c shuman. (2014) "assessing agriculture nutrient managment in the state of delaware."

21
The Journal of Science Policy and Governance Volume 4 Issue 1 1 The Journal of Science Policy & Governance POLICY ANALYSIS: ASSESSING AGRICULTURAL NUTRIENT MANAGEMENT IN THE STATE OF DELAWARE: INTEGRATING REGULAR SOIL TESTING INTO EXISTING POLICY BY CLAUDIA SHUMAN, UNIVERSITY OF DELAWARE [email protected]

Upload: journal-of-science-policy-governance

Post on 30-Mar-2016

214 views

Category:

Documents


0 download

DESCRIPTION

Claudia Shuman. (2014) "Assessing Agriculture Nutrient Management in the State of Delaware: Integrating Regular Soil Testing Into Existing Policy." Journal of Science Policy and Governance. 6 January 2014.

TRANSCRIPT

Page 1: C Shuman. (2014) "Assessing Agriculture Nutrient Managment in the State of Delaware."

The  Journal  of  Science  Policy  and  Governance  Volume  4  Issue  1  

 

1  

The Journal of Science Policy & Governance  

 

 

 

POLICY ANALYSIS:

ASSESSING AGRICULTURAL NUTRIENT MANAGEMENT IN THE

STATE OF DELAWARE: INTEGRATING REGULAR SOIL TESTING INTO

EXISTING POLICY  

 

BY

CLAUDIA SHUMAN, UNIVERSITY OF DELAWARE

[email protected]  

Page 2: C Shuman. (2014) "Assessing Agriculture Nutrient Managment in the State of Delaware."

The  Journal  of  Science  Policy  and  Governance  Volume  4  Issue  1  

 

2  

I. Executive  Summary    

Fertilizer  over-­‐application  in  the  agricultural  realm  poses  a  serious  risk  to  the  health  of  humans  

through   contamination   of   drinking   water   and   aquatic   ecosystems.   Nutrient   surpluses   in   crop   fields  

increase   the   potential   for   loss   of   nutrients   to   the   environment   via   volatilization,   storm   runoff,   and  

infiltration  into  groundwater.        

Excessive   nutrient   loads   derived   from   anthropogenic   sources   including   domestic,   municipal,  

industrial,   and   agricultural   land   uses   continue   to   threaten   the   health   of   bays   and   estuaries   along   the  

eastern  coast  of  the  United  States.  In  excess,  specifically  nitrogen  and  phosphorus  can  fuel  algal  growth  

to  the  point  of  altering  the  natural  balance  of  an  estuarine  or  marine  system,  driving   it   into  a  state  of  

eutrophication   (Volk   et   al.   2006).   In   Delaware,   USA   nutrient   loads   derived   from   agricultural   land   use  

provide  a  significant  source  of  excess  nutrients  to  the  state’s  bays  and  estuaries,  second  only  to  sewage  

effluent  (“Delaware  Water  Quality  Assessment  Report”).    

The  Nutrient  Management   Law,  passed  by   the   state  of  Delaware   in  1999,   requires   that   every  

farmer  acquire  and  maintain  a  nutrient  certification  and  design  and  utilize  a  nutrient  management  plan  

with  the  help  of  a  certified  nutrient  consultant.  The  plan  must   include  a  map  of  the  property,  soil  and  

manure  analyses,  crop  yield  goals,  and  a  nutrient  budget.  Additionally,  farmers  must  maintain  nutrient  

handling   records   and   submit   annual   nutrient   use   reports.   Renewal   of   both   nutrient   certifications   and  

management  plans  is  required  every  three  years  (Hughes  et  al.  1999).    

The  Delaware  Department  of  Agriculture  and  the  University  of  Delaware  Cooperative  Extension  

both  emphasize   the  environmental  and  economic  benefits  of  soil   testing  prior  to   fertilizer  application.  

Soil  testing  determines  the  nutrient  needs  of  soils  at  a  specific  point  in  time.  This  helps  farmers  to  avoid  

over-­‐application   and   under-­‐application   of   fertilizers.   At   present,   a   soil   test   is   only   required   once   per  

Page 3: C Shuman. (2014) "Assessing Agriculture Nutrient Managment in the State of Delaware."

The  Journal  of  Science  Policy  and  Governance  Volume  4  Issue  1  

 

3  

three  years  with   the   renewal  of  a  nutrient  management  plan.  Because   the  nutrient   content  of   soils  –  

specifically  nitrate-­‐nitrogen  –  changes  readily  with  fertilizer  application    and  crop  cultivation  (Ritter  et  al.  

1990),   more   frequent   nitrate   soil   testing   needs   to   be   required   in   order   to   minimize   environmental  

health  impacts  and  financial  loss  via  fertilizer  over-­‐application.                            

Integrating  more  frequent  nitrate  soil  testing  into  existing  policy  will  not  be  a  simple  transition.  

Agricultural   land  owners  and   farmers  have  different  priorities   than   federal  and  state  environmentally-­‐

focused  organizations  such  as  the  Environmental  Protection  Agency  (EPA)  and  the  Delaware  Department  

of   Natural   Resources   and   Environmental   Control   (DNREC);   the   majority   of   land   owners   and   farmers  

prioritize   efficiency   and   productivity   regarding   fertilizer   use,   while   the   EPA   and   DNREC   are   more  

concerned  with  nutrient  regulation  and  environmental  impact.  Outreach  and  an  integration  of  priorities  

across  these  pools  of  stakeholders  is  necessary  in  order  for  the  policy  modification  to  be  successful.    

This   policy   analysis   examines  Delaware’s   current   agricultural   nutrient  management   policies   in  

the  context  of  estuarine  and  marine  health  and  suggests  improvement  on  existing  policies  through  the  

requirement  of  more  frequent  nitrate  soil  testing  on  agricultural  land.  

II. Introduction      

What  is  the  relationship  between  agriculture  and  nutrient  loading?  

Nitrogen   and   phosphorus   are   the   principal   nutrients   responsible   for   limiting   primary  

productivity   in   aquatic   ecosystems.   If   available   in   excess,   they   can   generate   algal   blooms,   forcing   an  

ecosystem   into   a   eutrophic   state   (Volk   et   al.   2006).   Both   crucial   elements   for   crop   growth,   they   are  

common   components   of   fertilizers,   often   applied   in   the   forms   of   nitrate   and   phosphate   respectively.  

