chapter 38 plant reproduction and development. reproduction and development alternation of...

Download Chapter 38 Plant Reproduction and Development. Reproduction and Development Alternation of Generations Angiosperms and other plants exhibit alternation

Post on 26-Mar-2015

224 views

Category:

Documents

6 download

Embed Size (px)

TRANSCRIPT

  • Slide 1

Chapter 38 Plant Reproduction and Development Slide 2 Reproduction and Development Alternation of Generations Angiosperms and other plants exhibit alternation of generations: haploid (n) and diploid (2n) generations take turns producing each other Sporophyte: diploid plant that produces haploid spores by meiosis Gametophyte: haploid plant that produces gametes Slide 3 Reproduction and Development Alternation of Generations Fertilization results in diploid zygotes, which divide by mitosis and form new sporophytes Sporophyte dominant in angiosperms Evolutionary history has reduced gametophytes in angiosperms to only a few cells, not an entire plant Slide 4 Reproduction and Development Slide 5 Flowers Angiosperm sporophytes produce unique reproductive structures called flowers Flowers consist of four types of highly modified leaves Sepals Petals Stamen Pistil (or carpel) Their site of attachment to the stem is the receptacle Slide 6 Reproduction and Development Flower Structure Slide 7 Reproduction and Development Flower Anatomy Sepals and petals are nonreproductive organs Sepals protect the other three, the floral bud Petals attract pollinators and act as landing pads Slide 8 Reproduction and Development Flower Anatomy Stamen and carpels are male and female reproductive organs, respectively Stamen consists of filament (long, thin) and anther (pollen) Carpel consists of stigma (sticky opening), style (long tube connecting stigma to ovary), ovary (houses ovules; becomes fruit), and ovules (develops female gametes; become seeds) Slide 9 Reproduction and Development Flower Anatomy Complete flowers have all four floral organs Ex: Trillium Incomplete flowers missing one or more of the four floral organs Slide 10 Reproduction and Development Flower Anatomy Bisexual flower (perfect flower) is equipped with both stamens and carpals All complete and many incomplete flowers are bisexual A unisexual flower is missing either stamens (carpellate flower) or carpels (staminate flower) Slide 11 Reproduction and Development Unisexual Flowers Monoecious plants: staminate and carpellate flowers at separate locations on the same individual plant Ex: corn ears derived from clusters of carpellate flowers; tassels consist of staminate flowers Slide 12 Reproduction and Development Unisexual Flowers Dioecious plants: staminate and carpellate flowers on separate plants Ex: Date palms and Sagittaria (below) have carpellate individuals that produce dates and staminate individuals that produce pollen Slide 13 Reproduction and Development Gamete Formation Development of angiosperm gametophytes involves meiosis and mitosis Slide 14 Reproduction and Development Gamete Formation The male gametophytes are sperm- producing structures called pollen grains, which form within the pollen sacs of anthers The female gametophytes are egg- producing structures called embryo sacs, which form within the ovules in ovaries Slide 15 Reproduction and Development Male Gamete Formation The male gametophyte begins development within the sporangia (pollen sacs) of the anther Within the sporangia are microsporocytes, each of which will from four haploid microspores through meiosis Each microspore can eventually give rise to a haploid male gametophyte Slide 16 Reproduction and Development Male Gamete Formation A microspore divides once by mitosis and produces a generative cell and a tube cell Generative cell will eventually form sperm Tube cell, enclosing the generative cell, produces the pollen tube; delivers sperm to egg Slide 17 Reproduction and Development Male Gamete Formation This two-celled structure (generative and tube cells) is encased in a thick, ornate, distinctive, and resistant wall: a pollen grain; an immature male gametophyte Slide 18 Reproduction and Development Female Gamete Formation Ovules, each containing a single sporangium, form within the chambers of the ovary One cell in the sporangium of each ovule, the megasporocyte, grows and then goes through meiosis, producing four haploid megaspores In many angiosperms, only one megaspore survives Slide 19 Reproduction and Development Female Gamete Formation This megaspore divides by mitosis three times, resulting