charge-transfer excitations made ``simple'' by subsystem dftcharge-transfer excitations made...

51
Charge-Transfer Excitations Made “Simple” by Subsystem DFT Michele Pavanello & Pablo Ramos Department of Chemistry Rutgers University-Newark Newark, NJ ADF Webinar Series, Feb. 24 th , 2015 Michele Pavanello & Pablo Ramos Subsystem DFT

Upload: others

Post on 30-Jan-2021

20 views

Category:

Documents


0 download

TRANSCRIPT

  • Charge-Transfer Excitations Made “Simple” bySubsystem DFT

    Michele Pavanello & Pablo Ramos

    Department of ChemistryRutgers University-Newark

    Newark, NJ

    ADF Webinar Series, Feb. 24th, 2015

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • What is PRG interested in?

    Ab-Initio Modeling of Realistically Sized Systemswith subsystem DFT!

    Charge transfer phenomenaElectronic structure and couplingsApplication to biosystems, and organic electrode materials→ DNA, Sulfite Oxidase (SCM booth)→ Organic electrode materials based on croconate crystals

    Electronic structure of periodic systems [Davide Ceresoli]AIMD, RT-TDDFT, Ehrenfest→ RT-TDDFT, Ehrenfest (Thursday afternoon)→ Ground state (Poster)Application to molecules at surfaces, liquids, ionic crystals, etc

    Linear-response TD-DFT and vdW [Henk Eshuis]

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • What is PRG interested in?

    Ab-Initio Modeling of Realistically Sized Systemswith subsystem DFT!

    Charge transfer phenomenaElectronic structure and couplingsApplication to biosystems, and organic electrode materials→ DNA, Sulfite Oxidase (SCM booth)→ Organic electrode materials based on croconate crystals

    Electronic structure of periodic systems [Davide Ceresoli]AIMD, RT-TDDFT, Ehrenfest→ RT-TDDFT, Ehrenfest (Thursday afternoon)→ Ground state (Poster)Application to molecules at surfaces, liquids, ionic crystals, etc

    Linear-response TD-DFT and vdW [Henk Eshuis]

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • How to Calculate Electronic Couplings?

    Adiabatic-to-Diabatic transformationAll-electron methodM. Newton, R. Cave, A. Voityuk, C. Hsu, J. Subotnik, . . .Usually associated with wavefunction methodsCan be used in conjunction with TD-DFT, but self-interaction errorcomplicates thingsAs accurate as the method for computing the adiabatic states

    Fragment OrbitalsFrozen core methodF. Grozema, M. Ratner, J. L. Bredas, J. Blumberger, M. Elstner, . . .The most common methodAbout 20%-40% accurate [J. Chem. Phys. 140 , 104105 (2014)]

    Frozen Density Embedding (FDE-ET)All-electron methodM. Pavanello, J. Neugebauer, L. VisscherNew method [J. Chem. Phys. 138 , 054101 (2013)]Better than 10% accurate [Submitted to J. Phys. Chem. B]

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • How to Calculate Electronic Couplings?

    Adiabatic-to-Diabatic transformationAll-electron methodM. Newton, R. Cave, A. Voityuk, C. Hsu, J. Subotnik, . . .Usually associated with wavefunction methodsCan be used in conjunction with TD-DFT, but self-interaction errorcomplicates thingsAs accurate as the method for computing the adiabatic states

    Fragment OrbitalsFrozen core methodF. Grozema, M. Ratner, J. L. Bredas, J. Blumberger, M. Elstner, . . .The most common methodAbout 20%-40% accurate [J. Chem. Phys. 140 , 104105 (2014)]

    Frozen Density Embedding (FDE-ET)All-electron methodM. Pavanello, J. Neugebauer, L. VisscherNew method [J. Chem. Phys. 138 , 054101 (2013)]Better than 10% accurate [Submitted to J. Phys. Chem. B]

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • How to Calculate Electronic Couplings?

    Adiabatic-to-Diabatic transformationAll-electron methodM. Newton, R. Cave, A. Voityuk, C. Hsu, J. Subotnik, . . .Usually associated with wavefunction methodsCan be used in conjunction with TD-DFT, but self-interaction errorcomplicates thingsAs accurate as the method for computing the adiabatic states

    Fragment OrbitalsFrozen core methodF. Grozema, M. Ratner, J. L. Bredas, J. Blumberger, M. Elstner, . . .The most common methodAbout 20%-40% accurate [J. Chem. Phys. 140 , 104105 (2014)]

    Frozen Density Embedding (FDE-ET)All-electron methodM. Pavanello, J. Neugebauer, L. VisscherNew method [J. Chem. Phys. 138 , 054101 (2013)]Better than 10% accurate [Submitted to J. Phys. Chem. B]

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • How to Calculate Electronic Couplings?