Nitrate   is   a   highly   soluble   form   of   nitrogen,   easily   incorporated   into   runoff   and   groundwater.   Unlike  

Page 4: C Shuman. (2014) "Assessing Agriculture Nutrient Managment in the State of Delaware."

The  Journal  of  Science  Policy  and  Governance  Volume  4  Issue  1  

 

4  

nitrate,  phosphate  readily  bonds  to  sediments,  meaning  that  it  often  remains  in  soil  until  taken  up  by  a  

crop  (“Nitrates”).    

Nitrogen  is  by  far  more  naturally  abundant  in  the  atmosphere,  hydrosphere,  and  biosphere  than  

phosphorus.   Its  abundance  however,   is  not   indicative  of  availability  for  direct  use  by  crops.  More  than  

99%   of   nitrogen   on   earth   exists   in   the   form   of   molecular   nitrogen,   unusable   by   most   organisms.    

However,  a  small  fraction  of  organisms  –  nitrogen-­‐fixing  bacteria  –  present  in  soils  and  on  the  roots  of  

certain   plants   are   capable   of   converting   atmospheric   nitrogen   into   biologically   usable   forms,   namely  

ammonium.  Nitrifying  bacteria  in  the  soil  then  convert  the  ammonium  into  nitrate  which  can  be  utilized  

by  plants.  If  the  plants  die  and  decompose  within  the  environment,  that  nitrate  will  be  recycled  within  

the  system  via  re-­‐mineralization  of  the  organic  plant  material.  However,   if   the  plants  are  harvested  as  

crops,   this   disrupts   the   nitrogen   cycle   (Figure   1)   by   removing   nitrogen   from   the   system.   Nitrogen  

fertilizers  must  therefore  be  routinely  applied  to  agricultural  fields  in  order  to  promote  crop  growth  and  

maximize  yield  (Galloway  et  al.  2003).  

 

 

 

 

 

 

 

Page 5: C Shuman. (2014) "Assessing Agriculture Nutrient Managment in the State of Delaware."

The  Journal  of  Science  Policy  and  Governance  Volume  4  Issue  1  

 

5  

Figure  1:  The  soil  nitrogen  cycle  

 

(“The  Nitrogen  Cycle”)  

Prior   to   anthropogenic   production   and   distribution   of   nitrogen   fertilizers,   the   generation   of  

biologically-­‐usable   nitrogen   (via   atmospheric   fixation)   was   largely   balanced   by   its   removal   to   the  

atmosphere   via   denitrification   (the   conversion   of   nitrate   to   nitrogen   gas   by   denitrifying   bacteria).  

However,   due   to   a   worldwide   overuse   of   fertilizer,   nitrogen   is   presently   accumulating   in   the  

environment  on  local,  regional,  and  global  scales  (Seitzinger  et  al.  2006).    

74%  of  Delaware’s  agricultural  revenue  comes  from  broiler  (chicken)  production,  14%  from  the  

cultivation  of   field   crops,   and   the   remaining  12%   from  vegetables,   livestock,   greenhouse  and  nursery,  

dairy,  and  other  crops  collectively  (Figure  2)  (Kee  2010).  Poultry  litter-­‐manure,  containing  on  average  57  

and  44  pounds  per  ton  of  total  nitrogen  and  phosphorus  respectively,   is  used  as  a  type  of  fertilizer  on  

farmland   with   low   soil-­‐phosphate   or   as   a   means   of   complying   with   phosphorus-­‐limited   nutrient  

Page 6: C Shuman. (2014) "Assessing Agriculture Nutrient Managment in the State of Delaware."

The  Journal  of  Science  Policy  and  Governance  Volume  4  Issue  1  

 

6  

management  regulations.  In  order  to  comply  with  best  management  practices,  poultry  litter-­‐manure  is  

ideally   applied   to   cropland   as   quickly   as   possible   after   collection   in   an   effort   to   prevent   storage   and  

leaching  into  the  environment  (Delaware  Nutrient  Management  Commission,  Annual  Report).  

Figure  2:  Distribution  of  Delaware’s  agricultural  revenue  in  2010  

 

(Kee  2010)  

Litter-­‐manure  and   synthetic   fertilizers  are   the   two  most   common   types  of   fertilizer  applied   to  

agricultural   fields   in  Delaware,  with   the   use   of   synthetics   slightly   outcompeting  manures.   Varieties   of  

synthetic   nitrogen   fertilizers   include   ammonium   nitrate,   ammonium   sulfate,   non-­‐pressure   nitrogen  

solutions,   and   various   other   blends.   Some   synthetic   phosphorus   fertilizers   include   ammonium  

phosphate,  monoammonium  phosphate,  diammonium  phosphate,  and  additional  blends.  It’s  important  

to   note   that   synthetic   fertilizers   incorporate   inorganic   compounds   of   nitrogen   and  phosphorus,  while  

manures   are   largely   organic.   How   quickly   a   fertilizer   acts   on   a   particular   crop   varies   with   fertilizer  

Page 7: C Shuman. (2014) "Assessing Agriculture Nutrient Managment in the State of Delaware."

The  Journal  of  Science  Policy  and  Governance  Volume  4  Issue  1  

 

7  

composition  –  organics  versus  inorganics;  depending  on  the  phase  of  cultivation  one  fertilizer  might  be  

preferred  over  another  (Binford  2006).  

Fertilizer  applied  topically  to  a  field  can  be  taken  up  by  crops  to  facilitate  growth,  volatize  into  

the  atmosphere,  be  transported  off  of  the  field  as  runoff,  or  leach  into  soils  and  groundwater.  Because  

much   of   Delaware   is   underlain   by   sandy,   unconsolidated   sediments,   leaching   of   fertilizer-­‐derived  

nutrients   –   specifically   nitrogen   in   the   form  of   nitrate   –   into   groundwater   is   a   serious   environmental  

concern.   From   fields,   nitrates   are   transported   via   surface   and   groundwater   to   Delaware’s   bays   and  

estuaries;  this  is  known  as  nonpoint  source  (NPS)  nutrient  loading  (Valiela  et  al.  2000).      

 

What  are  the  environmental  impacts  of  nonpoint  source  nutrient  loading?    

 

Eutrophication   refers   to   the   state   of   a   water   body   in   which   a   high   influx   of   growth-­‐limiting  

nutrients   has   resulted   in   rampant   algal   growth.   It   is   an   excursion   from   the   natural   oligotrophic   or  

mesotrophic   state   of   a   system   in   which   nutrients   exist   in   low   to   moderate   quantities   respectively.  

