chapter5.15.indd 948 11/02/14 1:09 pmtbvaccines.usm.my/finlay/sites/default/files/chapter...

34
Chapter5.15.indd 948 11/02/14 1:09 PM

Upload: others

Post on 27-Sep-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

Chapter5.15.indd 948 11/02/14 1:09 PM

Page 2: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

NEW TB VACCINES: WHAT IS IN THE PIPELINE?

Michael J. Brennan, Amy R. Sweeny, Jennifer Woolley, Bartholt Clagett, Lewellys F. Barker

CHAPTER 5.15

The uncertainty about the success of any vaccine candidate under evaluation determines the need to keep the pipeline of TB vaccine

development well filled.

‘Lets give time to the time:in order for the glass to overflow,

first it has to be filled.’

Antonio Machado

The ChoirEduardo Roca Salazar (Choco)Oil on canvas; 90 � 110cm

Chapter5.15.indd 949 11/02/14 1:09 PM

Page 3: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

Chapter5.15.indd 950 11/02/14 1:09 PM

Page 4: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

INTRODUCTION The health and economic burdens that TB places on patients and health systems across the globe are considerable, and the current tools and methods to control the disease, while valuable, are in need of improvement and have not abolished the impact of the disease. The World Health Organization (WHO) estimates that one-third of the world’s population is infected with TB and 1.7 million people die from the disease each year (1). Modeling studies suggest that TB imposes considerable economic costs, particularly in high-burden, developing countries. Directly Observed Therapy – Short course (DOTS), the primary method of control, has been shown to be an effective treatment measure for TB disease, in terms of both health impact and cost, but DOTS alone would not be suf�cient to achieve global TB elimination (2). Another control measure, Bacille Calmette-Guérin (BCG) vaccine, is effective in protecting against serious forms of childhood TB, such as miliary TB and tuberculous meningitis, when given to infants at birth. However, the protective ef�cacy of infant BCG vaccination against adult pulmonary TB is considered unreliable and inadequate to help control the global TB epidemic (3-7). New and more effective TB vaccines could have the potential to be highly bene�cial and cost-effective measures for disease control (8). Accordingly, the development of new improved TB vaccines is a promising approach to signi�cantly reduce the health and economic impact of TB.

APPROACHES TO VACCINE DEVELOPMENT In 2010, the Stop TB Partnership reviewed and revised its Global Plan to Stop TB for 2011-2015. This is a comprehensive plan toward the elimination of TB by 2050, with elimination de�ned as less than one case per million people per year. The plan outlines a set of enhanced control measures and targets for the research and development of new, more effective technologies, including the development of a safe, effective and affordable TB vaccine, which has the potential for a signi�cant public health impact (9).

NEW TB VACCINES: WHAT IS IN THE PIPELINE? CHAPTER 5.15

Chapter5.15.indd 951 11/02/14 1:09 PM

Page 5: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

952 SECTION 5 DEVELOPMENT OF NEW VACCINES AGAINST TB

Researchers have identi�ed a number of approaches to vaccine development. First, BCG could be replaced by a similar, but improved vaccine to be given to infants at birth (10). WHO currently recommends against the administration of BCG to HIV-infected infants, related to concerns over the risk of BCG disease in these infants (11). A modi�ed BCG or live attenuated vaccine that is safer and more effective presents one target for development. Second, a new TB vaccine could be introduced into a heterologous prime-boost regimen following vaccination of infants with BCG or an improved replacement for BCG, or in adolescents and adults previously primed with BCG. Because nearly 80% of newborns worldwide are inoculated with BCG as a prime, a new booster vaccine, to be given later to infants or young children and again in adolescence, could enhance immunity to TB and increase protective ef�cacy against the disease. Finally, a post-infection or immunotherapeutic vaccine, administered during or after treatment of individuals with latent or active TB, may decrease the incidence of active disease or relapse, or reduce the duration and improve the outcome of chemotherapy.

DRIVERS AND BARRIERS TO TB VACCINE DEVELOPMENT There are a number of scienti�c and clinical hurdles on the path to the development and licensure of a new TB vaccine (12). For example, it is not known whether the animal models used to test vaccines suf�ciently mimic the immune response and TB disease in humans to predict the ef�cacy of vaccines from preclinical studies. Similarly, the natural immune response to MTB infection which protects most people from progressing to TB disease is not well understood. Also research has not identi�ed correlates of protection from vaccination that could give clues to a protective immune response to TB from investigational vaccines. Consequently, the best scienti�c approaches to vaccine development may not become clear until after the evaluation of data from successful clinical trials. To conduct these clinical trials, a number of other barriers must be overcome. As accurate TB diagnosis is dif�cult for the identi�cation of TB in infants, it is challenging to establish endpoints for trials that test new vaccines in this population. Furthermore, there is a shortage of sites with the capacity to conduct large scale Phase IIb and III trials and a large gap in funding for the conduct of such trials (9). These trials are required to evaluate human safety and protection on a scale suf�cient to support TB vaccine development and licensure.

Chapter5.15.indd 952 11/02/14 1:09 PM

Page 6: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

953 CHAPTER 5.15NEW TB VACCINES: WHAT IS IN THE PIPELINE?

Epidemiological modeling studies suggest that vaccines with modest ef�cacy have the potential to reduce the TB burden over time, and economic studies show that such vaccines are likely to be cost-effective [13-18]. Perhaps more importantly, it appears that there is demand for a better TB vaccine among high level decision-makers in endemic countries. A 2010 survey of such individuals in eight TB high-burden countries reports that a new, improved TB vaccine that is more ef�cacious than current BCG is likely to be adopted in these countries within a few years of its licensure [19]. It is likely that the development of new, improved TB vaccines, in combination with other measures, speci�cally new drugs and diagnostics, will be a highly effective strategy to minimize the current serious global impact of TB.

VACCINES IN THE PIPELINETo assist with tracking activity and progress in TB vaccine research and development, the Stop TB Partnership Working Group on New TB Vaccines publishes an inventory of new vaccines at various stages of development. This listing is updated annually with information collected from vaccine developers, and can be found at the home page of the Vaccines Working Group of the Stop TB Partnership website: http://www.stoptb.org/wg/new_vaccines/.

Signi�cant progress has been made toward the goal to develop new, more effective vaccines as set out by the Partnership, as shown in Table 5.15.1. The global portfolio of candidates targets a variety of different patient populations, and includes priming candidates, boosting candidates, and those intended for post-infection, immunotherapeutic use. It also includes a range of scienti�c approaches to vaccine development, including recombinant live bacterial, viral vectored subunits, recombinant protein subunits, and whole cell inactivated or disrupted candidates. As of 2012, seventeen candidates had entered the clinic with two candidates, Oxford MVA85A/AERAS-485 and AERAS-402/Crucell Ad35, in Phase IIb proof-of concept trials. Results published in 2013 of the MVA-85A trial showed safety but failed to show ef�cacy in infants who had received BCG (43); the AERAS-402 trial was also modi�ed in 2013 to a large safety trial without expansion to determine ef�cacy. Six more candidates, M72, VPM 1002, Hybrid-1+IC31, Hybrid 56 +IC3, RUTI, and SSI HyVac 4/AERAS-404 are in Phase II trials. Six candidates are currently in Phase I safety trials, including AdAg85A, MTBVAC, SSI Hybrid-I+CAF01, and ID93+GLA-SE. Five candidates, rBCG30, AERAS 422, M. vaccae, Mw and M. smegmatis, have completed either Phase I or beyond Phase I trials. Beyond those vaccines in clinical

Chapter5.15.indd 953 11/02/14 1:09 PM

Page 7: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

954 SECTION 5 DEVELOPMENT OF NEW VACCINES AGAINST TB

trials, there are many other candidates that are in the discovery and preclinical stages of development, including DNA and other vaccine types, which utilize different scienti�c approaches to those seen in the clinic.

In the following table, TB vaccine candidates are presented in three categories:

Candidates Tested in Clinical Trials-2011(Section I): TB vaccine candidates that are in clinical studies. Certain candidates that have been in clinical studies but are not currently in clinical trials are listed as ‘completed.’ 

Candidates in Preclinical Studies & GMP-2011 (Section II): TB vaccine candidates that as of 2011 are not yet in clinical trials, but have been manufactured under good manufacturing practice (GMP) for clinical use and/or have undergone some advanced preclinical testing that meets regulatory standards.

Next Generation Candidates- 2011 (Section III): TB vaccine candidates that are in the discovery, research and development stage with some preclinical testing performed to show that they may confer protection and become product candidates.  

Vaccine candidates are further divided into speci�c Vaccine Types: Recombinant Live; Viral Vectored; Recombinant Protein; Whole Cell Inactivated or Disrupted or Other and a brief description is provided. The Table lists vaccines intended to be used as a Prime ( P ) or Booster ( B ) vaccine, as a Post-infection vaccine ( PI ) or in immunotherapy ( IT ).

The information on vaccine candidates was provided and updated by the vaccine developers unless otherwise indicated. In cases where an update regarding a previously listed vaccine candidate was not received in 2011, the 2010 listing was retained.

Chapter5.15.indd 954 11/02/14 1:09 PM

Page 8: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

955 CHAPTER 5.15NEW TB VACCINES: WHAT IS IN THE PIPELINE?

TABL

E 5.

15.1

Tub

ercu

losi

s va

ccin

e ca

ndid

ates

– 2

011

SECT

ION

I: C

andi

date

s Te

sted

in C

linic

al T

rial

s Ty

pe o

f Va

ccin

ePr

oduc

ts

Prod

uct

desc

ript

ion

Spon

sor

Indi

cati

onSt

atus

as

of 2

011

Cita

tion

s

Reco

mbi

nant

Li

ve

VPM

100

2rB

CG P

ragu

e st

rain

exp

ress

ing

liste

rioly

sin

and

carr

ies

a ur

ease

de

letio

n m

utat

ion

Max

Pla

nck,

Vak

zine

Pr

ojek

t Man

agem

ent

Gm

bH, T

BVI

P B

Phas

e II

[10,

20–

23]

rBCG

30rB

CG T

ice

stra

in e

xpre

ssin

g

30 k

Da M

TB a

ntig

en 8

5B; p

hase

I c

ompl

eted

in U

.S.

