chapter 1-4 - intersection design...section 1 – chapter 4 intersection design 1.4‐3 4.2...

73
Intersection Design 1.41 SECTION 1, CHAPTER 4 Intersection Design 4.1 Introduction An intersection is the area where two or more streets join or cross at‐grade. The intersection includes the areas needed for all modes of travel: pedestrian, bicycle, motor vehicle, and transit. Thus, the intersection includes not only the pavement area, but typically the adjacent sidewalks and pedestrian curb cut ramps. The intersection is defined as encompassing all alterations (for example, turning lanes) to the otherwise typical cross‐sections of the intersecting streets. Intersections are a key feature of street design in four respects: Focus of activity The land near intersections often contains a concentration of travel destinations. Conflicting movements Pedestrian crossings and motor vehicle and bicycle turning and crossing movements are typically concentrated at intersections. Traffic control At intersections, movement of users is assigned by traffic control devices such as yield signs, stop signs, and traffic signals. Traffic control often results in delay to users traveling along the intersecting roadways, but helps to organize traffic and decrease the potential for conflict. Capacity In many cases, traffic control at intersections limits the capacity of the intersecting roadways, defined as the number of users that can be accommodated within a given time period. This chapter describes the considerations and design parameters for intersections. The chapter begins by outlining definitions and key elements, and then describes the characteristics of intersection users, intersection types and configurations, capacity and quality of service considerations, geometric design elements, and other considerations.

Upload: others

Post on 02-Feb-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

  •   Intersection Design  1.4‐1 

    SECTION 1, CHAPTER 4

    Intersection Design 

    4.1 Introduction Anintersectionistheareawheretwoormorestreetsjoinorcrossat‐grade.Theintersectionincludestheareasneededforallmodesoftravel:pedestrian,bicycle,motorvehicle,andtransit.Thus,theintersectionincludesnotonlythepavementarea,buttypicallytheadjacentsidewalksandpedestriancurbcutramps.Theintersectionisdefinedasencompassingallalterations(forexample,turninglanes)totheotherwisetypicalcross‐sectionsoftheintersectingstreets.Intersectionsareakeyfeatureofstreetdesigninfourrespects:

    Focusofactivity‐Thelandnearintersectionsoftencontainsaconcentrationoftraveldestinations.

    Conflictingmovements‐Pedestriancrossingsandmotorvehicleandbicycleturningandcrossingmovementsaretypicallyconcentratedatintersections.

    Trafficcontrol‐Atintersections,movementofusersisassignedbytrafficcontroldevicessuchasyieldsigns,stopsigns,andtrafficsignals.Trafficcontroloftenresultsindelaytouserstravelingalongtheintersectingroadways,buthelpstoorganizetrafficanddecreasethepotentialforconflict.

    Capacity‐Inmanycases,trafficcontrolatintersectionslimitsthecapacityoftheintersectingroadways,definedasthenumberofusersthatcanbeaccommodatedwithinagiventimeperiod.

    Thischapterdescribestheconsiderationsanddesignparametersforintersections.Thechapterbeginsbyoutliningdefinitionsandkeyelements,andthendescribesthecharacteristicsofintersectionusers,intersectiontypesandconfigurations,capacityandqualityofserviceconsiderations,geometricdesignelements,andotherconsiderations.

  • 1.4‐2  Intersection Design  DRAFT 

    4.1.1 Intersection Users Allroadwayusersareaffectedbyintersectiondesignasdescribedbelow:

    Pedestrians.Keyelementsaffectingintersectionperformanceforpedestriansare:(1)amountofright‐of‐wayprovidedforthepedestrianincludingbothsidewalkandcrosswalkwidth,accuracyofslopesandcrossslopesoncurbcutrampsandwalkways,audibleand/ortactilecuesforpeoplewithlimitedsight,andabsenceofobstaclesinaccessiblepath;(2)crossingdistanceandresultingdurationofexposuretoconflictswithmotorvehicleandbicycletraffic;(3)volumeofconflictingtraffic;and(4)speedandvisibilityofapproachingtraffic.

    Bicyclists.Keyelementsaffectingintersectionperformanceforbicyclesare:(1)degreetowhichpavementissharedorusedexclusivelybybicycles;(2)relationshipbetweenturningandthroughmovementsformotorvehiclesandbicycles;(3)trafficcontrolforbicycles;(4)differentialinspeedbetweenmotorvehicleandbicycletraffic;and(5)visibilityofthebicyclist.

    Motorvehicles.Keyelementsaffectingintersectionperformanceformotorvehiclesare:(1)typeoftrafficcontrol;(2)vehicularcapacityoftheintersection,determinedprimarilyfromthenumberoflanesandtrafficcontrol(althoughthereareotherfactors);(3)abilitytomaketurningmovements;(4)visibilityofapproachingandcrossingpedestriansandbicycles;and(5)speedandvisibilityofapproachingandcrossingmotorvehicles.

    Transit.Whentransitoperationsinvolvebuses,theysharethesamekeycharacteristicsasvehicles.Inaddition,transitoperationsmayinvolveatransitstopatanintersectionarea,andinfluencepedestrian,bicycle,andmotorvehicleflowandsafety.

    Ownersandusersofadjacentlandoftenhaveadirectinterestinintersectiondesign,particularlywheretheintersectionissurroundedbyretail,commercial,historicorinstitutionallanduses.Primaryconcernsincludemaintenanceofvehicularaccesstoprivateproperty,turnrestrictions,consumptionofprivatepropertyforright‐of‐way,andprovisionofsafe,convenientpedestrianaccess.

    4.1.2 Intersection Design Process Theneedforintersectionimprovementisidentifiedandvariousoptionsforaddressingthisneedareconsideredandanalyzed.Thespecificdesignelementsofintersectionsmayimpactanyorallpotentialusers.Sections4.2through4.6definekeytermsanddiscussintersectionusers,configurations,trafficcontrol,capacity,andqualityofservice.Section4.7describestherangesofphysicaldimensionsandtheoperationalcharacteristicsofeachintersectiondesignelement.

  • Section 1 – Chapter 4

      Intersection Design  1.4‐3 

    4.2 Definitions and Key Elements Themajorstreetistypicallytheintersectingstreetwithgreatertrafficvolume,largercross‐section,andhigherfunctionalclass.Theminorstreetistheintersectingstreetlikelytohavelesstrafficvolume,smallercross‐sectionandlowerfunctionalclassificationthanthemajorstreet.Thetermintersectionencompassesnotonlytheareaofpavementjointlyusedbytheintersectingstreets,butalsothosesegmentsoftheintersectingstreetsaffectedbythedesign.Thus,thosesegmentsofstreetsadjacenttotheintersectionforwhichthecross‐sectionorgradehasbeenmodifiedfromitstypicaldesignareconsideredpartoftheintersection.Exhibit4‐1summarizestheextentandterminologyusedtodefineanintersection.Exhibit 4‐1  Intersection Terminology 

    Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2004.

  • 1.4‐4  Intersection Design  DRAFT 

    Twogeometricfeaturesarecommontoallintersections.Theangleofintersectionisformedbytheintersectingstreets’centerlines.Wheretheangleofintersectiondepartssignificantly(morethanapproximately20degrees)fromrightangles,theintersectionisreferredtoasaskewedintersection.Intersectionlegsarethosesegmentsofroadwayconnectingtotheintersection.Thelegusedbytrafficapproachingtheintersectionistheapproachleg,andthatusedbytrafficleavingisthedepartureleg.Sidewalks,crosswalksandpedestriancurbcutrampsareconsideredtobewithintheintersection.Thepavementedgecorneristhecurveconnectingtheedgesofpavementoftheintersectingstreets.Inadditiontothebasicgeometricdesignfeatures,optionsmaybeaddedtoimproveserviceforvarioususers.Auxiliarylanesarelanesaddedattheintersection,usuallytoaccommodateturningmotorvehicles.Theymayalsobeusedtoaddthroughlanesthroughanintersection.Channelizinganddivisionalislandsmaybeaddedtoanintersectiontohelpdelineatetheareainwhichvehiclescanoperate,andtoseparateconflictingmovements.Islandscanalsoprovideforpedestrianrefuge.Aturningroadwayisashortsegmentofroadwayforarightturn,delineatedbychannelizingislands.Turningroadwaysareusedwhereright‐turnvolumesareveryhigh,orwhereskewedintersectionswouldotherwisecreateaverylargepavementarea.Trafficcontroldevicesassignrightofway,tobothmotorizedandnon‐motorizedtrafficandincludetrafficsignals,pavementmarkings,STOPsigns,YIELDsigns,pedestriansignalheadsandotherdevices(suchasraisedpavementmarkings,flashingbeacons,andelectronicblank‐outsigns).

    4.3 User Characteristics Thefollowingsectionsdescribecharacteristicsofintersectionusers.Pedestriansandbicyclistsarepresentedfirst,followedbymotorvehicleandpublictransitusers.Thisorderofpresentationreinforcestheneedtoconsiderthesemodesthroughouttheintersectiondesignprocess.

    4.3.1 Pedestrians Pedestrianrequirementsmustbefullyconsideredinthedesignofintersections.Thereareseveralimportantfeaturestoconsiderincluding:

    CrossingsandPedestrianCurbCutRampLocations—Locationsshouldcorrespondtotheplacementofsidewalksalongapproachingstreets,andlikely

  • Section 1 – Chapter 4

      Intersection Design  1.4‐5 

    crossinglocations.Pedestriancurbcutrampsneedtoensureaccessibilitytocrossinglocations.

    WalkingSpeed—Undernormalconditions,pedestrianwalkingspeedsonsidewalksandcrosswalksrangefrom2.5feetpersecondto6feetpersecond.Elderlypedestriansandyoungchildrenwillgenerallybeintheslowerportionofthisrange.Awalkingspeedof3.5to4feetpersecondforcrosswalksignaltimingiswidelyacceptedasaguidelineforwalkingspeedincrosswalks.Thedesignershouldnotethatthecurrentreviseddraftversion(2005)oftheADAAccessibilityGuidelinesforPublicRight‐of‐wayandthecurrent(2009)ManualonUniformTrafficControlDevices(MUTCD)(bothnotadoptedatthetimeofthisGuidebook)requireamaximumwalkspeedof3.5feetpersecondovertheentirelengthofcrosswalk.

    PedestrianFlowCapacity—Thenumberofpedestriansperhourthatcanbeaccommodatedbythefacilityundernormalconditions.

    TrafficControl,YieldingandDelay—Inadditiontopedestrianflowcapacity,pedestriansaresignificantlyaffectedbythetypeoftrafficcontrolinstalledatanintersection,thespecificparametersofthecontrol,andtheresultingmotorvehicleoperations.AtSTOPcontrolled,YIELDcontrolled,anduncontrolledintersections,pedestrians’abilitytocrossthestreetandthedelayexperiencedisinfluencedbytheyieldingbehaviorofmotorvehicles.Atsignalizedintersections,thelengthandfrequencyoftimeprovidedforpedestriancrossings,theclarityofinformationprovided,conflictingturningmovements,andmotorvehicleyieldingarekeyinfluencesonpedestrians’abilitytocrossthestreet,andondelay.

    4.3.2 Bicyclists Bicyclists’needsmustbeintegratedintothedesignofintersections.Whentravelingwithmotorvehicles,bicyclistsaresubjecttomotorvehicletrafficlaws.Importantconsiderationsforbicycleaccommodationinclude:

    Cross‐section—Bicyclistspositionthemselvesfortheirintendeddestinationregardlessofthepresenceofbikelanesorshoulders.Ifbicyclelanesarepresent,thedesignneedstoinsurethatbicyclistscanmergetotheproperlocationbasedonthebicyclist’sintendeddestination.

    OperatingSpeed—Atunsignalizedintersections,anaveragebicyclespeedof15milesperhourcanbeassumedonthemajorstreet.Ontheminorstreet,bicyclistsusuallystoporslow,andtravelthroughtheintersectionatspeedswellbelow15milesperhour.Atsignalizedintersections,bicyclistsreceivingthegreensignalproceedthroughtheintersectionatanaveragespeedof15milesperhour.Bicyclistswhohavestoppedforasignalproceedthroughtheintersectionatspeedswellbelow15milesperhour.

  • 1.4‐6  Intersection Design  DRAFT 

    BicycleCapacity—Thenumberofbicyclesperhourthatcanbeaccommodatedbythefacilityundernormalconditions.

    TrafficControl—Bicyclistsarerequiredbylawtoobeycontroldevicesatintersections.Therefore,trafficcontroldevicesneedtoaccountforbicycleactivity.Trafficsignalswhichoperateusingdetectionsystems(suchasloopdetection,videocamera,andmicrowave)mustbedesignedandfieldtestedtobesensitivetobicycles.Manyoftheaspectsoftrafficcontroldescribedformotorvehicles(below)alsoapplytobicyclists.