Eutrophication  of  a  water  body  results  in  highly  turbid  waters  and  low  to  nonexistent  concentrations  of  

dissolved   oxygen.   Such   conditions   make   the   environment   less   hospitable   for   aquatic   life,   potentially  

leading  to   loss   in  biodiversity,   fish  and  shellfish  kills,  and  the  formation  of  dead  zones  –  sections  of  an  

aquatic  environment  where  no   life  exists   (Volk  et  al.  2006).  Some  algal  blooms  are  directly  harmful   to  

plants,   animals,   and   humans   that   utilize   an   aquatic   environment   for   commercial   and   recreational  

purposes.  Commonly  known  as  red  tides,  these  events  can  lead  to  mass  fish  and  shellfish  kills,  adversely  

impacting   the  ecosystem  as  well  as   the   fishing   industry.  Furthermore,  human  exposure   to   the  blooms  

either   through   consumption   or   direct   contact   can   lead   to   serious   illness   and   death   (Anderson   et   al.  

2002).  

Page 8: C Shuman. (2014) "Assessing Agriculture Nutrient Managment in the State of Delaware."

The  Journal  of  Science  Policy  and  Governance  Volume  4  Issue  1  

 

8  

In  addition  to  environmental  and  human  health,  eutrophication  puts  revenue  from  recreational  

tourism   at   risk   of   decline.   Activities   impacted   include   swimming   and   beach-­‐going,   boating,   and  

recreational   and   commercial   fishing.   Algal   blooms   make   coastal   waters   murkier,   often   tinting   them  

green;  this  reduces  the  aesthetic  value  of  an  environment  for  tourists  and  residents  alike  (Anderson  et  al.  

2002).   The   state   of   Delaware   depends   upon   tourism   as   a   vital   driver   of   its   economy.   In   2010,   the  

industry’s   contribution   to   the   state’s   livelihood  was   right  around  2.1  billion  dollars;   it   is   also   the   third  

largest  private  employer  in  the  state  (“Delaware  Tourism  Industry  Study  Results”).  Delaware’s  economic  

dependence   upon   the   success   of   its   tourism   industry   is   yet   another   incentive   to   keeps   the   state’s  

primary  attractions  –  its  bays  and  beaches  –  in  pristine  condition.    

Eutrophication   was   first   recognized   as   an   environmental   concern   in   the   1950’s   with   the  

emergence  of  large  algal  blooms  and  their  impact  on  shellfish  harvests  in  Moriches  Bay  –  a  lagoon  along  

the  shores  of  Long  Island.  The  source  of  the  problem,  identified  by  marine  ecologists  at  the  Woods  Hole  

Oceanographic   Institution,   was   the   expansion   of   duck   farms   along   lagoon   shores.   Nitrogen   and  

phosphorus-­‐containing  organic  waste  from  the  farms  entered  the  Bay  via  several  tributaries,  prompting  

the  onset  of  eutrophication.  Analyses  of  water  samples  taken  from  affected  sites  in  the  bay  revealed  the  

presence   of   ample   quantities   of   phosphorus,   but   an   absence   of   all   forms   of   nitrogen.   It  was   thereby  

discerned   that   nitrogen   is   the   principal   limiting   nutrient   controlling   primary   production   in   temperate  

estuarine   and   marine   environments   (Ryther   and   Dunstan   1971).   Today,   the   most   common   factor  

contributing   to   eutrophication   in   estuarine   and   marine   ecosystems   is   increased   inputs   of   nonpoint  

source   (NPS)   nutrient   pollution,   specifically   nitrogen   (Nixon   1995).   Human   activities   including  

deforestation,   agricultural   land   use,   fertilizer   use,   and   the   treatment   and   expulsion   of   wastewater  

increase   the  quantity  and  rate  of  nitrogen  delivery   to  coastal   systems   (D’Avanzo  et  al.  1996).  Globally  

growing   nitrogen   loads   and   the   accompanying   adverse   environmental   effects   have   made   temperate  

estuaries  the  most  impaired  of  marine  ecosystems  worldwide  (Jackson  et  al.  2001).      

Page 9: C Shuman. (2014) "Assessing Agriculture Nutrient Managment in the State of Delaware."

The  Journal  of  Science  Policy  and  Governance  Volume  4  Issue  1  

 

9  

Locally,   Delaware’s   Inland   Bays   are   subjected   to   high   NPS   nitrogen   loads   and   classified   as  

eutrophic.   Agricultural   cropland   makes   up   40%   of   all   land   use   within   the   basin   (Figure   3),   claiming  

approximately  72,000  acres.  Consequently,  agricultural  practices  are  key  contributors  of  nitrogen  to  the  

Inland  Bays.  Croplands  are   largely  dedicated   to   the  cultivation  of   row  crops  –   corn  and  soybeans;   the  

majority  of  the  harvest  is  used  as  feed  to  support  the  state’s  poultry  industry.  Nitrogen  –  specifically  in  

in   the   form   of   nitrate   –   is   readily   transported   from   fields   to   water   bodies   via   storm   runoff   and  

groundwater  (“Nitrates”).    

Figure  3:  Land  use/cover  distribution  within  the  Inland  Bays  basin,  DE  

 

(“Delaware  Inland  Bays  Watershed  Nutrient  Management  Project”)  

 

Page 10: C Shuman. (2014) "Assessing Agriculture Nutrient Managment in the State of Delaware."

The  Journal  of  Science  Policy  and  Governance  Volume  4  Issue  1  

 

10  

III. Current  Policy    

How  is  nonpoint  source  nutrient  pollution  managed  in  Delaware?  

State  non-­‐point  source  (NPS)  nutrient  management  programs  are  funded  by  the  Environmental  

Protection  Agency   (EPA)  as  authorized  by   the  Clean  Water  Act  of  1987.  Prior   to   funding,  a   state  must  

have  a  completed  and  approved  NPS  nutrient  management  plan.  Delaware  completed  and  submitted  its  

management  plan  to  the  EPA  in  May  of  1995,  having  since  updated  it  to  comply  with  current  program  

guidelines  (Hughes  1999).    