UCL

A, N

IH, N

IAID

, Aer

asP

Phas

e I

[com

plet

ed]

[24–

28]

AERA

S-42

2

Reco

mbi

nant

BCG

exp

ress

ing

mut

ated

Pfo

A an

d ov

erex

pres

sing

ant

igen

s 85

A,

85B,

and

Rv3

407

Aera

sP

Phas

e I

[com

plet

ed]

[29–

31]

MTB

VAC

[∆ph

oP, ∆

fad

D26]

Live

vac

cine

bas

ed o

n at

tenu

atio

n of

MTB

by

stab

le

inac

tivat

ion

by d

elet

ion

of p

hoP

and

fad

D26

gene

s

Uni

vers

ity o

f Zar

agoz

a,

Inst

itute

Pas

teur

, BI

OFA

BRI,

TBVI

PPh

ase

I[3

2–36

]

Vira

l Vec

tore

d

Oxf

ord

MVA

85A

/ AE

RAS-

485

Mod

ified

vac

cini

a An

kara

vec

tor

expr

essi

ng M

tb a

ntig

en 8

5A

Oxf

ord

Emer

gent

Tu

berc

ulos

is C

onso

rtiu

m

(OET

C), A

eras

, EDC

TP,

Wel

lcom

e Tr

ust

B P

I IT

Phas

e IIb

[37–

43]

AERA

S-40

2/

Cruc

ell A

d35

Repl

icat

ion-

defic

ient

ade

novi

rus

35 v

ecto

r exp

ress

ing

MTB

an

tigen

s 85

A, 8

5B, T

B10.

4

Cruc

ell,

Aera

s, ED

CTP,

NIH

BPh

ase

IIb[2

9-30

,44–

46]

AdAg

85A

Repl

icat

ion-

defic

ient

ade

novi

rus

5 ve

ctor

exp

ress

ing

MTB

an

tigen

85A

McM

aste

r Uni

vers

ityP

BPh

ase

I[4

7–51

]

Reco

mbi

nant

Pr

otei

nM

72 +

AS0

1

Reco

mbi

nant

pro

tein

com

pose

d of

a fu

sion

of M

TB a

ntig

ens

Rv11

96 a

nd R

v012

5 &

adj

uvan

t AS

01

GSK

, Aer

asB

PI

Phas

e II

[52–

55]

Chapter5.15.indd 955 11/02/14 1:09 PM

Page 9: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

956 SECTION 5 DEVELOPMENT OF NEW VACCINES AGAINST TB

TABL

E 5.

15.1

Tub

ercu

losi

s va

ccin

e ca

ndid

ates

– 2

011

SECT

ION

I: C

andi

date

s Te

sted

in C

linic

al T

rial

s Ty

pe o

f Va

ccin

ePr

oduc

ts

Prod

uct

desc

ript

ion

Spon

sor

Indi

cati

onSt

atus

as

of 2

011

Cita

tion

s

Hybr

id-I+

IC31

Ad

juva

nted

reco

mbi

nant

pro

tein

co

mpo

sed

of M

TB a

ntig

ens

85B

and

ESAT

-6

Stat

ens

Seru

m In

stitu

te

(SSI

), TB

VI, E

DCTP

, In

terc

ell

P B

PI

Phas

e II

[56–

60]

Hybr

id-

I+CA

F01

Adju

vant

ed re

com

bina

nt p

rote

in

com

pose

d of

MTB

ant

igen

s 85

B an

d ES

AT-6

SSI,

TBVI

P B

PI

Phas

e I

[56,

59,6

1–63

]

HyVa

c 4/

AERA

S-40

4,

+IC

31

Adju

vant

ed re

com

bina

nt p

rote

in

com

pose

d of

a fu

sion

of M

TB

antig

ens

85B

and

TB10

.4

SSI,

Sano

�-Pa

steu

r, Ae

ras,

Inte

rcel

lB

Phas

e I

[64–

67]

Hybr

id 5

6 +

IC

31

Adju

vant

ed re

com

bina

nt p

rote

in

com

pose

d of

MTB

ant

igen

s 85

B,

ESAT

-6 a

nd R

v266

0SS

I, Ae

ras,

Inte

rcel

lP

B P

IPh

ase

IIa[6

8–69

]

ID93

in G

LA-

SE a

djuv

ant

Subu

nit f

usio

n pr

otei

n co

mpo

sed

of 4

MTB

ant

igen

sIn

fect

ious

Dis

ease

Re

sear

ch In

stitu

teB

PI

ITPh

ase

I[7

0–71

]

Who

le C

ell,

Inac

tivat

ed o

r Di

srup

ted

M. v

acca

e

Inac

tivat

ed w

hole

cel

l non

-TB

myc

obac

teriu

m; p

hase

III i

n BC

G-p

rimed

HIV

+ p

opul

atio

n co

mpl

eted

; ref

orm

ulat

ion

pend

ing

NIH

, Im

mod

ulon

B

PI

ITPh

ase

III

[com

plet

ed]

[72–

76]

Mw

[M.

indi

cus

pran

ii (M

IP)]

Who

le c

ell s

apro

phyt

ic n

on-T

B m

ycob

acte

rium

Depa

rtm

ent o

f Bi

otec

hnol

ogy

(Min

istr

y of

Sci

ence

&

Tech

nolo

gy, G

over

nmen

t of

Indi

a), M

/s. C

adila

Ph

arm

aceu

tical

s Lt

d.

ITPh

ase

III

[com

plet

ed]

[77–

79]

Chapter5.15.indd 956 11/02/14 1:09 PM

Page 10: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

957 CHAPTER 5.15NEW TB VACCINES: WHAT IS IN THE PIPELINE?

SECT

ION

II: C

andi

date

s in

Pre

clin

ical

Stu

dies

& G

MP-

201

1Ty

pe o

f Va

ccin

ePr

oduc

ts

Prod

uct

desc

ript

ion

Spon

sor

Indi

cati

onCi

tati

ons

Reco

mbi

nant

Li

ve

MTB

[∆le

uCD

∆pan

CD

∆sec

A2]

Non

-rep

licat

ing,

MTB

str

ain

auxo

trop

hic

for l

euci

ne a

nd

pant

othe

nate

; att

enua

ted

for

secA

2

Albe

rt E

inst

ein

Colle

ge

of M

edic

ine

P[8

5–86

]

Reco

mbi

nant

Pr

otei

nHB

HA

Nat

ural

ly m

ethy

late

d 21

-kDa

pu

rified

pro

tein

from

M.b

ovis

BC

G

Inst

itute

Pas

teur

of L

ille,

IN

SERM

, TBV

I, Ae

ras

[87–

91]

Oth

er

HG85

ADN

A va

ccin

es—

Ag85

A Sh

angh

ai H

&G

Bio

tech

B I

T[9

2–96

]

Hsp

DNA

vacc

ine

Codo

n-op

timiz

ed h

eat s

hock

pr

otei

n fro

m M

. lep

rae,

a C

pG

isla

nd

Sequ

ella

, Sha

ngha

i Pu

blic

Hea

lth C

linic

al

Cent

erB

[97–

99]

1 Can

dida

te in

form

atio

n co

mm

unic

ated

by

the

Wuh

an In

stitu

te o

f Bio

logi

cal P

rodu

cts.

TABL

E 5.

15.1

Tub

ercu

losi

s va

ccin

e ca

ndid

ates

– 2

011

SECT

ION

I: C

andi

date

s Te

sted

in C

linic

al T

rial

s Ty

pe o

f Va

ccin

ePr

oduc

ts

Prod

uct

desc

ript

ion

Spon

sor

Indi

cati

onSt

atus

as

of 2

011

Cita

tion

s

RUTI

Frag

men

ted

MTB

cel

lsAr

chiv

el F

arm

a, S

.I.

B P

I IT

Phas

e II

[80–

84]

M. s

meg

mat

is1

Who

le c

ell e

xtra

ct; p

hase

I co

mpl

eted

in C

hina

–B

PI

ITPh

ase

I

[com

plet

ed]

Chapter5.15.indd 957 11/02/14 1:09 PM

Page 11: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

958 SECTION 5 DEVELOPMENT OF NEW VACCINES AGAINST TB

SECT

ION

III:

Nex

t G

ener

atio

n Ca

ndid

ates

– 2

011

Typ

e of

Va

ccin

ePr

oduc

ts

Prod

uct

desc

ript

ion

Spon

sor

Indi

cati

onCi

tati

ons

Reco

mbi

nant

Li

ve

HG85

6-BC

GrB

CG o

vere

xpre

ssin

g ch

imer

ic E

SAT-

6/Ag

85A

DNA

fusi

on p

rote

inSh

angh

ai P

ublic

He

alth

Clin

ical

Cen

ter

B P

I I

T[1

00]

IKEP

LUS

M.

smeg

mat

is w

ith

ESX-

3 de

letio

n/

com

plem

enta

tion

Live

M. s

meg

mat

is w

ith d

elet

ion

of E

SX-3

enc

odin

g lo

cus

and

com

plem

enta

tion

with

MTB

locu

s

Albe

rt E

inst

ein

Colle

ge

of M

edic

ine,

Aer

asB

[101

]

paBC

G

BCG

with

redu

ced

activ

ity o

f an

ti-ap

opto

tic m

icro

bial

enz

ymes

in

clud

ing

SodA

, Gln

A1, t

hior

edox

in,

and

thio

redo

xin

redu

ctas

e

Vand

erbi

lt U

nive

rsity

P

[102

]

Proa

popt

otic

rBCG

Reco

mbi

nant

BCG

exp

ress

ing

mut

ated

Pfo

A an

d in

clud

ing

mut

atio

ns s

how

n at

AEC

OM

to

indu

ce m

acro

phag

e ap

opto

sis

Aera

s, Al

bert

Ein

stei

n Co

llege

of M

edic

ine

P

rBCG

(mbt

B)30

rBCG

with

lim

ited

repl

icat

ion

over

expr

essi

ng th

e 30

kDa

MTB

An

tigen

85B

UCL

A, N

IH, N

IAID

P[1

03]

rBCG

T+

B

rM. s

meg

mat

is T

+B

rBCG

and

rM. s

meg

mat

is e

xpre

ssin

g m

ultip

le T

and

B e

pito

pes

of M

TB

Finl

ay In

stitu

te,

Uni

vers

iti S

ains

M

alay

sia

P B

PI

[104

–106

]

rBCG

38rB

CG T

ice

stra

in o

vere

xpre

ss th

e 38

kD

a pr

otei

nU

nive

rsid

ad N

acio

nal

Autó

nom

a de

Méx

ico

P B

[107

–110

]

Chapter5.15.indd 958 11/02/14 1:09 PM

Page 12: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

959 CHAPTER 5.15NEW TB VACCINES: WHAT IS IN THE PIPELINE?

SECT

ION

III:

