balance de masa y energía y - universidad abierta y a ......balance de masa y energía y...

40
División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 1 Balance de masa y energía y operaciones unitarias Balance de masa y energía U1 Balance de masa y energía y operaciones unitarias Balance de masa y energía U1 Programa de la asignatura:

Upload: others

Post on 30-Jul-2021

17 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 1

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

Balance de masa y energía y

operaciones unitarias

Balance de masa y energía U1

Programa de la asignatura:

Page 2: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 2

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

Índice

Presentación de la unidad .............................................................................................. 3

Competencia específica ................................................................................................. 5

Propósitos ........................................................................................................................ 5

1.1. Balances de masa ................................................................................................... 6

1.1.1. Ecuación general de balance ..................................................................... 8

1.1.2. Diagramas de flujo ..................................................................................... 9

1.1.3. Protocolo para el cálculo de balances ...................................................... 10

1.2. Balances de energía ............................................................................................. 17

1.2.1. Tipos de energía ...................................................................................... 18

1.2.2. Balance de energía para sistemas cerrados ............................................ 20

1.2.3. Balance de energía para sistemas abiertos ............................................. 21

1.2.4. Mecanismos de transferencia de calor ..................................................... 24

1.3. Balances simultáneos de masa y energía .......................................................... 32

1.3.1. Determinación de grados de libertad en un proceso ................................ 32

1.3.2. Balances simultáneos en estado estacionario ......................................... 34

1.3.3. Balances simultáneos en estado transitorio ............................................. 35

Cierre de la unidad ........................................................................................................ 39

Fuentes de consulta ...................................................................................................... 40

Page 3: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 3

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

Presentación de la unidad

Bienvenido(a) a la Unidad 1. “Balances de masa y energía”. En esta unidad aprenderás a

plantear y resolver problemas, así como situaciones que involucran balances de masa y

energía; habilidades que te servirán a lo largo de tu desarrollo profesional, al enfrentarte a

interrogantes típicas de los ingenieros en energías renovables, como: ¿cuál es la

información necesaria para atacar mi problema? y ¿cómo puedo obtenerla?

Para abordar los problemas de balance de masa y energía, deberás retomar conceptos

que has aprendido en cursos anteriores, principalmente de termodinámica. Algunos de

estos conceptos son: sistema, estado, frontera, alrededores, funciones de estado y

propiedades de estado, entre otros. No te preocupes si no lo recuerdas, ya que se hará un

breve repaso de ellos.

Balance. Retomada de: https://www.flickr.com

Page 4: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 4

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

Con los conocimientos que obtendrás de esta unidad, comprenderás una característica

generalizada de los balances de masa y energía: pueden ser simples, y a veces ser muy

complicados, pero el enfoque básico para su solución es general.

Así, la experiencia que obtendrás trabajando con los sistemas más simples (como las

operaciones unitarias individuales) te ayudará a desarrollar la habilidad para extender los

métodos a situaciones más complicadas, que surgirán a lo largo de tu trayectoria

profesional.

Page 5: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 5

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

Competencia específica

Unidad 1

Analiza balances de masa y energía para analizar operaciones

unitarias aplicables en sistemas energéticos renovables,

identificando la variable de transporte de masa y energía.

Propósitos

1 Describirás un sistema y el tipo de proceso implicado en su transformación,

identificando las líneas de flujo y las expresiones de balance de masa que lo

gobiernan para, finalmente, analizar el balance de masa.

2 Identificarás los diferentes tipos de energía, sus interrelaciones, y los

mecanismos de transferencia de calor.

3 Estimarás los grados de libertad de un sistema multi componente, así como

analizar los balances de energía en sistemas cerrados y abiertos. Y emplearás

la metodología generalizada para analizar simultáneamente los balances de

masa y energía en estado estacionario y transitorio.

Page 6: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 6

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

1.1. Balances de masa

Las leyes de conservación ocupan un lugar especial en la ingeniería. En específico, la ley

de conservación de la masa puede escribirse de varias formas: “la materia no se crea ni

se destruye, sólo se transforma”, “la masa del universo es constante”, “la masa de

cualquier sistema aislado es constante”, etc. Los balances de masa se basan en esta ley

de conservación, y sirven para contabilizar los flujos y los cambios de masa en un sistema

en particular, los cuales, proporcionan información muy valiosa para analizar los procesos

de transformación que se encuentran en casi cualquier proceso industrial.

Ahora, es importante estudiar los balances de masa debido a que son la base

fundamental del diseño de procesos. Un balance de masa tomado sobre el proceso

completo determina las cantidades requeridas de materiales brutos y de productos

obtenidos. Los balances sobre las “operaciones unitarias” individuales establecen los

flujos de las corrientes del proceso y sus composiciones. Además, son herramientas muy

útiles para el estudio de la operación de la planta de proceso y para la ubicación de

problemas que se llegan a presentar.

Para estudiar este tema lo que se hará será desarrollar los siguientes subtemas:

Ecuación general de balance

Diagramas de flujo

Protocolo para cálculo de balance

Deberás tener presente durante el estudio de la primera unidad que estos tres subtemas,

aunque sólo se presentan en el tema de balance de masa, son procedimientos generales

que se aplican tanto a los balances de masa, como a los de energía y a los balances

simultáneos de masa y energía, por lo cual, no se repetirán en los subtemas

subsecuentes.

En esta unidad, todos los problemas que se resolverán serán del tipo “caja negra”. Esto

significa que cada proceso u “operación unitaria” será examinado desde afuera,

analizando qué entra y qué sale del sistema. Este tipo de análisis es importante debido a

que no depende del tipo específico de proceso que se realice. Cuando se realiza un

análisis de caja negra, no interesa cómo se diseña el proceso, sólo cuáles son los

resultados netos.