The   EPA   further   requires   that   a   state   submit   an   NPS   assessment   report   to   assure   optimal  

delegation  of  federal  funds.  Delaware  submitted  its  report  in  May  of  1995,  having  prioritized  watersheds  

on  a  countywide  basis   through  assessment  of  surface  and  groundwater  quality,  use  and  susceptibility,  

and   associated   land   use   contributing   to   NPS   nutrient   loads.   Federal   funding   is   prioritized   for  

management  on  a  watershed  or  sub-­‐watershed  scale  where  management  measures  are  thought  to  have  

the  most  impact  (Hughes  et  al.    1999).      

In   accordance   with   the   Clean   Water   Action   Plan   of   1997,   Delaware   created   a   Watershed  

Assessment  Team  in  1998,  responsible  for  identifying  the  most  quality  impaired  watersheds  in  the  state.  

The   team   included   representatives   from   federal,   state,   and   local   agencies   as   well   as   industry   and  

advocacy  groups;  some  members  included  the  EPA,  the  Delaware  Department  of  Natural  Resources  and  

Environmental   Control   (DNREC),   the   Delaware   Department   of   Agriculture   (DDA),   and   the   Delmarva  

Poultry  Industry,  Inc.  (Hughes  et  al.  1999).    

The  purpose  of   identifying  severely   impaired  watersheds   is   to  determine  which  are   in  need  of  

the   application   of   total   maximum   daily   loads   (TMDL).   A   TMDL   refers   to   the  maximum   quantity   of   a  

pollutant   a   water   body   can   receive   annually   while   still   complying   with   water   quality   standards.   The  

Page 11: C Shuman. (2014) "Assessing Agriculture Nutrient Managment in the State of Delaware."

The  Journal  of  Science  Policy  and  Governance  Volume  4  Issue  1  

 

11  

objective  in  establishing  TMDL’s  for  a  water  body  is  to  meet  use  goals  including  drinking  water  supply,  

swimming,   fishing,   and   shellfish  harvesting.  As   an  example,   an  85%   reduction   in  nitrogen   loads  and  a  

65%   reduction   in   in   phosphorus   loads   is   required   for   the   tributaries   of   the   upper   Indian   River,   DE   in  

order  to  meet  EPA  standards  (Hughes  et  al.  1999).  

Establishment   and   implementation  of   TMDL’s   is   an  ongoing  process   in   the   state.   Because   the  

development  is  time-­‐consuming,  requiring  first  identification  of  the  pollutants  responsible  for  the  water  

quality   impairment,   determination   of   the   pollutant   sources,   and   assignment   of   load   allocations,   the  

most  severely  impaired  water  bodies  are  prioritized.  Implementation  of  TMDL  regulations  is  carried  out  

through   the   development   of   Pollution   Control   Strategies   (PCS’s)   and   Watershed   Restoration   Action  

Strategies   (WRAS’s)   developed  by  DNREC.   Tributary   Teams,   ideally   composed  of   representatives   from  

multiple  organizations  including  local,  state,  and  federal  agencies  and  the  agricultural  industry,  drive  the  

implementation  effort  and  function  as  an  outreach  body  to  the  public  (Hughes  et  al.  1999).        

 

What  is  the  current  policy  on  agricultural  nutrient  management  in  Delaware?  

 

The   Nutrient  Management   Law,   passed   in   1999,   is   the   primary   piece   of   policy   governing   the  

management   of   nonpoint   source   (NPS)   nutrient   pollution   in   Delaware.   It   requires   that   all   nutrient  

handlers  –  including  farmers  –  create  and  implement  nutrient  management  plans,  keep  precise  records  

of  nutrient  use,  acquire  and  maintain  a  nutrient  certification,  and  submit  annual  reports  (Hughes  et  al.  

1999).  

The  Nutrient  Management  Law  underwent  a  phase-­‐in  process  over  a  five-­‐year  period,  ending  on  

January   1st,   2007.   This   process   began   with   the   identification   of   properties   requiring   nutrient  

management   planning.   Property   owners   or   lessees   were   subsequently   notified   regarding   their  

Page 12: C Shuman. (2014) "Assessing Agriculture Nutrient Managment in the State of Delaware."

The  Journal  of  Science  Policy  and  Governance  Volume  4  Issue  1  

 

12  

compliance  ("Agriculture  Regulatory  Provisions,  CHAPTER  22.  NUTRIENT  MANAGEMENT,  Subchapter  III.  

State  Nutrient  Management  Program").  

A  nutrient  management  plan  is  a  strategy  for  optimizing  nutrient  use.    Its  development  is  carried  

out  with   the  help  of   a   nutrient   consultant;   the   consultant   first   requires   information  pertaining   to   the  

property   in   question   including   a   property  map,   soil   samples,   crop   yield   goals,   and   a   nutrient   budget.  

Public  and  private  consultants  are  available;  up  to  a  certain  price,  the  state  reimburses  those  who  hire  a  

private  consultant.  A  nutrient  management  plan  must  be  renewed  every  three  years,  requiring  a  current  

comprehensive  soil  test  (Hughes  et  al.  1999).  

A  nutrient  certification,  acquired  through  the  completion  of  certification  classes,  provides  proof  

that  an  individual  responsible  for  generating,  applying,  or  handling  nutrients  understands  and  is  capable  

of   implementing   nutrient-­‐specific   best   management   practices.   There   are   four   classes   of   nutrient  

certifications:   nutrient   generator,   private   nutrient   handler,   commercial   nutrient   handler,   and   nutrient  

consultant.  A  private  nutrient  handler  –  such  as  a  farmer  –  applies  nutrients  to  10  or  more  acres  of  land  

that   they   own   or   lease;   a   private   nutrient   handler   certification   must   be   renewed   every   three   years  

(Hughes  et  al.  1999).  

Although  current  policy  thoroughly  addresses  the  need  for  agricultural  nutrient  management  in  

the  state,  it  does  not  utilize  soil  testing  to  its  full  potential  in  managing  NPS  nutrient  pollution.  Currently,  

a  soil  test  is  required  of  farmers  once  per  three  years  with  the  renewal  of  a  nutrient  management  plan.  

This   testing   regimen   does   not   consider   the   potential   for   nitrate   buildup   in   soils   following   nitrogen  

fertilizer   application   and   crop   cultivation.   If   nitrate   accumulation   goes  unmonitored,   fertilizers   can  be  

over-­‐applied,  leading  to  the  release  of  harmful  quantities  of  excess  nitrate  into  the  environment.      