Nex

t G

ener

atio

n Ca

ndid

ates

– 2

011

Typ

e of

Va

ccin

ePr

oduc

ts

Prod

uct

desc

ript

ion

Spon

sor

Indi

cati

onCi

tati

ons

rBCG

Mex

38rB

CG M

exic

o st

rain

ove

rexp

ress

the

38 k

Da p

rote

inU

nive

rsid

ad N

acio

nal

Autó

nom

a de

Mex

ico

P B

[1

09, 1

11–1

13]

rM.m

icro

ti30

rM.m

icro

ti38

rM.m

icro

ti st

rain

ove

rexp

ress

the

30

or 3

8kDa

pro

tein

Uni

vers

idad

Nac

iona

l Au

tóno

ma

de M

exic

oP

[27,

114

–115

]

Stre

ptom

yces

live

ve

ctor

Reco

mbi

nant

str

epto

myc

es

expr

essi

ng m

ultip

le T

and

B e

pito

pes

from

M.tb

Finl

ay In

stitu

te,

Inst

itute

of P

harm

acy

and

Food

, Cub

aP

B P

I IT

[105

–106

,116

]

rBCG

85C

rBCG

ove

rexp

ress

ing

antig

en 8

5C o

f M

. tub

ercu

losi

s

Uni

vers

ity o

f Del

hi

Sout

h Ca

mpu

s an

d De

part

men

t of

Bio

tech

nolo

gy,

Gov

ernm

ent o

f Ind

ia

P[1

17]

Disr

uptio

n of

the

SapM

locu

sRe

com

bina

nt M

. bov

is B

CG in

whi

ch

the

SapM

locu

s ha

s be

en d

isru

pted

FW

O-G

hent

U

nive

rsity

-VIB

P[1

18]

BCG

zm

p 1

BCG

zm

p 1

dele

tion

mut

ant

Uni

vers

ity o

f Zur

ich,

TB

VIP

[119

–121

]

Reco

mbi

nant

Pr

otei

n

Late

ncy

fusi

on

prot

eins

Reco

mbi

nant

fusi

on p

rote

ins

com

pose

d of

ant

igen

s 85

A-85

B-Rv

3407

, Rv3

407-

Rv17

33c-

Rv26

26c,

Rv

0867

c-Rv

-188

4-Rv

2389

c

Aera

s

B

Chapter5.15.indd 959 11/02/14 1:09 PM

Page 13: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

960 SECTION 5 DEVELOPMENT OF NEW VACCINES AGAINST TB

SECT

ION

III:

Nex

t G

ener

atio

n Ca

ndid

ates

– 2

011

Typ

e of

Va

ccin

ePr

oduc

ts

Prod

uct

desc

ript

ion

Spon

sor

Indi

cati

onCi

tati

ons

r30

30kD

a M

TB A

g85B

pro

tein

pur

ified

fro

m

rM. S

meg

mat

is

UCL

A, N

IH, N

IAID

B P

I[2

4–28

]

R32K

da

(reco

mbi

nant

85A

) Pu

rified

reco

mbi

nant

85A

pro

tein

fro

m B

CG

Bhag

awan

Mah

avir

Med

ical

Res

earc

h Ce

nter

, LEP

RA S

ocie

ty-

Blue

Pet

er R

esea

rch

Cent

re

B P

I IT

[122

–126

]

Vira

l Ve

ctor

ed

Reco

mbi

nant

LCM

VRe

com

bina

nt ly

mph

ocyt

ic

chor

iom

enin

gitis

viru

s ex

pres

sing

Ag

85A,

Ag8

5B, o

r Ag8

5B-E

SAT6

Uni

vers

ity o

f Gen

eva

P B

PI

IT[1

27–1

28]

rhPI

V2-A

g85B

Repl

icat

ion-

defic

ient

hum

an

para

influ

enza

type

2 v

irus

expr

essi

ng A

g85B

Nat

iona

l Ins

titut

e of

Bi

omed

ical

Inno

vatio

n,

Japa

n; Ja

pan

BCG

La

bora

tory

P B

[129

]

Oth

er

LIP1

Ac2

SGL

sulfo

glyc

olip

idAc

2SG

L/PI

M2

in D

DA/T

DB

Cent

re N

atio

nal d

e la

Re

cher

che

Scie

nti�

que

(CN

RS),

TBVI

P B

PI

IT[1

30–1

32]

LIP2

SL3

7 (s

ynth

etic

) su

lfogl

ycol

ipid

SL37

/PIM

2 in

DDA

/TDB

CN

RS, T

BVI

P B

PI

IT[1

33–1

34]

Chapter5.15.indd 960 11/02/14 1:09 PM

Page 14: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

961 CHAPTER 5.15NEW TB VACCINES: WHAT IS IN THE PIPELINE?

SECT

ION

III:

Nex

t G

ener

atio

n Ca

ndid

ates

– 2

011

Typ

e of

Va

ccin

ePr

oduc

ts

Prod

uct

desc

ript

ion

Spon

sor

Indi

cati

onCi

tati

ons

HG85

6ACh

imer

ic D

NA

vacc

ines

—ES

AT-6

/Ag

85A;

Ag8

5A/A

g85B

Shan

ghai

H&

G B

iote

chB

IT

[100

]

HG85

A/B

Chim

eric

DN

A va

ccin

es—

Ag85

A/B

Shan

ghai

H&

G B

iote

chB

IT

[92–

96]

HG85

6-Se

VRe

com

bina

nt S

enda

i viru

s ov

erex

pres

sing

chi

mer

ic E

SAT-

6/Ag

85A

prot

ein

Shan

ghai

H&

G B

iote

chB

HVJ-

Enve

lope

/HS

P65

DNA+

IL-1

2 DN

A

Com

bina

tion

of D

NA

vacc

ines

ex

pres

sing

myc

obac

teria

l hea

t-sh

ock

prot

ein

65 &

IL-1

2O

saka

Uni

vers

ity B

PI

IT[1

35–1

39]

DNAa

crDN

A va

ccin

e ex

pres

sing

�-c

ryst

allin

, a

key

late

ncy

asso

ciat

ed a

ntig

en o

f M

. tub

ercu

losi

s

Uni

vers

ity o

f Del

hi

Sout

h Ca

mpu

s an

d De

part

men

t of

Bio

tech

nolo

gy,

Gov

ernm

ent o

f Ind

ia

B[1

40]

rBCG

acr/D

NAa

crrB

CG a

nd D

NA

vacc

ines

exp

ress

ing

�-cr

ysta

llin

of M

. tub

ercu

losi

s in

a

hete

rolo

gous

prim

e bo

ost a

ppro

ach

Uni

vers

ity o

f Del

hi

Sout

h Ca

mpu

s an

d De

part

men

t of

Bio

tech

nolo

gy,

Gov

ernm

ent o

f Ind

ia

P B

[141

]

Lipo

rale

TM T

BLi

ve a

tten

uate

d BC

G D

anis

h St

rain

in

a n

ovel

sta

ble

lipid

mat

rix fo

r ora

l va

ccin

atio

n Im

mun

e So

lutio

ns L

td.

P B

[142

–146

]

Chapter5.15.indd 961 11/02/14 1:09 PM

Page 15: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

962 SECTION 5 DEVELOPMENT OF NEW VACCINES AGAINST TB

SECT

ION

III:

Nex

t G

ener

atio

n Ca

ndid

ates

– 2

011

Typ

e of

Va

ccin

ePr

oduc

ts

Prod

uct

desc

ript

ion

Spon

sor

Indi

cati

onCi

tati

ons

Myc

obac

teria

l lip

osom

es a

nd

prot

eoso

mes

Lipo

som

es fr

om M

. sm

egm

atis

and

pr

oteo

-lipo

som

es fr

om B

CG a

nd M

. sm

egm

atis

Finl

ay In

stitu

te

Uni

vers

iti S

ains

M

alay

sia

P B

PI

IT[1

47]

pUM

VC6/

7 DN

A2

DNA

vacc

ine

plas

mid

vec

tors

pU

MVC

6 or

pU

MVC

7 ex

pres

sing

Rv

3872

, Rv3

873,

Rv3

874,

Rv3

875

or

Rv36

19c

Kuw

ait U

nive

rsity

P

[148

–149

]

T-Bi

oVax

Heat

sho

ck H

spC

prot

ein

antig

en

com

plex

esIm

mun

oBio

logy

Ltd

.B

[150

–151

]

TBVa

xT

cell

epito

pe-b

ased

DN

A-pr

ime/

pept

ide

boos

t vac

cine

Ep

iVax

, In

c. B

PI

[152

–154

]

EspC

Reco

mbi

nant

pro

tein

and

/or v

iral-

vect

ored

Im

peria

l Col

lege

Lo

ndon

P B

PI

IT[1

55]

PS- c

onju

gate

Su

buni

t Mtb

pol

ysac

char

ide

prot

ein

conj

ugat

eAl

bert

Ein

stei

n Co

llege

of

Med

icin

eB

2 Can

dida

te in

form

atio

n ac

quire

d fro

m p

ublis

hed

liter

atur

e.

Chapter5.15.indd 962 11/02/14 1:09 PM

Page 16: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

963 CHAPTER 5.15NEW TB VACCINES: WHAT IS IN THE PIPELINE?

AbbreviationsBCG – Bacille Calmette-Guérin

IL – Interleukin

GMP – Good Manufacturing Practices

GSK – GlaxoSmithKline Biologicals

M. bovis – Mycobacterium bovis

MTB – Mycobacterium tuberculosis

NIAID– National Institute of Allergy and Infectious Diseases

NIH – National Institutes of Health

OETC – Oxford-Emergent Tuberculosis Consortium, Ltd.

SSI – Statens Serum Institute

TBVI – Tuberculosis Vaccine Initiative

UCLA – University of California Los Angeles

REFERENCES

1. WHO. Global Tuberculosis Control 2011. Geneva: WHO, 2011. Available at: http://www.who.int/tb/publications/global_report/2011/en/index.html

2. Laxminarayan R, Klein EY, Darley S, and Adeyi O. Global investments in TB control: economic bene�ts. Health Aff (Millwood), 2009; 28(4): w730–42.

3. Colditz GA, Brewer TF, Berkey CS, Wilson ME, Burdick E, Fineberg HV, and Mosteller F. Ef�cacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA, 1994; 271(9): 698–702.