    4.3.3 Motor Vehicles Thefollowingimportantcharacteristicsofmotorvehiclesareconsideredinintersectiondesign:

    DesignVehicle—Thelargesttypeofmotorvehiclethatisnormallyexpectedtobeaccommodatedthroughtheintersection.

    DesignSpeed—Themotorvehiclespeedselectedonadjoiningsegmentsofroadway.

    MotorVehicleCapacity—Thenumberofmotorvehiclesthatcanbemovedthroughanintersectionundernormalconditions.

    TrafficControl‐Muchlikeotherusers,motorvehiclesareinfluencedbythetypeandtimingoftrafficcontrolinstalledatanintersection,andnumberofotherusers.Atroundabouts,STOPcontrolled,YIELDcontrolled,anduncontrolledintersections,motorvehiclecapacityanddelayareinfluencedbyconflictingtrafficstreams.Atsignalizedintersections,thetimeprovidedforeachmovement,conflictingturningmovements,andthevolumeandmixofotherusersarekeyinfluencesonbothmotorvehiclecapacityanddelay.

    4.3.3.1 Design Vehicle Thedesignmotorvehicleisthelargesttypeofvehicletypicallyexpectedtobeaccommodatedonthestreet.Atintersections,themostimportantattributeofdesignvehiclesistheirturningradius,whichinturninfluencesthepavementcornerradiusandthereforethesizeoftheintersection.Lanewidth,anotherfeaturerelatedtothedesignvehicle,hassomeimpactonintersectiondesign,butlessthanturningradius.Thedesignvehiclemayalsoaffectthechoiceoftrafficcontroldeviceandtheneedforauxiliarylanes.Thedesignvehicleforintersectionsisthelargerofthedesignvehiclesselectedfortheintersectingstreets.Forexample,attheintersectionofaminorarterialandalocalstreet,theappropriatedesignvehiclefortheintersectionisthatrequiredbytheminorarterial(i.e.,“larger”street).Exhibit4‐2,TypicalDesignVehiclesatIntersections,providesgeneralguidanceforselectingdesignvehiclesappropriateforintersectiondesignunderconditionsofnormaltrafficcomposition.Atlocationswherecollectorsintersectwith

  • Section 1 – Chapter 4

      Intersection Design  1.4‐7 

    arterialsexperiencinghightruckvolumes,theappropriatetruckdesignvehicleshouldbeselected.SampleturningtemplatesforthesemotorvehiclesareprovidedinExhibit4‐3.Exhibit 4‐2  Typical Design Motor Vehicles at Intersections 

    Functional Class of Major Road Design Motor Vehicle (AASHTO Category)

    Typical for Intersection

    Major Arterial Tractor-trailer Truck (WB-65) Minor Arterial Tractor-trailer Truck (WB-50) Major Collector Single-unit Truck Minor Collector Passenger Car (P) Local Roads and Street Passenger Car (P) Notes: Design vehicles from AASHTO A Policy on Geometric Design of Highways and Streets, 2011 Passenger Car (P) applies to Light Trucks and SUV’s SU category can also be used for school and transit buses

    4.3.4 Transit Thedesignvehicleappropriateformosttypesoftransitserviceisthe“City‐Bus”asdefinedbyAASHTO.Thisvehicleis40feetlong,8feetwide,andhasouterandinnerturningwheelpathsof42.0feetand24.5feet,respectively.The“mid‐size”bus,typicallyaccommodating22to28passengers,isalsousedinscheduledtransitservice.Theturningpathforthemid‐sizebuscanbeaccommodatedwithinthesingle‐unit(SU)truckturningpathdiagram.Transitstopsareoftenlocatedatintersectionseitherasanear‐sidestopontheapproachtotheintersectionorasafar‐sidestoponthedeparturelegoftheintersection.Locationnearintersectionsisparticularlyadvantageouswheretransitroutescross,minimizingthewalkingdistanceneededforpassengerstransferringbetweenbuses.Abusstop,whethernear‐sideorfar‐side,requires50to70feetofcurbspaceunencumberedbyparking.Onstreetswithoutparkinglanesorbusbays,busesmuststopinamovingtrafficlanetoservicepassengers.Passengerstypicallyrequire4to6secondsperpersontoboardabus,and3to5secondstodisembark.Thetotalamountoftimeatransitvehiclewillblocktrafficmovementscanthenbeestimatedusingthenumberofboardingsandalightingsexpectedatastop.

  • 1.4‐8  Intersection Design  DRAFT 

    Exhibit 4‐3   Sample Vehicle Turning Template Passenger Car (P) Single Unit Truck (SU-12 [SU-40])

    Intermediate Semi-Trailer (WB-12 [WB-40]) Transit Bus (CITY BUS)

    Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2011. Note: Not to scale

  • Section 1 – Chapter 4

      Intersection Design  1.4‐9 

    4.4 Intersection Types and Configurations Intersectionscanbecategorizedintofourmajortypes,asillustratedinExhibit4‐4,IntersectionTypes.

    4.4.1 Simple Intersections Simpleintersectionsmaintainthestreet’stypicalcross‐sectionandnumberoflanesthroughouttheintersection,onboththemajorandminorstreets.Simpleintersectionsarebest‐suitedtolocationswhereauxiliary(turning)lanesarenotneededtoachievethedesiredlevel‐of‐service,orareinfeasibleduetonearbyconstraints.Generally,simpleintersectionsprovidetheminimumcrossingdistancesforpedestriansandarecommoninlow‐volumelocations.

    4.4.2 Flared Intersections Flaredintersectionsexpandthecross‐sectionofthestreet(main,crossorboth).Theflaringisoftendonetoaccommodatealeft‐turnlane,sothatleft‐turningbicyclesandmotorvehiclesareremovedfromthethrough‐trafficstreamtoincreasecapacityathigh‐volumelocations,andsafetyonhigherspeedstreets.Right‐turnlanes,lessfrequentlyusedthanleft‐turnlanes,areusuallyaresponsetolargevolumesofrightturns.Intersectionsmaybeflaredtoaccommodateanadditionalthroughlaneaswell.Thisapproachiseffectiveinincreasingcapacityatisolatedruralorsuburbansettingsinwhichlengthywideningbeyondtheintersectionis:notneededtoachievethedesiredlevel‐of‐service;notfeasibleduetonearbyconstraints;or,notdesirablewithinthecontextoftheproject.Intersectionapproachescanbeflaredslightly,notenoughforadditionalapproachlanesbutsimplytoeasethevehicleturningmovementapproachingordepartingtheintersection.Thistypeofflaringhasbenefitstobicycleandmotorvehicularflowsincehigherspeedturningmovementsattheintersectionarepossibleandencroachmentbylargerturningvehiclesintoothervehiclepathsisreduced.However,addingflaretoanintersectionincreasesthepedestriancrossingdistanceandtime.

  • 1.4‐10  Intersection Design  DRAFT 

    Exhibit 4‐4  Intersection Types 

    Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2011. Chapter 3 Elements of Design

  • Section 1 – Chapter 4

      Intersection Design  1.4‐11 

    4.4.3 Channelized Intersections Channelizedintersectionsusepavementmarkingsorraisedislandstodesignatetheintendedvehiclepaths.Themostfrequentuseisforrightturns,particularlywhenaccompaniedbyanauxiliaryright‐turnlane.Atskewedintersections,channelizationislandsareoftenusedtodelineaterightturns,evenintheabsenceofauxiliaryrightturnlanes.Atintersectionslocatedonacurve,divisionalislandscanhelpdirectdriverstoandthroughtheintersection.Atlargeintersections,shortmedianislandscanbeusedeffectivelyforpedestrianrefuge.Channelizationislandsarealsousedinsupportofleft‐turnlanes,formingtheendsofthetaperapproachingtheturnbay,andoftenthenarrowdivisionalislandextendingtotheintersection.At“T”‐typeintersections,achannelizationislandcanguideoncomingtraffictotherightoftheleft‐turnlane.Channelizedintersectionsareusuallylargeand,therefore,requirelongpedestriancrosswalks.However,thechannelizationislandscaneffectivelyreducethecrosswalkdistanceinwhichpedestriansareexposedtomovingmotorvehicles.Thedesignofchannelizedintersectionsneedstoensurethattheneedsofpedestriansareconsidered,includingpedestriancurbcutrampsor“cut‐throughs”thatallowwheelchairusersthesamesafeharborasotherpedestriansonchannelizationislands.

    4.4.4 Roundabouts Theroundaboutisachannelizedintersectionwithone‐waytrafficflowcirculatingaroundacentralisland.Alltraffic—throughaswellasturning—entersthisone‐wayflow.Althoughusuallycircularinshape,thecentralislandofaroundaboutcanbeovalorirregularlyshaped.Roundaboutscanbeappropriatedesignalternativetobothstop‐controlledandsignal‐controlledintersections,astheyhavefewerconflictpointsthantraditionalintersections(eightversus32,respectively).Atintersectionsoftwo‐lanestreets,roundaboutscanusuallyfunctionwithasinglecirculatinglane,makingitpossibletofitthemintomostsettings.Roundaboutsdifferfrom“rotaries”inthefollowingrespects:

    Size—Singlelaneroundaboutshaveanoutsidediameterbetween80and140feet,whereas,rotariesaretypicallymuchlargerwithdiametersaslargeas650feet.

    Speed—Thesmalldiameterofroundaboutslimitscirculatingvehiclespeedsto10to25milesperhour,whereas,circulatingspeedsatrotariesistypically30to40milesperhour.

  • 1.4‐12  Intersection Design  DRAFT 

    Capacity—Theslowercirculatingspeedsatroundaboutsallowenteringvehiclestoacceptsmallergapsinthecirculatingtrafficflow,meaningmoregapsareavailable,increasingthevolumeoftrafficprocessed.Atrotaries,vehiclesneedlargergapsinthecirculatingtrafficflowreducingthevolumeoftrafficprocessed.

    Safety—Theslowerspeedsatroundaboutsnotonlyreducetheseverityofcrashes,butminimizesthetotalnumberofallcrashes,whereas,rotariestypicallyseehighnumbersofcrasheswithagreaterseverity.

    Roundaboutsarealsoconsideredastraffic‐calmingdevicesinsomelocationssincealltrafficisslowedtothedesignspeedoftheone‐waycirculatingroadway.Thisisincontrastwithapplicationoftwo‐waystopcontrol,wherethemajorstreetisnotslowedbytheintersection,orall‐waystopcontrolwherealltrafficisrequiredtostop.Roundaboutscanalsobeconsideredforretrofitofexistingrotaries;however,incaseswithveryhightrafficvolumes,trafficsignalcontrolmaybemoresuitable.

    4.4.5 Typical Intersection Configurations Mostintersectionshavethreeorfourlegs,butmulti‐legintersections(five‐andevensix‐legintersections)arenotunusual.ExamplesofintersectionconfigurationsfrequentlyencounteredbythedesignerareshowninExhibit4‐5.Ideally,streetsinthree‐legandfour‐legintersectionscrossatrightanglesornearlyso.However,skewedapproachesarearegularfeatureofintersectiondesign.Whenskewanglesarelessthan60degrees,thedesignershouldevaluateintersectionmodificationstoreducetheskew.

  • Section 1 – Chapter 4

      Intersection Design  1.4‐13 

    Exhibit 4‐5  Intersecting Street Configuration and Nomenclature 

    Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2011.

    4.5 Traffic Control Trafficcontroldevices(signals,STOP,orYIELDsignsandpavementmarkings)oftencontroltheentryofvehiclesintotheintersection.Trafficcontroldevicesmayalsoberequiredatintersectionsofimportantprivatedrivewayswithpublicstreets.Examplesofimportantdrivewaysincludealleysservingmultiplehomes,commercialalleysaccessingparking,andcommercialdriveways.Thedesignershouldnotethatguidancefortheinstallationoftrafficcontroldevicesdiscussedinthissectionisbasedonthe2009MUTCD(notadoptedatthetimeofpublishingofthisGuidebook).

  • 1.4‐14  Intersection Design  DRAFT 

    4.5.1 Traffic Control Measures Potentiallyconflictingflows(vehicle‐to‐vehicleorvehicle‐to‐non‐vehicle)areaninherentfeatureofintersections.Atmostintersections,therefore,trafficcontrolmeasuresarenecessarytoassigntherightofway.Typesofintersectiontrafficcontrolinclude:

    Wheresufficientvisibilityisprovidedinlowvolumesituations,someintersectionsoperateeffectivelywithoutformalizedtrafficcontrol.Inthesecases,normalrightofwayrulesapply.

    Yieldcontrol,withtrafficcontrolledby“YIELD”signs(sometimesaccompaniedbypavementmarkings)ontheminorstreetapproaches.Majorstreettrafficisnotcontrolled.