Page 13: C Shuman. (2014) "Assessing Agriculture Nutrient Managment in the State of Delaware."

The  Journal  of  Science  Policy  and  Governance  Volume  4  Issue  1  

 

13  

IV. Proposed  Modification    

The   nitrogen   content   of   soils   is   highly   susceptible   to   change   through   time   with   fertilizer  

application   and   crop   cultivation.   Over-­‐application   of   nitrogen   fertilizers   can   result   in   nitrate  

accumulation   and   leaching   through   soils.   Ritter   et   al.   (1990)   conducted   a   study   comparing   nitrate  

concentrations   in   soil   profiles   beneath   16   agricultural   plots   throughout  Delaware.   Corn   and   soybeans  

were  the  major  crops  grown  on  all  plots  during  the  previous  five  years.  The  sites  varied   in  quantity  of  

fertilizers  applied,  which  was  found  to  be  the  most  dominant  factor  controlling  nitrate  concentrations  in  

soils   within   the   root   zone   of   crops   (76   cm)   and   below.   For   example,   during   the   fall,   nitrate  

concentrations  within  the  root  zone  of  a  field  routinely  fertilized  with  185  Kg  nitrogen  per  hectare  over  

the  period  of  a  year  were  averaged  at  134  Kg  nitrogen  per  hectare,  while  nitrate  concentrations  beneath  

a  field  routinely  fertilized  with  224  Kg  nitrogen  per  hectare  and  additional  broiler  manure  were  averaged  

at  241  Kg  nitrogen  per  hectare.    

I  propose  that  Delaware’s  Nutrient  Management  Law  be  amended  to  require  nitrate  soil  testing  

prior  to  every  application  of  nitrogen  fertilizer.  By  quantifying  nitrate  already  present  in  soils  within  the  

crop  root  zone,  fertilizer  over-­‐application  can  be  avoided,  reducing  the  chances  of  nitrate  accumulation  

and  leaching  into  groundwater.        

What  is  agricultural  soil  testing?  

Agricultural  soil  testing  is  utilized  to  determine  the  current  pH,  quantity  and  quality  of  nutrients,  

and  potential  contaminants  present  within  the  soils  of  a  crop  field.  These  components  directly  influence  

a   soil’s   fertility   and   its   ability   to   support   crop   growth   and   yield   ("Soil   Testing").   Soil   testing   is   a   key  

component   in   effectively   managing   land   used   for   crop   cultivation.   By   knowing   the   current   nutrient  

content  of  a  soil,  a  farmer  can  determine  the  quantity  of  fertilizer  that  needs  to  be  applied  to  maximize  

Page 14: C Shuman. (2014) "Assessing Agriculture Nutrient Managment in the State of Delaware."

The  Journal  of  Science  Policy  and  Governance  Volume  4  Issue  1  

 

14  

crop   yield.   Frequent   testing   helps   farmers   to   avoid   over   and   under-­‐application   of   fertilizers,   thus  

optimizing  financial  expenditure  and  minimizing  environmental  impacts  ("UD  Soil  Testing  Program").  

The   University   of   Delaware   Soil   Testing   Program   provides   soil   testing   services   to   farmers  

throughout   the   state,   offering   five   different   tests:   routine   soil   tests   with   lead   for   home   gardeners,  

routine  soil   tests   for  agricultural  operations,   lawn  care  companies,  and   landscapers,   soluble  salts,  pre-­‐

sidedress  soil  nitrate  tests  for  corn,  and  soil  lead  screening  (“What  Soil  Tests  are  Available”).    

Required  once  per  three  years  with  the  renewal  of  a  nutrient  management  plan,  a  routine  soil  

test  for  agricultural  operations  in  Delaware  measures  pH,  organic  matter,  and  the  following  extractable  

nutrients:  phosphorus,  potassium,  calcium,  magnesium,  zinc,  copper,  iron,  boron,  sulfur,  and  aluminum  

(“What   Soil   Tests   are   Available”).   An   analysis   of   nitrate   concentrations   is   not   included   despite   its  

potential  for  accumulation  and  leaching  through  soils  if  applied  in  excess  (Ritter  et  al.  1990).  

The  University  of  Delaware  Soil  Testing  Program  advocates  use  of  the  pre-­‐sidedress  soil  nitrate  

test  (PSNT)  for  corn  as  part  of  a  Best  Management  Practice  (BPM)  for  crops.  Conducted  properly  from  

sample  collection  through  analysis,  it  yields  accurate  measurements  of  nitrate  in  soils,  thereby  providing  

a  recommendation  for  any  additional  nitrogen  fertilizer  application.  Samples  must  be  collected  from  the  

top  one  foot  of  soil,  placed  into  a  cloth  bag  to  dry,  and  shipped  to  the  laboratory  within  three  days  of  

collection.   Once   received   by   the   lab,   nitrate   is   extracted   from   the   soil   sample   using   one   of   several  

suitable  chemical  extractants:  calcium  sulfate,  potassium  sulfate,  ammonium  sulfate,  or  calcium  chloride.  

Following   extraction,   the   sample   is   filtered   to   remove   all   particulate   matter.   Finally,   the   nitrate  

concentration   of   the   sample   is   analyzed   via   colorimetric   determination   following   cadmium   reduction  

(the  most   common  method).   The   pre-­‐sidedress   soil   nitrate   test   has   recently   been   adopted   for   use   in  

cultivating  various  types  of  vegetables  including  pumpkins,  peppers,  cabbage,  and  broccoli  (Griffin  2009).    

Page 15: C Shuman. (2014) "Assessing Agriculture Nutrient Managment in the State of Delaware."

The  Journal  of  Science  Policy  and  Governance  Volume  4  Issue  1  

 

15  

It   is   important   that   the   test   be   interpreted   within   the   context   of   recent   rainfall;   due   to   the  

soluble  nature  of  nitrate,  rain  events  occurring  after  collection  of  analyzed  samples  have  the  potential  to  

significantly  reduce  availability  of  nitrate  within  the  root  zone  via  leaching,  thus  increasing  the  quantity  

of  nitrogen  fertilizer  required  for  optimum  crop  yield  (Griffin  2009).    

Why  should  frequent  nitrate  soil  testing  be  required?    