Para comenzar, se hará un breve repaso de conceptos que debes dominar antes de

plantear la ecuación general de balance de masa.

Page 7: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 7

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

Proceso: Zona donde sucede una transformación o cambio real, físico o químico, de los

elementos que ingresan a él.

Sistema: Cualquier porción arbitraria o total de un proceso elegida para su estudio,

limitada por una superficie llamada frontera. Cada sistema puede ser, a su vez,

subsistema de otro mayor, o también puede estar dividido en subsistemas. Un sistema

queda especificado cuando se conoce su naturaleza fisicoquímica, las propiedades de las

paredes que separan los diferentes subsistemas y de la pared que separa todo el sistema

del entorno.

Frontera: Superficie real o imaginaria que limita un sistema y que se comparte, tanto por

el sistema como por los alrededores; puede ser fija o móvil.

Alrededores o vecindad: Todo aquello que queda fuera del sistema.

Universo: Suma del sistema más su entorno.

Sistema abierto: Sistema que puede intercambiar materia y energía con el exterior.

Sistema cerrado: Sistema que no puede intercambiar materia con el exterior, pero sí

energía. Un proceso intermitente o por lotes, puede considerarse como un sistema

cerrado, cuando se hace el análisis durante el intervalo de tiempo donde no hay

intercambio de materia con los alrededores.

Sistema aislado: Sistema que no puede intercambiar materia ni energía con los

alrededores.

Entrada: Materia o energía que ingresa en un sistema.

Salida: Materia o energía que sale de un sistema.

Estado: Condiciones que determinan al sistema en un punto determinado.

Estado estable: El valor de las variables termodinámicas que determinan el estado del

sistema no varían o permanecen contantes.

Estado estacionario: Sistema en donde sus condiciones no varían con el tiempo, pero sí

con algunas otras variables, como la posición.

Page 8: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 8

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

1.1.1. Ecuación general de balance

Para cualquier sistema, la ecuación general de balance o conservación puede escribirse

como [Himmelblau, (1989)]:

[𝐸𝑛𝑡𝑟𝑎𝑑𝑎 – 𝑆𝑎𝑙𝑖𝑑𝑎] a través de las fronteras + [𝐺𝑒𝑛𝑒𝑟𝑎𝑐𝑖ó𝑛 – 𝐶𝑜𝑛𝑠𝑢𝑚𝑜] dentro del sistema

= [𝐴𝑐𝑢𝑚𝑢𝑙𝑎𝑐𝑖ó𝑛]dentro del sistema

El término de acumulación puede ser tanto positivo como negativo.

El balance de masa puede escribirse separadamente para cada especie identificable que

esté presente, ya sea elemento, compuesto o radical; y para la masa total.

Excepto en procesos nucleares, la masa no se genera ni se consume, pero si tiene lugar

una reacción química, las especies químicas particulares pueden formarse o consumirse

durante el proceso.

Debido a que, en general, no ocurren reacciones químicas en los procesos energéticos

que puedes llegar a encontrar en tu área de trabajo, en este curso no se analizarán los

balances de especies, sólo los de la masa total, en donde los términos de generación y

consumo se consideran cero, por lo cual, el balance general se reduce a:

[𝐸𝑛𝑡𝑟𝑎𝑑𝑎 – 𝑆𝑎𝑙𝑖𝑑𝑎] a través de las fronteras = [𝐴𝑐𝑢𝑚𝑢𝑙𝑎𝑐𝑖ó𝑛]dentro del sistema

Comúnmente, los problemas pueden ser tratados como balances integrales para periodos

de tiempo fijo, por lo cual, en estos procesos en estado estacionario, el término de

acumulación será cero, y el balance de masa se vuelve una relación muy simple:

[𝐸𝑛𝑡𝑟𝑎𝑑𝑎 – 𝑆𝑎𝑙𝑖𝑑𝑎] a través de las fronteras = 0

Selección de la frontera

Como ya se ha establecido, la ley de conservación se mantiene para el proceso completo

y cualquier subdivisión del mismo. La frontera del sistema define la parte del proceso que

será estudiada. Los flujos que entran y salen del sistema son aquellos que cruzan la

frontera.

Page 9: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 9

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

Cualquier proceso se puede dividir de forma arbitraria para facilitar los cálculos de

balance. La selección juiciosa de las fronteras del sistema frecuentemente puede

simplificar lo que de otra manera serían cálculos difíciles y tortuosos.

No existen reglas precisas y rápidas para la selección de las fronteras correctas para

todos los tipos de problemas de balance. La selección de la mejor subdivisión de

cualquier proceso particular es cuestión de juicio, y depende de la visión de la estructura

del problema, lo cual, sólo se obtiene mediante la práctica. Las siguientes reglas

generales, pueden servirte como guía:

1. Con procesos completos, primero establece la frontera alrededor del proceso

completo y si es posible calcula los flujos de entrada y de salida.

2. Selecciona las fronteras para subdividir el proceso en etapas simples y has un

balance sobre cada una separadamente.

3. Selecciona la frontera alrededor de cualquier etapa para reducir el número de

corrientes desconocidas, tanto como sea posible.

4. Como primer paso, incluye cualquier corriente reciclada dentro de la frontera del

sistema.

1.1.2. Diagramas de flujo

La resolución de los problemas de balance requiere del desarrollo y la solución de

ecuaciones para las incógnitas de los flujos, siendo esto último, generalmente, un asunto

de álgebra simple, pero la descripción del proceso y la colección de datos del mismo

puede presentar dificultades considerables.

