grain the fixed catalyst bed is traversed in the same temperature and

pressure conditions by a pure nitrogen current At the time 0=τ to the reactor input we

apply a unitary impulse signal by sulfur dioxide introduction with the concentration

10c0 = kmol SO2 kmol gas To the reactor exit we measure the time evolution of the

sulfur dioxide concentration Table 39 gives these measured concentrations With

respect to the retained data it is necessary to verify if they can sustain a PF model and ifnot we require to identify the parameters of the axial mixing model that correct the PF

model

Table 3 9 The evolution of the exit reactor sulfur d ioxide concentration (Application 3353)

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iτ sec 0

1 2

2

4

3

0

3

6

4

8

6

7 2

8

4

9

6

1

0

8

1 2

1

3 2

1

4 4

)(cc ii τ=

0

0

0

0

0

0 1

0

0 3

0 0

6

0 0

8

0

0 8 5

0

0 9

0

0 9 5

0 0

9 7

0 0

9 9

0

1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1618

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The computation of the values of the following parameters and dependencies are needed

by the problem solving

- the mean residence time of a fluid particle in the catalyst bed

6010 01540w )H( l0m ==ε=τ sec

- the dimensionless dependency i0ii vsc )(c)(C θθ=θ This is containedin table 310- the graphic representation of dependency

i0ii vsc )(c)(C θθ=θ with

the purpose to appreciate if we have a flow type PF or ADF Figure 332

show clearly that here a model flow ADF type can be adequate

- for computation of the axial dispersion coefficient we use an

approximate calculus introduced by the relations (3103) and (3104)

These relations are coupled with the numeric data from table 310when we form the functional here give by the relation (3120) that

minimize the sum of the squares of the differences between )(C iθcomputed values and )(C iθ experimental measured value Thisproblem of the axial dispersion coefficient identification as we

further show is transformed to a variant of a last squares method of

parameters identification

Table 310 The dimensionless signal evolution at the reactor exit (application 3353)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iθ 0 02 04 05 06 08 10 12 14 16 18 20 22 24

0

i

c

)(c θ

0 0 0 0 01 03 0 6 08 085 090 095 098 099 100

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

0

02

04

06

08

1

12

0 02 04 06 08 1 12 14 16 18 2 22 24

983110983145983143983157983154983141 310 983124983144983141 983141983158983151983148983157983156983145983151983150 983151983142 983156983144983141 983140983145983149983141983150983155983145983151983150983148983141983155983155 983139983151983150983139983141983150983156983154983137983156983145983151983150 983142983151983154 983154983141983137983139983156983151983154 983141983160983145983156

983120983148983157983143 983142983148983151983159 983149983151983140983141983148

)(C iθ

min)c

)(cln(

2tg

2tg

sin2ln)

2tg2

12

tg()(F

2

14

1iexp

0

i14

1i

1112

1

1i

1

12

1

1 =sum

θ

minussum

λ+λ

λ

λ+θ

λ

minusλ

λ=λ

= =

a=

2tg2

12

tg

1

121

λ

minusλλ b=

1112

1

1

2tg

2tg

sin2ln

λ+λ

λ

λ and exp

0

ii )

c

)(cln(y θ

=

sum=sumθ+=

=

=

=

14N

1ii

14N

1ii yaNb

i

14N

1ii

14N

1i

2

i

14N

1ii yab θsum=sum θ+sumθ

=

=

=

=

=

=

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

983124983137983138983148983141 311 983124983144983141 983117983137983156983144CA983108 983139983151983149983152983157983156983137983156983145983151983150 983151983142 l1 DPe λ 983152983137983154983137983149983141983156983141983154983155 (9831379831529831489831459831399831379831569831459831519831503353)