    All‐wayyieldcontrolonroundabouts. Two‐waystopcontrol,withtrafficcontrolledby“STOP”signorbeaconsonthe

    minorstreetapproaches.Majorstreettrafficisnotcontrolled.Theterm“two‐waystopcontrol”canalsobeappliedto“T”intersections,eventhoughtheremaybeonlyoneapproachunderstopcontrol.STOPcontrolshouldnotbeusedforspeedreduction.

    All‐waystopcontrol,withtrafficonallapproachescontrolledbySTOPsignsorSTOPbeacons.All‐waystopcontrolcanalsobeatemporarycontrolatintersectionsforwhichtrafficsignalsarewarrantedbutnotyetinstalled.

    Trafficsignals,controllingtrafficonallapproaches. Flashingwarningbeaconsonsomeorallapproaches.

    Generally,thepreferredtypeoftrafficcontrolcorrelatesmostcloselywithsafetyconcernsandvolumeofmotorvehicles,bicyclesandpedestrians.Forintersectionswithlowervolumes,STOPorYIELDcontrolonthecross(minor)streetisthemostfrequentlyusedformofvehiculartrafficcontrol.

    4.5.1.1 Stop and Yield Control Warrants PartTwooftheMUTCDshouldbeconsultedforguidanceonappropriateSTOPandYIELDsignusageandplacement.Ingeneral,STOPorYIELDsignscouldbeusedifoneormoreofthefollowingexist:

    Anintersectionofalessimportantroadwithamainroadwhereapplicationofthenormalrightofwayrulewouldnotbeexpectedtoprovidereasonablecompliancewiththelaw;

    Astreetenteringadesignatedthroughhighwayorstreet;and/or Anunsignalizedintersectioninasignalizedarea.

  • Section 1 – Chapter 4

      Intersection Design  1.4‐15 

    Inaddition,theuseofSTOPorYIELDsignsshouldbeconsideredattheintersectionoftwominorstreetsorlocalroadswheretheintersectionhasmorethanthreeapproachesandwhereoneormoreofthefollowingconditionsexist:

    Thecombinedvehicular,bicycle,andpedestrianvolumeenteringtheintersectionfromallapproachesaveragesmorethan2,000unitsperday;

    Theabilitytoseeconflictingtrafficonanapproachisnotsufficienttoallowaroadusertostoporyieldincompliancewiththenormalright‐of‐wayruleifsuchstoppingoryieldingisnecessary;and/or

    Crashrecordsindicatethatfiveormorecrashesthatinvolvethefailuretoyieldtheright‐of‐wayattheintersectionunderthenormalright‐of‐wayrulehavebeenreportedwithina3‐yearperiod,orthatthreeormoresuchcrasheshavebeenreportedwithina2‐yearperiod.

    Atintersectionswhereafullstopisnotnecessaryatalltimes,considerationshouldbegiventousinglessrestrictivemeasures,suchasYIELDsigns.YIELDsignscouldbeinstalled:

    Ontheapproachestoathroughstreetorhighwaywhereconditionsaresuchthatafullstopisnotalwaysrequired.

    Atthesecondcrossroadofadividedhighway,wherethemedianwidthattheintersectionis30feetorgreater.Inthiscase,aSTOPorYIELDsignmaybeinstalledattheentrancetothefirstroadwayofadividedhighway,andaYIELDsignmaybeinstalledattheentrancetothesecondroadway.

    Forachannelizedturnlanethatisseparatedfromtheadjacenttravellanesbyanisland,eveniftheadjacentlanesattheintersectionarecontrolledbyahighwaytrafficcontrolsignalorbyaSTOPsign.

    AtanintersectionwhereaspecialproblemexistsandwhereengineeringjudgmentindicatestheproblemtobesusceptibletocorrectionbytheuseoftheYIELDsign.

    Facingtheenteringroadwayforamerge‐typemovementifengineeringjudgmentindicatesthatcontrolisneededbecauseaccelerationgeometryand/orsightdistanceisnotadequateformergingtrafficoperation. 

    4.5.1.2 Multiway STOP Control MultiwaySTOPcontrolcanbeusefulasasafetymeasureatintersectionsifcertaintrafficconditionsexist.Safetyconcernsassociatedwithmultiwaystopsincludepedestrians,bicyclists,andallroadusersexpectingotherroaduserstostop.MultiwaySTOPcontrolisusedwherethevolumeoftrafficontheintersectionroadsinapproximatelyequal.ThefollowingcriteriashouldbeconsideredformultiwaySTOPsigninstallation.

  • 1.4‐16  Intersection Design  DRAFT 

    Wheretrafficcontrolsignalsarejustified,themultiwaySTOPisaninterim

    measurethatcanbeinstalledquicklytocontroltrafficwhilearrangementsarebeingmadefortheinstallationofthetrafficcontrolsignal;

    Fiveormorereportedcrashesina12‐monthperiodthataresusceptibletocorrectionbyamultiwaySTOPinstallation.Suchcrashesincluderight‐turnandleft‐turncollisionsaswellasright‐anglecollisions;

    Minimumvolumes: Thevehicularvolumeenteringtheintersectionfromthemajorstreet

    approaches(totalofbothapproaches)averagesatleast300vehiclesperhourforanyeighthoursofanaverageday,and

    Thecombinedvehicular,pedestrian,andbicyclevolumeenteringtheintersectionfromtheminorstreetapproaches(totalofbothapproaches)averagesatleast200unitsperhourforthesameeighthours,withanaveragedelaytominorstreetvehiculartrafficofatleast30secondspervehicleduringthehighesthour,but

    Ifthe85thpercentileapproachspeedofthemajorstreettrafficexceeds40mph,theminimumvehicularvolumewarrantsare70percentoftheabovevalues.

    Wherenosinglecriterionissatisfied,butwherethesecondandthirdcriteriaareallsatisfiedto80percentoftheminimumvalues.The85thpercentilespeedcriterionisexcludedfromthiscondition.

    Athighercombinationsofmajorstreetandminorstreetvolume,trafficsignalsbecomethecommontrafficcontrolmeasure.Roundaboutsshouldalsobeconsideredinthesesituations.Thedecisiontousetrafficsignalsshouldfollowthe“signalwarrants”specifiedintheMUTCD.Thesewarrantsaresummarizedinthefollowingsection.

    4.5.1.3 Traffic Signal Warrants TrafficsignalsshouldonlybeconsideredwheretheintersectionmeetswarrantsintheManualonUniformTrafficControlDevices(MUTCD).Wherewarrantedandproperlyinstalled,trafficsignalscanprovideforanorderlymovementoftraffic.Comparedtostopcontrol,signalscanincreasethetrafficcapacityoftheintersection,reducefrequencyandseverityofcrashes,particularlyright‐anglecrashes,andinterruptheavytrafficflowtopermitothermotorvehicles,pedestriansandbicyclestocrossthestreet.Unwarrantedorpoorlytimedtrafficsignalscanhavenegativeimpacts,includingexcessivedelaytovehicularandpedestriantraffic,disrespectfortrafficcontroldevices

    The satisfaction of a traffic signal warrant or warrants shall not, in itself, require the installation of a traffic control signal.  The traffic signal warrant analysis provides guidance as to locations where signals would not be appropriate and locations where they could 

    be considered further. 

  • Section 1 – Chapter 4

      Intersection Design  1.4‐17 

    ingeneral,increased“cutthrough”trafficoninappropriateroutes,andincreasedfrequencyofcrashes.KeyfeaturesoftheMUTCDwarrantsare:

    Warrant1:8‐hourvehicularvolume,metby500to600vehiclesperhouronthemajorstreet(bothdirections,two‐fourlanesrespectively)and150to200vehiclesontheminorstreet(majordirection,one‐twolanesrespectively),foranycombinationof8hoursdaily.Avariation(“interruptionofcontinuoustraffic”)warrantismetwith750to900vehicleshourlyonmajorstreet(two‐fourlanes,bothdirections),and75to100vehicleshourly(majordirection,one‐twolanes),ontheminorstreet.Thesevolumescanbereducedundercertaincircumstances(seePart4oftheMUTCDfordetails).

    Warrant2:four‐hourvehicularvolume,metwhentheplottedpointsforeachofanyfourhoursrepresentingthevehiclesperhouronthemajorstreet(totalofbothapproaches)andthecorrespondingvehiclesperhouronthehigher‐volumeminor‐streetapproach(onedirectiononly)allfallabovetheapplicablecurveintheMUTCD.

    Warrant3:peakhour,metwhentheplottedpointsforonehourrepresentingthevehiclesperhouronthemajorstreet(totalofbothapproaches)andthecorrespondingvehiclesperhouronthehigher‐volumeminor‐streetapproach(onedirectiononly)fallabovetheapplicablecurveintheMUTCD.

    Warrant4:pedestrianvolume,metwhentheplottedpointsforeachofanyfourhoursofthevehiclesperhouronthemajorstreet(totalofbothapproaches)andthecorrespondingpedestriansperhourcrossingthemajorstreet(totalofallcrossings)allfallabovethecurveintheMUTCDforthePedestrianFourHourWarrant;orwhentheplottedpointsforonehourofthevehiclesperhouronthemajorstreet(totalofbothapproaches)andthecorrespondingpedestriansperhourcrossingthemajorstreet(totalofallcrossings)allfallabovethecurveintheMUTCDforthePedestrianPeakHourWarrant.

    Warrant5:schoolcrossing,metwithaminimumof20studentscrossinginthehighestcrossinghour,andlessthanoneacceptablegapinthetrafficstreamperminuteduringthehighestcrossinghour.Engineeringjudgmentandattentiontootherremedies(suchascrossingguards,improvedsignage,andcrossingislands)arestronglyrecommended.

    Warrant6:coordinatedtrafficsignalsystem,whereexistingtrafficsignalspacingdoesnotprovidethenecessarydegreeofplatooning(grouping)oftraffic,asneededtoprovideaprogressiveoperation.

    Warrant7:crashexperience,metwhencrashdataindicatesaproblemremediablebytrafficsignalinstallation.

    Warrant8:roadwaynetwork,metwhenthestreethasimportanceasaprincipalroadwaynetworkorisdesignatedasamajorrouteonanofficialplan.

    Warrant9:intersectionnearagradecrossing,metwhenagradecrossingexistsonanapproachcontrolledbyaSTOPorYIELDsignandthetrackis

  • 1.4‐18  Intersection Design  DRAFT 

    within140feetofthestoplineoryieldlineontheapproach;andwhenduringthehighesttrafficvolumehourduringwhichrailtrafficusesthecrossing,theplottedpointrepresentingthevehiclesperhouronthemajorstreet(totalofbothapproaches)andthecorrespondingvehiclesperhourontheminor‐streetapproachthatcrossesthetrack(onedirectiononly,approachingtheintersection)fallsabovetheapplicablecurveintheMUTCD.

    Aspartoftheintersectiondesignprocess,thedetailedwarrants,aspresentedintheManualonUniformTrafficControlDevices,shouldbefollowed.Evenifwarrantsaremet,asignalshouldbeinstalledonlyifitisdeterminedtobethemostappropriatetrafficcontrolbasedonthecontextoftheintersection,assignalsdonotaddcapacitytoanintersection,theyareintendedtoprovideorder.Inmanyinstances,trafficsignalinstallationwillrequiresomewidening.

    4.5.1.4 Pedestrian Travel at Traffic Signals Trafficsignaldesignshouldencompassthefollowingprinciplesforaccommodatingpedestrians:

    Ingeneral,theWALKindicationshouldbeconcurrentwiththetrafficmovingontheparallelapproach.ItshouldbenotedthatConnDOTdoesnotutilizeconcurrentpedestriansignalphasingatStateownedandmaintainedsignalizedintersections.

    TimingofpedestrianintervalsshouldbeinaccordancewithMUTCDandADArequirements.

    Pedestriansshouldbegiventhelongestpossiblewalktime,whilemaintainingbalancebetweenmotorvehicleflowandpedestriandelay.Inmostcases,theWALKintervalshouldincludeallofthetimeinthevehiclegreenphase,exceptfortherequiredclearanceinterval.Althoughnotpreferred,theminimumlengthfortheWALKintervalonapedestriansignalindicationis7seconds,longenoughforapedestriantostepoffthecurbandbegincrossing.Insomelimitedcircumstances,wherepedestrianvolumeissmall,walkintervalsasshortas4secondsmaybeused.

    Signalsshouldbetimedtoaccommodatetheaveragewalkingspeedsofthetypeofpedestrianthatpredominantlyusestheintersection.(Thelengthoftheclearanceintervaliscalculatedbasedoncrossingtheentirestreetfromcurbramptocurbrampwithanassumedcrossingspeedof3.5feetpersecond).Inareaswhereasignificantportionofexpectedpedestriansareolderorhavedisabilities,awalkingspeedoflessthan3.5feetpersecondshouldbeconsideredindeterminingthepedestrianclearancetime.