El primer paso para realizar cálculos de balance es organizar la información en un

diagrama de flujo del proceso, usando cajas u otros símbolos para representar las

unidades del proceso (operaciones unitarias) y líneas con flechas para representar las

entradas y las salidas.

El diagrama debe etiquetarse, escribiendo los valores de las variables conocidas y los

símbolos de las incógnitas para cada flujo de entrada y de salida: Se escriben los valores

y las unidades de todas las variables conocidas de los flujos en las posiciones de éstos

sobre el diagrama. Se asignan símbolos algebraicos a las incógnitas de los flujos y se

pueden escribir sus unidades asociadas.

Es necesario desarrollar y resolver una ecuación para cada incógnita, por lo tanto, es

conveniente reducir al mínimo el número de incógnitas etiquetadas. Por ejemplo, cuando

se etiquetan las fracciones másicas de los componentes de un flujo, se asignan nombres

a todos menos a uno, ya que éste se calcula como 1 menos la suma de los demás.

Page 10: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 10

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

Un proceso de transferencia de masa representado por un diagrama de flujo está

balanceado cuando se satisfacen los balances de masa para todos los componentes del

sistema. Las masas, pero no las fracciones másicas de todos los flujos pueden

multiplicarse por un factor común y el proceso sigue balanceado; además, las masas de

los flujos pueden transformarse en velocidades de flujo másico y las unidades de masa de

todas las variables de flujo y de las fracciones másicas pueden cambiarse (por ejemplo,

de kg a lbm) continuando balanceado el proceso. Este procedimiento se llama cambio de

escala del diagrama de flujo y puede ser aumento de escala cuando las cantidades finales

del flujo son mayores que las originales o una disminución de escala cuando son

menores.

Un diagrama de flujo típico se verá como el que sigue:

Diagrama de flujo típico. Fuente: tomado de Izquierdo, (2011).

1.1.3. Protocolo para el cálculo de balances

La mejor manera de atacar un problema dependerá de la información disponible, la

información requerida para el balance, y de las limitaciones que surjan por la naturaleza

del problema. No es posible proporcionar un método de solución universal que cubra

todos los problemas que puedes llegar a enfrentar; lo más importante al analizar un

problema en particular, es utilizar un pensamiento lógico.

Teniendo estas limitantes en mente, el protocolo que se debe seguir es el siguiente:

1. Leer y entender el enunciado del problema, a fin de determinar qué información es

proporcionada explícitamente, qué información es suministrada de manera indirecta y

qué variables deben ser calculadas.

2. Enlistar todos los datos disponibles.

Page 11: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 11

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

3. Dibujar el diagrama de flujo con las características descritas anteriormente.

4. Enlistar toda la información requerida para el balance.

5. Decidir las fronteras del sistema.

6. Anotar cualquier otra restricción, como el equilibro entre fases.

7. Analizar el número de incógnitas y de ecuaciones por unidad de proceso, así como de

forma global. Este paso implica revisar el número de ecuaciones de conservación que

pueden escribirse y compararlo con el número de incógnitas, tomando en cuenta que

para que una serie de ecuaciones algebraicas pueda resolverse debes tener el mismo

número de ecuaciones independientes que de incógnitas.

8. Decidir cuáles variables serán variables de diseño.

9. Seleccionar la base de cálculo (tiempo, masa o volumen), así como las unidades de

trabajo que utilizarás para las variables y parámetros del problema.

10. Ordenar las ecuaciones de balance por número de incógnitas.

11. Resolver las ecuaciones planteadas, mediante algún método de solución de

ecuaciones algebraicas simultáneas (sustitución, igualación, reducción, entre otras).

12. Revisar tus respuestas sustituyéndolas en los balances de masa y revisando que las

ecuaciones se cumplan, y que los resultados sean razonables.

Todos estos pasos son importantes, pero no necesariamente deben realizarse en el orden

descrito, algunas veces deberás intercambiarlos para que sea más simple el proceso de

resolución. Otra cosa importante, es que frecuentemente existirán varias maneras de

resolver tu problema, algunas más eficientes que otras, por lo cual, debes tomarte el

tiempo de analizarlo y determinar la mejor estrategia de solución.

Lo más importante, que no debes perder de vista, es que en todo problema de balance de

masa o energía existe una solución única.

Con respecto al punto 7 ¿qué hacer si al contar las ecuaciones independientes y las

incógnitas no concuerdan? Lo mejor es revisar tu análisis del problema para asegurarte

de que no estás ignorando algunas ecuaciones o variables, contándolas doble, olvidando

tomar en cuenta algún dato, o haber hecho alguna suposición errónea.

En cuanto a la base de cálculo (punto 9), en algunos problemas no especifican una base,

y el número de variables es mayor por una con respecto al número de ecuaciones

independientes. En tal caso, se puede seleccionar una base arbitraria de 1 o 100 kg,

moles, etc., para tener una pieza de información esencial extra necesaria para obtener

una solución única.

Page 12: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 12

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

Además, debes recordar dos definiciones importantes:

Fracción másica: Expresa la masa de soluto contenida en una unidad de masa de

muestra, es decir, la relación entre la masa de un soluto dado y la masa total de la

muestra que lo contiene. Por lo cual, la suma de las fracciones másicas de todos los

solutos que integran la muestra debe ser 1. Fuente: tomado de Himmelblau, (1989).