4. Trunz BB, Fine P, and Dye C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet, 2006; 367(9517): 1173–80.

Chapter5.15.indd 963 11/02/14 1:09 PM

Page 17: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

964 SECTION 5 DEVELOPMENT OF NEW VACCINES AGAINST TB

5. Rahman M, Sekimoto M, Takamatsu I, Hira K, Shimbo T, Toyoshima K, and Fukui T. Economic evaluation of universal BCG vaccination of Japanese infants. Int J Epidemiol, 2001; 30(2): 380–5.

6. Hersh AL, Tala-Heikkila M, Tala E, Tosteson AN, and Fordham von Reyn C. A cost-effectiveness analysis of universal versus selective immunization with Mycobacterium bovis bacille Calmette-Guerin in Finland. Int J Tuberc Lung Dis, 2003; 7(1): 22–9.

7. Altes HK, Dijkstra F, Lugner A, Cobelens F, and Wallinga J. Targeted BCG vaccination against severe tuberculosis in low-prevalence settings: epidemiologic and economic assessment. Epidemiology, 2009; 20(4): 562–8.

8. Bloom DE, Canning D, and Weston W. The value of vaccination. World Economics, 2005; 6(3): 15–39.

9. Stop TB Partnership. The Global Pan to Stop TB (2011-2015). Geneva: WHO, 2010. Available at: http://www.stoptb.org/assets/documents/global/plan/TB_GlobalPlanToStopTB2011-2015.pdf

10. Kaufmann SH, Hussey G, and Lambert PH. New vaccines for tuberculosis. Lancet, 2010; 375(9731): 2110–9.

11. Meeting of the immunization Strategic Advisory Group of Experts, April 2007--conclusions and recommendations. Wkly Epidemiol Rec, 2007; 82(21): 181–93.

12. Brennan, MJ and Thole, J.  Tuberculosis vaccines:  A strategic blueprint for the next decade.  Tuberculosis, 2012; 92: Supplement 1: S6-S13.

13. Ziv E, Daley CL, and Blower S. Potential public health impact of new tuberculosis vaccines. Emerg Infect Dis, 2004; 10(9): 1529–35.

14. Abu-Raddad LJ, Sabatelli L, Achterberg JT, Sugimoto JD, Longini IM, Jr., Dye C, and Halloran ME. Epidemiological bene�ts of more-effective tuberculosis vaccines, drugs, and diagnostics. Proc Natl Acad Sci U S A, 2009; 106(33): 13980–5.

15. Murray CJ and Salomon JA. Modeling the impact of global tuberculosis control strategies. Proc Natl Acad Sci U S A, 1998; 95(23): 13881–6.

Chapter5.15.indd 964 11/02/14 1:09 PM

Page 18: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

965 CHAPTER 5.15NEW TB VACCINES: WHAT IS IN THE PIPELINE?

16. Dye C, Bassili A, Bierrenbach AL, Broekmans JF, Chadha VK, Glaziou P, Gopi PG, Hosseini M, Kim SJ,Manissero D, Onozaki I, Rieder HL, Scheele S, van Leth F, van der Werf M, and Williams BG. Measuring tuberculosis burden, trends, and the impact of control programmes. Lancet Infect Dis, 2008; 8(4): 233–43.

17. Bishai DM and Mercer D. Modeling the economic bene�ts of better TB vaccines. Int J Tuberc Lung Dis, 2001; 5(11): 984–93.

18. Tseng CL, Oxlade O, Menzies D, Aspler A, and Schwartzman K. Cost-effectiveness of novel vaccines for tuberculosis control: a decision analysis study. BMC Public Health, 2011; 11(1): 55.

19. Aeras. Barriers and Drivers to Introduction of New TB Vaccines. Rockville: Aeras, 2010. Available at: http://www.aeras.org/newscenter/downloads/pubs/Barriers%20and%20Drivers%20to%20TB%20Vaccine.pdf

20. Desel, C, Dorhoi, A, Banderman, S, Grode, L, Eisele, B, and Kaufman, SH. Recombinant BCG ∆ureC hly+ induces superior protection over parental BCG by stimulating a balanced combination of type 1 and type 17 cytokine responses. J Infect Dis, 2011. 204(10):1573-84.

21. Grode L, Seiler P, Baumann S, Hess J, Brinkmann V, Nasser Eddine A, Mann P, Goosmann C, Bandermann S,Smith D, Bancroft GJ, Reyrat JM, van Soolingen D, Raupach B, and Kaufmann SH. Increased vaccine ef�cacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. J Clin Invest, 2005; 115(9): 2472–9.

22. Kaufmann, SH., Fact and �ction in tuberculosis vaccine research: 10 years later. Lancet Infect. Dis., 2011. 11(8): 633–40.

23. Kaufmann SH. Future vaccination strategies against tuberculosis: thinking outside the box. Immunity, 2010; 33(4): 567–77.

24. Harth G, Lee BY, and Horwitz MA. High-level heterologous expression and secretion in rapidly growing nonpathogenic mycobacteria of four major Mycobacterium tuberculosis extracellular proteins considered to be leading vaccine candidates and drug targets. Infect Immun, 1997; 65(6): 2321–8.

25. Harth G, Lee BY, Wang J, Clemens DL, and Horwitz MA. Novel insights into the genetics, biochemistry, and immunocytochemistry of the 30-kilodalton major extracellular protein of Mycobacterium tuberculosis. Infect Immun, 1996; 64(8): 3038–47.

Chapter5.15.indd 965 11/02/14 1:09 PM

Page 19: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

966 SECTION 5 DEVELOPMENT OF NEW VACCINES AGAINST TB

26. Horwitz MA, Harth G, Dillon BJ, and Maslesa-Galic S. Enhancing the protective ef�cacy of Mycobacterium bovis BCG vaccination against tuberculosis by boosting with the Mycobacterium tuberculosis major secretory protein. Infect Immun, 2005; 73(8): 4676–83.

27. Horwitz MA, Lee BW, Dillon BJ, and Harth G. Protective immunity against tuberculosis induced by vaccination with major extracellular proteins of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A,1995; 92(5): 1530–4.

28. Hoft DF, Blazevic A, Abate G, Hanekom WA, Kaplan G, Soler JH, Weichold F, Geiter L, Sadoff JC, Horwitz MA. A new recombinant bacille Calmette-Guérin vaccine safely induces signi�cantly enhanced tuberculosis-speci�c immunity in human volunteers. J Infect Dis, 2008; 198(10):1491-501.

29. Magalhaes I, Sizemore DR, Ahmed RK, Mueller S, Wehlin L, Scanga C, Weichold F, Schirru G, Pau MG,Goudsmit J, Kühlmann-Berenzon S, Spångberg M, Andersson J, Gaines H, Thorstensson R, Skeiky YA, Sadoff J, and Maeurer M. rBCG induces strong antigen-speci�c T cell responses in rhesus macaques in a prime-boost setting with an adenovirus 35 tuberculosis vaccine vector. PLoS One, 2008; 3(11): e3790.

30. Skeiky YA and Sadoff JC. Advances in tuberculosis vaccine strategies. Nat Rev Microbiol, 2006; 4(6): 469–76.

31. Sun R, Skeiky YA, Izzo A, Dheenadhayalan V, Imam Z, Penn E, Stagliano K, Haddock S, Mueller S, Fulkerson J,Scanga C, Grover A, Derrick SC, Morris S, Hone DM, Horwitz MA, Kaufmann SH, and Sadoff JC. Novel recombinant BCG expressing perfringolysin O and the over-expression of key immunodominant antigens; pre-clinical characterization, safety and protection against challenge with Mycobacterium tuberculosis. Vaccine, 2009; 16;27(33): 4412–23.

32. Cardona PJ, Asensio JG, Arbues A, Otal I, Lafoz C, Gil O, Caceres N, Ausina V,  Gicquel B,  and Martin C. Extended safety studies of the attenuated live tuberculosis vaccine SO2 based on phoP mutant. Vaccine, 2009; 27(18): 2499–505.

33. Verreck FA, Vervenne RA, Kondova I, van Kralingen KW, Remarque EJ, Braskamp G, van der Werff NM,Kersbergen A, Ottenhoff TH, Heidt PJ, Gilbert SC, Gicquel B, Hill AV, Martin C, McShane H, and Thomas AW. MVA.85A boosting of BCG and an attenuated, phoP de�cient M. tuberculosis vaccine both show protective ef�cacy against tuberculosis in rhesus macaques. PLoS One, 2009; 4(4): e5264.

Chapter5.15.indd 966 11/02/14 1:09 PM

Page 20: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

967 CHAPTER 5.15NEW TB VACCINES: WHAT IS IN THE PIPELINE?

34. Gonzalo-Asensio J, Mostowy S, Harders-Westerveen J, Huygen K, Hernandez-Pando R, Thole J, Behr M, Gicquel B, and Martín C. PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS One, 2008; 3(10): e3496.

35. Perez E, Samper S, Bordas Y, Guilhot C, Gicquel B, and Martin C. An essential role for phoP in Mycobacterium tuberculosis virulence. Mol Microbiol, 2001; 41(1): 179–87.

36. Martin C, Williams A, Hernandez-Pando R, Cardona PJ, Gormley E, Bordat Y, Soto CY,  Clark SO,  Hatch GJ,Aguilar D,  Ausina V,  and Gicquel B. The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine. 2006; 24(17): 3408–19.

37. Minassian, AM, Rowland R, Beveridge NER, Poulton ID, Satti I, Harris S, Poyntz H,Hamill M, Grif�ths K, Sander CR, Ambrozak DR, Price DA, Hill, BJ, Casazza JP, Douek DC, Koup RA, Roederer M, Winston A, Ross J, Sherrard J, Rooney G, Williams N, Lawrie AM, Fletcher HA, Pathan AA, McShane H. A phase I study evaluating the safety and immunogenicity of MVA85A, a candidate TB vaccine, in HIV-infected adults. BMJ Open, 2011; 1(2): e000223.

38. Hawkridge T, Scriba TJ, Gelderbloem S, Smit E, Tameris M, Moyo S,   Lang T,  Veldsman A,  Hatherill M,  Merwe Lv,Fletcher HA,  Mahomed H,  Hill AV, Hanekom WA, Hussey GD, and McShane H. Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in healthy adults in South Africa. J Infect Dis, 2008; 198(4): 544–52.

39. McShane H, Pathan AA, Sander CR, Keating SM, Gilbert SC, Huygen K, Fletcher HA,  Hill AV. Recombinant modi�ed vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat Med, 2004; 10(11): 1240–4.

