barotropic wave

Upload: marco-hsu

Post on 04-Apr-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Barotropic wave

    1/55

    Ch 9: Barotropic wave

  • 7/30/2019 Barotropic wave

    2/55

    Outline

    Scale analysis

    Linearization

    (shallow water)

    Fundamental Eq

    (Linearized)

    Local scaleKelvin wave

    Poincare wave

    Planetary scale Rossby wave

    Topography wave

    9.1

    9.2

    9.3

    9.4

    9.5

    What are we

    focusing on?

  • 7/30/2019 Barotropic wave

    3/55

    What are we focusing on?

    Symbol Unit Meaning

    T time time scale we are interested in

    1/ time Earths rotation time scale

    L length length scale we are interested in

    U length/time the L scale systems average moving speed

    C length/time =L/T, which means the wave speed we are tracking

    H,H length water average height and its deviation

    Ro U

    L1, RoT

    1

    T

    1

    T~ 1

    C

    L

    T~ L U

    Important

    relation

  • 7/30/2019 Barotropic wave

    4/55

    Outline

    Scale analysis

    Linearization

    (shallow water)

    Fundamental Eq

    (Linearized)

    Local scaleKelvin wave

    Poincare wave

    Planetary scaleRossby wave

    Topography wave

    9.1

    9.2

    9.3

    9.4

    9.5

    What are we

    focusing on?

  • 7/30/2019 Barotropic wave

    5/55

    From 7.3 in vector form

    d

    dtHv

    Vv

    V 0

    d

    V

    dt f

    k

    v

    V gMomentum

    Continuity

    3 unknowns(u, v, ), 3 equations(momentum x 2 + continuity)

  • 7/30/2019 Barotropic wave

    6/55

    From 7.3 for each axis

    t

    v

    V Hv

    Vv

    V 0

    u

    t u

    u

    x v

    u

    y w

    u

    z fv

    1

    p

    x g

    x

    v

    t uv

    x v v

    y w v

    z fu 1

    p

    y g

    y

    Momentum

    Continuity

    3 unknowns(u, v, ), 3 equations(momentum x 2 + continuity)

  • 7/30/2019 Barotropic wave

    7/55

    LT

    ( U ) (L) (gHU)

    u

    t u

    u

    x v

    u

    y w

    u

    z fv g

    x

    Scale Analysis 1

    U

    T ( UU

    L ) (U) (gH

    L )

    multiplyL

    U

    CL

    T~ L U

  • 7/30/2019 Barotropic wave

    8/55

    Scale Analysis 1

    u

    t u

    u

    x v

    u

    y w

    u

    z fv g

    x

    u

    t fv g

    x

    vt

    fu gy

    V

    t f k

    v

    V g

  • 7/30/2019 Barotropic wave

    9/55

    Scale Analysis 2

    t

    v

    V Hv

    V v

    V 0

    ( HT

    ) (UHL

    ) (HUL

    ) (HUL

    )

    multiplyL

    H

    ( L

    T) ( U ) (

    H

    HU) ( U )

    CL

    T~ L U

  • 7/30/2019 Barotropic wave

    10/55

    Scale Analysis 2

    t

    v

    V Hv

    V v

    V 0

    tH

    v

    V 0

  • 7/30/2019 Barotropic wave

    11/55

    Reformulate, and we get

    t

    Hv

    V 0

    u

    t fv g

    x

    vt

    fu gy

    Momentum

    Continuity

    3 unknowns(u, v, ), 3 equations(momentum x 2 + continuity)

  • 7/30/2019 Barotropic wave

    12/55

    Reformulate, and we get

    t

    Hv

    V 0

    Momentum

    Continuity

    3 unknowns(u, v, ), 3 equations(momentum x 2 + continuity)

    V

    t f k

    v

    V g

  • 7/30/2019 Barotropic wave

    13/55

    Outline

    Scale analysis

    Linearization

    (shallow water)

    Fundamental Eq

    (Linearized)

    Local scaleKelvin wave

    Poincare wave

    Planetary scaleRossby wave

    Topography wave

    9.1

    9.2

    9.3

    9.4

    9.5

    What are we

    focusing on?