Grados de libertad: El número de grados de libertad se define como la diferencia entre el

número de variables desconocidas o incógnitas y el número de ecuaciones

independientes. Si el número de grados de libertad es positivo, debe encontrarse igual

número de ecuaciones independientes adicionales para obtener una solución única al

problema de balance de masa. Si el número de grados de libertad es menor de cero, es

decir, negativo, significa que tienes muchas ecuaciones, o insuficientes variables en el

problema, lo cual, puede suceder si olvidas incluir alguna variable en tu diagrama de flujo,

o que tal vez, la información que estás usando no es correcta. Por último, si tienes cero

grados de libertad, significa que tu problema está bien especificado y puedes proceder a

resolver las ecuaciones para las incógnitas especificadas. Fuente: tomado de

Himmelblau, (1989).

A continuación, se presentan tres ejemplos de cómo abordar problemas de balance de

masa.

Ejemplo 1: Balance de masa total

Un secador se alimenta con una suspensión acuosa de papel, con un 8.5% en peso de

sólido seco. El sólido que abandona el secador contiene 5% en peso de agua. Si el

secador elimina 500 kg/h de agua. ¿Cuál será la producción diaria de pulpa de papel con

5% en peso de agua?

Solución:

El sistema puede representarse como sigue:

𝑚1 =?

Sólido húmedo

𝑋1,𝑠ó𝑙𝑖𝑑𝑜 = 0.085

𝑚2 =?

Sólido seco

𝑋1,𝑎𝑔𝑢𝑎 = 0.05

𝑚3 = 500 kg/h

Agua

𝑋1,𝑠ó𝑙𝑖𝑑𝑜 = 0.0

Frontera del sistema

Page 13: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 13

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

Hay dos componentes en este sistema, el sólido y el agua. El sistema es estacionario y no

hay reacciones químicas. Por lo cual, el balance de masa total y de cada componente se

escribe como:

��1 − ��2 − ��3 = 0

��1,𝑎𝑔𝑢𝑎 − ��2,𝑎𝑔𝑢𝑎 − ��3,𝑎𝑔𝑢𝑎 = 0

��1,𝑠ó𝑙𝑖𝑑𝑜 − ��2,𝑠ó𝑙𝑖𝑑𝑜 = 0

Del balance de sólido se puede ver que, usando los porcentajes de agua que se tienen

como datos:

0.085��1 − (1 − 0.05)��2 = 0

��1 =0.95

0.085��2 = 11.18��2

Con esta última ecuación y, del balance total:

11.18��2 − ��2 − 500 kg/h = 0

��2 =500 kg/h

(11.18 − 1)= 49.12 kg/h = 1178.8 kg/día

Ejemplo 2. Balances de masa independientes

Examina la figura. La composición de cada corriente es:

1. A puro

2. B puro

3. A y B, con concentraciones conocidas

4. C puro

5. A, B y C, con concentraciones conocidas

6. D puro

7. A y B, con concentraciones conocidas

8. C y D, con concentraciones conocidas

1

2 4 6

3 5

7

8 I II III

Page 14: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 14

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

¿Cuál es el número máximo de balances de masa independientes que pueden

establecerse para resolver este problema?

Solución:

En la unidad I, están involucrados dos componentes (A y B).

En la unidad II, están involucrados tres componentes (A, B y C).

En la unidad III, están involucrados cuatro componentes (A, B, C y D).

Sin embargo, no todos los balances son independientes. En la siguiente lista, todas las

concentraciones 𝑋 son conocidas, y 𝐹 representa la corriente de flujo designada por el

subíndice.

Subsistema I:

Componente A: 𝐹1(1.0) + 𝐹2(0) = 𝐹3(𝑋𝐹3,𝐴)

Componente B: 𝐹1(0) + 𝐹2(1.0) = 𝐹3(𝑋𝐹3,𝐵)

Subsistema II:

Componente A: 𝐹3(𝑋𝐹3,𝐴) + 𝐹4(0) = 𝐹5(𝑋𝐹5,𝐴)

Componente B: 𝐹3(𝑋𝐹3,𝐵) + 𝐹4(0) = 𝐹5(𝑋𝐹5,𝐵)

Componente C: 𝐹3(0) + 𝐹4(1.0) = 𝐹5(𝑋𝐹5,𝐶)

Subsistema III:

Componente A: 𝐹5(𝑋𝐹5,𝐴) + 𝐹6(0) = 𝐹7(𝑋𝐹75,𝐴) + 𝐹8(0)

Componente B: 𝐹5(𝑋𝐹5,𝐵) + 𝐹6(0) = 𝐹7(𝑋𝐹7,𝐵) + 𝐹8(0)

Componente C: 𝐹5(𝑋𝐹5,𝐶) + 𝐹6(0) = 𝐹7(0) + 𝐹8(𝑋𝐹8,𝐶)

Componente D: 𝐹5(0) + 𝐹6(1.0) = 𝐹7(0) + 𝐹8(𝑋𝐹8,𝐷)

Si se toma como base 𝐹1, se deben calcular siete valores de los flujos restantes, 𝐹2 a 𝐹8,

por lo cual, sólo se requiere escribir siete ecuaciones independientes. El balance del

componente B en el subsistema II y el balance del componente B en el subsistema III son

redundantes, por lo tanto, se puede obtener una solución única.

Ejemplo 3. Balances de masa con diferentes fronteras

Según la figura, se procesa suero de leche (0.5% proteína, 4.5% lactosa, 95% agua) para

obtener polvo seco rico en proteína. A través de la membrana sólo pasa lactosa y agua, y

en el deshidratado sólo es removida el agua. Determinar las velocidades de flujo del polvo

seco (D), permeato (P), y concentrado (C); y la concentración de proteína y lactosa en el

flujo C, junto a la producción de vapor (V).