    Signalcyclesshouldbeasshortaspossible.Shortsignalcyclesreducedelay,andthereforeimprovelevelofserviceforpedestrians,bicyclistsandmotorvehiclesalike.

  • Section 1 – Chapter 4

      Intersection Design  1.4‐19 

    Simpletwo‐phasesignalsminimizepedestrianwaitingtimeandarethereforepreferableforpedestrianservice.Insomecases,simpletwo‐phasesignalsalsoprovidethebestserviceformotorvehicletraffic.

    Leadingpedestrianintervals(LPI)givepedestriansanadvanceWALKsignalbeforethemotoristsgetaconcurrentgreensignal,givingthepedestrianseveralsecondstostartinthecrosswalk.Thismakespedestriansmorevisibletomotorvehiclesandallowspedestrianstoinitiatetheircrossingwithoutconflictwithothertraffic.

    Goodprogressionformotorvehiclesthroughaseriesofsignalscanbeobtainedoverawiderangeofvehiclespeeds.Inareaswithhighvolumesofpedestrians,alowbutwell‐coordinatedvehicleprogressionspeed(20‐30mph)canbeusedwithlittleornonegativeimpactonvehicularflow.

    Pedestrianphasesincorporatedintoeachsignalcycle,ratherthanon‐demandthroughacallbutton,maybepreferableforsomeconditions.

    Callbuttonuseshouldbelimitedtoonlythoselocationswithtraffic‐actuatedsignals(i.e.,wherethesignaldoesnotcycleintheabsenceofminorstreettraffic).

    Wherecallbuttonsareused,anotificationsignshouldbeprovided. Pedestriancallbuttonactuationshouldprovideatimelyresponse,particularly

    atisolatedsignals(i.e.,notinaprogressionsequence),atmid‐blockcrossings,andduringlow‐trafficperiods(night,forexample).

    Atfour‐wayintersections,curbextensionscouldbeprovidedtodecreasethepedestriancrossinglength.

    Pedestriancallbuttonsandthesignalstheyactivateshouldbemaintainedingoodrepair.Thisrequiresreliableandpredictablebuttonoperation,functionalsignaldisplays,andthecorrectorientationofpedestriansignalheads.

    TheMUTCDrequiresthatallpedestriansignalheadsusedatcrosswalkswherethepedestrianchangeintervalismorethan7secondsshallincludeapedestrianchangeintervalcountdowndisplayinordertoinformpedestriansofthenumberofsecondsremaininginthepedestrianchangeinterval.Thecountdownishelpfultopedestriansbyprovidingtheexactamountofcrossingtimeremaining,therebyallowingthemtomaketheirowninformedjudgmentoninitiatingacrossing,ratherthansimplyfollowingtheWALK/DON’TWALKphases.GuidelinesforthedisplayandtimingofcountdownindicatorsareprovidedintheManualonUniformTrafficControlDevices.Accessiblepedestriansignalsanddetectorsprovideinformationinnon‐visualformatssuchasaudibletones,speechmessages,and/orvibratingsurfaces.GuidelinesfortheinstallationofsuchfeaturesareprovidedintheManualonUniformTrafficControlDevices.

  • 1.4‐20  Intersection Design  DRAFT 

    Locating Pedestrian Call Buttons Pedestriansignalcallbuttonsareusedtoinitiateapedestriancrossingphaseattrafficsignals.Whereneeded,pedestriancallbuttonsshouldbelocatedtomeetthefollowingcriteria:

    Theclosestcallbuttontoacrosswalkshouldcallthepedestriansignalforthatcrosswalk.

    Anarrowindicatorshouldshowwhichcrosswalkthebuttonwillaffect. Thecallbuttonshouldalignwiththecrosswalkandbevisibletoapedestrian

    facingthecrosswalk,unlessspaceconstraintsdictateanotherbuttonplacement. Pedestrianactuatedcallbuttonsshouldbeplacedinlocationsthatareeasyto

    reach,atapproximately3.5feetbutnomorethanfourfeetabovethesidewalk.

    Accessible Pedestrian Signal Systems Atsignalizedintersections,peoplewithvisionimpairmentstypicallyrelyonthenoiseoftrafficalongsidethemasacuetobegincrossing.Theeffectivenessofthistechniqueiscompromisedbyvariousfactors,includingincreasinglyquietcars,permittedrightturnsonred,pedestrianactuatedsignalsandwidestreets.Further,lowtrafficvolumesmaymakeitdifficulttodiscernsignalphasechanges.Technologiesareavailablethatenableaudibleandvibratingsignalstobeincorporatedintopedestrianwalksignalsystems.TheManualonUniformTrafficControlDevicesoffersguidelinesontheuseofaccessiblepedestriansignals.TheFederalAccessBoard’sreviseddraftversion(2005)oftheADAAccessibilityGuidelinesforPublicRight‐of‐Wayrequirestheuseofaudiblesignalswithallpedestriansignals.

    4.6 Intersection Capacity and Quality of Service The“capacity”ofanintersectionforanyofitsusers(motorvehicles,pedestrians,bicyclists,transitvehicles)isthemaximumrateofflowofthatusertypethatcanbeaccommodatedthroughtheintersection.Typically,capacityisdefinedforaparticularusergroupwithoutotherusergroupspresent.Thus,forexample,motorvehicularcapacityisstatedintermsofvehiclesperhour,undertheassumptionthatnootherflows(pedestrians,bicycles)aredetractingfromsuchcapacity.Multimodalcapacityistheaggregatecapacityoftheintersectionforallusersoftheintersection.Insomecases,themaximummultimodalcapacitymaybeobtainedwhilesomeindividualuserflowsareatlessthantheirindividualoptimumcapacity.Qualityofservicecanbedefinedinacoupleofdifferentways.Onemeasureofeffectivenessthatcanbeusedtounderstandthequalityoftransportationatanintersectionforagivenmodeisthecontroldelayencounteredbytheuseratthe

  • Section 1 – Chapter 4

      Intersection Design  1.4‐21 

    intersection.Controldelay,aresultoftrafficcontroldevicesneededtoallocatethepotentiallyconflictingflowsattheintersection,reflectsthedifferencebetweentraveltimethroughtheintersectionatfreeflowversustraveltimeundertheencounteredconditionsoftrafficcontrol.Fordrivers,controldelayconsistsoftime“lost”(fromfree‐flowtime)duetodeceleration,waitingatsignals,STOPorYIELDsigns,waitingandadvancingthroughaqueueoftraffic,andacceleratingbacktofree‐flowspeed.Forpedestriansandbicyclists,decelerationandaccelerationtimesareinsignificant,andcontroldelayislargelythetimespentwaitingatsignals,STOP,orYIELDsigns.Anotherwayistodefinethequalityofserviceistodeterminethe“Levelofservice”whichisdefinedbytheHighwayCapacityManual,foreachtypeofintersectionuser.Foreachuser,levelofserviceiscorrelatedtodifferentfactorsbecauseeachmodehasuniqueissuesthatimpactthequalityofitsusers.Forautomobileslevelofserviceisgovernedbycontroldelay.Forbicyclesandpedestriansthelevelofserviceisdeterminedbyseveralfactorsthatdescribetheconditionsofthebicycleandpedestriansfacilities,theimpactsofmotorvehicletrafficonthesemodes,andthecharacteristicsofbicycleandpedestriantraffic.Eachoftheseanalysesisdescribedfurtherinsection4.6.2anddetaileddiscussionsoftheanalysesmethodologyarepresentedintheHighwayCapacityManual.Levelsofserviceanddelayaresomewhatcorrelatedtocapacityinthatlevelsofservicedeclinedascapacityisapproached.

    4.6.1 Capacity “Capacity”(themaximumpossibleflow)differsimportantlyfrom“servicevolumes”(flowsassociatedwiththequalityofflow,typicallystatedas“LevelofService”or“LOS”).Thesetwotermsarediscussed,forpedestrian,bicycle,andmotorvehicleflow,inthefollowingsections.

    4.6.1.1 Pedestrian Flow Capacity Unlikemotorvehiclesandbicycles,pedestrianfacilities(sidewalksandcrosswalks)donothaveadefaultcapacityforanalysispurposes.Onemeasurethatcanprovideinsightintothequalityandconditionofpedestrianfacilitiesisthepedestrianspacemeasuredinsquarefeetperpedestrian(ft2/p).TheHighwayCapacityManualsuggeststhatoncepedestrianspacefallsbelow15ft2/p,pedestrianspeedsbegintofallandtheabilityforpedestrianstomoveontheirdesiredpathbecomesrestricted.MethodsforcalculatingpedestrianspaceforsidewalksandcrosswalksarepresentedintheHighwayCapacityManual.Atsignalizedintersections,eachapproachwillaccommodatepedestriancrossingsfor10to20percentofthetime,reflectingtheintervalsthatpedestrianscanbegintocrosswithassuranceofcompletingtheircrossingwhiletrafficisstoppedfortheirapproach.Atunsignalizedlocations,thetimeavailableforpedestrianflowisdictatedbymotorvehiclevolumeandlengthofthecrossing.Thesetwofactors,whichgovernthenumber

  • 1.4‐22  Intersection Design  DRAFT 

    of“gaps”inthemotorvehiclestreamavailableforsafepedestriancrossing,mustbemeasuredon‐sitetoestablishthepedestrianflowcapacityofanunsignalizedintersection.ThesignalwarrantsintheMUTCDofferguidanceoncombinationsofmotorvehicleandpedestrianvolumesthatmayjustifyasignal,andthereforereflectthepedestriancapacityofunsignalizedintersections.

    4.6.1.2 Bicycle Flow Capacity Abicyclelane(4‐6feetinwidth)can,withuninterruptedflow,carryavolumeofaround2,000bicyclesperhourinonedirection.Atsignalizedintersections,bicyclelanesreceivethesamegreensignaltimeasmotorvehicles,typically20‐35percentofthetotaltime.Thehourlycapacityofabicyclelane,atasignalizedintersection,istherefore400to700bicyclesperhour.Atsignalizedintersectionswithoutbicyclelanes,bicyclesarepartoftheapproachingvehiculartrafficstream.Thecombinedvehicularcapacity(motorvehiclesaswellasbicycles)isestablishedasdefinedinSection4.6.1.3.Atunsignalizedintersectionswithbicyclelanesonthemajorstreet,thebicycleflowcapacityistheuninterruptedflowvolumeof2,000bicyclesperhour.FortheSTOP‐controlled(minorstreet)approach,theflowcapacityforbicycles,whetherinbicyclelanesornot,isgovernedbythespeed,motorvehiclevolume,andnumberoflanesofmajorstreettraffic.Thesefactorsrequiremeasurementon‐sitetoestablishthebicycleflowcapacityofSTOPcontrolledapproaches.

    4.6.1.3 Motor Vehicle Capacity Atunsignalizedintersections,motorizedvehiclecapacityisgovernedbytheabilityofmotorvehicles(ontheminorstreet)underSTOPcontrolorYIELDcontroltoenterorcrossthestreamofmovingmotorvehiclesonthemajorstreet.Thiscapacityisreachedasthenumberofmotorvehiclesonbothmajorstreetapproaches,plusthenumberonthebusiestminorstreetapproachtotals1,200motorvehiclesinasinglepeakhour,ortotals900motorvehicleshourlyoveracontinuous4‐hourperiod.Atthesepoints,enteringorcrossingthemajorstreetfromtheSTOPcontrolledorYIELDcontrolledminorstreetbecomesdifficultorimpossible.FurtherincreasesinintersectioncapacityatSTOPcontrolledorYIELDcontrolledintersectionscanbegainedbyreplacingstoporyieldcontrolwithsignalcontroloraroundabout.Trafficsignalwarrants1,2,and3discussedpreviouslyprovidedetailedguidanceonspecificcombinationsofmajorandminorstreetvolumesassociatedwiththetransitionfromSTOPcontrolorYIELDcontroltotrafficsignalcontrol.Atsignalizedintersections,motorvehiclecapacityisgovernedbythenumberoflanesapproachingtheintersection,thenumberofreceivinglanes,andtheamountofgreensignaltimegiventotheapproach.Thetotalgreentimeavailabledecreasesasmoresignalphasesandthereforemoreredandyellow“losttime”areincludedinthesignalsequences.