983120983141=1 λ1=19 983145=5 14 983112=016 τ983149=6

Given

42220281614121018060504020

0

i

=

019909809509085080603010

0000

c

c

0

i

( )0

c

cln

2tan

2tan

sin2ln

2tan2

12

tan

2

14

5i 0

i

1

1

2

1

1

1

i

1

2

1

1

equiv

minus

λ+

λ+

λλ

λ+θ

λ

minus

λλ

sum=

Pe2

tan2 1

1equiv

λλ

( ) ( )7124819

Pe PeFind

Pe1

11 =

λλ=

λ

4

lm

2

l109532D

PeHD

minus=τ

=

9831492983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

Page 14: Chemical Engineering Flow Models2 [Compatibility Mode]

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1418

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080 983123983151983148983157983156983145983151983150 983142983151983154 983157983150983145983156983137983154983161 983145983149983152983157983148983155983141 983145983150983152983157983156 983137983150983140 983140983137983156983137 983139983137983152983145983156983137983148983145983162983137983156983145983151983150983081

11 = ν

2

Pe

22

Pe

2e

Pe

2

Pe

21 minus++= ν

minus

3

Pe

2

Pe

323

Pe

e24

Pe

e18

Pe

24

Pe

6

Pe

61

minusminus

++minus++= ν

4

Pe

4

Pe

3

Pe

2

Pe

424

Pe

e24

Pe

e312

Pe

e360

Pe

e108

Pe

336

Pe

48

Pe

121minusminusminusminus

+++minusminus++= ν

Pe

2212

2e

Pe

2

Pe

2

Pe

2 minus+minus= νminus ν=σ

sum

sumτ=τ

i

i

iii

m c

c

1m

m

1 =τ

τ= ν

sumτ

sumτ= ν

ii

2

m

ii

2

i

2

c

c

sumτ

sumτ= ν

ii

3

m

ii

3

i

3

c

c

sumτ

sumτ= ν

ii

4

m

ii

4

i

4

c

c

1c

c

ii

2

m

ii

2

i

12

2minus

sumτ

sumτ= νminus ν=σ

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1518

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The laboratory physical model of the catalytic oxidation of the sulfur dioxide is a reactor

with a 005 m in diameter that contains 015 m height of catalyst from pellets with 3 mm

in diameter and that is traversed at 4300 C by a gas flow that contains 007 kmol SO 2

kmol gas 011 kmol O2 kmol gas and 082 kmol N2 kmol gas The gas spatial velocity

is in the range of 001msWith the purpose to obtain a reactor model flow that characterizes the gas movementaround the catalyst grain the fixed catalyst bed is traversed in the same temperature and

pressure conditions by a pure nitrogen current At the time 0=τ to the reactor input we

apply a unitary impulse signal by sulfur dioxide introduction with the concentration

10c0 = kmol SO2 kmol gas To the reactor exit we measure the time evolution of the

sulfur dioxide concentration Table 39 gives these measured concentrations With

respect to the retained data it is necessary to verify if they can sustain a PF model and ifnot we require to identify the parameters of the axial mixing model that correct the PF

model

Table 3 9 The evolution of the exit reactor sulfur d ioxide concentration (Application 3353)

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iτ sec 0

1 2

2

4

3

0

3

6

4

8

6

7 2

8

4

9

6

1

0

8

1 2

1

3 2

1

4 4

)(cc ii τ=

0

0

0

0

0

0 1

0

0 3

0 0

6

0 0

8

0

0 8 5

0

0 9

0

0 9 5

0 0

9 7

0 0

9 9

0

1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1618

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The computation of the values of the following parameters and dependencies are needed

by the problem solving

- the mean residence time of a fluid particle in the catalyst bed

6010 01540w )H( l0m ==ε=τ sec

- the dimensionless dependency i0ii vsc )(c)(C θθ=θ This is containedin table 310- the graphic representation of dependency

i0ii vsc )(c)(C θθ=θ with

the purpose to appreciate if we have a flow type PF or ADF Figure 332

show clearly that here a model flow ADF type can be adequate

- for computation of the axial dispersion coefficient we use an

approximate calculus introduced by the relations (3103) and (3104)