Page 15: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 15

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

Frontera 1

(C)

SUERO (S) MEMBRANA SECADOR POLVO (D)

PERMEATO (P) VAPOR (V)

Solución:

Haciendo un balance de masa total, dentro de la frontera 1, ecuación 1:

𝑚𝑆 = 𝑚𝑃 + 𝑚𝑉 + 𝑚𝐷

Sobre el subsistema de sólo la membrana, ecuación 2:

𝑚𝑆 = 𝑚𝑃 + 𝑚𝐶

Sobre el subsistema de sólo el secador, ecuación 3:

𝑚𝐶 = 𝑚𝑉 + 𝑚𝐷

Ahora, un balance de proteína en la frontera 1:

𝑚𝑆𝑝𝑟𝑜𝑡𝑒í𝑛𝑎= 𝑚𝐷𝑝𝑟𝑜𝑡𝑒í𝑛𝑎

0.005𝑚𝑆 = 0.50𝑚𝐷

𝑚𝐷 =0.005

0.50𝑚𝑆 = 5 kg/h

Un balance de lactosa en la frontera 1:

𝑚𝑆𝑙𝑎𝑐𝑡𝑜𝑠𝑎= 𝑚𝑃𝑙𝑎𝑐𝑡𝑜𝑠𝑎 + 𝑚𝐷𝑙𝑎𝑐𝑡𝑜𝑠𝑎

0.045𝑚𝑆 = 0.045𝑚𝑃 + 0.48𝑚𝐷

𝑚𝑃 =0.045𝑚𝑆 − 0.48𝑚𝐷

0.045= 446.67 kg/h

mS = 500 kg/h

0.5% proteína

4.5% lactosa

95% agua mP = ¿?

0.0% proteína

4.5% lactosa

95.5% agua

mV = ¿?

0.0% proteína

0.0% lactosa

100.0% agua

mD = ¿?

50.0% proteína

48.0% lactosa

2.0% agua

Page 16: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 16

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

De la ecuación 2:

𝑚𝐶 = 𝑚𝑆 − 𝑚𝑃 = 53.33 kg/h

De la ecuación 1:

𝑚𝑉 = 𝑚𝑆 − 𝑚𝑃 − 𝑚𝐷 = 48.33 kg/h

De un balance de lactosa sobre la membrana:

𝑚𝐶 𝑙𝑎𝑐𝑡𝑜𝑠𝑎= 𝑚𝑆𝑙𝑎𝑐𝑡𝑜𝑠𝑎

− 𝑚𝑃𝑙𝑎𝑐𝑡𝑜𝑠𝑎

𝑚𝐶 𝑙𝑎𝑐𝑡𝑜𝑠𝑎= 0.045𝑚𝑆 − 0.045𝑚𝑃 = 2.4 kg/h

𝑋𝐶 𝑙𝑎𝑐𝑡𝑜𝑠𝑎=

𝑚𝐶 𝑙𝑎𝑐𝑡𝑜𝑠𝑎

𝑚𝐶= 0.045 = 4.5%

Y, por último, de un balance de proteína sobre la membrana:

𝑚𝐶 𝑝𝑟𝑜𝑡𝑒í𝑛𝑎= 𝑚𝑆𝑝𝑟𝑜𝑡𝑒í𝑛𝑎

𝑋𝐶 𝑝𝑟𝑜𝑡𝑒í𝑛𝑎=

0.005𝑚𝑆

𝑚𝐶= 0.047 = 4.7%

Con estos ejemplos se concluye la sección sobre el procedimiento para analizar

problemas de balances de masa. Como se puede corroborar, la principal dificultad en

éstos radica en realizar su formulación. Sin embargo, si comprendiste todos los pasos de

la sección 1.1.3, has aprendido una estrategia consistente para atacar los problemas,

independientemente del proceso analizado.

Page 17: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 17

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

1.2. Balances de energía

Así como sucede con la masa, la energía cumple la ley de conservación descrita

anteriormente, excepto para reacciones nucleares.

Sin embargo, la mayor complicación en el análisis de balances de energía es que ésta

puede existir de diferentes formas: como calor, trabajo, energía mecánica, energía

eléctrica, etc. Entonces, lo que tienes que mantener presente es que la energía total se

conserva, pero puede transformarse de una forma a otra u otras.

En el diseño de procesos, los balances de energía se realizan para determinar los

requerimientos de energía de los procesos: calentamiento, enfriamiento y potencia,

necesarios. En la operación de cualquier planta industrial o de proceso, una auditoría

energética (básicamente un balance) muestra los patrones de uso de la energía y sugiere

las áreas de conservación y ahorro disponibles.

A continuación, se retoman algunos términos que debes tener presentes para el

desarrollo de los balances de energía:

Sistema: Es el mismo concepto utilizado en los balances de masa, así como los de

sistema cerrado, sistema abierto y sistema aislado.

Propiedad: Es una característica del material que puede medirse, como la presión,

volumen, temperatura, o calcularse, si no se puede medir directamente. La principal

característica de las propiedades de un sistema es que dependen de su condición en un

determinado instante (estado) y no de los que le ha sucedido al sistema con anterioridad.

Propiedad extensiva: Es aquella propiedad cuyo valor es la suma de los valores de cada

subsistema que conforma el sistema completo, como la masa o el volumen.

Propiedad intensiva: Es aquella cuyo valor no es aditivo y no cambia con la cantidad de

material en el subsistema. Por ejemplo, temperatura, presión, o densidad.

Estado: Serie de propiedades dadas de un material en un momento específico que

determinan sus características. El estado de un sistema no depende de su forma o

configuración sino sólo de sus propiedades intensivas.

A continuación, te invito a continuar analizando los siguientes subtemas, con lo que

aprenderás cuáles son los tipos de energía que se pueden analizar en un sistema, cómo

Page 18: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 18

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

se establece el balance de energía para sistemas cerrados y para sistemas abiertos y, por

último, cuáles son los mecanismos de transferencia de calor en los diferentes equipos que

puedes encontrar en una planta industrial.