  • Section 1 – Chapter 4

      Intersection Design  1.4‐23 

    Asimplebutreliablemeasureofasignalizedintersection’scapacityisits“criticallanevolume”capacity(CLVcapacity),definedasthemaximumsumofconflictingmovementsthatcanbemovedthroughtheintersectionatagivenlevelofserviceasshowninExhibit4‐6.SignalizedintersectioncapacityisnearedastheCLVreaches1,500hourlymotorvehiclesforintersectionswithtwosignalphases(theminimumpossible)or1,375to1,425forintersectionswithmorethantwosignalphases.ThissimpleCLVmeasurecanbeusedforinitialassessmentofanintersection’scapacity,andalsoasareasonablenesscheckonproceduresintheHighwayCapacityManual.TherelationshipbetweenCLVcapacityandlevelofservice(describedinmoredetailinSection4.6.2)issummarizedinExhibit4‐7.Atroundabouts,motorvehiclecapacityisgovernedbytheabilityofenteringtraffictoenterthestreamofmotorvehiclesinthecirculatingroadway.Thiscapacityisnearedasthevehicularvolumeinthecirculatingroadway(singlelane)approaches1,800motorvehicleshourly.Atthispoint,enteringthestreamofcirculatingmotorvehicleswithintheroundaboutbecomesdifficultorimpossible.Atthisthreshold,additionallanesononeormoreapproachesandasecondcirculatinglaneshouldbeconsidered.

  • 1.4‐24  Intersection Design  DRAFT 

    Exhibit 4‐6  Computing Critical Lane Volume 

    Notes: Critical lane volume (CLV) is the sum of main street CLV plus the cross street CLV. The main street CLV is the greater of either: (A) eastbound through and right per lane + westbound left, or (B)

    westbound through and right per lane + eastbound left. Similarly, the cross street CLV is the greater of either: (A) northbound through and right per lane + southbound left, or (B)

    southbound through and right per lane + northbound left. Total intersection CLV = main street CLV + cross street CLV = 390 + 480 = 870. Source: Transportation Research Board, Circular Number 212, TRB 1980.

  • Section 1 – Chapter 4

      Intersection Design  1.4‐25 

    Exhibit 4‐7  Traffic Flow Related to Critical Lane Volumes1 

    Flow Condition

    Corresponding Highway Capacity

    Manual Level of Service

    Corresponding Critical Lane Volume (CLV) Vehicles Per Hour

    Signal Phases 2 Phase 3 Phase 4 Phase

    Free Flowing (no loaded cycles)

    A, B, C Less than 1200 Less than 1140 Less than 1100

    Prevailing Level of Peak-Hour Congestion in Towns and Urban Areas

    D 1200 – 1350 1140-1275 1100-1225

    Approaching Capacity E, F 1350 – 1500 1275 - 1425 1225 – 1375 Source: CLV/LOS relationship from Table 6, Transportation Research Circular Number 212, Transportation Research Board, 1980. 1 Based on a peak hour factor of 0.9, limited heavy vehicles, limited turning volumes, and somewhat flat grades.

    4.6.1.4 Multimodal Capacity Undersomecombinationsofusersandintersectionconfiguration,achievingadesiredflowforoneusergroupdiminishesthecapacityforanothergroup.Typicalsituationsinclude:

    Signalswithnumerousphases(5to6ormore)wherethe“walk”phaseisconstrainedbythegreentimeneededforvehiclesonotherapproachespermittedduringthe“walk”phase.

    Wherebusesandothertransitvehiclesstopforpassengerloading/unloadinginalaneoftrafficapproachingordepartinganintersection.

    Whereexceptionallylargevolumesofpedestrianscrossinganapproachrequirea“walk”phasetimegreaterthanthegreensignaltimeneededformotorvehiclespermittedtomoveduringthesamephase.

    Insituationslikethese,intersectiondesignshouldflowfromacarefullyconsideredbalancingoftheneedsofthevarioususergroups.However,whendeterminingthisbalance,thedesigneralsoneedstoconsiderthatexcessivemotorvehicledelayscanleadtoundesirablecut‐throughtrafficpatternsonstreetsnotintendedforhighthroughvolumes.Alternatively,byprovidingmoreefficientmultimodalopportunities,themotorvehicledemandmaybereducedthroughusermodalchoice.

    4.6.2 Level of Service (LOS) Levelofserviceisonemeasureofusersatisfactionwithanintersection.Exhibit4‐8presentsthemeasuresusedtodeterminelevel‐or‐servicebymode.Formotorvehicles,levelofserviceislinkedtoaveragedelaywhileforbicyclesandpedestrianstheLOSisderivedfromanLOSscorewhichincorporatesseveralfactorsthatimpacttravelforthesemodes.

  • 1.4‐26  Intersection Design  DRAFT 

    Exhibit 4‐8  Measures to Determine Level of Service by Mode 

    Intersection Type Mode

    Pedestrian Bicycle Automobile Signalized LOS score LOS score Delay Unsignalized Delay N/A Delay and v/c ratio Roundabout Delay N/A Delay and v/c ratio

    Source: Highway Capacity Manual, 2010

    4.6.2.1 Pedestrian Level of Service PedestrianlevelofserviceisdefinedbythepedestrianLOSscoreordelay,dependingonintersectiontype.Exhibit4‐8summarizespedestrianlevelofserviceforintersections.Exhibit 4‐8  Pedestrian Level‐of‐Service (LOS) Criteria at Intersections 

    Intersection Type

    LOS Signalized Intersection

    LOS score Unsignalized Intersection

    Delay (s) Roundabout

    Delay (s) A ≤ 2.00 0 – 5 0 – 5 B > 2.00 – 2.75 5 – 10 5 – 10 C > 2.75 – 3.50 10 – 20 10 – 20 D > 3.50 – 4.25 20 – 30 20 – 30 E > 4.25 – 5.00 30 – 45 30 – 45 F > 5.00 >45 >45

    Source: Highway Capacity Manual, 2010 Forsignalizedintersections,thepedestrianLOSscoreiscalculatedbasedonseveralfactors.Thecrosswalkadjustmentfactorrepresentsthedeteriorationinpedestriantravelqualitycausedbyconflictingmotorvehicleandpedestrianpaths.Themotorizedvehiclevolumeadjustmentfactorrepresentsthevolumesofvehiclesthatwillconflictwiththepedestriancrosswalk.Themotorizedvehiclespeedadjustmentfactorrepresentstheimpactofvehiclespeedonpedestrian’sabilitytocrossanintersection.Lastly,thepedestriandelayfactorturnsthepedestriandelaycausedbyatrafficsignalintoafactorintheLOSscore.AtunsignalizedintersectionsdelayistheonlyfactorthatdeterminestheLOSforpedestrians.Thedelayincrossingthemajorstreet(i.e.,approachesnotcontrolledbySTOPcontrol)isthetimeneededforpedestrianstoreceiveagapintrafficadequatetocrosssafely.Gapsare,inturn,relatedtothevolumeoftrafficandthelikelihoodofdriver’syieldingtherightofwaytoapedestrianinthecrosswalk.PedestrianscrossingSTOPcontrolledorYIELDcontrolledapproachesdonothavetowaitforagapintraffic,butwaitforthefirstvehicleinlinetoyieldrightofway.PedestriancrossingsacrossSTOPcontrolledorYIELDcontrolledapproachesarelikelytohaveasignificantlybetterlevelofservicethancrossingsattheuncontrolledapproaches.

  • Section 1 – Chapter 4

      Intersection Design  1.4‐27 

    Atroundabouts,pedestriansmaywalkfurtherthanatasignalizedintersectionduetothediameterofthecirculatingroadway.However,pedestrianscrossonlyasinglelaneoftrafficatatime,takingrefugeinthesplitterisland.Actualdelayislikelytobecomparableorlessthanatanormallysituatedcrosswalk.PedestrianLOSatroundaboutsiscalculatedusingthesamemethodasforunsignalizedintersections.

    4.6.2.2 Bicycle Level of Service Unlikeautomobiles,bicyclistsintheirlane(orshoulder)“bypass”stoppedmotorvehicles,andthereforeseldomexperiencedelayduetoqueuing.Delayduetoqueuingofbicyclesisafactoronlywithextraordinaryvolumes.Therefore,LOSforbicyclesisdeterminedbyanLOSscoremuchlikethepedestrianLOSatsignalizedintersections.LevelofserviceforbicyclesatsignalizedintersectionsissummarizedinExhibit4‐9.ThefactorsthatcontributetothebicycleLOSscorearethecross‐sectionadjustmentfactorandthemotorvehicleadjustmentfactor.HavingbicyclelanesandwideshoulderswillimprovetheLOSscorewhilelargevolumesofvehiclesorpoorlymanagedvehicleswillworsenthescore.Exhibit 4‐9  Bicycle Level‐of‐Service (LOS) Criteria at Signalized Intersections 

    Level of Service LOS Score A ≤ 2.00 B > 2.00 – 2.75 C > 2.75 – 3.50 D > 3.50 – 4.25 E > 4.25 – 5.00 F > 5.00

    Source: Highway Capacity Manual, 2010 Atunsignalizedlocations,bicyclesonthemajorstreetarenotlikelytobedelayedbecausetheyhavepriorityoverminorstreetvehicles.BicyclistscrossingorenteringthemajorstreetfromaSTOPcontrolledminorstreetaredelayedbytheamountoftimerequiredtofindanacceptablegap.Fieldmeasurementofthistime,duringpeakaswellasoff‐peakperiods,isthepreferredmethodofestablishingthisdelay.Atroundabouts,bicyclesgenerallyexperiencethesamedelaysasmotorvehiclesasthey“takethelane”inapproachingthecirculatingroadway.Currently,thereisnotaHighwayCapacityManualrecommendedmethodforanalyzingbicycleLOSatunsignalizedintersectionsorroundabouts.

  • 1.4‐28  Intersection Design  DRAFT 

    4.6.2.3 Motor Vehicle Level of Service (LOS) Motorvehiclelevelofservice(LOS)atanintersectionisdefinedbytheHighwayCapacityManualintermsofdelayexperiencedbyamotorvehicletravelingthroughtheintersectionduringthebusiest(peak)15minutesoftrafficoftheday.Typically,delayisaveragedoverallapproacheswithtrafficcontrols(STOP,YIELD,orsignal).Itcanalsobecomputedseparatelyforeachapproachoreachlanegroup(adjacentlaneswithatleastonemovementincommon;forexampleonelanewiththroughmovementadjacenttoalanewiththrough/right‐turnmovement).Exhibit4‐10providesmotorvehicularlevel‐of‐servicecriteriaatintersections.Forunsignalizedintersectionsandroundaboutsitisimportanttonotethatifthefacilityisoperatingatavolume‐to‐capacityratioexceeding1.0,regardlessofcalculateddelay,thefacilityisautomaticallyassignedanLOSF.Also,althoughthecriteriaforunsignalizedintersectionandroundaboutarethesamethemethodologyfordeterminingdelayisdifferentforeachfacility.Exhibit 4‐10  Motor Vehicular Level of Service (LOS) Criteria at Intersections 

    Intersection Type

    LOS Measure Signalized Intersection

    Delay1 (s) Unsignalized Intersection2

    Delay (s) Roundabout2

    Delay (s) A Less than 10.0 Less than 10.0 Less than 10.0

    B 10.1 to 20.0 10.1 to 15 10.1 to 15 C 20.1 to 35.0 15.1 to 25 15.1 to 25 D 35.1 to 55.0 25.1 to 35 25.1 to 35 E 55.1 to 80.0 35.1 to 50 35.1 to 50 F Greater than 80.0 Greater than 50.0 Greater than 50.0

    Source: Highway Capacity Manual, (HCM 2010) Transportation Research Board, 2010 1 Delay is “control delay” as defined in HCM 2010, and includes time for slowing, waiting in queues at the intersections,

    and accelerating back to free-flow speed. 2 If the v/c ratio of the intersection being analyzed exceeds 1.0 the LOS is automatically F regardless of delay.

    Improving Vehicular Level of Service at Intersections Whenattemptingtoimprovethemotorvehicularlevel‐of‐serviceatintersections,thedesignershouldworktoensurethatthemeasurestoimprovemotorvehicularlevelofservicedonothaveadisproportionatelynegativeimpactonotherintersectionusers.Thereareseveraltechniquescommonlyusedtoachievethisobjectiveasdescribedinthefollowingparagraphs.Changingthetypeoftrafficcontrol(forexample,transitioningfromSTOPcontroltosignalizationortoaroundabout)mayaddmotorvehicularcapacityatintersections.Atintersectionsalreadysignalized,morecapacitymaybegainedfromreplacingfixed‐timesignalcontrolwithmotorvehicle,bicycleandpedestrian‐actuatedcontrol.Auxiliaryleft‐turnandright‐turnlanes(seeSection4.4.2)increaseintersectioncapacitybyremovingslowingorstoppedvehiclesfromlanesotherwiseusablebythroughtraffic.Auxiliarythroughlanes(seeSection4.4.2)canbeappropriateatisolatedsignalizedintersectionsand

  • Section 1 – Chapter 4

      Intersection Design  1.4‐29 

    increaseintersectioncapacity.However,thelengthoftheauxiliarylanesforthereceivinglegwilldeterminetheabilityofthisextrathroughtraffictomerge.Ifauxiliarylanesaretooshort,theymaycongesttheintersectionandblocktheminorstreettraffic,andfailtoreducedelay.Thedesignershouldalsonotethataddingauxiliarylanesincreasesthecrossingdistanceforpedestrians.ThedesignershouldensurethatthelevelofserviceincreasesprovidedformotorvehiclesdonotresultinlargedegradationsinLOSforotherusers.Wherewideningtoprovideauxiliarylanesisplanned,thedesignershouldconsidercrossingislandsandotherfeaturestoensuretheabilityforpedestrianstocross.Atroundabouts,capacitycanbeincreasedbyanadditionalapproachlaneandacorrespondingsectionofadditionalcirculatinglane.Addingparallellinksofstreetnetworkmayreducetrafficvolumesatanintersection,therebyeliminatingorpostponingtheneedtoincreaseitscapacity.