  • 7/30/2019 Barotropic wave

    14/55

    We first using fourier analysis

    u

    v

    u

    v

    e

    ikxx ikyy it

    kx ky

    gikx i f

    giky f ii iHkx iHky

    uv

    kx ky eikxx ikyy it

    0

  • 7/30/2019 Barotropic wave

    15/55

    2 f2 gH(kx2 ky

    2) 0

    0 or f2

    gHk2

    define R2 gH

    f2

    c

    f

    2

    f

    2

    1 (kR)2

  • 7/30/2019 Barotropic wave

    16/55

    Solution I : =0

    1. Timeless (it doesnt change with time!)

    2. It means theres no constraint on

    wavenumber (any shape!)

    Geostrophic solution

    f

    k

    V g

    v

    Vg

    f

    k

  • 7/30/2019 Barotropic wave

    17/55

    f

    2

    1 (kR)2

    k gH when f 0

    When f0, it degeneratesto a line (non-dispersive) Poincare

    waves(dispersive)

    Solution II :

  • 7/30/2019 Barotropic wave

    18/55

    R Rossby radius of deformation

    R gH

    fc

    f

    R

    L

    1f

    Lc

    TEarth

    Twave

    R Less rotation effect

    R More rotation effect

    R means in what scale of length will Earths rotation comes into play

  • 7/30/2019 Barotropic wave

    19/55

    Question

    Is there any way to create a situation in which

    the effect of rotation can be eliminated?

  • 7/30/2019 Barotropic wave

    20/55

    Outline

    Scale analysis

    Linearization

    (shallow water)

    Fundamental Eq

    (Linearized)

    Local scaleKelvin wave

    Poincare wave

    Planetary scaleRossby wave

    Topographiy wave

    9.1

    9.2

    9.3

    9.4

    9.5

    What are we

    focusing on?

  • 7/30/2019 Barotropic wave

    21/55

    Answer: wall

    Coriolis force

    Coriolis force Force from wall

    Rotation takes effect

    Rotation canceled

    (Kelvin wave)

    The Kelvin wave is a traveling disturbance that

    requires the support of a lateral boundary.

  • 7/30/2019 Barotropic wave

    22/55

    2v

    t2

    gH2v

    y2

    c 22v

    y2

    where c gH

    u 0 everywhere, using

    u

    t fv g

    x

    vt

    fu gy

    t H

    v

    V 0

    Condition (in NH)

  • 7/30/2019 Barotropic wave

    23/55

    Lets do some math

    2v

    t2 c2

    2v

    y2

    v V1(x,y ct) V2 (x,y ct)

    H

    gV1(x,y ct)

    H

    gV2(x,y ct)

    usingu

    t fv g

    x

    V1

    x

    f

    gHV1 ,

    V2

    x

    f

    gHV2

  • 7/30/2019 Barotropic wave

    24/55

    V1 V1(y ct) exf / gH

    ,V2 V2(y ct) exf / gH

    V2 is not a physically accepted solution (V exploded as x )

    defineR gH

    f

    c

    f

    the solution becomes

    u 0

    v cF(y ct) ex /R

    HF(y ct) ex /R

  • 7/30/2019 Barotropic wave

    25/55

    Equation tells us

    v cF(y ct) ex /R

    HF(y ct) ex /R

    1. If R is large no rotation effect pure gravity wave with c2 = (gH)2

    2. If R is smallwave doesnt exists geostrophic condition

    Again, R means in what scale of length will Earths rotation comes into play or

    more precisely, reciprocal length

  • 7/30/2019 Barotropic wave

    26/55

    Visualize

    v gf

    x

  • 7/30/2019 Barotropic wave

    27/55

    Conclusion

    The Kelvin wave is non-dispersive, the phasespeed is equal to the group speed of the waveenergy for all frequencies.

    Thus its said to be trapped. In the longshoredirection, the wave travels without distortionat the speed of surface gravity waves.

    Although the direction of propagation is unique,the sign ofvis arbitrary.

  • 7/30/2019 Barotropic wave

    28/55

    f

    2

    1 (kR)2 if we let f and k be const ,

    kR kc /f kR c Less rotation effec

    More like

    pure gravity

    wave

    More like

    pure gravity

    wave

    More like

    pure gravity

    wave

    More like

    pure gravity

    wave

    Affected by

    rotation

    Affected by

    rotation

  • 7/30/2019 Barotropic wave

    29/55

    But wait, theres something wrong

    A BIG assumption of previous solution:

    but in fact f 2sin non constant

    f constant!!

  • 7/30/2019 Barotropic wave

    30/55

    Please remember this

    In the previous ppt, we make f const and get

    two solutions, correspond to

    1.