The  state   requires   that  agricultural   soils  be   tested  once  per   three  years  with   the   renewal  of  a  

nutrient  management  plan  (Hughes  et  al.  1990).  A  routine  soil  test  for  agricultural  operations  measures  

pH  and  quantifies  organic  matter,  and  the  following  major  nutrients  vital  for  crop  growth:  phosphorus,  

potassium,  calcium,  magnesium,  zinc,  copper,   iron,  boron,   sulfur,  and  aluminum  (“What  Soil  Tests  are  

Available”).  As  previously  noted,  nitrate  is  not  included.  Prior  to  the  1980’s  soil  nitrogen  tests  were  not  

nearly  as  reliable  as  they  are  today,  causing  Delaware  farmers  to  fall  into  the  tradition  of  estimating  the  

fertilizer-­‐nitrogen  needs  of  their  crops;  the  common  application  rate  for  corn  is  one  pound  of  nitrogen  

per  bushel  of  anticipated  yield  (“Nitrogen  Management  for  Corn  in  Delaware:  The  Pre-­‐Sidedress  Nitrate  

Test”).  However,  nitrogen  removal  per  bushel  of  harvested  corn  is  estimated  at  0.69  pounds  of  nitrogen  

–  less  than  the  application  rate;  this  disparity  in  the  application  versus  removal  rate  implies  that  nitrogen  

is  left  behind  in  the  soil  following  harvest  either  as  crop  residue  or  excess  fertilizer  (“Nitrogen  Removal  

by   Delaware   Crops”).   Modern   soil   nitrogen   tests   –   specifically   the   pre-­‐sidedress   soil   nitrate   test   is  

credited  with  reliability   in  estimating  the  contribution  of  soil  nitrate  to  crop  requirements;   it  serves  to  

minimize  the  over-­‐application  of  nitrogen  fertilizers  (“Nitrogen  Management  for  Corn  in  Delaware:  The  

Pre-­‐Sidedress  Nitrate  Test”).    

Despite  the  ease  with  which  nitrogen  leaches  through  soils,  it  has  the  potential  to  build  up  in  the  

crop  root  zone  (Ritter  et  al.  1990).  The  assumption  that  a  certain  amount  of  nitrogen  fertilizer  need  be  

applied  to  a  crop  field  without  soil   testing  can  therefore   lead  to  over-­‐application.   If  soil  nitrate  testing  

Page 16: C Shuman. (2014) "Assessing Agriculture Nutrient Managment in the State of Delaware."

The  Journal  of  Science  Policy  and  Governance  Volume  4  Issue  1  

 

16  

were   required   prior   to   every   application   of   nitrogen   fertilizer,   the   minimum   quantity   of   fertilizer  

required  for  optimal  crop  yield  could  be  determined  and  applied.    

Minimizing   nitrate   input   to   the   environment   is   vital   in   maintaining   the   health   of   Delaware’s  

estuarine  and  marine  waters.  If  more  nitrate  is  applied  to  agricultural  fields  than  can  be  utilized  by  the  

crops,   that   excess   nitrate   is   highly   susceptible   to   transport   via   storm   runoff   and   leaching   into  

groundwater.  Much  of   the  nitrate  contained   in  runoff  and  groundwater  eventually  makes   its  way   into  

estuarine  and  marine  water  bodies  where  it  heightens  the  risk  of  eutrophication  (D’Avanzo  et  al.  1996).  

The   economic   benefits   of   optimizing   fertilizer   application   should   not   be   ignored.   The   cost   of  

ammonium  nitrate  fertilizer  has  increased  from  194  dollars  per  ton  in  2000  to  544  dollars  per  ton  as  of  

March  2013.  Similarly,   the  price  of  urea  has   increased  from  200  dollars  per  ton  to  592  dollars  per  ton  

within   the   same   time   frame   (“Table   9   –   Average  U.S.   farm  prices   of   selected   fertilizers,   1960-­‐2013”).  

With   the   worldwide   demand   for   nitrogen   fertilizers   on   the   rise,   prices   will   likely   continue   to   trend  

upward  (“Why  Nitrogen  Fertilizer  Prices  Have  Increased  So  Much”).  A  pre-­‐sidedress  soil  nitrate  test  costs  

eight   dollars   through   the   University   of   Delaware   Soil   Testing   Program.   By  minimizing   the   quantity   of  

nitrogen  fertilizer  applied  to  reach  optimal  crop  yield,  less  money  will  be  spent  on  extraneous  nutrients.  

 

 

   

Page 17: C Shuman. (2014) "Assessing Agriculture Nutrient Managment in the State of Delaware."

The  Journal  of  Science  Policy  and  Governance  Volume  4  Issue  1  

 

17  

Table  1:  A   summary  of  barriers   facing   this  policy  modification   including   issues  pertaining   to   planning   and   research,   outreach,   and   soil   testing   logistics.   The  following  are  meant  to  be  addressed  prior  to  policy  implementation.  

 

Planning  and  Research  

What  research  will  need  to  be  undertaken  to  establish  the  feasibility  of  the  proposed  practices?    

What  monetary  and  labor  capacity  and  from  which  sector  will  be  needed  to  establish  the  practices  and  implement  the  policy?  

Outreach  

How  will  the  agricultural  community  receive  this  policy  modification?  

Will  the  collection  and  transportation  of  soil  samples  prior  to  each  instance  of  fertilizer  application  be  seen  as  an  inconvenience?  

How  will  outreach  to  the  agricultural  community  be  facilitated?  Through  what  organizations?  

Soil  Testing  

How  will  the  collection,  transport,  and  analysis  of  samples  be  funded?  Will  the  land  owner  or  lessee  be  expected  to  pay  the  full  expense?  

What  state  facilities  will  be  responsible  for  analyzing  the  increased  volume  of  soil  samples?  

Will  additional  testing  facilities  need  to  be  constructed  in  order  to  accommodate  the  increased  volume  of  soil  samples?  Will  additional  employees  need  to  be  hired?  

What  will  the  turnover  time  for  sample  analysis  be?  How  far  in  advance  of  applying  fertilizing  will  a  farmer  need  to  collect  and  send  off  a  sample?  

 

 

 

 

Page 18: C Shuman. (2014) "Assessing Agriculture Nutrient Managment in the State of Delaware."

The  Journal  of  Science  Policy  and  Governance  Volume  4  Issue  1  

 

18  

Table  2:  A  summary  of  policy  recommendations  meant  to  address  those  barriers  related   to   planning   and   research,   outreach,   and   soil   testing   logistics.   This   is  meant  to  be  an  outline  of  tasks  to  prioritize.  Additional  obstacles  will  need  to  be  managed.  