in one cell with eight haploid nuclei Membranes partition this mass into a multicellular female gametophyte the egg sac Slide 20 Reproduction and Development Female Gamete Formation At one end of the egg sac, two synergid cells flank the egg cell Synergids attract and guide the pollen tube formation At the other end of the egg sac are three antipodal cells no idea what they do Slide 21 Reproduction and Development Female Gamete Formation The other two nuclei, the polar nuclei, share the cytoplasm of the large central cell of the embryo sac The ovule now consists of the embryo sac and the surrounding integuments (from the sporophyte) Slide 22 Reproduction and Development Angiosperm Pollination The successful transfer of pollen from anther to stigma NOT fertilization: fusion of gametes Pollination leads to fertilization Cross-pollination vs. self-pollination Most angiosperms are pollinated by insects, birds, and mammals (vectors) that reward the species with food in the form of nectar Some are pollinated by wind (corn, wheat) and have small, plain, non-fragrant flowers Slide 23 Reproduction and Development Angiosperm Pollination Fragrance, pattern, and colors are designed to attract the vector so it will pick up pollen and bring it to the next flower Some vectors get tricked Orchid flowers resemble female wasps; males attempt copulation; the more orchids the wasps mate with, the more pollination occurs Good example of coevolution Slide 24 Reproduction and Development Slide 25 Slide 26 Slide 27 Animal Pollinators The Scottish broom flower has a tripping mechanism that arches the stamens over the bee and dusts it with pollen, some of which will rub off onto the stigma of the next flower the bee visits Slide 28 Reproduction and Development Double Pollination After pollen grain lands on stigma, the generative cell divides by mitosis into two haploid sperm cells 1 sperm fertilizes egg; forms the zygote (2n) 1 sperm fertilizes polar nuclei; forms endosperm (3n) Slide 29 Reproduction and Development Double Pollination Double fertilization ensures that the endosperm will develop only in ovules where the egg has been fertilized. This prevents angiosperms from squandering nutrients in eggs that lack an embryo Slide 30 Reproduction and Development Seeds After double fertilization, the embryo develops to a point and then enters a dormancy period During this time, the embryo is housed in a tough, protective coating seed coat It will remain as the seed until germination, usually brought about by the absorption of water Seeds allow parent plants to disperse offspring and wait until environmental conditions are favorable for growth Slide 31 Reproduction and Development Seeds In bean seeds (dicot), the embryo consists of an long structure, the embryonic axis, attached to cotyledons Below the point at which the cotyledons are attached, the embryonic axis is called the hypocotyl; above it is the epicotyl Tip of the epicotyl is the plumule:shoot tip with a pair of mini leaves End of the hypocotyl is the radicle, or embryonic root Slide 32 Reproduction and Development Seeds Monocots have a single cotyledon called a scutellum Embryo of a grass seed is enclosed by two sheaths, a coleorhiza, which covers the young root, and a coleoptile, which cover the young shoot Slide 33 Reproduction and Development Fruits Develop due to hormonal changes after fertilization Usually develop only after fertilization Designed to protect the seeds and aid in seed dispersal by wind or animals Slide 34 Reproduction and Development Fruits Fruits are simply any structure related to or resulting from the ovary of a flower (Yes! That includes many of the common vegetables) Slide 35 Reproduction and Development Seed Dispersal Fruits aid in seed dispersal based on how the fruits develop Lightweight fruits allow wind dispersal Dandelions and Maples Slide 36 Reproduction and Development Seed Dispersal Floating fruits allow water dispersal Coconuts Slide 37 Reproduction and Development Seed Dispersal Clingy fruits allow animal dispersal Fruits grab the animal (cockleburs, jumping cholla) Slide 38 Reproduction and Development Seed Dispersal Tasty fruits allow animal dispersal Fruits entice the animal to eat it (mistletoe and birds) Animals eat the fruit and deposit the seeds (in a nice pile of fertilizer) in new places Why are unripe fruits bitter? Slide 39 Reproduction and Development Seed Dispersal Explosive seed pods allow dispersal by the plant itself Impatients get their name from their behavior

Recommended

View more >