    4.6.2.4 Multimodal Level of Service Asdescribedthroughoutthissection,thedesignershouldstrivetoachievethehighestlevelofserviceforallintersectionusers,giventhecontextanddemandsencountered.TheintersectionlevelofservicecommonlyfoundinvariousareatypesisshowninExhibit4‐11.Thedesignerneedstounderstandthepotentialimpactthatintersectiongeometricsandtrafficcontrolwillhaveonlevelofserviceforallmodes.Generally,thedesignershouldtrytoimproveormaintainexistinglevelsofservice.Inmostinstances,thedesignershouldnotproposeadesignthatprovidesalevel‐of‐serviceimprovementforoneusergroupattheexpenseofanother.Exhibit 4‐11  Common Intersection Level‐of‐Service Ranges by User Group 

    and Area Type 

    Level-of-Service Ranges Pedestrian Bicycle Motor Vehicle

    Rural Natural A-B A-C A-C Rural Village A-C A-D A-E(1) Rural Developed A-C A-C A-C Suburban High Density B-E C-E C-E Suburban Village/Town Center A-D C-E C-F(1) Suburban Low Density A-C A-C A-D Urban Park A-C A-D B-E Urban Residential A-C B-D C-E Urban Central Business District A-D B-E D-F(1) 1 In these instances, queuing at intersections becomes critical in that there should not be impacts that extend to adjacent

    intersections.

  • 1.4‐30  Intersection Design  DRAFT 

    4.7 Geometric Design Elements Thefollowingsectionsdescribemanyofthedetaileddesignelementsassociatedwithintersectionsincludingintersectionalignment,pavementcornerradii,auxiliarylanes,channelizationislands,roundabouts,medianopenings,pedestriancurbcutrampsandcrosswalks,bicyclelanetreatments,andbusstops.

    4.7.1 Intersection Alignment Intersectionalignmentguidelinescontrolthecenterlinesandgradesofboththemajorandminorstreets,inturnestablishingthelocationofallotherintersectionelements(forexample,edgeofpavement,pavementelevation,andcurbelevation).

    4.7.1.1 Horizontal Alignment Ideally,streetsshouldintersectasclosetorightanglesaspractical.Skewedintersectionscanreducevisibilityofapproachingmotorvehiclesandbicycles,requirehigherdegreesoftrafficcontrol,requiremorepavementtofacilitateturningvehicles,andrequiregreatercrossingdistancesforpedestrians.GuidelinesforthemaximumcurvatureatintersectionsaregiveninExhibit4‐12.Curvaturethroughanintersectionaffectsthesightdistanceforapproachingmotorists,andmayrequireadditionaltrafficcontroldevices(warningsigns,stopsigns,signals,pavementmarkingsorroundabouts).Onhigher‐speedroads,superelevationoncurvesmayinclinethecrossslopeoftheintersectioninamanneruncomfortabletomotorists,orinconflictwithintersectionverticalalignmentguidelinesdescribedbelow.Theminimumtangentatcross‐streetapproach(TA)showninExhibit4‐12helpstoassurenecessarysightdistanceattheintersection,andtosimplifythetaskofdrivingformotoristsapproachingtheintersection.Often,insteepterrain,apermissiblegradecannotbeachievedwiththehorizontalalignmentguidelines.Typically,thisdesignchallengeisresolvedbyadheringtoverticalalignmentcriteria,whileincorporatingthenecessaryflexibilityinthehorizontalguidelines.

  • Section 1 – Chapter 4

      Intersection Design  1.4‐31 

    Exhibit 4‐12  Horizontal Alignment Guidelines at Intersections 

    Design Speed (MPH)

    Minimum Angle of Intersection (AI, degrees) Minimum Curve

    Radius, Main Street (RM, feet)

    Minimum Tangent Cross

    Street Approach (TA, feet)

    Arterial Major Street

    Collector Major Street

    Local Major Street

    15 60 60 60 45 30 20 60 60 60 85 30 25 60 60 60 155 30 30 60 60 60 250 30 35 60 60 60 365 45 40 60 60 60 500 45 45 65 60 60 660 45 50 65 65 60 835 60 55 65 65 65 1065 60 60 70 65 65 1340 60

    Source: MassDOT

    4.7.1.2 Vertical Alignment Themajorstreetandminorstreetprofileinfluencetheverticalalignmentofanintersection.

    Major Street Profile Theintersectionapproachgradeintheuphilldirection,asshowninExhibit4‐13,affectstheaccelerationofmotorvehiclesandbicyclesfromastoppedcondition,andthereforecanhaveanimpactonvehiculardelayattheintersection.Theintersectionapproachgradeinthedownhilldirectionaffectsthestoppingdistanceofapproachingmotorvehiclesandbicycles.

  • 1.4‐32  Intersection Design  DRAFT 

    Theintersectiongradeistheslopeofthepavementwithintheintersectionitself.Excessiveintersectiongradecancausetallvehicles(trucks,buses)totipwhileturning.Intersectiongradecanalsohaveanimpactonaccessibilityforpedestrianswithdisabilities,bycreatingagradeoncrosswalks.Exhibit 4‐13  Vertical Alignment Guidelines 

    Source: MassDOT

    Minor Street Profile Theprofileoftheminorstreet,asshowninExhibit4‐14,issubjecttothesameverticalalignmentcriteriaasthemajorstreet;however,severalinherentfeaturesofaminorstreet,particularlyitslowerlevelofusage,willmostlikelypermitalowerdesignspeedfortheminorstreetcomparedtothemajorstreet.WheretheminorstreetisunderSTOPorYIELDcontrol(Exhibit4‐14,PartA),thecrownofthemajorstreetistypicallycarriedthroughtheintersection.Meetingthismajorstreet

  • Section 1 – Chapter 4

      Intersection Design  1.4‐33 

    cross‐sectioncanresultinminorstreetgradesneartheintersectionthataresteeperthanthatwhichwouldoccurwiththemajorstreetcrownremoved.Atintersectionswherethemajorstreetretainsthecrownthroughtheintersection,theminorstreetcrownisgraduallyreduced,typicallystartingatthebeginningoftheapproachgrade,andcompletedslightlyoutsidetheintersection.Atintersectionswithsignalcontrol,itiscustomarytoremovethecrownfromboththemajorstreetandtheminorstreet.Thisremovalofthecrownisadvisableforthecomfortandsafetyofmotorvehicledriversandbicyclistsproceeding,oneitherstreet,atthedesignspeedthroughagreensignalindication.Atintersectionswithall‐waySTOPcontrol,itmaybedesirabletoremovethecrownfrombothintersectingstreets,toemphasizethatallapproachesareequalintermsoftheirtrafficcontrol.Eliminatingthecrownonthemajorstreetcan,undermanycircumstances,reducetheamountofmodificationthatmustbedonetotheminorstreetprofile(Exhibit4‐14PartB).Themajorstreetcrossslopecanbeinclinedinthesamedirectionattheminorstreetprofile,therebypermittingapproachgradesontheminorstreettobeaccommodatedwithminimalalterationtotheoriginalminorstreetprofile.Wherebothmajorstreetandminorstreetcrownsareeliminated,theirremovalisaccomplishedgradually,typicallyoverthelengthoftheapproachgrade.Whethercrownedornot,pavementgradeswithintheintersectionshouldnotexceedthevaluesgiveninExhibit4‐13.Inadditiontomeetingtheverticalprofileguidelinesasstatedabove,intersectionapproachesonbothmainandminorstreetsaresubjecttotheintersectionsighttrianglerequirements(seeChapter2).Undersomecircumstances,thesesighttrianglerequirementsmaydictateapproachgradesorlengthofapproachgradesdifferingfromthoseindicatedintheverticalalignmentguidelinesabove.

  • 1.4‐34  Intersection Design  DRAFT 

    Exhibit 4‐14  Pavement Cross‐slope at Intersections 

    Source: Transportation Association of Canada

    A. Major Street Retains Crown (Stop or Yield control on cross street)

    B. Major Street Crown Removed: Signal Control

    major street profile

    minor street gradeadjusted to reduceapproach grade

    minor street crownflattened at approach

    to intersection

    minor street gradeadjusted to reduce

    approach grade

    major street crowncarried throughintersection

    major streetpavement

    major streetpavement

    minor streetapproach grade(see Exhibit 6-13for minimum length)

    original mino

    r street profil

    e

    minor street profile

    minor street gradeadjusted to reduceapproach grade

    minor streetapproach grade(see Exhibit 6-13for minimum length)

    original minor s

    treet profile

    minor street

    major street

    minor street crownflattened at approach

    to intersection

    minor street crowneliminated throughintersection

    minor street

    minor street

  • Section 1 – Chapter 4

      Intersection Design  1.4‐35 

    4.7.2 Pavement Corner Radius Thepavementcornerradius—thecurveconnectingtheedgesofpavementoftheintersectingstreets—isdefinedbyeitherthecurbor,wherethereisnocurb,bytheedgeofpavement.Thepavementcornerradiusisakeyfactorinthemultimodalperformanceoftheintersection.Thepavementcornerradiusaffectsthepedestriancrossingdistance,thespeedandtravelpathofturningvehicles,andtheappearanceoftheintersection.Excessivelylargepavementcornerradiiresultinsignificantdrawbacksintheoperationofthestreetsincepedestriancrossingdistanceincreaseswithpavementcornerradius.Further,thespeedofturningmotorvehiclesmakingrightturnsishigheratcornerswithlargerpavementcornerradii.Thecompoundedimpactofthesetwomeasures—longerexposureofpedestrianstohigher‐speedturningvehicles—yieldsasignificantdeteriorationinsafetyandqualityofservicetobothpedestriansandbicyclists.Theunderlyingdesigncontrolinestablishingpavementcornerradiiistheneedtohavethedesignvehicleturnwithinthepermitteddegreesofencroachmentintoadjacentoropposinglanes.Exhibit4‐15illustratesdegreesofencroachmentoftenconsideredacceptablebasedontheintersectingroadwaytypes.Thesedegreesofencroachmentvarysignificantlyaccordingtoroadwaytype,andbalancetheoperationalimpactstoturningvehiclesagainstthesafetyofallotherusersofthestreet.AlthoughtheExhibitprovidesastartingpointforplanninganddesign,thedesignermustconfirmtheacceptabledegreeofencroachmentusingvehicleturningtemplatespresentedearlierinthischapterandinAASHTO’sAPolicyontheGeometricDesignofHighwaysandStreets.ForStateroadways,cornerradiishouldbeconsistentwiththeConnecticutDepartmentofTransportation’sHighwayDesignManual.Atthegreatmajorityofallintersections,whethercurbedorotherwise,thepavementcornerdesignisdictatedbytheright‐turnmovement.Leftturnsareseldomacriticalfactorincornerdesign,exceptatintersectionsofone‐waystreets,inwhichcasetheircornerdesignissimilartothatforrightturnsatintersectionsoftwo‐waystreets.ThemethodforpavementcornerdesigncanvaryasillustratedinExhibit4‐16anddescribedbelow.

    Simplecurbradius:Atthevastmajorityofsettings,asimpleradius(curborpavementedge)isthepreferreddesignforthepavementcorner.Thesimpleradiuscontrolsmotorvehiclespeeds,usuallyminimizescrosswalkdistance,generallymatchestheexistingnearbyintersectiondesignsandiseasilydesignedandconstructed.

    Compoundcurvesortaper/curvecombinations:Whereencroachmentbylargermotorvehiclesmustbeavoided,whereturningspeedshigherthanminimumaredesirable,orwhereangleofturnisgreaterthan90degrees,compoundcurvescandefineacurb/pavementedgecloselyfittedtotheouter(rear‐wheel)vehicletrack.Combinationsoftaperswithasinglecurveareasimple,andgenerallyacceptable,approximationtocompoundcurves.

  • 1.4‐36  Intersection Design  DRAFT 

    Turningroadways:Aseparateright‐turnroadway,usuallydelineatedbychannelizationislandsandauxiliarylanes,maybeappropriatewhereright‐turnvolumesarelarge,whereencroachmentbyanymotorvehicletypeisunacceptable,wherehigherspeedturnsaredesired,orwhereangleofturniswellabove90degrees.