    Adiabatic-to-Diabatic transformationAll-electron methodM. Newton, R. Cave, A. Voityuk, C. Hsu, J. Subotnik, . . .Usually associated with wavefunction methodsCan be used in conjunction with TD-DFT, but self-interaction errorcomplicates thingsAs accurate as the method for computing the adiabatic states

    Fragment OrbitalsFrozen core methodF. Grozema, M. Ratner, J. L. Bredas, J. Blumberger, M. Elstner, . . .The most common methodAbout 20%-40% accurate [J. Chem. Phys. 140 , 104105 (2014)]

    Frozen Density Embedding (FDE-ET)All-electron methodM. Pavanello, J. Neugebauer, L. VisscherNew method [J. Chem. Phys. 138 , 054101 (2013)]Better than 10% accurate [Submitted to J. Phys. Chem. B]

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Tackling large systems with subsystem DFT: FDE

    Split the system into (smaller) interacting subsystemsPartition of the total electron density into subsystem contributions1

    ρ(r) = ρI(r)+ ρII(r) ρI/II(r) =occI/II∑

    i

    |φI/II,i(r)|2

    The energy functional is almost additive: E[ρ] ' E[ρI ] + E[ρII ]

    E[ρ] = E[ρI ] + E[ρII ]+Tnadds [ρI , ρII ] + Enaddxc [ρI , ρII ] + V

    naddCoul [ρI , ρII ]

    Fnadd[ρI , ρII ] = F[ρ]− F[ρI ]− F[ρII ]

    Frozen Density Embedding (FDE): coupled Kohn–Sham equations foreach subsystem

    δE[ρI + ρII ]δ ρI

    →[−1

    2∇2 + vIKS(r) + vIemb(r)

    ]φIi (r) = ε

    Iiφ

    Ii (r)

    1P. Cortona, PRB 44, 8454 (1991), Wesolowski & Warshel, JPC 97, 8050, (1993)Michele Pavanello & Pablo Ramos Subsystem DFT

  • Tackling large systems with subsystem DFT: FDE

    Split the system into (smaller) interacting subsystems

    Partition of the total electron density into subsystem contributions1

    ρ(r) = ρI(r)+ ρII(r) ρI/II(r) =occI/II∑

    i

    |φI/II,i(r)|2

    The energy functional is almost additive: E[ρ] ' E[ρI ] + E[ρII ]

    E[ρ] = E[ρI ] + E[ρII ]+Tnadds [ρI , ρII ] + Enaddxc [ρI , ρII ] + V

    naddCoul [ρI , ρII ]

    Fnadd[ρI , ρII ] = F[ρ]− F[ρI ]− F[ρII ]

    Frozen Density Embedding (FDE): coupled Kohn–Sham equations foreach subsystem

    δE[ρI + ρII ]δ ρI

    →[−1

    2∇2 + vIKS(r) + vIemb(r)

    ]φIi (r) = ε

    Iiφ

    Ii (r)

    1P. Cortona, PRB 44, 8454 (1991), Wesolowski & Warshel, JPC 97, 8050, (1993)Michele Pavanello & Pablo Ramos Subsystem DFT

  • Tackling large systems with subsystem DFT: FDE

    Split the system into (smaller) interacting subsystemsPartition of the total electron density into subsystem contributions1

    ρ(r) = ρI(r)+ ρII(r) ρI/II(r) =occI/II∑

    i

    |φI/II,i(r)|2

    The energy functional is almost additive: E[ρ] ' E[ρI ] + E[ρII ]

    E[ρ] = E[ρI ] + E[ρII ]+Tnadds [ρI , ρII ] + Enaddxc [ρI , ρII ] + V

    naddCoul [ρI , ρII ]

    Fnadd[ρI , ρII ] = F[ρ]− F[ρI ]− F[ρII ]

    Frozen Density Embedding (FDE): coupled Kohn–Sham equations foreach subsystem

    δE[ρI + ρII ]δ ρI

    →[−1

    2∇2 + vIKS(r) + vIemb(r)

    ]φIi (r) = ε

    Iiφ

    Ii (r)

    1P. Cortona, PRB 44, 8454 (1991), Wesolowski & Warshel, JPC 97, 8050, (1993)Michele Pavanello & Pablo Ramos Subsystem DFT