    V

    t 0 (Geostrophic)

    2.v

    V

    t 0 (Kelvin and Poincarewaves)

    In the next section, we will using Quasi-Geostrophic condition:

    V

    t

    fkv

    VU

    fL1 (Low Rossby number)

    v

    V

    t

    fkv

    V (Quasi Geostrophic)

  • 7/30/2019 Barotropic wave

    31/55

    Outline

    Scale analysis

    Linearization

    (shallow water)

    Fundamental Eq

    (Linearized)

    Local scale Kelvin wave

    Poincare wave

    Planetary scale

    Rossby wave

    Topography wave

    9.1

    9.2

    9.3

    9.4

    9.5

    What are we

    focusing on?

  • 7/30/2019 Barotropic wave

    32/55

    From f-plane to -plane

    For simplicity, we use a Taylor 1st order

    expansion to represent non-const f.

    f f0 df

    dyy0

    y f0 0y

    planetary number0L

    f01

  • 7/30/2019 Barotropic wave

    33/55

    Reformulate, and we get

    t

    Hv

    V 0

    Momentum

    Continuity

    3 unknowns(u, v, ), 3 equations(momentum x 2 + continuity)

    V

    t

    (f0 0y)k

    v

    V g

  • 7/30/2019 Barotropic wave

    34/55

    Using 1st order appoximation

    Vt

    (f0 0y)k vV g

    v

    Vgk

    f0 (and iterate again)

    gk

    f0

    t f0

    kv

    V0g

    f0y g

    v

    Vgk

    f0

    g

    f02

    t

    0g

    f02 y

    k

  • 7/30/2019 Barotropic wave

    35/55

    v

    Vgk

    f0

    g

    f02

    t

    0g

    f02 y

    k

    tH

    v

    V 0

    t H

    gk

    f0

    g

    f02

    t

    0g

    f02 y

    k

    t

    R2

    t

    2 0R2

    x

    0

    Evaluate into continuity equation:

    Using 1st order appoximation

  • 7/30/2019 Barotropic wave

    36/55

    Using fourier analysis

    eikxxikyyit

    kx ky

    i R2(i)(kx2 ky

    2) 0R

    2(ikx ) 0

    0R

    2kx

    1R2 kx2 ky

    2

  • 7/30/2019 Barotropic wave

    37/55

    Result I : Verify

    0R

    2kx

    1R2 kx2 ky

    2 , k~ 1/L

    Shortwave :L R, ~ 0L

    Long wave:L R, ~0R

    2

    L 0R 0L0L

  • 7/30/2019 Barotropic wave

    38/55

    Result II : cx, cy

    0R

    2kx

    1R2

    kx2

    ky2

    cx

    kx

    0R2

    1R2 kx2 ky

    2 westward only

    cy

    ky

    0R2

    ky 1R2 kx

    2 ky2

    no constraint

  • 7/30/2019 Barotropic wave

    39/55

    Result III : cg

    0R

    2kx

    1R2 kx2 ky

    2

    , k~ 1/L

    kx 0

    2

    2

    ky2

    02

    42

    1

    R2

    max

    0

    R

    2

    figure 9-4,9-5

  • 7/30/2019 Barotropic wave

    40/55

    Conclusion: Rossby wave

    1. Quasi-Geostrophic

    2. Exists in beta-plane

    3. Has frequency maximum limit

    4. Single freq wave can only move westward.

    5. Energy can be transport in ANY direction!!

  • 7/30/2019 Barotropic wave

    41/55

    Video ref

    http://www.youtube.com/watch?v=iuZ2Zc5x1ZUNotice that wave propagate backward while it moves forward

    http://www.youtube.com/watch?v=iuZ2Zc5x1ZUhttp://www.youtube.com/watch?v=iuZ2Zc5x1ZUhttp://www.youtube.com/watch?v=iuZ2Zc5x1ZUhttp://www.youtube.com/watch?v=iuZ2Zc5x1ZU
  • 7/30/2019 Barotropic wave

    42/55

    Question

    Weve already expand f to analysis the 1st order

    (-plane) phenomenon Rossby wave.

    Then, what if we expand the depth of water into

    1st order? (dH/dy=-plane)

  • 7/30/2019 Barotropic wave

    43/55

    Outline

    Scale analysis

    Linearization

    (shallow water)

    Fundamental Eq

    (Linearized)

    Local scale Kelvin wave

    Poincare wave

    Planetary scale

    Rossby wave

    Topography wave

    9.1

    9.2

    9.3

    9.4

    9.5

    What are we

    focusing on?