    4.7.2.1 Simple Curb Radius Pavementcornerdesignatsimpleintersectionsiscontrolledbythefollowingfactors:

    Theturningpathofthedesignmotorvehicle.DesignmotorvehiclesappropriateforthevariousroadwaytypesaresummarizedinSection4.3.3ofthischapter.

    Theextent(ifany)ofencroachment,intoadjacentoropposingtrafficlanes,permittedbythedesignmotorvehicledeterminedfromExhibit4‐15.

    The“effective”pavementwidthonapproachanddeparturelegsisshowninExhibit4‐17.Thisisthepavementwidthusable,bythedesignmotorvehicle,underthepermitteddegreeofencroachment.Ataminimum,effectivepavementwidthisalwaystheright‐handlaneandthereforeusuallyatleast11‐12feet,onboththeapproachanddeparturelegs.Whereon‐streetparkingispresent,theparkinglane(typically7‐8feet)isaddedtotheeffectivewidthonthoselegs(approach,departureorboth)withon‐streetparking.Typically,legswithon‐streetparkinghaveaneffectivepavementwidthofaround20feet.Theeffectivewidthmayincludeencroachmentintoadjacentoroppositelanesoftraffic,wherepermitted.Amaximumof10feetofeffectivewidth(i.e.,asinglelaneoftraffic)maybeassumedforsuchencroachment.

  • Section 1 – Chapter 4

      Intersection Design  1.4‐37 

    Exhibit 4‐15  Typical Encroachment by Design Vehicle 

    To (Departure Street)

    For Tractor/Trailer (WB 50) For Single-Unit Truck (SU) For Passenger Car (P)

    Fr

    om (A

    ppro

    ach S

    treet)

    Arterial Collector Local Arterial Collector Local Arterial Collector Local Arterial (Art)

    A B C A B C A A A

    Collector (Col)

    B B C B B C A A A

    Local (Loc)

    B D D C C D A B B

    A, B, C, D defined in above diagrams. Note: Cases C and D are generally not desirable at signal controlled intersections because traffic on stopped street has

    nowhere to go. Source: Adapted from ITE Arterial Street Design Guidelines.

  • 1.4‐38  Intersection Design  DRAFT 

    Exhibit 4‐16  Methods for Pavement Corner Design 

    Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2011. Chapter 9 IntersectionsExhibit 4‐17  Effective Pavement Widths 

    Note: The letters A, B, C, and D refer to the typical encroachment conditions illustrated in Exhibit 4-15. Source: MassDOT

  • Section 1 – Chapter 4

      Intersection Design  1.4‐39 

    Exhibit4‐18summarizesthesimplecurbradiusneededforvariousdesignmotorvehicles,reflectingtheextentofencroachmentandeffectivepavementwidth.Generalguidelinescanbeconcludedforright‐angle(90degree)intersections:

    A15‐footsimplecurbradiusisappropriateforalmostallright‐angle(90degree)turnsonlocalstreets.Thisradiuspermitspassengercarstoturnwithnoencroachmentandaccommodatesthesingleunit(SU)truckwithacceptabledegreesofencroachment.Theoccasionaltractor/trailertruck(WB‐50)canalsonegotiatethe15‐footcornerradiuswithinitsacceptabledegreeofencroachment.

    Wherethemajorstreetisacollectorstreet,a20‐30footradiusislikelytobeadequate.Whereparkingispresent,yieldinganeffectivewidthof20feet,thetypicaldesignmotorvehiclefortheintersection(theSUtruck)canturnwithlessthana20footcornerradius,withoutencroachment.Onsinglelaneapproachesanddepartures,withnoon‐streetparking,theSUvehiclecanbeaccommodatedwitha25‐footradiusandan8‐footencroachment(i.e.,a20footeffectivewidth)onthedeparture.Atlocationswherenoencroachmentcanbetolerated,aradiusof40feetwillpermittheSUtrucktoapproachanddepartwithinasinglelane.

    ForarterialstreetswheretheWB‐50truckisthedesignvehicle,a35‐footradiusisadequateundermostcircumstancesofapproachanddepartureconditions.However,withasingleapproachanddeparturelane,andwithnoencroachmenttolerated,aradiusashighas75feetisrequired.Inthissituation,aturningroadwaywithchannelizationislandmaybeapreferablesolution.

    OnStateroadways,cornerradiidesignshouldbeconsistentwiththeCTDepartmentofTransportation’sHighwayDesignManual.Atskewedintersections(turnanglegreaterthan90degrees),thesimpleradiusrequiredfortheSUandWB‐50vehicleissignificantlylargerthanthatneededfor90degreeintersections.Curve/tapercombinationsorturningroadwaysmaybeappropriateinthesesituations.

  • 1.4‐40  Intersection Design  DRAFT 

    Exhibit 4‐18  Simple Radius for Corner Design (Feet) 

    Turn Angle and Effective Width on Approach Leg (feet)

    Effective Width on Departure Leg (Feet) Passenger Car

    (P) Single-unit Truck

    (SU) Tractor-Trailer

    (WB-50) 12 20 12 20 24 12 20 24

    90O Turn Angle 12 Feet 10 5 40 25 10 75 35 30 20 Feet 5 5(a) 30 10 5 70 30 20 24 Feet (b) (b) 25 5 5(a) 70 25 15 120O Turn Angle 12 Feet 25 10 60 35 25 105 65 50 20 Feet 10 5(a) 50 25 20 95 50 40

    24 Feet (b) (b) 45 20 15 95 50 35

    150O Turn Angle 12 Feet 50 25 130 90 75 170 130 105 20 Feet 30 10 110 75 60 155 115 95 24 Feet (b) (b) 100 65 55 155 110 80

    Source: P, SU and WB-50 templates from A Policy on Geometric Design of Highways and Streets, AASHTO, 2011. (a) Minimum buildable. Vehicle path would clear a zero radius. (b) Maximum of 20 feet (one lane plus parking) assumed for passenger car operation.

    4.7.2.2 Curve/Taper Combinations Thecombinationofasimpleradiusflankedbytaperscanoftenfitthepavementedgemorecloselytothedesignmotorvehiclethanasimpleradius(withnotapers).Thiscloserfitcanbeimportantforlargedesignmotorvehicleswhereeffectivepavementwidthissmall(dueeithertonarrowpavementorneedtoavoidanyencroachment),orwhereturningspeedsgreaterthanminimumaredesired.Exhibit4‐19summarizesdesignelementsforcurve/tapercombinationsthatpermitvariousdesignmotorvehiclestoturn,withoutanyencroachment,fromasingleapproachlaneintoasingledeparturelane.

  • Section 1 – Chapter 4

      Intersection Design  1.4‐41 

    Exhibit 4‐19  Curve and Taper Corner Design 

    Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2011. Chapter 9 Intersections

    Exhibit 6‐4‐20  Turning Roadways and Islands 

    Turning Roadway, Edge of Pavement Angle of Turn

    (Degrees) Design Vehicle

    Radius (feet) R1-R2-R1

    Offset (OS feet)

    75 P 100-75-100 2.0 SU 120-45-120 2.0 WB -50 150-50-150 6.5

    90 P 100-20-100 2.5 SU 120-40-120 2.0 WB -50 180-60-180 6.5

    105 P 100-20-100 2.5 SU 100-35-100 3.0 WB -50 180-45-180 8.0

    120 P 100-20-100 2.0 SU 100-30-100 3.0 WB -50 180-40-180 8.5

    150 P 75-20-75 2.0 SU 100-30-100 4.0 WB -50 160-35-160 7.0

    Note: W (width) should be determined using the turning path of the design vehicle. Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2011. Chapter 9 Intersections

  • 1.4‐42  Intersection Design  DRAFT 

    4.7.3 Auxiliary Lanes Thedesignelementsofthreeauxiliarylanestypesaredescribedinthefollowingsections:left‐turnlanes,right‐turnlanes,andthroughlanes.Decelerationandtaperdistancesprovidedbelowshouldbeacceptedasadesirablegoalandshouldbeprovidedforwherepractical.However,inurbanareasitissometimesnotpracticaltoprovidethefulllengthofanauxiliarylane.Insuchcases,atleastpartofthedecelerationmustbeaccomplishedbeforeenteringtheauxiliarylane.Chapter9ofAASHTO’sGeometricDesignofHighwaysandStreetsprovidesmoreinformationforthedesigner.ThedesignofauxiliarylanesonaStateroadwaysshouldbeconsistentwiththeCTDepartmentofTransportation’sHighwayDesignManual.

    4.7.3.1 Left‐Turn Lane Design Elements Left‐turnlanesremovestoppedorslow‐movingleft‐turningmotorvehiclesfromthestreamofthroughtraffic,eliminatingtheprimarycauseofrear‐endcrashesatintersections.Thesafetybenefitsofleft‐turnlanesincreasewiththedesignspeedoftheroad,astheygreatlyreduceboththeincidenceandseverityofrear‐endcollisions.Left‐turnlanesalsoimprovecapacitybyfreeingthetravellanesforthroughtrafficonly.Thesafetyandcapacitybenefitsofleft‐turnlanesapplytoallvehiculartraffic,motorizedaswellasnon‐motorized.However,left‐turnlanesaddtothepedestriancrossingdistanceandpedestriancrossingtime.Theadditionalstreetwidthneededforleft‐turnlanesmayrequirelandtakingorremovalofon‐streetparking.Thelengthsofleft‐turnlanes,illustratedinExhibit4‐21,dependonthevolumeofleft‐turningmotorvehiclesandthedesignspeed.Thelengthoftaperrequiredtoformtheleft‐turnlanevarieswithdesignspeed.Atsignalizedintersections,aconservativeguidelinefordeterminingthestoragelengthofaleft‐turnlaneis150percent(1.5times)ofthelengthoftheaveragenumberofleft‐turningvehiclesarrivingduringasinglesignalcycleinthepeakhour.Amoreanalyticalguidelineforthelengthofrequiredstoragelaneistoobtaintheexpectedlengthoftheleft‐turnqueueandassociatedprobabilitiesfromintersectionanalysiscomputations(computerizedversionsofHighwayCapacityManualmethodologyorderivativeprogramssuchasSYNCHRO).Typically,left‐turnlanesaresizedtoaccommodatethemaximumlengthofqueueforthe95thpercentiletrafficvolumes,aqueuelengththatisexceededononly5percentofthepeak‐hourtrafficsignalcycles.

  • Section 1 – Chapter 4

      Intersection Design  1.4‐43 

    Exhibit 4‐21  Left‐Turn Lane Design Guidelines 

    Dimensions for Left-Turn Lane Elements (feet) Design Speed (mph)

    Lane Width

    (W, feet)

    Deceleration Distance

    (feet)1

    Storage Distance2

    (feet)

    Length of Lane2

    (L, feet)

    Taper Length

    (T, feet)3

    Widened Taper Length (T, feet)

    15-25 10 115 50 165 100 See Note 4 30-35 10 170 50 220 100 See Note 4 40 10-11 275 75 350 110 See Note 4 45 10-11 340 75 415 150 See Note 4 50 11-12 410 75 485 180 See Note 4 55 11-12 485 75 560 180 See Note 4 60 12 530 75 605 180 See Note 4

    Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2011. Chapter 9 Intersections 1 For deceleration grades of 3 percent or less. 2 Storage distance and therefore total lane length (L) are based on an unsignalized left-turn volume of 100 vehicles hourly.

    For larger volumes, compute storage need by formula or from intersection analysis queue calculation. 3 This taper length is not applicable for “widened for turn lane” cases, see note 4. 4 For “widened for turn lane” cases, use T = WS2/60 for speeds less than 45 mph and T = WS for speeds 45 mph and greater.

  • 1.4‐44  Intersection Design  DRAFT 

    4.7.3.2 Right‐Turn Lane Design Elements Rightturnlanesareusedtoremovedeceleratingright‐turningmotorvehiclesfromthetrafficstream,andalsotoprovideanadditionallaneforthestorageofright‐turningmotorvehicles.Wheretheright‐turnvolumeisheavy,thisremovaloftheturningmotorvehiclefromthetrafficstreamcanalsoremoveaprimarycauseofrear‐endcrashesatintersections.Designelementsforright‐turnlanesaresummarizedinExhibit4‐22.Exhibit 4‐22  Right‐Turn Lane Design Guidelines 

    Dimensions for Right-Turn Lane Elements (feet)

    Design Speed1 (mph)

    Lane Width

    (W. feet)

    Turning Lane Width (WT, feet)

    Deceleration Distance

    (feet)

    Storage Distance2

    (feet)

    Length of Lane2

    (L, feet)

    Taper Length (T, feet)

    15-25 10 14 115 50 165 100 30-35 10 14 170 50 220 100 40 10-11 15 275 60 335 110 45 10-11 15 340 60 400 150 50 11-12 15 410 60 470 180 55 11-12 16 485 60 545 180 60 12 16 530 60 590 180

    Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2004. Chapter 9 Intersections 1 Based on grades of less than three percent for speeds less than 60 mph. Based on grades of less than two percent for

    speeds greater than 60mph. 2 Storage distance and therefore total lane length (L) are based on an unsignalized right-turn volume of 100 vehicles

    hourly. For larger volumes, compute storage need by formula or from intersection analysis queue calculation. Right‐turnlanesprovideasafetyandcapacitybenefitformotorizedtraffic.However,inareasofhighpedestrianorbicyclistactivity,thesebenefitsmaybeoffsetbytheadditionalpavementwidthintheintersection,higherspeedsofmotorvehicularturningmovements,

  • Section 1 – Chapter 4

      Intersection Design  1.4‐45 

    andvehicle/bicyclistconflictcreatedasmotoristsenteraright‐turnlaneacrossanon‐streetbicyclelaneoracrossthepathofbicycletrafficoperatingnearthecurb.