  • Tackling large systems with subsystem DFT: FDE

    Split the system into (smaller) interacting subsystemsPartition of the total electron density into subsystem contributions1

    ρ(r) = ρI(r)+ ρII(r) ρI/II(r) =occI/II∑

    i

    |φI/II,i(r)|2

    The energy functional is almost additive: E[ρ] ' E[ρI ] + E[ρII ]

    E[ρ] = E[ρI ] + E[ρII ]+Tnadds [ρI , ρII ] + Enaddxc [ρI , ρII ] + V

    naddCoul [ρI , ρII ]

    Fnadd[ρI , ρII ] = F[ρ]− F[ρI ]− F[ρII ]

    Frozen Density Embedding (FDE): coupled Kohn–Sham equations foreach subsystem

    δE[ρI + ρII ]δ ρI

    →[−1

    2∇2 + vIKS(r) + vIemb(r)

    ]φIi (r) = ε

    Iiφ

    Ii (r)

    1P. Cortona, PRB 44, 8454 (1991), Wesolowski & Warshel, JPC 97, 8050, (1993)Michele Pavanello & Pablo Ramos Subsystem DFT

  • Tackling large systems with subsystem DFT: FDE

    Split the system into (smaller) interacting subsystemsPartition of the total electron density into subsystem contributions1

    ρ(r) = ρI(r)+ ρII(r) ρI/II(r) =occI/II∑

    i

    |φI/II,i(r)|2

    The energy functional is almost additive: E[ρ] ' E[ρI ] + E[ρII ]

    E[ρ] = E[ρI ] + E[ρII ]+Tnadds [ρI , ρII ] + Enaddxc [ρI , ρII ] + V

    naddCoul [ρI , ρII ]

    Fnadd[ρI , ρII ] = F[ρ]− F[ρI ]− F[ρII ]

    Frozen Density Embedding (FDE): coupled Kohn–Sham equations foreach subsystem

    δE[ρI + ρII ]δ ρI

    →[−1

    2∇2 + vIKS(r) + vIemb(r)

    ]φIi (r) = ε

    Iiφ

    Ii (r)

    1P. Cortona, PRB 44, 8454 (1991), Wesolowski & Warshel, JPC 97, 8050, (1993)Michele Pavanello & Pablo Ramos Subsystem DFT

  • Tackling large systems with subsystem DFT: FDE

    Split the system into (smaller) interacting subsystemsPartition of the total electron density into subsystem contributions1

    ρ(r) = ρI(r)+ ρII(r) ρI/II(r) =occI/II∑

    i

    |φI/II,i(r)|2

    The energy functional is almost additive: E[ρ] ' E[ρI ] + E[ρII ]

    E[ρ] = E[ρI ] + E[ρII ]+Tnadds [ρI , ρII ] + Enaddxc [ρI , ρII ] + V

    naddCoul [ρI , ρII ]

    Fnadd[ρI , ρII ] = F[ρ]− F[ρI ]− F[ρII ]

    Frozen Density Embedding (FDE): coupled Kohn–Sham equations foreach subsystem

    δE[ρI + ρII ]δ ρI

    →[−1

    2∇2 + vIKS(r) + vIemb(r)

    ]φIi (r) = ε

    Iiφ

    Ii (r)

    1P. Cortona, PRB 44, 8454 (1991), Wesolowski & Warshel, JPC 97, 8050, (1993)Michele Pavanello & Pablo Ramos Subsystem DFT

  • Tackling large systems with subsystem DFT: FDE

    Split the system into (smaller) interacting subsystemsPartition of the total electron density into subsystem contributions1

    ρ(r) = ρI(r)+ ρII(r) ρI/II(r) =occI/II∑

    i

    |φI/II,i(r)|2

    The energy functional is almost additive: E[ρ] ' E[ρI ] + E[ρII ]

    E[ρ] = E[ρI ] + E[ρII ]+Tnadds [ρI , ρII ] + Enaddxc [ρI , ρII ] + V

    naddCoul [ρI , ρII ]

    Fnadd[ρI , ρII ] = F[ρ]− F[ρI ]− F[ρII ]

    Frozen Density Embedding (FDE): coupled Kohn–Sham equations foreach subsystem

    δE[ρI + ρII ]δ ρI

    →[−1

    2∇2 + vIKS(r) + vIemb(r)

    ]φIi (r) = ε

    Iiφ

    Ii (r)

    1P. Cortona, PRB 44, 8454 (1991), Wesolowski & Warshel, JPC 97, 8050, (1993)Michele Pavanello & Pablo Ramos Subsystem DFT

  • KS equations in Frozen Density Embedding (FDE)a

    vIKS(r) = vInuc(r) +

    ∫ρI(r′)|r− r′|

    dr′ +δExc[ρI ]δ ρI

    vIemb(r) = vIInuc(r) +

    ∫ρII(r′)|r− r′|

    dr′ +δEnaddxc [ρI , ρII ]δ ρI(r′)

    +δTnadd[ρI , ρII ]δ ρI(r′)

    .