40. Sander CR, Pathan AA, Beveridge NE, Poulton I, Minassian A, Alder N, Van Wijgerden J, Hill AV, Gleeson FV,Davies RJ, Pasvol G, McShane H. Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in Mycobacterium tuberculosis-infected individuals. Am J Respir Crit Care Med, 2009; 179(8): 724–33.

Chapter5.15.indd 967 11/02/14 1:09 PM

Page 21: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

968 SECTION 5 DEVELOPMENT OF NEW VACCINES AGAINST TB

41. Scriba TJ, Tameris M, Mansoor N, Smit E, van der Merwe L, Isaacs F, Keyser A,  Moyo S,  Brittain N,  Lawrie A, Gelderbloem S,  Veldsman A,  Hatherill M, Hawkridge A, Hill AV, Hussey GD, Mahomed H, McShane H, and Hanekom WA. Modi�ed vaccinia Ankara-expressing Ag85A, a novel tuberculosis vaccine, is safe in adolescents and children, and induces polyfunctional CD4+ T cells. Eur J Immunol, 2010; 40(1): 279–90.

42. Scriba TJ, Tameris M, Smit E, van der Merwe L, Hughes EJ, Kadira B, Mauff K, Moyo S, Brittain N, Lawrie A, Mulenga H, de Kock M, Makhethe L, Janse van Rensburg E, Gelderbloem S, Veldsman A, Hatherill M, Geldenhuys H, Hill AV, Hawkridge A, Hussey GD, Hanekom WA, McShane H, and Mahomed H. A phase IIa trial of the new tuberculosis vaccine, MVA85A, in HIV- and/or Mycobacterium tuberculosis-infected adults. Am J Respir Crit Care Med, 2012;185(7): 769-78.

43. Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, Lockhart S, Shea JE, McClain JB, Hussey GD, Hanekom WA, Mahomed H, and McShane H. The MVA85A  020  Trial  Study Team. Safety and ef�cacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. The Lancet, 2013; 381(9871): 1021-28

44. Abel B, Tameris M, Mansoor N, Gelderbloem S, Hughes J, Abrahams D, Makhethe L, Erasmus M, de Kock M, van der Merwe L, Hawkridge A, Veldsman A, Hatherill M, Schirru G, Pau MG, Hendriks J, Weverling GJ, Goudsmit J,Sizemore D, McClain JB, Goetz M, Gearhart J, Mahomed H, Hussey GD, Sadoff JC, and Hanekom WA. The Novel TB Vaccine, AERAS-402, Induces Robust and Polyfunctional CD4 and CD8 T Cells in Adults. Am J Respir Crit Care Med, 2010; 181(14): 1407–17.

45. Radosevic K, Wieland CW, Rodriguez A, Weverling GJ, Mintardjo R, Gillissen G, Vogels R, Skeiky YA, Hone DM,Sadoff JC, van der Poll T, Havenga M, and Goudsmit J Protective immune responses to a recombinant adenovirus type 35 tuberculosis vaccine in two mouse strains: CD4 and CD8 T-cell epitope mapping and role of gamma interferon. Infect Immun. 2007; 75(8): 4105–15.

46. Barker LF, Brennan MJ, Rosenstein PK, and Sadoff JC. Tuberculosis vaccine research: the impact of immunology. Curr Opin Immunol, 2009; 21(3): 331–8.

47. Santosuosso M, McCormick S, Zhang X, Zganiacz A, and Xing Z. Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis. Infect Immun, 2006; 74(8): 4634–43.

Chapter5.15.indd 968 11/02/14 1:09 PM

Page 22: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

969 CHAPTER 5.15NEW TB VACCINES: WHAT IS IN THE PIPELINE?

48. Santosuosso M, Zhang X, McCormick S, Wang J, Hitt M, and Xing Z. Mechanisms of mucosal and parenteral tuberculosis vaccinations: adenoviral-based mucosal immunization preferentially elicits sustained accumulation of immune protective CD4 and CD8 T cells within the airway lumen. J Immunol, 2005; 174(12): 7986–94.

49. Wang J, Thorson L, Stokes RW, Santosuosso M, Huygen K, Zganiacz A,  Hitt M,  and Xing Z. Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J Immunol, 2004; 173(10): 6357–65.

50. Vordermeier HM, Villarreal-Ramos B, Cockle PJ, McAulay M, Rhodes SG, Thacker T,   Gilbert SC,  McShane H,  Hill AV,  Xing Z,  and Hewinson RG. Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis. Infect Immun, 2009; 77(8): 3364–73.

51. Xing Z, McFarland CT, Sallenave JM, Izzo A, Wang J, and McMurray DN. Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed guinea pigs against pulmonary tuberculosis. PLoS One, 2009; 4(6): e5856.

52. Leroux-Roels I, Leroux-Roels G, Ofori-Anyinam O, Moris P, De Kock E, Clement F, Dubois MC, Koutsoukos M, Demoitié MA, Cohen J, and Ballou WR. Evaluation of the safety and immunogenicity of two antigen concentrations of the Mtb72F/AS02(A) candidate tuberculosis vaccine in puri�ed protein derivative-negative adults. Clin Vaccine Immunol, 2010; 17(11): 1763–71.

53. Von Eschen K, Morrison R, Braun M, Ofori-Anyinam O, De Kock E, Pavithran P, Koutsoukos M, Moris P, Cain D, Dubois MC, Cohen J, and Ballou WR. The candidate tuberculosis vaccine Mtb72F/AS02A: Tolerability and immunogenicity in humans. Hum Vaccin, 2009; 5(7): 475–82.

54. Reed SG, Coler RN, Dalemans W, Tan EV, DeLa Cruz EC, Basaraba RJ, Orme IM,  Skeiky YA,  Alderson MR,Cowgill KD,  Prieels JP,  Abalos RM,  Dubois MC, Cohen J, Mettens P, and Lobet Y. De�ned tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys. Proc Natl Acad Sci U S A, 2009; 106(7): 2301–6.

55. Skeiky YA, Alderson MR, Ovendale PJ, Guderian JA, Brandt L, Dillon DC, Campos-Neto A,  Lobet Y,  Dalemans W,  Orme IM,  and Reed SG. Differential immune responses and protective ef�cacy induced by components of a tuberculosis

Chapter5.15.indd 969 11/02/14 1:09 PM

Page 23: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

970 SECTION 5 DEVELOPMENT OF NEW VACCINES AGAINST TB

polyprotein vaccine, Mtb72F, delivered as naked DNA or recombinant protein. J Immunol, 2004; 172(12): 7618–28.

56. van Dissel JT, Arend SM, Prins C, Bang P, Tingskov PN, Lingnau K, Nouta J, Klein MR,  Rosenkrands I,  Ottenhoff TH,  Kromann I,  Doherty TM,  and Andersen P. Ag85B-ESAT-6 adjuvanted with IC31 promotes strong and long-lived Mycobacterium tuberculosis speci�c T cell responses in naive human volunteers. Vaccine, 2010; 28(20): 3571–81.

57. Agger EM, Rosenkrands I, Olsen AW, Hatch G, Williams A, Kritsch C, Lingnau K, von Gabain A, Andersen CS, Korsholm KS, Andersen P. Protective immunity to tuberculosis with Ag85B-ESAT-6 in a synthetic cationic adjuvant system IC31. Vaccine, 2006; 24(26): 5452-60

58. Langermans JA, Doherty TM, Vervenne RA, van der Laan T, Lyashchenko K, Greenwald R,  Agger EM, Aagaard C, Weiler H,  van Soolingen D, Dalemans W, Thomas AW, and Andersen P. Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Vaccine, 2005; 23(21): 2740–50.

59. van Dissel JT, Soonawala D, Joosten SA, Prins C, Arend SM, Bang P, Tingskov PN, Lingnau K, Nouta J, Hoff ST, Rosenkrands I, Kromann I, Ottenhoff TH, Doherty TM, and Andersen P. Ag85B-ESAT-6 adjuvanted with IC31® promotes strong and long-lived Mycobacterium tuberculosis speci�c T cell responses in volunteers with previous BCG vaccination or tuberculosis infection. Vaccine, 2011; 29(11) 2100-9.

60. Ottenhoff TH, Doherty TM, van Dissel JT, Bang P, Lingnau K, Kromann I, and Andersen P. First in humans: A new molecularly de�ned vaccine shows excellent safety and strong induction of long-lived Mycobacterium tuberculosis-speci�c Th1-cell like responses. Hum Vaccin, 2010; 6(12): 1007-1015.

61. Holten-Andersen L, Doherty TM, Korsholm KS, and Andersen P. Combination of the cationic surfactant Dimethyl Dioctadecyl Ammonium bromide and synthetic Mycobacterial cord factor as an ef�cient adjuvant for tuberculosis subunit vaccine. Infect Immun, 2004; 72(3): 1608-17.

62. Christensen, D, Lindenstrøm T, van de Wijdeven G, Andersen P, Agger EM. Syringe free vaccination with CAF01 adjuvated Ag85B-ESAT-6 in Bioneedles provides strong and prolonged protection against tuberculosis. PLoS One, 2010. 5(11): e15043.

Chapter5.15.indd 970 11/02/14 1:09 PM

Page 24: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

971 CHAPTER 5.15NEW TB VACCINES: WHAT IS IN THE PIPELINE?

63. Davidsen, J, Rosenkrands I, Christensen D, Vangala A, Kirby D, Perrie Y, Agger EM, and Andersen P. Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,6’ –dibehenate) – A novel adjuvant inducing both strong CMI and antibody responses. Biochim Biophys Acta, 2005; 1718(1-2): 22-31.

64. Dietrich J, Aagaard C, Leah R, Olsen AW, Stryhn A, Doherty TM, and Andersen P. Exchanging ESAT6 with TB10.4 in an Ag85B fusion molecule-based tuberculosis subunit vaccine: ef�cient protection and ESAT6-based sensitive monitoring of vaccine ef�cacy. J Immunol, 2005; 174(10): 6332–9.

65. Hervas-Stubbs S, Majlessi L, Simsova M, Morova J, Rojas MJ, Nouze C, Brodin P, Sebo P, and Leclerc C. High frequency of CD4+ T cells speci�c for the TB10.4 protein correlates with protection against Mycobacterium tuberculosis infection. Infect Immun, 74(6): 3396–407.