These relations are coupled with the numeric data from table 310when we form the functional here give by the relation (3120) that

minimize the sum of the squares of the differences between )(C iθcomputed values and )(C iθ experimental measured value Thisproblem of the axial dispersion coefficient identification as we

further show is transformed to a variant of a last squares method of

parameters identification

Table 310 The dimensionless signal evolution at the reactor exit (application 3353)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iθ 0 02 04 05 06 08 10 12 14 16 18 20 22 24

0

i

c

)(c θ

0 0 0 0 01 03 0 6 08 085 090 095 098 099 100

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

0

02

04

06

08

1

12

0 02 04 06 08 1 12 14 16 18 2 22 24

983110983145983143983157983154983141 310 983124983144983141 983141983158983151983148983157983156983145983151983150 983151983142 983156983144983141 983140983145983149983141983150983155983145983151983150983148983141983155983155 983139983151983150983139983141983150983156983154983137983156983145983151983150 983142983151983154 983154983141983137983139983156983151983154 983141983160983145983156

983120983148983157983143 983142983148983151983159 983149983151983140983141983148

)(C iθ

min)c

)(cln(

2tg

2tg

sin2ln)

2tg2

12

tg()(F

2

14

1iexp

0

i14

1i

1112

1

1i

1

12

1

1 =sum

θ

minussum

λ+λ

λ

λ+θ

λ

minusλ

λ=λ

= =

a=

2tg2

12

tg

1

121

λ

minusλλ b=

1112

1

1

2tg

2tg

sin2ln

λ+λ

λ

λ and exp

0

ii )

c

)(cln(y θ

=

sum=sumθ+=

=

=

=

14N

1ii

14N

1ii yaNb

i

14N

1ii

14N

1i

2

i

14N

1ii yab θsum=sum θ+sumθ

=

=

=

=

=

=

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

983124983137983138983148983141 311 983124983144983141 983117983137983156983144CA983108 983139983151983149983152983157983156983137983156983145983151983150 983151983142 l1 DPe λ 983152983137983154983137983149983141983156983141983154983155 (9831379831529831489831459831399831379831569831459831519831503353)

983120983141=1 λ1=19 983145=5 14 983112=016 τ983149=6

Given

42220281614121018060504020

0

i

=

019909809509085080603010

0000

c

c

0

i

( )0

c

cln

2tan

2tan

sin2ln

2tan2

12

tan

2

14

5i 0

i

1

1

2

1

1

1

i

1

2

1

1

equiv

minus

λ+

λ+

λλ

λ+θ

λ

minus

λλ

sum=

Pe2

tan2 1

1equiv

λλ

( ) ( )7124819

Pe PeFind

Pe1

11 =

λλ=

λ

4

lm

2

l109532D

PeHD

minus=τ

=

9831492983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

Page 15: Chemical Engineering Flow Models2 [Compatibility Mode]

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1518

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The laboratory physical model of the catalytic oxidation of the sulfur dioxide is a reactor

with a 005 m in diameter that contains 015 m height of catalyst from pellets with 3 mm

in diameter and that is traversed at 4300 C by a gas flow that contains 007 kmol SO 2

kmol gas 011 kmol O2 kmol gas and 082 kmol N2 kmol gas The gas spatial velocity

is in the range of 001msWith the purpose to obtain a reactor model flow that characterizes the gas movementaround the catalyst grain the fixed catalyst bed is traversed in the same temperature and

pressure conditions by a pure nitrogen current At the time 0=τ to the reactor input we

apply a unitary impulse signal by sulfur dioxide introduction with the concentration

10c0 = kmol SO2 kmol gas To the reactor exit we measure the time evolution of the

sulfur dioxide concentration Table 39 gives these measured concentrations With

respect to the retained data it is necessary to verify if they can sustain a PF model and ifnot we require to identify the parameters of the axial mixing model that correct the PF

model

Table 3 9 The evolution of the exit reactor sulfur d ioxide concentration (Application 3353)