    Non-additive functionals approximants

    Enaddxc [ρI , ρII ]: GGA functionalsTnadds [ρI , ρII ]: orbital-free GGA expressions

    . . . if use LDA:

    δTnadd[ρI , ρII ]δρI(r′)

    =53

    CF{[ρI (r′) + ρII (r′)

    ]2/3 − [ ρI (r′) ]2/3}

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • KS equations in Frozen Density Embedding (FDE)a

    vIKS(r) = vInuc(r) +

    ∫ρI(r′)|r− r′|

    dr′ +δExc[ρI ]δ ρI

    vIemb(r) = vIInuc(r) +

    ∫ρII(r′)|r− r′|

    dr′ +δEnaddxc [ρI , ρII ]δ ρI(r′)

    +δTnadd[ρI , ρII ]δ ρI(r′)

    .

    Non-additive functionals approximants

    Enaddxc [ρI , ρII ]: GGA functionalsTnadds [ρI , ρII ]: orbital-free GGA expressions

    . . . if use LDA:

    δTnadd[ρI , ρII ]δρI(r′)

    =53

    CF{[ρI (r′) + ρII (r′)

    ]2/3 − [ ρI (r′) ]2/3}

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • KS equations in Frozen Density Embedding (FDE)a

    vIKS(r) = vInuc(r) +

    ∫ρI(r′)|r− r′|

    dr′ +δExc[ρI ]δ ρI

    vIemb(r) = vIInuc(r) +

    ∫ρII(r′)|r− r′|

    dr′ +δEnaddxc [ρI , ρII ]δ ρI(r′)

    +δTnadd[ρI , ρII ]δ ρI(r′)

    .

    Non-additive functionals approximants

    Enaddxc [ρI , ρII ]: GGA functionals

    Tnadds [ρI , ρII ]: orbital-free GGA expressions

    . . . if use LDA:

    δTnadd[ρI , ρII ]δρI(r′)

    =53

    CF{[ρI (r′) + ρII (r′)

    ]2/3 − [ ρI (r′) ]2/3}

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • KS equations in Frozen Density Embedding (FDE)a

    vIKS(r) = vInuc(r) +

    ∫ρI(r′)|r− r′|

    dr′ +δExc[ρI ]δ ρI

    vIemb(r) = vIInuc(r) +

    ∫ρII(r′)|r− r′|

    dr′ +δEnaddxc [ρI , ρII ]δ ρI(r′)

    +δTnadd[ρI , ρII ]δ ρI(r′)

    .

    Non-additive functionals approximants

    Enaddxc [ρI , ρII ]: GGA functionalsTnadds [ρI , ρII ]: orbital-free GGA expressions

    . . . if use LDA:

    δTnadd[ρI , ρII ]δρI(r′)

    =53

    CF{[ρI (r′) + ρII (r′)

    ]2/3 − [ ρI (r′) ]2/3}

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • KS equations in Frozen Density Embedding (FDE)a

    vIKS(r) = vInuc(r) +

    ∫ρI(r′)|r− r′|

    dr′ +δExc[ρI ]δ ρI

    vIemb(r) = vIInuc(r) +

    ∫ρII(r′)|r− r′|

    dr′ +δEnaddxc [ρI , ρII ]δ ρI(r′)

    +δTnadd[ρI , ρII ]δ ρI(r′)

    .

    Non-additive functionals approximants

    Enaddxc [ρI , ρII ]: GGA functionalsTnadds [ρI , ρII ]: orbital-free GGA expressions

    . . . if use LDA:

    δTnadd[ρI , ρII ]δρI(r′)

    =53

    CF{[ρI (r′) + ρII (r′)

    ]2/3 − [ ρI (r′) ]2/3}

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Donor–Acceptor PictureDiabatic states

    Model Hamiltonian

    Ĥ = H′ii|i〉〈i|+ H′if |i〉〈f |+ H′ff |f 〉〈f |

    Basis set for a hole transfer reaction

    Initial state →[

    D]+− (bridge)−

    [A]