1.2.1. Tipos de energía

Ahora se discutirán los tipos de energía que pueden encontrarse en cualquier balance de

energía; estos son: trabajo, calor, energía cinética, energía potencial, energía interna y

entalpía.

Trabajo

Forma de energía que representa una transferencia entre el sistema y sus alrededores,

por lo tanto, no puede almacenarse. El trabajo es una función de trayectoria, es decir, su

valor depende del estado inicial, de la trayectoria, y del estado final del sistema.

Generalmente, su notación es 𝑊. Por convención, el trabajo hecho sobre el sistema por

los alrededores se considera negativo, y el trabajo hecho o realizado por el sistema sobre

los alrededores es positivo; esto lo debes tener muy presente cuando realices balances

de energía.

Para una fuerza mecánica, el trabajo se hace cuando dicha fuerza actúa a través de una

distancia:

𝑊 = ∫ 𝐹𝑑𝑥𝑒𝑠𝑡𝑎𝑑𝑜 2

𝑒𝑠𝑡𝑎𝑑𝑜 1

Donde 𝐹 es la fuerza y 𝑥 la distancia.

También puede producirse trabajo como producto del cambio de presión o de volumen:

𝑊 = ∫ 𝑃𝑑𝜈𝑒𝑠𝑡𝑎𝑑𝑜 2

𝑒𝑠𝑡𝑎𝑑𝑜 1

Donde 𝑃 es la presión y el volumen por unidad de masa.

Calor

Se define como la parte de la energía total que cruza la frontera de un sistema a causa de

la diferencia de temperatura entre el sistema y sus alrededores. Su notación es 𝑄. El calor

puede intercambiarse por conducción, convección y radiación. El calor, como el trabajo,

es una función de trayectoria. Por convención, el calor que sale del sistema hacia los

alrededores se considera negativo, y el calor que entra en el sistema desde los

alrededores es positivo.

Page 19: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 19

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

Energía cinética

Es la energía que posee un sistema debido a su velocidad relativa con respecto a los

alrededores, y considerando a estos en reposo:

𝐸𝑐 =1

2𝑚𝜐2

Donde 𝑚 es la masa del sistema, y la velocidad.

Energía potencial

Es la energía que posee un sistema debido a la fuerza ejercida sobre su masa por un

campo gravitacional con respecto a una superficie de referencia, es decir, la energía

debida a su posición:

𝐸𝑝 = 𝑚𝑔ℎ

Donde 𝑚 es la masa del sistema, 𝑔 es la constante gravitacional (9.81 m/s2), y ℎ la

diferencia de altura.

Energía interna

Es una medida macroscópica de la suma de las energías molecular, atómica y

subatómica debidas a su movimiento. Generalmente, su notación es 𝑈. Esta energía debe

calcularse mediante la medición de otras variables, como la presión, temperatura y

composición. Debes tener presente que sólo puedes calcular diferencias de energía

interna, o calcular la energía interna relativa a un estado de referencia, pero no valores

absolutos de energía interna.

Entalpía

Para aplicar balances de energía, frecuentemente encontrarás una variable con el

símbolo H, llamada entalpía. Esta variable por definición se escribe como:

𝐻 = 𝑈 + 𝑝𝑉

Donde 𝑝 es la presión y 𝑉 el volumen.

Como con la energía interna, la entalpía no tiene un valor absoluto, sólo se pueden

calcular cambios de entalpía.

Page 20: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 20

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

1.2.2. Balance de energía para sistemas cerrados

Como se revisó anteriormente, un sistema es abierto o cerrado dependiendo de que la

masa cruce o no las fronteras del sistema durante el tiempo cubierto por el balance de

energía. Por definición, un proceso por lotes es cerrado y los sistemas continuos o semi

continuos son abiertos.

En un sistema cerrado, los términos de generación y consumo del balance general se

cancelan, por lo cual:

[𝐸𝑛𝑡𝑟𝑎𝑑𝑎 – 𝑆𝑎𝑙𝑖𝑑𝑎] a través de las fronteras = [𝐴𝑐𝑢𝑚𝑢𝑙𝑎𝑐𝑖ó𝑛]dentro del sistema

En el análisis de energía, el término de acumulación se refiere a la cantidad de energía

final que posee el sistema, menos la cantidad de energía inicial que poseía el sistema al

inicio del proceso. En cuanto a la entrada y la salida de energía a través de la frontera, se

refiere al calor y trabajo, los cuales, como se mencionó antes, no son propiedad del

sistema, sino que se producen o se extraen del mismo a través de la frontera. Por lo tanto:

𝐸𝑛𝑒𝑟𝑔í𝑎 𝑛𝑒𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑖𝑑𝑎 a través de las fronteras = 𝐸𝑛𝑒𝑟𝑔í𝑎 𝑓𝑖𝑛𝑎𝑙 − 𝐸𝑛𝑒𝑟𝑔í𝑎 𝑖𝑛𝑖𝑐𝑖𝑎𝑙

Donde:

𝐸𝑛𝑒𝑟𝑔í𝑎 𝑛𝑒𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑖𝑑𝑎 = 𝑄 − 𝑊

𝐸𝑛𝑒𝑟𝑔í𝑎 𝑖𝑛𝑖𝑐𝑖𝑎𝑙 = 𝑈𝑖 + 𝐸𝑐,𝑖 + 𝐸𝑝,𝑖

𝐸𝑛𝑒𝑟𝑔í𝑎 𝑓𝑖𝑛𝑎𝑙 = 𝑈𝑓 + 𝐸𝑐,𝑓 + 𝐸𝑝,𝑓

Donde los subíndices 𝑖 y 𝑓, se refieren al estado inicial y final del sistema. Un punto

importante es que la energía neta transferida es la sustracción entre el calor y el trabajo,

debido a la convención de signos establecida, es decir, es el calor transferido al sistema

procedente de los alrededores, menos el trabajo realizado por el sistema sobre los

alrededores.