66. Skeiky YA, Dietrich J, Lasco TM, Stagliano K, Dheenadhayalan V, Goetz MA, Cantarero L,  Basaraba RJ,  Bang P,  Kromann I,  McMclain JB,  Sadoff JC,  and Andersen P. Non-clinical ef�cacy and safety of HyVac4:IC31 vaccine administered in a BCG prime-boost regimen. Vaccine, 2010; 28(4): 1084–93.

67 Aagaard, C, Hoang TT, Izzo A, Billeskov R, Troudt J, Arnett K, Keyser A, Elvang T, Andersen P, and Dietrich J. Protection and polyfunctional T cells induced by Ag85B-TB10.4/IC31Ò against Mycobacterium tuberculosis is highly dependent on the antigen dose. PLoS One, 2009; 4(6): e5930.

68. Aagaard, C, Hoang T, Dietrich J, Cardona PJ, Izzo A, Dolganov G, Schoolnik GK, Cassidy JP, Billeskov R, and Andersen P. A multistage tuberculosis vaccine that confers ef�cient protection before and after exposure, Nat Med, 2011; 17(2): 189–194.

69. Lin, P.L, Dietrich J, Tan E, Abalos RM, Burgos J, Bigbee C, Bigbee M, Milk L, Gideon HP, Rodgers M, Cochran C, Guinn KM, Sherman DR, Klein E, Janssen C, Flynn JL, and Andersen P. The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection. J Clin Invest, 2011; 122(1): 303-14

70. Bertholet S, Ireton GC, Ordway DJ, Windish HP, Pine SO, Kahn M, Phan T, Orme IM, Vedvick TS, Baldwin SL,Coler RN, and Reed SG. A de�ned tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci Transl Med, 2010; 2(53): 53ra74.

Chapter5.15.indd 971 11/02/14 1:09 PM

Page 25: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

972 SECTION 5 DEVELOPMENT OF NEW VACCINES AGAINST TB

71. Bertholet S, Ireton GC, Kahn M, Guderian J, Mohamath R, Stride N, Laughlin EM, Baldwin SL, Vedvick TS, Coler RN, and Reed SG. Identi�cation of human T cell antigens for the development of vaccines against Mycobacterium tuberculosis. J Immunol, 181(11): 7948–57.

72. Lahey T, Arbeit RD, Bakari M, Horsburgh CR, Matee M, Waddell R, Mtei L, Vuola JM, Pallangyo K, and von Reyn CF. Immunogenicity of a protective whole cell mycobacterial vaccine in HIV-infected adults: a phase III study in Tanzania. Vaccine, 2010; 28(48): 7652–8.

73. von Reyn CF, Mtei L, Arbeit RD, Waddell R, Cole B, Mackenzie T, Matee M, Bakari M,  Tvaroha S,  Adams LV,Horsburgh CR,  Pallangyo K;  DarDar Study Group. Prevention of tuberculosis in Bacille Calmette-Guerin-primed, HIV-infected adults boosted with an inactivated whole-cell mycobacterial vaccine. AIDS, 2010; 24(5): 675–85.

74. Lahey T, Sheth S, Matee M, Arbeit R, Horsburgh CR, Mtei L, Mackenzie T, Bakari M, Vuola JM, Pallangyo K, and von Reyn CF. Interferon gamma responses to mycobacterial antigens protect against subsequent HIV-associated tuberculosis. J Infect Dis, 2010; 202(8): 1265–72.

75. Vuola JM, Ristola MA, Cole B, Jarviluoma A, Tvaroha S, Ronkko T, Rautio O, Arbeit RD, von Reyn CF. Immunogenicity of an inactivated mycobacterial vaccine for the prevention of HIV-associated tuberculosis: a randomized, controlled trial. AIDS, 2003; 17(16): 2351–5.

76. Lahey T, Mitchell BK, Arbeit RD, Sheth S, Matee M, Horsburgh CR, MacKenzie T, Mtei L, Bakari M, Vuola JM, Pallangyo K, and von Reyn CF. Polyantigenic interferon-� responses are associated with protection from tuberculosis among HIV infected adults with childhood BCG immunization. PLoS One 2011; 6(7): e22074

77. Patel N, Deshpande MM, and Shah M. Effect of an immunomodulator containing Mycobacterium w on sputum conversion in pulmonary tuberculosis. J Indian Med Assoc, 2002; 100(3): 191–3.

78. Patel N and Trapathi SB. Improved cure rates in pulmonary tuberculosis category II (retreatment) with Mycobacterium w. J Indian Med Assoc, 2003; 101(11): 680–2.

79. Talwar GP. An immunotherapeutic vaccine for multibacillary leprosy. Int Rev Immunol, 1999; 18(3): 229–49.

Chapter5.15.indd 972 11/02/14 1:09 PM

Page 26: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

973 CHAPTER 5.15NEW TB VACCINES: WHAT IS IN THE PIPELINE?

80. Gil O, Diaz I, Vilaplana C, Tapia G, Diaz J, Fort M, Cáceres N, Pinto S, Caylà J, Corner L, Domingo M, and Cardona PJ. Granuloma encapsulation is a key factor for containing tuberculosis infection in minipigs. PLoS ONE, 2010; 5(4): e10030.

81. Gil O, Vilaplana C, Guirado E, Diaz J, Caceres N, Singh M, and Cardona PJ. Enhanced gamma interferon responses of mouse spleen cells following immunotherapy for tuberculosis relapse. Clin Vaccine Immunol, 2008; 15(11): 1742–4.

82. Guirado E, Gil O, Caceres N, Singh M, Vilaplana C, and Cardona PJ. Induction of a speci�c strong polyantigenic cellular immune response after short-term chemotherapy controls bacillary reactivation in murine and guinea pig experimental models of tuberculosis. Clin Vaccine Immunol, 2008; 15(8): 1229–37.

83. Vilaplana C, Montane E, Pinto S, Barriocanal AM, Domenech G, Torres F, Cardona PJ, and Costa J. Double-blind, randomized, placebo-controlled Phase I Clinical Trial of the therapeutical antituberculous vaccine RUTI. Vaccine, 2010; 28(4): 1106–16.

84. Vilaplana C, Gil O, Cáceres N, Pinto S, Díaz J, and Cardona PJ. Prophylactic effect of a therapeutic vaccine against TB based on fragments of Mycobacterium tuberculosis. PLoS One, 2011; 6(5): e20404.

85. Derrick SC, Evering TH, Sambandamurthy VK, Jalapathy KV, Hsu T, Chen B,  Chen M, Russell RG,  Junqueira-Kipnis AP, Orme IM, Porcelli SA,  Jacobs WR Jr, and Morris SL. Characterization of the protective T-cell response generated in CD4-de�cient mice by a live attenuated Mycobacterium tuberculosis vaccine. Immunology, 2007; 120(2): 192–206.

86. Sambandamurthy VK, Derrick SC, Hsu T, Chen B, Larsen MH, Jalapathy KV, Chen M,  Kim J,  Porcelli SA,  Chan J,  Morris SL,  and Jacobs WR Jr. Mycobacterium tuberculosis DeltaRD1 DeltapanCD: a safe and limited replicating mutant strain that protects immunocompetent and immunocompromised mice against experimental tuberculosis. Vaccine, 2006; 24(37-39): 6309–20.

87. Hougardy JM, Place S, Hildebrand M, Drowart A, Debrie AS, Locht C, Mascart F. Regulatory T cells depress immune responses to protective antigens in active tuberculosis. Am J Respir Crit Care Med, 2007; 176(4): 409–16.

Chapter5.15.indd 973 11/02/14 1:09 PM

Page 27: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

974 SECTION 5 DEVELOPMENT OF NEW VACCINES AGAINST TB

88. Locht C. The mycobacterial heparin-binding hemagglutinin: a virulence factor and antigen useful for diagnostics and vaccine development. In: Daffe M, Reyrat JM, editors. The Mycobacterial Cell Envelope. Washington DC: ASM Press, 2008, pp. 305–22.

89. Pethe K, Alonso S, Biet F, Delogu G, Brennan MJ, Locht C, and Menozzi FD. The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature, 2001; 412(6843): 190–4.

90. Temmerman S, Pethe K, Parra M, Alonso S, Rouanet C, Pickett T, Drowart A, Debrie AS, Delogu G, Menozzi FD,Sergheraert C, Brennan MJ, Mascart F, and Locht C. Methylation-dependent T cell immunity to Mycobacterium tuberculosis heparin-binding hemagglutinin. Nat Med, 2004; 10(9): 935–41.

91. Temmerman ST, Place S, Debrie AS, Locht C, and Mascart F. Effector functions of heparin-binding hemagglutinin-speci�c CD8+ T lymphocytes in latent human tuberculosis. J Infect Dis, 2005; 192(2): 226-32.

92. Fan XY, Ma H, Guo J, Li ZM, Cheng ZH, Guo SQ, and Zhao GP. A novel differential expression system for gene modulation in Mycobacteria. Plasmid, 2009; 61(1): 39–46.

93. Li Z, Song D, Zhang H, He W, Fan X, Zhang Y, Huang J, Wang X, Liu Q, and Xiong S. Improved humoral immunity against tuberculosis ESAT-6 antigen by chimeric DNA prime and protein boost strategy. DNA Cell Biol, 2006; 25(1): 25–30.

94. Li Z, Zhang H, Fan X, Zhang Y, Huang J, Liu Q, Tjelle TE, Mathiesen I, Kjeken R, and Xiong S. DNA electroporation prime and protein boost strategy enhances humoral immunity of tuberculosis DNA vaccines in mice and non-human primates. Vaccine, 2006; 24(21): 4565–8.

95. Liang Y, Wu X, Zhang J, Li N, Yu Q, Yang Y, Bai X, Liu C, Shi Y, Liu Q, Zhang P, and Li Z. The treatment of mice infected with multi-drug-resistant Mycobacterium tuberculosis using DNA vaccines or in combination with rifampin. Vaccine, 2008; 26(35): 4536–40.

96. Sugawara I, Li Z, Sun L, Udagawa T, and Taniyama T. Recombinant BCG Tokyo (Ag85A) protects cynomolgus monkeys (Macaca fascicularis) infected with H37Rv Mycobacterium tuberculosis. Tuberculosis (Edinb), 2007; 87(6): 518–25.

97. Lowrie DB, Tascon RE, Bonato VL, Lima VM, Faccioli LH, Stavropoulos E, Colston MJ, Hewinson RG, Moelling K, andSilva CL. Therapy of tuberculosis in mice by DNA vaccination. Nature, 1999; 400(6741): 269–71.