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iτ sec 0

1 2

2

4

3

0

3

6

4

8

6

7 2

8

4

9

6

1

0

8

1 2

1

3 2

1

4 4

)(cc ii τ=

0

0

0

0

0

0 1

0

0 3

0 0

6

0 0

8

0

0 8 5

0

0 9

0

0 9 5

0 0

9 7

0 0

9 9

0

1

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1618

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The computation of the values of the following parameters and dependencies are needed

by the problem solving

- the mean residence time of a fluid particle in the catalyst bed

6010 01540w )H( l0m ==ε=τ sec

- the dimensionless dependency i0ii vsc )(c)(C θθ=θ This is containedin table 310- the graphic representation of dependency

i0ii vsc )(c)(C θθ=θ with

the purpose to appreciate if we have a flow type PF or ADF Figure 332

show clearly that here a model flow ADF type can be adequate

- for computation of the axial dispersion coefficient we use an

approximate calculus introduced by the relations (3103) and (3104)

These relations are coupled with the numeric data from table 310when we form the functional here give by the relation (3120) that

minimize the sum of the squares of the differences between )(C iθcomputed values and )(C iθ experimental measured value Thisproblem of the axial dispersion coefficient identification as we

further show is transformed to a variant of a last squares method of

parameters identification

Table 310 The dimensionless signal evolution at the reactor exit (application 3353)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iθ 0 02 04 05 06 08 10 12 14 16 18 20 22 24

0

i

c

)(c θ

0 0 0 0 01 03 0 6 08 085 090 095 098 099 100

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

0

02

04

06

08

1

12

0 02 04 06 08 1 12 14 16 18 2 22 24

983110983145983143983157983154983141 310 983124983144983141 983141983158983151983148983157983156983145983151983150 983151983142 983156983144983141 983140983145983149983141983150983155983145983151983150983148983141983155983155 983139983151983150983139983141983150983156983154983137983156983145983151983150 983142983151983154 983154983141983137983139983156983151983154 983141983160983145983156

983120983148983157983143 983142983148983151983159 983149983151983140983141983148

)(C iθ

min)c

)(cln(

2tg

2tg

sin2ln)

2tg2

12

tg()(F

2

14

1iexp

0

i14

1i

1112

1

1i

1

12

1

1 =sum

θ

minussum

λ+λ

λ

λ+θ

λ

minusλ

λ=λ

= =

a=

2tg2

12

tg

1

121

λ

minusλλ b=

1112

1

1

2tg

2tg

sin2ln

λ+λ

λ

λ and exp

0

ii )

c

)(cln(y θ

=

sum=sumθ+=

=

=

=

14N

1ii

14N

1ii yaNb

i

14N

1ii

14N

1i

2

i

14N

1ii yab θsum=sum θ+sumθ

=

=

=

=

=

=

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

983124983137983138983148983141 311 983124983144983141 983117983137983156983144CA983108 983139983151983149983152983157983156983137983156983145983151983150 983151983142 l1 DPe λ 983152983137983154983137983149983141983156983141983154983155 (9831379831529831489831459831399831379831569831459831519831503353)

983120983141=1 λ1=19 983145=5 14 983112=016 τ983149=6

Given

42220281614121018060504020

0

i

=

019909809509085080603010

0000

c

c

0

i

( )0

c

cln

2tan

2tan

sin2ln

2tan2

12

tan

2

14

5i 0

i

1

1

2

1

1

1

i

1

2

1

1

equiv

minus

λ+

λ+

λλ

λ+θ

λ

minus

λλ

sum=

Pe2

tan2 1

1equiv

λλ

( ) ( )7124819

Pe PeFind

Pe1

11 =

λλ=

λ

4

lm

2

l109532D

PeHD

minus=τ

=

9831492983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

Page 16: Chemical Engineering Flow Models2 [Compatibility Mode]