    Final state →[

    D]− (bridge)−

    [A]+

    The coupling

    H′if =〈D+A|Ĥ|DA+

    =

    〈[D]+− (bridge)−

    [A]∣∣∣∣Ĥ∣∣∣∣[D]− (bridge)− [A]+

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Donor–Acceptor PictureDiabatic states

    Model Hamiltonian

    Ĥ = H′ii|i〉〈i|+ H′if |i〉〈f |+ H′ff |f 〉〈f |

    Basis set for a hole transfer reaction

    Initial state →[

    D]+− (bridge)−

    [A]

    Final state →[

    D]− (bridge)−

    [A]+

    The coupling

    H′if =〈D+A|Ĥ|DA+

    =

    〈[D]+− (bridge)−

    [A]∣∣∣∣Ĥ∣∣∣∣[D]− (bridge)− [A]+

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Donor–Acceptor PictureDiabatic states

    Model Hamiltonian

    Ĥ = H′ii|i〉〈i|+ H′if |i〉〈f |+ H′ff |f 〉〈f |

    Basis set for a hole transfer reaction

    Initial state →[

    D]+− (bridge)−

    [A]

    Final state →[

    D]− (bridge)−

    [A]+

    The coupling

    H′if =〈D+A|Ĥ|DA+

    =

    〈[D]+− (bridge)−

    [A]∣∣∣∣Ĥ∣∣∣∣[D]− (bridge)− [A]+

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Donor–Acceptor PictureDiabatic states

    Model Hamiltonian

    Ĥ = H′ii|i〉〈i|+ H′if |i〉〈f |+ H′ff |f 〉〈f |

    Basis set for a hole transfer reaction

    Initial state →[

    D]+− (bridge)−

    [A]

    Final state →[

    D]− (bridge)−

    [A]+

    The coupling

    H′if =〈D+A|Ĥ|DA+

    =

    〈[D]+− (bridge)−

    [A]∣∣∣∣Ĥ∣∣∣∣[D]− (bridge)− [A]+

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Donor–Acceptor PictureDiabatic states

    Model Hamiltonian

    Ĥ = H′ii|i〉〈i|+ H′if |i〉〈f |+ H′ff |f 〉〈f |

    Basis set for a hole transfer reaction

    Initial state →[

    D]+− (bridge)−

    [A]

    Final state →[

    D]− (bridge)−

    [A]+

    The coupling

    H′if =〈D+A|Ĥ|DA+

    =

    〈[D]+− (bridge)−

    [A]∣∣∣∣Ĥ∣∣∣∣[D]− (bridge)− [A]+

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Donor–Acceptor PictureDiabatic states

    Model Hamiltonian

    Ĥ = H′ii|i〉〈i|+ H′if |i〉〈f |+ H′ff |f 〉〈f |

    Basis set for a hole transfer reaction

    Initial state →[

    D]+− (bridge)−

    [A]

    Final state →[

    D]− (bridge)−

    [A]+

    The coupling

    H′if =〈D+A|Ĥ|DA+

    〉=

    〈[D]+− (bridge)−

    [A]∣∣∣∣Ĥ∣∣∣∣[D]− (bridge)− [A]+

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Diabatic representation: making charge-localizedstates with FDE

    Subsystem 2Subsystem 1

    +0

    ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣Ĥ

    ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣Subsystem 2

    Subsystem 1

    0+

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Electronic Couplings With Subsystem DFTa: FDE-ET

    Hartree–Fock

    Hif = 〈Φi|Ĥ|Φf 〉 = E[ρ(if )(r)

    ]Sif

    where Sif = 〈Φi|Φf 〉, and

    ρ(if )(r) =∑

    kl

    φ(i)k (r)

    (S(if )

    )−1klφ(f )l (r)

    where S(if )kl = 〈φ(i)k |φ

    (f )l 〉

    Subsystem DFT formalism

    Hif = E[ρ(if )

    ]Sif . . . an approximation

    Hif =

    [( NS∑I

    E[ρ(if )I (r)

    ])+ Tnadds

    [{ρ(if )I

    }I=1,...,NS

    ]+ Enaddxc

    [{ρ(if )I

    }I=1,...,NS

    ]]Sif

    It’s linear scaling!!

    a MP, Van Voorhis, Visscher, Neugebauer, JCP 138, 054101 (2013)

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Does FDE-ET work?