  • 7/30/2019 Barotropic wave

    44/55

    Topography waves

    Figure 9-6

    HH0 0y

    0L

    H01

    h H0 0y also, QG condition

  • 7/30/2019 Barotropic wave

    45/55

    Rewrite continuity equation

    h

    t

    hu

    x

    hv

    y 0, h H0 0y

    t

    u0y

    x

    H0 0y u

    x

    v0y

    y

    H0 0y v

    y

    0

    t

    v

    V H0 0y v

    V 0v 0H

    T

    H

    T

    tH0

    v

    V 0v 0

  • 7/30/2019 Barotropic wave

    46/55

    Reformulate, and we get

    tH0

    v

    V 0v 0

    Momentum

    Continuity

    3 unknowns(u, v, ), 3 equations(momentum x 2 + continuity)

    V

    t

    f kv

    V g

  • 7/30/2019 Barotropic wave

    47/55

    Using 1st order appoximation

    V

    t f k

    v

    V g

    v

    V

    gk

    f (and iterate again)

    gk

    f

    t f k

    v

    V g

    v

    V g

    f2

    t

    gk

    f

  • 7/30/2019 Barotropic wave

    48/55

    v

    V g

    f2

    t

    gk

    f

    tH0

    v

    V 0v 0

    t H gf2 tg

    kf

    0v 0

    t

    R2

    t

    20g

    f

    x

    0

    Evaluate into continuity equation:

    Using 1st order appoximation

  • 7/30/2019 Barotropic wave

    49/55

    Wow, thats fimiliar

    (Topography)

    t

    R2

    t

    20g

    f

    x

    0

    (Rossby)

    tR2

    t20R

    2

    x 0

    (Topography)0g

    f 0R

    2(Rossby)

  • 7/30/2019 Barotropic wave

    50/55

    Result : Compare with Rossby

    0R

    2kx

    1R2 kx2 ky

    2 cx

    kx

    0R2

    1R2 kx2 ky

    2

    cy

    ky

    0R2

    ky 1R2 kx

    2 ky2

    m ax 0R

    2

    0g

    f

    kx

    1R2 kx2 ky

    2 cx

    kx

    0g f

    1R2 kx2 ky

    2

    cy

    ky 0g f

    ky 1R2 kx

    2 ky2

    m ax 0g

    2fR

    Topography waves Rossby waves

  • 7/30/2019 Barotropic wave

    51/55

    Planetary waves and Topography waves

    q f

    h

    f0 0y v x u y H0 0y

    1

    H0

    f0 0y 0f0

    H0

    y v x u y f0H0

  • 7/30/2019 Barotropic wave

    52/55

    Figure 9-7

    V vU

  • 7/30/2019 Barotropic wave

    53/55

    Review

    Scale analysisLinearization

    (shallow water)

    Fundamental Eq

    (Linearized)

    Local scale

    (0th order vorticity)

    Kelvin wave

    Poincare wave

    Planetary scale

    (1st order vorticity,

    vorticity conservation)

    Rossby wave

    Topography wave

    9.1

    9.2

    9.3

    9.4

    9.5

    What are wefocusing on?

    (nondispersive)

    (dispersive)

    (-plane)

    (-plane)

    V

    t f k

    v

    V g

    tH

    v

    V 0

    Ro U

    L 1,

    CL

    TU

    q f

    h

    1

    H0f0 0y

    0f0

    H0y ...

    ~

    kx

    1R2 kx2 ky

    2

    R gH

    f c

    f

    R

    L

    1f

    Lc

    TEarthTwave

    f

    2

    1 (kR)2

  • 7/30/2019 Barotropic wave

    54/55

    Reference

    Introduction to Geophysical Fluid Dynamics,

    Benoit Cushman-Roisin and Jean-Marie

    Beckers(Ch.9)

    Geophysical Fluid Dynamics Laboratory

    http://www.ocean.washington.edu/research/

    gfd/

    http://www.ocean.washington.edu/research/gfd/http://www.ocean.washington.edu/research/gfd/http://www.ocean.washington.edu/research/gfd/http://www.ocean.washington.edu/research/gfd/http://www.ocean.washington.edu/research/gfd/http://www.ocean.washington.edu/research/gfd/
  • 7/30/2019 Barotropic wave

    55/55

    Thanks for your attention!