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1618

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

The computation of the values of the following parameters and dependencies are needed

by the problem solving

- the mean residence time of a fluid particle in the catalyst bed

6010 01540w )H( l0m ==ε=τ sec

- the dimensionless dependency i0ii vsc )(c)(C θθ=θ This is containedin table 310- the graphic representation of dependency

i0ii vsc )(c)(C θθ=θ with

the purpose to appreciate if we have a flow type PF or ADF Figure 332

show clearly that here a model flow ADF type can be adequate

- for computation of the axial dispersion coefficient we use an

approximate calculus introduced by the relations (3103) and (3104)

These relations are coupled with the numeric data from table 310when we form the functional here give by the relation (3120) that

minimize the sum of the squares of the differences between )(C iθcomputed values and )(C iθ experimental measured value Thisproblem of the axial dispersion coefficient identification as we

further show is transformed to a variant of a last squares method of

parameters identification

Table 310 The dimensionless signal evolution at the reactor exit (application 3353)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

iθ 0 02 04 05 06 08 10 12 14 16 18 20 22 24

0

i

c

)(c θ

0 0 0 0 01 03 0 6 08 085 090 095 098 099 100

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

0

02

04

06

08

1

12

0 02 04 06 08 1 12 14 16 18 2 22 24

983110983145983143983157983154983141 310 983124983144983141 983141983158983151983148983157983156983145983151983150 983151983142 983156983144983141 983140983145983149983141983150983155983145983151983150983148983141983155983155 983139983151983150983139983141983150983156983154983137983156983145983151983150 983142983151983154 983154983141983137983139983156983151983154 983141983160983145983156

983120983148983157983143 983142983148983151983159 983149983151983140983141983148

)(C iθ

min)c

)(cln(

2tg

2tg

sin2ln)

2tg2

12

tg()(F

2

14

1iexp

0

i14

1i

1112

1

1i

1

12

1

1 =sum

θ

minussum

λ+λ

λ

λ+θ

λ

minusλ

λ=λ

= =

a=

2tg2

12

tg

1

121

λ

minusλλ b=

1112

1

1

2tg

2tg

sin2ln

λ+λ

λ

λ and exp

0

ii )

c

)(cln(y θ

=

sum=sumθ+=

=

=

=

14N

1ii

14N

1ii yaNb

i

14N

1ii

14N

1i

2

i

14N

1ii yab θsum=sum θ+sumθ

=

=

=

=

=

=

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

983124983137983138983148983141 311 983124983144983141 983117983137983156983144CA983108 983139983151983149983152983157983156983137983156983145983151983150 983151983142 l1 DPe λ 983152983137983154983137983149983141983156983141983154983155 (9831379831529831489831459831399831379831569831459831519831503353)

983120983141=1 λ1=19 983145=5 14 983112=016 τ983149=6

Given

42220281614121018060504020

0

i

=

019909809509085080603010

0000

c

c

0

i

( )0

c

cln

2tan

2tan

sin2ln

2tan2

12

tan

2

14

5i 0

i

1

1

2

1

1

1

i

1

2

1

1

equiv

minus

λ+

λ+

λλ

λ+θ

λ

minus

λλ

sum=

Pe2

tan2 1

1equiv

λλ

( ) ( )7124819

Pe PeFind

Pe1

11 =

λλ=

λ

4

lm

2

l109532D

PeHD

minus=τ

=

9831492983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

Page 17: Chemical Engineering Flow Models2 [Compatibility Mode]

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1718

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

0

02

04

06

08

1

12

0 02 04 06 08 1 12 14 16 18 2 22 24

983110983145983143983157983154983141 310 983124983144983141 983141983158983151983148983157983156983145983151983150 983151983142 983156983144983141 983140983145983149983141983150983155983145983151983150983148983141983155983155 983139983151983150983139983141983150983156983154983137983156983145983151983150 983142983151983154 983154983141983137983139983156983151983154 983141983160983145983156