Chapter5.15.indd 974 11/02/14 1:09 PM

Page 28: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

975 CHAPTER 5.15NEW TB VACCINES: WHAT IS IN THE PIPELINE?

98. Johansen, P, Raynaud C, Yang M, Colston MJ, Tascon RE, and Lowrie DB.. Anti-mycobacterial immunity induced by a single injection of M. leprae Hsp65-encoding plasmid DNA in biodegradable microparticles. Immunol Lett, 2003; 90(2-3): 81-5.

99. Wu, J, Ma H, Qu Q, Zhou WJ, Luo YP, Thangaraj H, Lowrie DB, and Fan XY. Incorporation of immunostimulatory motifs in the transcribed region of a plasmid DNA vaccine enhances Th1 immune responses and therapeutic effects against Mycobacterium tuberculosis in mice. Vaccine, 2011; 29: 7624-30.

100. Li Z, Howard A, Kelley C, Delogu G, Collins F, and Morris S. Immunogenicity of DNA vaccines expressing tuberculosis proteins fused to tissue plasminogen activator signal sequences. Infect Immun, 1999; 67(9): 4780–6.

101. Sweeney KA, Dao DN, Goldberg MF, Hsu T, Venkataswamy MM, Henao-Tamayo M, Ordway D, Sellers RS, Jain P, Chen B, Chen M, Kim J, Lukose R, Chan J, Orme IM, Porcelli SA, and Jacobs WR Jr. A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nat Med, 2011;17(10):1261-8

102. Sadagopal S, Braunstein M, Hager CC, Wei J, Daniel AK, Bochan MR, Crozier I,  Smith NE,  Gates HO,  Barnett L,Van Kaer L,  Price JO,  Blackwell TS,  Kalams SA, and Kernodle DS. Reducing the activity and secretion of microbial antioxidants enhances the immunogenicity of BCG. PLoS One, 2009; 4(5): e5531.

103. Tullius MV, Harth G, Maslesa-Galic S, Dillon BJ, and Horwitz MA. A Replication-Limited Recombinant Mycobacterium bovis BCG vaccine against tuberculosis designed for human immunode�ciency virus-positive persons is safer and more ef�cacious than BCG. Infect Immun, 2008; 76(11): 5200–14.

104. Cataldi, A., et al., Strategies for new generation vaccine development, in The Art & Science of Tuberculosis Vaccine Development [Internet], M.N. Norazmi, A. Acosta and M.E. Sarmiento, Editors. 2010, Oxford University Press: Selangor (MY). 186–208. Available from: http://tbvaccines.usm.my/.

105. Norazmi MN, Sarmiento ME, and Acosta A. Recent advances in tuberculosis vaccine development. Current Respiratory Medicine Reviews, 2005; 1(2): 109-16.

106. Mohamud R, Azlan, Olivares N, Puig A, Vila A, Yero D, Alvarez N, Aguilar A, Hernandez-Pando R, Sarmiento ME, Acosta A, and Norazmi MN. Immunogenicity of recombinant Mycobacterium bovis Bacille Calmette–Guèrin clones expressing T and B cell epitopes of Mycobacterium tuberculosis antigens. BMC Immunology, 2013; 14(Suppl 1):S5.

Chapter5.15.indd 975 11/02/14 1:09 PM

Page 29: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

976 SECTION 5 DEVELOPMENT OF NEW VACCINES AGAINST TB

107. Castanon-Arreola M, Lopez-Vidal Y, Espitia-Pinzon C, and Hernandez-Pando R. A new vaccine against tuberculosis shows greater protection in a mouse model with progressive pulmonary tuberculosis. Tuberculosis (Edinb), 2005; 85(1-2): 115–26.

108. Castanon-Arreola M and Lopez-Vidal Y. A second-generation anti TB vaccine is long overdue. Ann Clin Microbiol Antimicrob, 2004; 3: 10.

109. Castillo-Rodal AI, Castanon-Arreola M, Hernandez-Pando R, Calva JJ, Sada-Diaz E, and Lopez-Vidal Y. Mycobacterium bovis BCG substrains confer different levels of protection against Mycobacterium tuberculosis infection in a BALB/c model of progressive pulmonary tuberculosis. Infect Immun, 2006; 74(3): 1718–24.

110. Rodriguez-Alvarez M, Palomec-Nava ID, Mendoza-Hernandez G, and Lopez-Vidal Y. The secretome of a recombinant BCG substrain reveals differences in hypothetical proteins. Vaccine, 2010; 28(23): 3997–4001.

111. Hernandez-Pando R, Castanon M, Espitia C, and Lopez-Vidal Y. Recombinant BCG vaccine candidates. Curr Mol Med, 2007; 7(4): 365–72.

112. Orduña-Estrada, P., et al., in 42nd Union World Conference on Lung Health. 2011: France.

113. Orduña, P, Cevallos MA, de León SP, Arvizu A, Hernández-González IL, Mendoza-Hernández G, and López-Vidal Y. Genomic and proteomic analyses of Mycobacterium bovis BCG Mexico 1931 reveal a diverse immunogenic repertoire against tuberculosis infection. BMC Genomics, 2011; 12: 493-505.

114. Flores Rodríguez T, Castañón Arreola M, and López Vidal Y. 4th Annual Conference on Vaccines: All things considered; Arlington, VA (USA), 2006.

115. Garcia-Ruiz, V., et al., in Eighth International Conference on the Pathogenesis of Mycobacterial Infections. 2011: Sweden.

116. Vallin C, Ramos A, Pimienta E, Rodriguez C, Hernandez T, Hernandez I, Del Sol R, Rosabal G, Van Mellaert L, and Anné J. Streptomyces as host for recombinant production of Mycobacterium tuberculosis proteins. Tuberculosis (Edinb), 2006; 86(3-4): 198–202.

117. Jain, R, Dey B, Dhar N, Rao V, Singh R, Gupta UD, Katoch VM, Ramanathan VD, and Tyagi AK. Enhanced and enduring protection against tuberculosis by recombinant BCG-Ag85C and its association with modulation of cytokine pro�le in lung. PLoS One, 2008; 3(12): e3869.

Chapter5.15.indd 976 11/02/14 1:09 PM

Page 30: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

977 CHAPTER 5.15NEW TB VACCINES: WHAT IS IN THE PIPELINE?

118. Festjens, N, Bogaert P, Batni A, Houthuys E, Plets E, Vanderschaeghe D, Laukens B, Asselbergh B, Parthoens E, De Rycke R, Willart MA, Jacques P, Elewaut D, Brouckaert P, Lambrecht BN, Huygen K, and Callewaert N. Disruption of the SapM locus in Mycobacterium bovis BCG improves its protective ef�cacy as a vaccine against M. tuberculosis. EMBO Mol Medicine, 2011; 3(4): 222-234.

119. Johansen, P, Fettelschoss A, Amstutz B, Selchow P, Waeckerle-Men Y, Keller P, Deretic V, Held L, Kündig TM, Böttger EC, and Sander P. Relief from Zmp1-mediated arrest of phagosome maturation is associated with facilitated presentation and enhanced immunogenicity of mycobacterial antigens. Clin Vaccine Immunol, 2011. 18: 907-913.

120. Ferraris, DM, Sbardella D, Petrera A, Marini S, Amstutz B, Coletta M, Sander P, and Rizzi M. Crystal structure of Mycobacterium tuberculosis zinc-dependent metalloprotease-1 (Zmp1), a metalloprotease involved in pathogenicity. J Biol Chem, 2011; 286: 32475-32482.

121. Master, S.S, Rampini SK, Davis AS, Keller C, Ehlers S, Springer B, Timmins GS, Sander P, and Deretic V. Mycobacterium tuberculosis prevents in�ammasome activation. Cell Host Microbe, 2008; 3: 224-232.

122. Anuradha B, Rakh SS, Ishaq M, Murthy KJ, and Valluri VL. Interferon-gamma Low producer genotype +874 overrepresented in Bacillus Calmette-Guerin nonresponding children. Pediatr Infect Dis J, 2008; 27(4): 325–9.

123. Anuradha B, Santosh CM, Hari Sai Priya V, Suman Latha G, Murthy KJ, and Vijaya Lakshmi V. Age-related waning of in vitro Interferon-gamma levels against r32kDaBCG in BCG vaccinated children. J Immune Based Ther Vaccines, 2007; 5: 8.

124. Sai Priya VH, Anuradha B, Latha Gaddam S, Hasnain SE, Murthy KJ, and Valluri VL. In vitro levels of interleukin 10 (IL-10) and IL-12 in response to a recombinant 32-kilodalton antigen of Mycobacterium bovis BCG after treatment for tuberculosis. Clin Vaccine Immunol, 2009; 16(1): 111–5.

125. Sai Priya VH, Latha GS, Hasnain SE, Murthy KJ, and Valluri VL. Enhanced T cell responsiveness to Mycobacterium bovis BCG r32-kDa Ag correlates with successful anti-tuberculosis treatment in humans. Cytokine, 2010; 52(3): 190–3.

126. Pydi, SS, Bandaru AR, Venkatasubramanian S, Jonnalagada S, and Valluri VL. Vaccine for tuberculosis: up-regulation of IL-15 by Ag85A and not by ESAT-6. Tuberculosis (Edinb), 2011; 91(2): 136-9.

Chapter5.15.indd 977 11/02/14 1:09 PM

Page 31: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

978 SECTION 5 DEVELOPMENT OF NEW VACCINES AGAINST TB

127. Flatz, L, Hegazy AN, Bergthaler A, Verschoor A, Claus C, Fernandez M, Gattinoni L, Johnson S, Kreppel F, Kochanek S, Broek Mv, Radbruch A, Lévy F, Lambert PH, Siegrist CA, Restifo NP, Löhning M, Ochsenbein AF, Nabel GJ, and Pinschewer DD. Development of replication-defective lymphocytic choriomeningitis virus vectors for the induction of potent CD8+ T cell immunity. Nat Med, 2010; 16(3): 339-45.

128. Flatz, L, Roychoudhuri R, Honda M, Filali-Mouhim A, Goulet JP, Kettaf N, Lin M, Roederer M, Haddad EK, Sékaly RP, and Nabel GJ., Single-cell gene-expression pro�ling reveals qualitatively distinct CD8 T cells elicited by different gene-based vaccines. Proc Natl Acad Sci U S A, 2011; 108(14): 5724-9.

129. Kawano, M, Kaito M, Kozuka Y, Komada H, Noda N, Nanba K, Tsurudome M, Ito M, Nishio M, and Ito Y. Recovery of infectious parain�uenza type 2 virus from cDNA clones and properties of the defective without V-speci�c cysteine rich domain. Virology, 2001; 284: 99-112.