    Hole transfer in the ethylene dimer radical cation

    Excitation Energy (eV)R Sif This Worka CCSD(T)b CCSD(T)c FS-CCSDd

    3.0 1.60E-1 1.833 1.913 1.939 1.9474.0 6.27E-2 0.521 0.527 0.558 0.5556.0 6.55E-3 0.037 0.024 0.038 0.0359.0 1.82E-4 6E-4 0.009 0.004 3E-410.0 5.31E-5 1E-4 0.009 0.003 5E-515.0 8.75E-8 2E-6 0.009 0.004 1E-7

    a PW91/TZPb EOM-CCSD(T)/6-311G(d,p) ROHFc EOM-CCSD(T)/aug-cc-pVDZ ROHFd FS-CCSD(T)/aug-cc-pVDZ UHF

    MP, Van Voorhis, Visscher, Neugebauer, JCP 138, 054101 (2013)

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • The Superexchange Hole Transfer in DNA

    G

    T T T

    G

    Ener

    gy

    hole transfer

    a Ramos and MP, JCTC 10, 2546 (2014)

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Calculation of hole transfer couplings with FDE-ET

    DNA base pairs: distance dependence of excitation energies andcouplingsa

    3 4 5 6 7 8Separation (Ang)

    0

    0.5

    1

    1.5

    2

    Ex

    cita

    tio

    n E

    ner

    gy

    (eV

    )Guanine dimerGuanine Thymine

    Thymine dimer

    2.5 < β < 3.5

    a Ramos and MP, JCTC 10, 2546 (2014)

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Donor-Bridge-Acceptor Effective Couplingsa withFDE-ETb

    Hole transfer in DNA oligomers: GC

    (TA

    )n

    GC

    D

    A

    En

    erg

    y

    Single strand

    Double strand

    Deep Tunnelling

    VDA ' HDA − SDAHDD + HAA

    2

    decays too fast: β ' 3

    a A. Nitzan, Chemical Dynamics in Condensed Phases, Oxford University Press (2006)b Ramos and MP, JCTC 10, 2546 (2014)

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Donor-Bridge-Acceptor Effective Couplingsa withFDE-ETb

    Hole transfer in DNA oligomers: GC

    (TA

    )n

    GC

    BB

    B

    D

    A

    En

    erg

    y

    Single strand

    Double strand

    Deep Tunnelling

    VDA ' HDA − SDAHDD + HAA

    2

    decays too fast: β ' 3

    a A. Nitzan, Chemical Dynamics in Condensed Phases, Oxford University Press (2006)b Ramos and MP, JCTC 10, 2546 (2014)

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Donor-Bridge-Acceptor Effective Couplingsa withFDE-ETb

    5 10 15Distance / Ang

    -25

    -20

    -15

    -10

    -5

    2ln

    |V|

    double strand

    single strand

    Superexchange mechanism

    V ′DA(E) = VDA + VDBGB(E)VBA

    accounts for a lower tunnellingbarrier than the vacuum: β ' 1

    much closer to experimentc

    a A. Nitzan, Chemical Dynamics in Condensed Phases, Oxford University Press (2006)b Ramos and MP, JCTC 10, 2546 (2014)c B. Giese, Annu. Rev. Biochem. 71, 51-70 (2002)

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Effective Couplings Between Charge SeparatedStatesa with Subsystem DFT

    Charge separation (ground state)

    D + A→ D+ + A−

    Charge separation (excited state)

    D∗ + A→ D+ + A−

    HOMOs for the ethylene dimer in the charge separated state

    The FDE calculation needs extra care.

    The orbitals of the anions might not becorrect due to self-interaction. If a self-interaction corrected functional is used,these issues are drastically reduced.

    a Solovyeva, Pavanello, Neugebauer, JCP, 140, 164103 (2014)

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Effective Couplings Between Charge SeparatedStatesa with Subsystem DFT

    Charge separation (ground state)

    D + A→ D+ + A−

    Charge separation (excited state)

    D∗ + A→ D+ + A−

    HOMOs for the ethylene dimer in the charge separated state

    The FDE calculation needs extra care.

    The orbitals of the anions might not becorrect due to self-interaction. If a self-interaction corrected functional is used,these issues are drastically reduced.

    a Solovyeva, Pavanello, Neugebauer, JCP, 140, 164103 (2014)

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Effective Couplings Between Charge SeparatedStatesa with Subsystem DFT

    Charge separation (ground state)

    D + A→ D+ + A−

    Charge separation (excited state)

    D∗ + A→ D+ + A−

    HOMOs for the ethylene dimer in the charge separated state

    The FDE calculation needs extra care.