983120983148983157983143 983142983148983151983159 983149983151983140983141983148

)(C iθ

min)c

)(cln(

2tg

2tg

sin2ln)

2tg2

12

tg()(F

2

14

1iexp

0

i14

1i

1112

1

1i

1

12

1

1 =sum

θ

minussum

λ+λ

λ

λ+θ

λ

minusλ

λ=λ

= =

a=

2tg2

12

tg

1

121

λ

minusλλ b=

1112

1

1

2tg

2tg

sin2ln

λ+λ

λ

λ and exp

0

ii )

c

)(cln(y θ

=

sum=sumθ+=

=

=

=

14N

1ii

14N

1ii yaNb

i

14N

1ii

14N

1i

2

i

14N

1ii yab θsum=sum θ+sumθ

=

=

=

=

=

=

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

983124983137983138983148983141 311 983124983144983141 983117983137983156983144CA983108 983139983151983149983152983157983156983137983156983145983151983150 983151983142 l1 DPe λ 983152983137983154983137983149983141983156983141983154983155 (9831379831529831489831459831399831379831569831459831519831503353)

983120983141=1 λ1=19 983145=5 14 983112=016 τ983149=6

Given

42220281614121018060504020

0

i

=

019909809509085080603010

0000

c

c

0

i

( )0

c

cln

2tan

2tan

sin2ln

2tan2

12

tan

2

14

5i 0

i

1

1

2

1

1

1

i

1

2

1

1

equiv

minus

λ+

λ+

λλ

λ+θ

λ

minus

λλ

sum=

Pe2

tan2 1

1equiv

λλ

( ) ( )7124819

Pe PeFind

Pe1

11 =

λλ=

λ

4

lm

2

l109532D

PeHD

minus=τ

=

9831492983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011

Page 18: Chemical Engineering Flow Models2 [Compatibility Mode]

7252019 Chemical Engineering Flow Models2 [Compatibility Mode]

httpslidepdfcomreaderfullchemical-engineering-flow-models2-compatibility-mode 1818

983107983144983141983149983145983139983137983148 983141983150983143983145983150983141983141983154983145983150983143 983142983148983151983159 983149983151983140983141983148983155

983108983145983155983152983141983154983155983145983151983150 983142983148983151983159 983149983151983140983141983148983155983086 983080983105983150 983137983152983152983148983145983139983137983156983145983151983150983098 983110983148983151983159 983145983150 983156983144983141 983142983145983160983141983140 983138983141983140 983139983137983156983137983148983161983156983145983139 983154983141983137983139983156983151983154983081

983124983137983138983148983141 311 983124983144983141 983117983137983156983144CA983108 983139983151983149983152983157983156983137983156983145983151983150 983151983142 l1 DPe λ 983152983137983154983137983149983141983156983141983154983155 (9831379831529831489831459831399831379831569831459831519831503353)

983120983141=1 λ1=19 983145=5 14 983112=016 τ983149=6

Given

42220281614121018060504020

0

i

=

019909809509085080603010

0000

c

c

0

i

( )0

c

cln

2tan

2tan

sin2ln

2tan2

12

tan

2

14

5i 0

i

1

1

2

1

1

1

i

1

2

1

1

equiv

minus

λ+

λ+

λλ

λ+θ

λ

minus

λλ

sum=

Pe2

tan2 1

1equiv

λλ

( ) ( )7124819

Pe PeFind

Pe1

11 =

λλ=

λ

4

lm

2

l109532D

PeHD

minus=τ

=

9831492983155

C983157983154983143983141983154983145 983145983150 983155983145983155983156983141983149983141 983149983157983148983156983145983142983137983162983145983139983141 983116983141983139983156983145983137 2 17102011