130. Gilleron M, Stenger S, Mazorra Z, Wittke F, Mariotti S, Bohmer G,  Prandi J, Mori L, Puzo G, and De Libero G. Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis. J Exp Med, 2004; 199(5): 649–59.

131. de la Salle, H., Participation of CD1e in processing of microbial glycolipid antigens. Science, 2005. 310 : p. 1321-4.

132. Garcia-Alles, LF, Collmann A, Versluis C, Lindner B, Guiard J, Maveyraud L, Huc E, Im JS, Sansano S, Brando T, Julien S, Prandi J, Gilleron M, Porcelli SA, de la Salle H, Heck AJ, Mori L, Puzo G, Mourey L, and De Libero G. Structural reorganization of the antigen-binding groove of human CD1b for presentation of mycobacterial sulfoglycolipids. Proc Natl Acad Sci U S A, 2011; 108(43): 17755-60.

133. Guiard, J, Collmann, A, Gilleron, M, Mori, L, De Libero, G, Prandi, J, and Puzo, G. Synthesis of diacylated trehaloses sulfate, analogs of a mycobacterial sulfoglycolipid antigen and candidates for a tuberculosis vaccine. Angew Chem Int Ed Engl, 2008; 47(50): 9734-8.

134. Guiard, J, Collmann A, Garcia-Alles LF, Mourey L, Brando T, Mori L, Gilleron M, Prandi J, De Libero G, and Puzo G. Fatty acyl structures of Mycobacterium tuberculosis sulfoglycolipid govern T cell response. J Immunol, 2009; 182(11): 7030-7.

Chapter5.15.indd 978 11/02/14 1:09 PM

Page 32: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

979 CHAPTER 5.15NEW TB VACCINES: WHAT IS IN THE PIPELINE?

135. Okada M, Kita Y, Nakajima T, Kanamaru N, Hashimoto S, Nagasawa T, Kaneda Y, Yoshida S, Nishida Y, Nakatani H, Takao K, Kishigami C, Nishimatsu S, Sekine Y, Inoue Y, McMurray DN, and Sakatani M. Novel prophylactic vaccine using a prime-boost method and hemagglutinating virus of Japan-envelope against tuberculosis. Clin Dev Immunol, 2011; 2011: 549281.

136. Okada M and Kita Y. Tuberculosis vaccine development: The development of novel (preclinical) DNA vaccine. Hum Vaccin, 2010; 6(4): 297–308.

137. Okada M, Kita Y, Nakajima T, Kanamaru N, Hashimoto S, Nagasawa T, Kaneda Y,  Yoshida S,  Nishida Y,Fukamizu R,  Tsunai Y,  Inoue R,  Nakatani H,  Namie Y, Yamada J, Takao K, Asai R, Asaki R, Matsumoto M,McMurray DN, Dela Cruz EC, Tan EV, Abalos RM, Burgos JA, Gelber R, and Sakatani M. Evaluation of a novel vaccine (HVJ-liposome/HSP65 DNA+IL-12 DNA) against tuberculosis using the cynomolgus monkey model of TB. Vaccine, 2007; 25(16): 2990–3.

138. Okada M, Kita Y, Nakajima T, Kanamaru N, Hashimoto S, Nagasawa T, Kaneda Y, Yoshida S, Nishida Y,Nakatani H, Takao K, Kishigami C, Inoue Y, Matsumoto M, McMurray DN, Dela Cruz EC,  Tan EV, Abalos RM,Burgos JA,  Saunderson P,  and Sakatani M. Novel prophylactic and therapeutic vaccine against tuberculosis. Vaccine, 2009; 27(25–26): 3267–70.

139. Yoshida S, Tanaka T, Kita Y, Kuwayama S, Kanamaru N, Muraki Y, Hashimoto S, Inoue Y, Sakatani M,Kobayashi E, Kaneda Y, and Okada M. DNA vaccine using hemagglutinating virus of Japan-liposome encapsulating combination encoding mycobacterial heat shock protein 65 and interleukin-12 confers protection against Mycobacterium tuberculosis by T cell activation. Vaccine, 2006; 24(8): 1191–204.

140. Dey, B, Jain R, Gupta UD, Katoch VM, Ramanathan VD, and Tyagi AK. A booster vaccine expressing a latency-associated antigen augments BCG induced immunity and confers enhanced protection against tuberculosis. PLoS One, 2011; 6(8): e23360.

141. Dey, B, Jain R, Khera A, Gupta UD, Katoch VM, Ramanathan VD, and Tyagi AK. Latency Antigen �-Crystallin Based Vaccination Imparts a Robust Protection against TB by Modulating the Dynamics of Pulmonary Cytokines. PLoS One, 201; 6(4): e18773.

142. Clark S, Cross ML, Smith A, Court P, Vipond J, Nadian A, Hewinson RG, Batchelor HK, Perrie Y, Williams A, Aldwell FE, and Chambers MA. Assessment of different

Chapter5.15.indd 979 11/02/14 1:09 PM

Page 33: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

980 SECTION 5 DEVELOPMENT OF NEW VACCINES AGAINST TB

formulations of oral Mycobacterium bovis Bacille Calmette-Guerin (BCG) vaccine in rodent models for immunogenicity and protection against aerosol challenge with M. bovis. Vaccine, 2008; 26(46): 5791–7.

143. Cross ML, Lambeth MR, Coughlan Y, Aldwell FE. Oral vaccination of mice with lipid-encapsulated Mycobacterium bovis BCG: Effect of reducing or eliminating BCG load on cell-mediated immunity. Vaccine. 2007 Jan 26;25(7):1297–303.

144. Dorer DE, Czepluch W, Lambeth MR, Dunn AC, Reitinger C, Aldwell FE, McLellan AD. Lymphatic tracing and T cell responses following oral vaccination with live Mycobacterium bovis (BCG). Cell Microbiol, 2007; 9(2): 544–53.

145. Tompkins DM, Ramsey DS, Cross ML, Aldwell FE, de Lisle GW, and Buddle BM. Oral vaccination reduces the incidence of tuberculosis in free-living brushtail possums. Proc Biol Sci, 2009; 276(1669): 2987–95.

146. Wedlock, ND, Aldwell FE, Vordermeier HM, Hewinson RG, and Buddle BM. Protection against bovine tuberculosis induced by oral vaccination of cattle with Mycobacterium bovis BCG is not enhanced by co-administration of mycobacterial protein vaccines. Vet Immunol and Immunopathol, 2011; 144(3-4): 220-7.

147. Rodriguez, L, Tirado Y, Reyes F, Puig A, Kadir R, Borrero R, Fernandez S, Reyes G, Alvarez N, Garcia MA, Sarmiento ME, Norazmi MN, Perez Quinoy JL, Acosta A. Proteoliposomes from Mycobacterium smegmatis induce immune cross-reactivity against Mycobacterium tuberculosis antigens in mice. Vaccine, 2011; 29(37): 6236-41.

147a. García MA, Borrero R, Marrón R, Lanio ME, Canet L, Otero O, Kadir R, Suraiya S, Zayas C, López Y, Norazmi MN, Sarmiento ME and Acosta A. Evaluation of speci�c humoral immune response and cross reactivity against Mycobacterium tuberculosis antigens induced in mice immunized with liposomes composed of total lipids extracted from Mycobacterium smegmatis. BMC Immunology, 2013; 14(Suppl 1):S11.

147b. Reyes F, Tirado Y, Puig A, Borrero R, Reyes G, Fernández S, Pérez JL, Kadir R, Zayas C, Norazmi MN, Sarmiento ME and Acosta A. Immunogenicity and cross-reactivity against Mycobacterium tuberculosis of proteoliposomes derived from Mycobacterium bovis BCG. BMC Immunology; 2013; 14(Suppl 1):S7.

Chapter5.15.indd 980 11/02/14 1:09 PM

Page 34: Chapter5.15.indd 948 11/02/14 1:09 PMtbvaccines.usm.my/finlay/sites/default/files/Chapter 5.15.pdf · of new improved TB vaccines is a promising approach to signi˜cantly reduce the

981 CHAPTER 5.15NEW TB VACCINES: WHAT IS IN THE PIPELINE?

148. Hanif SN, Al-Attiyah R, and Mustafa AS. DNA vaccine constructs expressing Mycobacterium tuberculosis-speci�c genes induce immune responses. Scand J Immunol, 2010; 72(5): 408–15.

149. Hanif, SN, Al-Attiyah, R and Mustafa AS. Cellular immune responses in mice induced by Mycobacterium tuberculosis PE35-DNA-vaccine construct and identi�cation of Th1-cell epitopes using synthetic peptides. Scand J Immunol, 2011;74: 554-60.

150. Colaco CA, Bailey CR, Keeble J, and Walker KB. BCG (Bacille Calmette-Guerin) HspCs (heat-shock protein-peptide complexes) induce T-helper 1 responses and protect against live challenge in a murine aerosol challenge model of pulmonary tuberculosis. Biochem Soc Trans, 2004; 32(Pt 4): 626–8.

151. Walker KB, Keeble J, and Colaco C. Mycobacterial heat shock proteins as vaccines - a model of facilitated antigen presentation. Curr Mol Med, 2007; 7(4): 339–50.

152. De Groot AS, McMurry J, Marcon L, Franco J, Rivera D, Kutzler M, Weiner D, Martin B. Developing an epitope-driven tuberculosis (TB) vaccine. Vaccine, 2005; 23(17–18): 2121–31.

153. McMurry J, Sbai H, Gennaro ML, Carter EJ, Martin W, and De Groot AS. Analyzing Mycobacterium tuberculosis proteomes for candidate vaccine epitopes. Tuberculosis (Edinb), 2005; 85(1–2): 95–105.

154. McMurry JA, Kimball S, Lee JH, Rivera D, Martin W, Weiner DB, Kutzler M, Sherman DR,  Kornfeld H,  and De Groot AS. Epitope-driven TB vaccine development: a streamlined approach using immuno-informatics, ELISpot assays, and HLA transgenic mice. Curr Mol Med, 2007; 7(4): 351–68.

155. Millington, K.A., et al., Rv3615c is a highly immunodominant RD1 (Region of Difference 1)-dependent secreted antigen speci�c for Mycobacterium tuberculosis infection. Proc Natl Acad Sci U S A, 2011; 108(14): 5730-5.

Chapter5.15.indd 981 11/02/14 1:09 PM