Entonces, la ecuación de balance de energía de un sistema cerrado se escribe como:

(𝑈𝑓 − 𝑈𝑖) + (𝐸𝑐,𝑓 − 𝐸𝑐,𝑖) + (𝐸𝑝,𝑓 − 𝐸𝑝,𝑖) = 𝑄 − 𝑊

O, si se usa el símbolo para representar (final – inicial):

∆𝑈 + ∆𝐸𝑐 + ∆𝐸𝑝 = 𝑄 − 𝑊

Page 21: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 21

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

Para resolver esta ecuación, debes recordar algunos preceptos termodinámicos:

1. En un sistema cerrado, si no hay cambios de temperatura, o de fase, ni reacciones

químicas, y si los cambios de presión son de pocas atmósferas, entonces, el

cambio de energía interna se aproxima a cero (∆𝑈 ≈ 0).

2. Si el sistema no tiene aceleración, no hay cambio de energía cinética (∆𝐸𝑐 = 0). Si

el sistema no se eleva ni cae, no existe cambio de energía potencial (∆𝐸𝑝 = 0).

3. Si el sistema y sus alrededores están a la misma temperatura o si el sistema está

aislado, el proceso se denomina adiabático y el calor es cero (𝑄 = 0).

4. Si no hay partes móviles ni corrientes eléctricas ni radiaciones en las fronteras del

sistema, el trabajo es cero (𝑊 = 0).

1.2.3. Balance de energía para sistemas abiertos

La ecuación de balance general es la misma que para la masa:

[𝐸𝑛𝑡𝑟𝑎𝑑𝑎 – 𝑆𝑎𝑙𝑖𝑑𝑎] a través de las fronteras + [𝐺𝑒𝑛𝑒𝑟𝑎𝑐𝑖ó𝑛 – 𝐶𝑜𝑛𝑠𝑢𝑚𝑜]dentro del sistema

= [𝐴𝑐𝑢𝑚𝑢𝑙𝑎𝑐𝑖ó𝑛]dentro del sistema

Para procesos en estado estacionario, la acumulación será cero.

Un sistema abierto, por definición, tiene un flujo másico cruzando a través de sus

fronteras mientras el proceso ocurre. Por esta razón, el balance de energía de un sistema

abierto se escribe en términos de velocidad de transporte de energía, a diferencia del

balance del sistema cerrado.

Si la masa entra al sistema, debe producirse trabajo sobre el mismo; y si la masa sale, el

trabajo se hace sobre los alrededores. Ambos términos de trabajo deben incluirse en el

balance de energía.

Trabajo de flujo y trabajo de flecha

La velocidad neta de trabajo realizado por un sistema abierto sobre los alrededores puede

escribirse como:

�� = 𝑊𝑠 + 𝑊��

Donde 𝑊𝑠 es el trabajo de flecha, es decir, la velocidad de trabajo hecho por el fluido de

proceso sobre alguna parte móvil dentro del sistema, como el rotor de un motor; y 𝑊�� es

Page 22: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 22

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

el trabajo de flujo, es decir, la velocidad de trabajo realizado por el fluido en la salida del

sistema menos la velocidad de trabajo hecho sobre el fluido en la entrada del sistema.

Ahora, el trabajo de flujo se calcula como:

𝑊�� = ∑ 𝑝𝑠𝑎𝑙𝑖𝑑𝑎��𝑠𝑎𝑙𝑖𝑑𝑎 − ∑ 𝑝𝑒𝑛𝑡𝑟𝑎𝑑𝑎��𝑒𝑛𝑡𝑟𝑎𝑑𝑎

Donde 𝑝 es la presión (N/m2) y �� es la velocidad de flujo volumétrico (m3/s). Se usa la

sumatoria para tomar en cuenta que pueden existir varias corrientes de entrada y de

salida en el sistema.

Según la primera ley de la termodinámica, para un sistema abierto en estado estacionario

la ecuación de energía queda:

[𝐸𝑛𝑡𝑟𝑎𝑑𝑎 – 𝑆𝑎𝑙𝑖𝑑𝑎] a través de las fronteras = 0

Donde los términos de generación y consumo dentro del sistema desaparecen porque en

realidad se están incluyendo en el cálculo de entrada y salida a través de las fronteras. Es

decir:

𝑉𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑 𝑑𝑒 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑒 𝑑𝑒 𝑒𝑛𝑒𝑟𝑔í𝑎 𝑑𝑒 𝑒𝑛𝑡𝑟𝑎𝑑𝑎 = ��𝑒𝑛𝑡𝑟𝑎𝑑𝑎 = (�� + ��𝑐 + ��𝑝)𝑒𝑛𝑡𝑟𝑎𝑑𝑎

𝑉𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑 𝑑𝑒 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑒 𝑑𝑒 𝑒𝑛𝑒𝑟𝑔í𝑎 𝑑𝑒 𝑠𝑎𝑙𝑖𝑑𝑎 = ��𝑠𝑎𝑙𝑖𝑑𝑎 = (�� + ��𝑐 + ��𝑝)𝑠𝑎𝑙𝑖𝑑𝑎

Entonces, las velocidades totales de energía son las sumas de la energía neta transferida

más la velocidad de transporte de energía, de entrada y salida, respectivamente:

𝑉𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑 𝑡𝑜𝑡𝑎𝑙 𝑑𝑒 𝑒𝑛𝑒𝑟𝑔í𝑎 𝑑𝑒 𝑒𝑛𝑡𝑟𝑎𝑑𝑎 = �� + ∑ ��𝑗

𝑒𝑛𝑡𝑟𝑎𝑑𝑎

𝑉𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑 𝑡𝑜𝑡𝑎𝑙 𝑑𝑒 𝑒𝑛𝑒𝑟𝑔í𝑎 𝑑𝑒 𝑠𝑎𝑙𝑖𝑑𝑎 = �� + ∑ ��𝑗

𝑠𝑎𝑙𝑖𝑑𝑎

Donde el subíndice 𝑗 se refiere a 𝑗 − é𝑠𝑖𝑚𝑎 corriente de proceso.