Planning  and  Research  

Initial  data  will  be  collected  regarding  the  agricultural  nitrate  contribution  to  groundwater  under  the  current  policy  regime.  Continual  monitoring  and  data  collection  will  take  place  after  policy  implementation  to  gauge  the  effectiveness  of  the  modification;  the  University  of  Delaware  is  an  ideal  candidate  to  conduct  this  research.  

In  order  to  realize  the  proposed  policy  modification,  federal,  state,  and  local  organizations  will  need  to  work  in  tandem.  The  EPA  will  be  the  primary  funding  source,  and  DNREC  the  principal  state  organization  in  charge  of  policy  implementation.  Locally-­‐acting  organizations  such  as  the  University  of  Delaware  Cooperative  Extension  will  head  outreach  to  the  farming  community.  What  additional  manpower  and  facilities  needed  to  accommodate  the  increased  volume  of  soil  samples  will  be  determined.  The  estimated  annual  cost  of  the  increased  volume  of  soil  samples,  and  thereby  what  funding  is  required  will  be  determined.  

Outreach  Outreach  will  first  be  facilitated  through  nutrient  certification  classes.  These  classes  will  serve  as  a  medium  for  introducing  the  modified  policy  to  the  agricultural  community.  

The  University  of  Delaware  Cooperative  Extension  office  will  be  largely  responsible  for  incorporating  and  presenting  information  on  the  new  policy  in  their  nutrient  certification  classes.  

Discussion  forums  should  be  made  a  part  of  these  classes  or  organized  as  separate  events.  The  forums  will  facilitate  open  discussion  of  interests  between  federal,  state,  and  local  organizations.  

Soil  Testing  The  transport  and  analysis  of  samples  will  be  funded  by  the  Environmental  Protection  Agency  through  the  state  non-­‐point  source  nutrient  management  program  as  authorized  by  the  Clean  Water  Act.  

The  University  of  Delaware  Soil  Testing  Program  will  lead  the  charge  in  analyzing  the  increased  volume  of  soil  samples.  Additional  facilities  will  likely  need  to  step  forward  to  share  the  load.  

The  current  turnover  time  for  sample  analysis  is  around  10  days.  This  will  need  to  be  decreased  in  order  to  accommodate  time-­‐dependent  planting  and  fertilizer  requirements  of  farmers.  

 

Page 19: C Shuman. (2014) "Assessing Agriculture Nutrient Managment in the State of Delaware."

The  Journal  of  Science  Policy  and  Governance  Volume  4  Issue  1  

 

19  

V. Conclusions    

Excessive  application  of  nitrogen  fertilizers  to  agricultural  fields  results  in  the  transport  of  nitrate  

via  groundwater  and  runoff  into  Delaware’s  estuarine  and  marine  waters.  Nitrate  loading  leads  to  algal  

blooms   that   increase   turbidity   and   decrease   dissolved   oxygen   levels,   ultimately   reducing   biodiversity  

and  adversely  impacting  fish  and  shellfish  stocks.      

Delaware’s  current  policy  on  agricultural  nutrient  management  requires  soil  testing  every  three  

years  with  the  renewal  of  a  nutrient  management  plan.  The  mandatory  routine  soil  test  for  agricultural  

operations   does   not   measure   soil   nitrate   because   of   its   assumed   brief   residence   time   in   soils.   In  

Delaware,  the  quantity  of  nitrogen  fertilizer  applied  is  typically  determined  by  estimated  crop  yields.    

Soil   nitrogen   tests   –   specifically   the   pre-­‐sidedress   soil   nitrate   test   –   measure   current   nitrate  

levels   in   soils.   By   quantifying   nitrate   already   present   in   a   soil,   farmers   can   determine   the   minimum  

amount  that  needs  to  be  applied  in  order  to  maximize  crop  yield.  This  practice  minimizes  nitrate  release  

into  aquatic  environments.  

This  proposed  policy  modification  requires  that  a  soil  nitrate  test  be  carried  out  prior  to  every  

application   of   nitrogen   fertilizer.   Soil   testing   is   one   of   many   best   management   practices   utilized   in  

Delaware  and  neighboring   states.  Additional   practices   include   the  use  of   cover   crops   to  minimize   soil  

erosion   and   nitrogen   leaching   into   groundwater   and   strategic   timing   of   manure   application   and  

irrigation   to   prevent   nitrogen   loss   via   runoff   and   leaching.   Comparably   beneficial,   soil   testing   is   a  

straightforward,  cost-­‐effective  practice.  And  with  the  prices  of  certain  nitrogen  fertilizers  having  nearly  

tripled  in  the  past  thirteen  years  and  continuing  to  skyrocket,  an  eight  dollar  test  seems  a  small  price  to  

pay  for  optimized  fertilizer  expenditure.                

 

Page 20: C Shuman. (2014) "Assessing Agriculture Nutrient Managment in the State of Delaware."

The  Journal  of  Science  Policy  and  Governance  Volume  4  Issue  1  

 

20  

VI. References    

"Agriculture  Regulatory  Provisions,  CHAPTER  22.  NUTRIENT  MANAGEMENT,  Subchapter  III.  State  Nutrient  Management  Program."  The  State  of  Delaware.  Web.  28  Apr  2013.  <http://delcode.delaware.gov/title3/c022/sc03/index.shtml>.  

Anderson,  Donald  M.,  et  al.  2002.  "Harmful  algal  blooms  and  eutrophication:  nutrient  sources,  composition,  and  consequences."  Estuaries,  25:  704-­‐726.  

Binford,  Gregory  D.  2006.  "Chapter  8.  Commercial  Fertilizers."  Department  of  Plant  and  Soil  Sciences,  University  of  Delaware,  2006.  Web.  28  Apr  2013.  <  http://ag.udel.edu/plsc/faculty/documents/chapter8.pdf>.  

D’Avanzo,  C.,  J.  N.  Kremer,  and  S.  C.  Wainright.  1996.  Ecosystem  production  and  respiration  in  response  to  eutrophication  in  shallow  temperate  estuaries.  Marine  Ecology  Progress  Series,  141:263-­‐274  

“Delaware  Inland  Bays  Watershed  Nutrient  Management  Project.”  University  of  Delaware,  n.d.  Web.  20  Nov  2013.  <http://www.udel.edu/FREC/spatlab/spot/>.  