    The orbitals of the anions might not becorrect due to self-interaction. If a self-interaction corrected functional is used,these issues are drastically reduced.

    a Solovyeva, Pavanello, Neugebauer, JCP, 140, 164103 (2014)Michele Pavanello & Pablo Ramos Subsystem DFT

  • Practical Calculations: outline

    Initial FDE calculations

    Compute D+ + Adiabat ACompute D + A+

    diabat BThe input file must beprepared manuallyPyADF support is beingdevelopped (L. Vissher)

    In output:1 T21 file for the isolated D:t21.iso.rho11 T21 file for the isolated A:t21.iso.rho12 T21 files for the embedded D:fragA1.t21, fragB1.t212 T21 files for the embedded A:fragA2.t21, fragB2.t21

    FDE-ET calculationOnce the FDE calculations for the A and B diabats are complete, theFDE-ET calculation can follow. The keyword needed is

    ElectronTransfer

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Practical Calculations: outline

    Initial FDE calculations

    Compute D+ + Adiabat ACompute D + A+

    diabat BThe input file must beprepared manuallyPyADF support is beingdevelopped (L. Vissher)

    In output:1 T21 file for the isolated D:t21.iso.rho11 T21 file for the isolated A:t21.iso.rho12 T21 files for the embedded D:fragA1.t21, fragB1.t212 T21 files for the embedded A:fragA2.t21, fragB2.t21

    FDE-ET calculationOnce the FDE calculations for the A and B diabats are complete, theFDE-ET calculation can follow. The keyword needed is

    ElectronTransfer

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Practical Calculations: outline

    Initial FDE calculations

    Compute D+ + Adiabat ACompute D + A+

    diabat BThe input file must beprepared manuallyPyADF support is beingdevelopped (L. Vissher)

    In output:1 T21 file for the isolated D:t21.iso.rho11 T21 file for the isolated A:t21.iso.rho12 T21 files for the embedded D:fragA1.t21, fragB1.t212 T21 files for the embedded A:fragA2.t21, fragB2.t21

    FDE-ET calculationOnce the FDE calculations for the A and B diabats are complete, theFDE-ET calculation can follow. The keyword needed is

    ElectronTransfer

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Practical Calculations: Making the FDE-ET input file

    Fragment key need this setup to loadsome predefined parameters from theisolated calculation (basis sets, AOmaps, . . . )

    FRAGMENTSrho1 t21.iso.rho1rho2 t21.iso.rho2

    END

    ElectronTransfer key. NumFrag speci-fies the number of fragments involved.InvThr is a threshold for handlingquasi-orthogonality. Joint/Disjoint: thedefault is Joint. Disjoint is not recom-mended yet.

    ELECTRONTRANSFERNumFrag 2{Joint|Disjoint}{InvThr 1.0e-3}

    END

    See example file at:

    $ADFHOME/examples/adf/ElectronTransfer_FDE_H2O

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Practical Calculations: Making the FDE-ET input file

    Fragment key need this setup to loadsome predefined parameters from theisolated calculation (basis sets, AOmaps, . . . )

    FRAGMENTSrho1 t21.iso.rho1rho2 t21.iso.rho2

    END

    ElectronTransfer key. NumFrag speci-fies the number of fragments involved.InvThr is a threshold for handlingquasi-orthogonality. Joint/Disjoint: thedefault is Joint. Disjoint is not recom-mended yet.

    ELECTRONTRANSFERNumFrag 2{Joint|Disjoint}{InvThr 1.0e-3}

    END

    See example file at:

    $ADFHOME/examples/adf/ElectronTransfer_FDE_H2O

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Practical Calculations: The output file

    The output file from:

    $ADFHOME/examples/adf/ElectronTransfer_FDE_H2O

    Is the following:-------------------------------------------------------------------==> WARNING: one less electron in the transition density matrix applying the Penrose inversion of the N-1 dimensional subspace

  • Practical Calculations: The output file

    The output file from:

    $ADFHOME/examples/adf/ElectronTransfer_FDE_H2O

    Is the following:-------------------------------------------------------------------==> WARNING: one less electron in the transition density matrix applying the Penrose inversion of the N-1 dimensional subspace

  • Practical Calculations: The output file

    Let’s look at another output file:

    ============ Electron Transfer RESULTS ===================Electronic Coupling = 0.344469 eVElectronic Coupling = 2778.314671 cm-1H11-H22 = 0.000574 eVExcitation Energy = 0.688937 eVOverlap = 0.066531H11 H22 H12 = -1384.925285303533 -1384.925306415906 -1385.114726153074 EhS11 S22 S12 = 0.880467985626 0.880488669229 -0.058578952462=========== END Electron Transfer RESULTS ================