    4.7.3.3 General Criteria for Right‐Turn and Left‐Turn Lanes Criteriaforconsideringinstallationofleft‐turnlanesaresummarizedinExhibit4‐23.Thesecriteriaarebasedonacombinationofleft‐turningmotorvehiclevolumesplusopposingthroughmotorvehiclevolumesatunsignalizedlocations.Forexample,if330vehiclesperhourtraveleastboundat40mphandfivepercentareturningleft,anexclusiveleft‐turnlaneiswarrantedoncethewestboundvolumeexceeds800vehiclesperhour.Exhibit 4‐23  Criteria for Left Turn Lanes 

    A. Unsignalized Intersections, Two-Lane Roads and Streets1:

    Design Speed

    Opposing Volume (motor vehicles

    per hour)

    Advancing Motor Vehicle Volume (vehicles per hour) 5%

    Left Turns 10%

    Left Turns 20%

    Left Turns 30%

    Left Turns 30 mph or less 800 370 265 195 185 600 460 345 250 225 400 570 430 305 275 200 720 530 390 335 40 mph 800 330 240 180 160 600 410 305 225 200 400 510 380 275 245 200 640 470 350 305 50 mph 800 280 210 165 135 600 350 260 195 170 400 430 320 240 210 200 550 400 300 270 60 mph 800 230 170 125 115 600 290 210 160 140 400 365 270 200 175 200 450 330 250 215

    B. Signalized Intersections2: Left-Turn Lane Configuration Minimum Turn Volume Single exclusive left-turn lane 100 motor vehicles per hour Dual exclusive left-turn lane 300 motor vehicles per hour 1 AASHTO Green Book (1990) 2 Source: Highway Capacity Manaual (2000) Considerableflexibilityshouldbeexercisedinconsideringleft‐turnlanes.Typically,theyinvolvelittleimpacttothesetting,whilegenerallyyieldinglargebenefitsinsafetyanduserconvenience.Left‐turnlanesmaybedesirableinmanysituationswithvolumeswellbelowthosestated.Theseincludetodestinationsofspecialinterest(shopping,majorinstitutions,etc.),orforlocationswithmarginalsightdistanceonthemainroadoraconsistentoccurrenceofrear‐endcrashes.

  • 1.4‐46  Intersection Design  DRAFT 

    Wherethereisaneedformultiple,closelyspacedleft‐turnlanes(duetodrivewaysorsmallblocks),itmaybeadvisabletodesignateacontinuouscenterlaneasa“two‐wayleftturnlane”(TWLTL)asdiscussedinChapters3and7.Criteriafortheinstallationofright‐turnauxiliarylanesaremorejudgmentalthanthenumericalguidelinesfortheirleft‐turnlanecounterpart.Positiveandnegativeindicators(i.e.,conditionsfavoringorarguingagainstright‐turnlanes)aresummarizedinExhibit4‐24.Exhibit 4‐24  Criteria for Right‐Turn Lane Placement Positive Criteria (Favoring Right-Turn Placement)

    Negative Indicators (Arguing Against Right-Turn Lane Placement)

    High speed arterial highways In residential areas High right-turn motor vehicle volumes In urban core areas High right-turn plus high cross-street left-turn volumes On walking routes to schools Long right-turn queues Where pedestrians are frequent Intersection capacity nearly exhausted Low right turn volumes History of crashes involving right-turning vehicles Little to no pedestrian activity

    Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2011. Chapter 9 Intersections

    4.7.3.4 Auxiliary Through Lane Design Elements Shortsegmentsofadditionalthroughlane(wideningastreetthroughasignalizedintersection)canbeaneffectivewayofincreasingintersectioncapacityatrelatively“isolated”intersections(forexample,inruralareasandinsettledareaswithaminimumofaboutone‐milespacingbetweensignalizedintersections).Wherethroughlanesareprovided,motoristsapproachingtheintersectionarrangethemselvesintotwolanesoftrafficandmergebacktoasinglelaneoftrafficonthedeparturesideoftheintersection.Mergingunderacceleration(i.e.,onthedeparturesideoftheintersection)workswell,sincegaps(spacesbetweenmotorvehicles)areincreasingasvehiclesaccelerate,leavingnumerousopportunitiestomergeasthetrafficstreamleavestheintersection.DesignelementsforauxiliarythroughlanesaregiveninExhibit4‐25.

  • Section 1 – Chapter 4

      Intersection Design  1.4‐47 

    Exhibit 4‐25  Auxiliary Through Lane Design Guidelines 

    Dimensions for Auxiliary Through-Lanes (feet)

    Design Speed (mph)

    Lane Width (feet)

    Taper Length

    (T, feet)1

    Length of Lane

    (L, feet) 15-25 10 WS2/60 See Note 2 30-35 10 WS2/60 See Note 2

    40 10-11 WS2/60 See Note 2 45 10-11 WS See Note 2 50 11-12 WS See Note 2 55 11-12 WS See Note 2 60 12 WS See Note 2

    1 W is the lateral shift required to form the additional through lane. 2 L should be based on anticipated queue derived from intersection operations analysis. Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2011. Chapter 9 Intersections and

    the Manual on Uniform Traffic Control Devices

    4.7.4 Channelization Islands Channelizationislandsareusedto:

    Delineatetheareainwhichmotorvehiclescanoperate; Reducetheareaofmotorvehicleconflict; Bringmotorvehiclemergingintoasafer(smaller)angleofmerge;and Providepedestrianrefuge.

    Ideally,channelizationislandsareraisedabovepavementlevel,typicallytocurbheight(6inches).Lesspreferably,theymaybeflushwiththepavementlevel.Bothraisedandflushislandsmaybeconstructedofavarietyofmaterials,includingconventionallyfinishedconcrete,scoredconcrete,orrigidpaversofvarioustypes.Somegeneralcriteriaforthedimensionsofchannelizationislandsinclude:

  • 1.4‐48  Intersection Design  DRAFT 

    Triangularislandsshouldbeaminimumof100squarefeetinsurfaceareawithonesideatleast15feetinlength.Linearislandsshouldbeatleast2,andpreferably3feetormorewide.Iftheycontainsigns,theyshouldbeatleast4feetwide.Iftheyintersectpedestriancrosswalksorcontainsigns,theyshouldbeatleast6feetwidewithmaximum1.5percentslope.Theminimumlengthoflinearislandsshouldbe25feet.

    Channelizationislandsshouldcontainat‐gradepassagesforbicyclelanes,wheelchairandpedestrianpaths,andshouldgenerallybeplacedtoavoidimpedingbicyclemovement,whetherornotbicyclelanesarepresent.

    Theedgesofchannelizationislandsshouldbeoffsetfromthetravellanes,toguidedriverssmoothlyintothedesiredpath.Typically,a2‐footoffsetisappropriate.

    TypicalarrangementsandapplicationsofchannelizationareshowninExhibit4‐26.

    4.7.4.1 Right‐turn Channelization Islands Asmallchannelizationislandcandelineatearight‐turnlaneatasimpleintersection(i.e.,whereneithertheapproachnordeparturelaneisflared).Thistypeofchannelizationisappropriateforlarge‐radiuscorners.Amorecommonusefortheright‐turnchannelizationislandisatflaredintersections,whereadecelerationlaneflareisprovidedontheapproachtotheintersection,sometimescombinedwithanaccelerationlaneflareonthedepartureside.Thelargestchannelizationislandsaretypicallyfoundwhereanauxiliaryright‐turnlaneisprovidedonboththeapproachanddeparturesideoftheintersection.Right‐turnchannelizationislandscanbenefitpedestrianscrossingtheaffectedapproachesbyprovidinganinterimrefugeinthecrosswalk.Thisrefugepermitspedestrianstodevotefullattentiontocrossingtheright‐turnlanewithoutneedingtoassureasafecrossingfortherestofthestreet.Fromthechannelizationisland,pedestrianscanthenproceedacrossthethroughlanesoftrafficwithoutthecomplicatingfactorofcrossingtheright‐turnmovement.

    4.7.4.2 Divisional Islands Divisionalislandsareusefulindividingopposingdirectionsoftrafficflowatintersectionsoncurves,orwithskewedanglesofapproach.Insuchinstances,theycanimprovethesafetyandconvenienceforapproachingmotorists.Althoughsuperficiallysimilartomedians,divisionalislandsdifferfromthemintheirshortlengthandrelativelynarrowwidthandarediscussedfurtherlaterinthischapterandinChapter6.

    4.7.4.3 Left‐Turn Lane Delineator Islands Theleft‐turndelineatorislandresemblesashortsectionofmedianisland,withtriangularstripingtoguidetrafficaroundit.Attheintersectionendoftheisland,itisnarrowedtoprovidestorageforleft‐turningmotorvehiclesandbicycles.

  • Section 1 – Chapter 4

      Intersection Design  1.4‐49 

    Onundividedstreets,theleft‐turnlanedelineatorislandisusedtoformtheleft‐turnbay.Atitsupstreamnose(i.e.,ontheapproachtotheintersection),theislandandassociatedstripingshiftsthethroughtrafficlanetotheright,creatingroomforthetaperandleft‐turnbay.

  • 1.4‐50  Intersection Design  DRAFT 

    Exhibit 4‐26  Channelization Islands 

    Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2011. Chapter 9 Intersections

  • Section 1 – Chapter 4

      Intersection Design  1.4‐51 

    4.7.5 Roundabout Geometric Design Elements ThekeyelementsofgeometricdesignforroundaboutsareshowninExhibit4‐27andinclude:

    Thecirculatingroadway,whichcarriesmotorvehiclesandbicyclesaroundtheroundaboutinacounterclockwisedirection.

    Thecentralisland,definingtheinnerradiusofthecirculatingroadwayaroundit.

    Acoreareawithinthecentralisland,fromwhichmotorvehiclesareexcluded. Atruckapronareaontheouterperimeterofthecentralisland,traversableby

    largemotorvehicles. Theinscribedcircle,definedbytheouteredgeofthecirculatingroadway. Splitterislands,onallapproaches,separatingtheenteringfromtheexiting

    traffic. Crosswalksacrossapproachanddepartureroadways.

    Thekeydesignelementoftheroundaboutisitsouterdiameter,theinscribedcirclediameter(ICD).Thisdimensiondeterminesthedesignofthecirculatingroadwayandcentralislandwithinit.Thealignmentofapproachanddepartureroadwaysandtheresultingsplitterislandsarealsoestablishedbytheinscribedcircle.ForfurtherinformationonroundaboutdesignrefertotheFHWApublicationRoundabouts:AnInformationalGuide,2010.

    4.7.5.1 Inscribed Circle TheICDisderivedfromthemotorvehicle.Theinscribedcircleisestablishedbytheouterturningradiusofthedesignvehicle,plusamarginforcontingenciesencounteredinnormaloperation.

    4.7.5.2 Width of Circulating Roadway Thewidthofthecirculatingroadwayisestablishedfromtheturningpathofthedesignvehicleplusamargintoallowfornormaloperatingcontingencies.Thecriticalturningmovementistheleftturn,requiringa270degreemovementaroundthecirclewhich,inturn,producesthelargestsweptmotorvehiclepathandtherebyestablishesthewidthofthecirculatingroadway.

  • 1.4‐52  Intersection Design  DRAFT 

    Exhibit 4‐27  Circle Dimensions, Single Lane Roundabout 

    Note: The design vehicle should be the largest vehicle expected to be accommodated on the street. Source Roundabouts: An Informational Guide, FHWA 2010.

    4.7.5.3 Central Island Thediameterofthecentralislandisderivedfromthediameteroftheinscribedcirclelessthewidthofthecirculatingroadway.Typically,centralislandsconsistofacoreareanotintendedtobetraversedbymotorvehiclesandbicycles,borderedbyatruckapronofaslightlyraisedpavementnotintendedtobeusedbyvehiclessmallerthanaschoolbus,butavailablefortheinnerrearwheeltrackoflargermotorvehicles.

    4.7.5.4 Entry and Exit Curves Theentryradi