"Delaware  Nutrient  Management  Commission,  Annual  Report."  Delaware  Department  of  Agriculture,  n.d.  Web.  28  Apr  2013.  <http://dda.delaware.gov/nutrients/forms/2011/2010_NMAnnualRpt.pdf>.  

“Delaware  Tourism  Industry  Study  Results.”  State  of  Delaware.  Web.  20  Nov  2013.    <http://news.delaware.gov/2012/01/25/delaware-­‐tourism-­‐industry-­‐study/>.  

“Delaware  Water  Quality  Assessment  Report.”  United  States  Environmental  Protection  Agency.  Web.  20  Nov  2013.  <  http://ofmpub.epa.gov/waters10/attains_state.control?p_state=DE#causes>.  

Galloway,  J.  N.,  et  al.  2003.  The  Nitrogen  Cascade.  BioScience,  53(4):341-­‐356  

Hughes,  J.  A.,  et  al.  "Delaware  Nonpoint  Source  Management  Plan."  DNREC,  1999.  Web.  28  Apr  2013.  <http://www.dnrec.state.de.us/dnrec2000/Library/NPS/NPSPlan.pdf>.  

Jackson,  J.  B.  C.,  et  al.  2001.  Historical  Overfishing  and  the  Recent  Collapse  of  Coastal  Ecosystems.  Science,  293:629-­‐637  

Kee  ,  Ed.  "Delaware  Agriculture."  Delaware  Department  of  Agriculture,  2010.  Web.  28  Apr  2013.  <http://www.nass.usda.gov/Statistics_by_State/Delaware/Publications/DE  AgBrochure_web.pdf>.  

“Nitrates.”  United  States  Environmental  Protection  Agency.  Web.  20  Nov  2013.  <http://water.epa.gov/type/rsl/monitoring/vms57.cfm>.  

“Nitrogen  Management  for  Corn  in  Delaware:  The  Pre-­‐Sidedress  Nitrate  Test.”  University  of  Delaware.  Web.  20  Nov  2013.  <  https://extension.udel.edu/factsheet/nitrogen-­‐management-­‐for-­‐corn-­‐in-­‐delaware-­‐the-­‐pre-­‐sidedress-­‐nitrate-­‐test/>.  

“Nitrogen  Removal  by  Delaware  Crops.”  University  of  Delaware.  Web.  20  Nov  2013.  <https://extension.udel.edu/factsheet/nitrogen-­‐removal-­‐by-­‐delaware-­‐crops/>.  

Nixon,  Scott  W.  1995.  Coastal  Marine  Eutrophication:  A  Definition,  Social  Causes,  and  Future  Concerns.  Ophelia,  41:199-­‐219  

Page 21: C Shuman. (2014) "Assessing Agriculture Nutrient Managment in the State of Delaware."

The  Journal  of  Science  Policy  and  Governance  Volume  4  Issue  1  

 

21  

Griffin,  G.,  et  al.  2009.  “Recommended  Soil  Nitrate  Tests.”  University  of  Delaware.  Web.  20  Nov  2013  <http://extension.udel.edu/lawngarden/files/2012/10/CHAP4.pdf>.  

Ritter,  W.  F.,  et  al.  1990.  Soil  Nitrate  Profiles  Under  Irrigation  on  Coastal  Plain  Soils.  Journal  of  Irrigation  and  Drainage  Engineering,  116:738-­‐751  

Ryther,  J.  H.  and  Dunstan,  W.  M.  1971.  Nitrogen,  Phosphorus,  and  Eutrophication  in  the  Coastal  Marine  Environment.  Science,  171:1008-­‐1013  

Seitzinger,  S.,  J.,  et  al.  2006.  Denitrification  Across  Landscapes  and  Waterscapes:  A  Synthesis.  Ecological  Applications,  16:2064-­‐2090  

"Soil  Testing."  North  Carolina  Department  of  Agriculture.  Web.  28  Apr  2013.  <http://www.ncagr.gov/cyber/kidswrld/plant/soiltest.htm>.  

“Table  9  –  Average  U.S.  farm  prices  of  selected  fertilizers,  1960-­‐2013.”  Unites  States  Environmental  Protection  Agency,  Web.  20  Nov  2013.  <http://www.ers.usda.gov/data-­‐products/fertilizer-­‐use-­‐andprice.aspx#.UpCOteKKKk1>.  

“The  Nitrogen  Cycle.”  United  States  Environmental  Protection  Agency,  n.d.  Web.  20  Nov  2013.<http://www.epa.gov/caddis/ssr_amm_nitrogen_cycle_popup.html>.  

"UD  Soil  Testing  Program."  University  of  Delaware,  n.d.  Web.  28  Apr  2013.  <http://ag.udel.edu/dstp/index.html>.  

“What  Soil  Tests  are  Available.”  University  of  Delaware,  n.d.  Web.  20  Nov  2013.  <http://ag.udel.edu/dstp/Gen%20Program%20Info.html>.  

“Why  Nitrogen  Fertilizer  Prices  Have  Increased  So  Much.”  University  of  Delaware,  n.d.  Web.  20  Nov  2013.  <http://extension.udel.edu/kentagextension/2008/03/11/why-­‐nitrogen-­‐fertilizer-­‐prices-­‐have-­‐increased-­‐so-­‐much/>.  

Valiela,  I.,  et  al.  2000.  Nitrogen  loading  from  watersheds  to  estuaries:  Verification  of  the  Waquoit  Bay  Nitrogen  Loading  Model.  Biogeochemistry,49:  277-­‐293  

Volk,  J.  A.,  et  al.  2006.  Nitrogen  Loads  through  Baseflow,  Stormflow,  and  Underflow  to  Rehoboth  Bay,  Delaware.  Journal  of  Environmental  Quality,  35:1742-­‐1755  

 

Bio  

Claudia  Shuman  is  a  second-­‐year  master’s  student  at  the  University  of  Delaware  in  the  School  of  Marine  Science  and  Policy.  She  is  studying  the  groundwater  interface  between  agriculturally-­‐derived  nitrogen  and  estuarine  health  in  southern  Delaware.    After  her  expected  graduation  in  the  summer  of  2014,  she  hopes  to  move  on  to  doctoral  study  linking  the  realms  of  watershed  science  and  policy.