    Things to note

    H11-H22 is the energydifference of the diabaticstatesExcitation Energy maydiffer from H11-H22

    Overlap is the normalizedoverlap

    S′ij =Sij√

    Sii × Sjj

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Practical Calculations: The output file

    Let’s look at another output file:============ Electron Transfer RESULTS ===================Electronic Coupling = 0.344469 eVElectronic Coupling = 2778.314671 cm-1H11-H22 = 0.000574 eVExcitation Energy = 0.688937 eVOverlap = 0.066531H11 H22 H12 = -1384.925285303533 -1384.925306415906 -1385.114726153074 EhS11 S22 S12 = 0.880467985626 0.880488669229 -0.058578952462=========== END Electron Transfer RESULTS ================

    Things to note

    H11-H22 is the energydifference of the diabaticstatesExcitation Energy maydiffer from H11-H22

    Overlap is the normalizedoverlap

    S′ij =Sij√

    Sii × Sjj

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Practical Calculations: The output file

    Let’s look at another output file:============ Electron Transfer RESULTS ===================Electronic Coupling = 0.344469 eVElectronic Coupling = 2778.314671 cm-1H11-H22 = 0.000574 eVExcitation Energy = 0.688937 eVOverlap = 0.066531H11 H22 H12 = -1384.925285303533 -1384.925306415906 -1385.114726153074 EhS11 S22 S12 = 0.880467985626 0.880488669229 -0.058578952462=========== END Electron Transfer RESULTS ================

    Things to note

    H11-H22 is the energydifference of the diabaticstatesExcitation Energy maydiffer from H11-H22

    Overlap is the normalizedoverlap

    S′ij =Sij√

    Sii × Sjj

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • FDE-ET in summary

    What has been done with FDE-ETApplied to hole transfer and charge separation in pilot calculations.Tested for hole transfer.

    RecommendationsUse the PW91k nonadditive Kinetic Energy functional in the FDEcalculations.No particular problems applying FDE-ET to cations (hole transfer)→ InvThr: might need 1.0e-2 if a near orthogonality is suspected.Application to anions is not recommended, however it is possible. UseSIC functionals in the FDE part, and then a GGA functional in theElectronTransfer part.Application to charge separation (+/-) and to other spin states (e.g.triplet) is not available in the released code. Perhaps in the next ADFrelease.

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • FDE-ET in summary

    What has been done with FDE-ETApplied to hole transfer and charge separation in pilot calculations.Tested for hole transfer.

    RecommendationsUse the PW91k nonadditive Kinetic Energy functional in the FDEcalculations.No particular problems applying FDE-ET to cations (hole transfer)→ InvThr: might need 1.0e-2 if a near orthogonality is suspected.Application to anions is not recommended, however it is possible. UseSIC functionals in the FDE part, and then a GGA functional in theElectronTransfer part.Application to charge separation (+/-) and to other spin states (e.g.triplet) is not available in the released code. Perhaps in the next ADFrelease.

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • FDE-ET in summary

    What has been done with FDE-ETApplied to hole transfer and charge separation in pilot calculations.Tested for hole transfer.

    RecommendationsUse the PW91k nonadditive Kinetic Energy functional in the FDEcalculations.No particular problems applying FDE-ET to cations (hole transfer)→ InvThr: might need 1.0e-2 if a near orthogonality is suspected.Application to anions is not recommended, however it is possible. UseSIC functionals in the FDE part, and then a GGA functional in theElectronTransfer part.Application to charge separation (+/-) and to other spin states (e.g.triplet) is not available in the released code. Perhaps in the next ADFrelease.

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Pavanello Research Group

    I am looking for. . .

    PhD & Master’s students

    Available Projects

    Non-adiabatic dynamics with Subsystem DFTVan der Waals interactions between subsystemsSubsystem DFT applied to Materials research. . .

    Rutgers University, Newark, NJ

    20’ from NYCFun learning environment

    Michele Pavanello & Pablo Ramos Subsystem DFT

  • Acknowledgments

    Postdocs, Students & Collaborators

    Dr. Debalina SinhaPablo RamosMarc Mankarious

    Prof. J. Neugebauer(WWU, Münster)Prof. L. Visscher (VU,Amsterdam)Prof. T. Van Voorhis (MIT)

    Funding

    Start-up funds fromRutgers-NewarkNSF-CBET-1438493NSF-CNIC-1404739

    AMSTERDAM DENSITYFUNCTIONALPetroleum Research Fund(54063-DNI6)ELF fund – State of NewJersey

    Michele Pavanello & Pablo Ramos Subsystem DFT