El balance de energía general es, por lo tanto:

∑ ��𝑗

𝑠𝑎𝑙𝑖𝑑𝑎

− ∑ ��𝑗

𝑒𝑛𝑡𝑟𝑎𝑑𝑎

= �� − ��

Page 23: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 23

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

Desarrollando la ecuación, usando las definiciones de velocidad neta de trabajo realizado

y entalpía, se tiene:

∑ ��𝑗 (𝐻𝑗 +𝜐𝑗

2

2+ 𝑔ℎ𝑗)

𝑠𝑎𝑙𝑖𝑑𝑎

− ∑ ��𝑗

𝑒𝑛𝑡𝑟𝑎𝑑𝑎

(𝐻𝑗 +𝜐𝑗

2

2+ 𝑔ℎ𝑗) = �� − 𝑊𝑠

O bien:

∆�� + ∆��𝑐 + ∆��𝑝 = �� − ��𝑠

Esta ecuación es la base para la mayoría de los cálculos de balance energético en

sistemas abiertos en estado estacionario.

Por último, se presentan dos ejemplos típicos.

Ejemplo 1. Balance de energía en una turbina

Una turbina es impulsada por 1000 kg/h de vapor. El vapor entra a 50 atm y 500°C con

una velocidad lineal de 60 m/s y sale en un punto 5 m por debajo de la entrada, a presión

atmosférica y velocidad de 360 m/s. La turbina aporta trabajo de flecha a razón de 80 kW,

y sus pérdidas de calor son de 10,000 kcal/h. Calcula el cambio de entalpía específica

asociado con el proceso.

Q = -10,000 kcal/h

Ws = 80 kW

Solución:

De la ecuación base del balance de energía de sistema abierto en estado estacionario:

∆�� = �� − ��𝑠 − ∆��𝑐 − ∆��𝑝

1000 kg/h 50 atm 500°C 60 m/s 1000 kg/h

1 atm 360 m/s

5 m

Page 24: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 24

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

Deben calcularse la energía cinética y la energía potencial:

∆��𝑐 =��

2(𝜐2

2 + 𝜐12) =

0.278 kg/s

2(3602 + 602)

m2

s2= 17,500

kg m2

s3= 17.5 kW

(Para obtener el resultado en 𝑘𝑊 se usaron los definiciones de N y W).

∆��𝑝 = ��𝑔(ℎ2 + ℎ1) = (0.278 kg/s)(9.81 N/kg)(−5 m) = −13.62 W = −13.62 × 10−3 kW

Entonces:

∆�� = (−11.6 − 80 − 17.5 + 13.62 × 10−3) kW = − 109.1 kW

Pero:

∆�� = ��(𝐻2 − 𝐻1) = ��∆𝐻

Así:

∆𝐻 =−109.1 kJ/s

0.278 kg/s= −392.4 kJ/kg

1.2.4. Mecanismos de transferencia de calor

Mediante los conceptos termodinámicos que se presentaron en el subtema “1.2.1. Tipos

de energía”, y de los cursos previos de termodinámica, has aprendido que la energía

puede transferirse por interacción de un sistema con sus alrededores, como trabajo y

calor.

Sin embargo, la termodinámica estudia solamente los estados inicial y final del proceso,

pero no da información respecto a la naturaleza de la interacción entre el sistema y sus

alrededores, ni de la velocidad a la que ocurre el proceso.

El objetivo del estudio de los mecanismos de transferencia de calor es extender el análisis

termodinámico para calcular la velocidad de transferencia de calor.

En este contexto, debes tener claro que “transferencia de calor” es energía térmica en

tránsito, en un medio o entre varios medios, debido a una diferencia de temperatura.

También debes recordar que el calor siempre se transferirá del sistema de mayor

temperatura al de menor temperatura, independientemente del mecanismo involucrado.

Como se mencionó anteriormente, existen tres diferentes mecanismos mediante los

cuales puede transferirse el calor:

1. Conducción (la energía se transfiere a través de un sólido o de un fluido en

reposo).

Page 25: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 25

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

2. Convección (la energía se transfiere entre una superficie y un fluido en

movimiento).

3. Radiación (no se requiere de un medio de transferencia).

Conducción

La conducción de calor se presenta cuando dos cuerpos están en contacto y uno de los

dos está a una temperatura mayor que el otro. El movimiento de las moléculas más

energéticas en el cuerpo más caliente hará vibrar las moléculas menos energéticas en el

punto de contacto con el cuerpo más frío y en consecuencia aumentará su temperatura,

hasta llegar al equilibrio.

Un ejemplo típico de conducción de calor es una cuchara de metal que se sumerge

repentinamente en una taza de café caliente, la parte expuesta eventualmente se

calentará debido a la conducción de calor a través de la cuchara.

La cantidad de calor transferida por conducción depende de la diferencia de temperatura,

las propiedades del material, su espesor, el área de superficie de contacto y la duración

de la transferencia.

Los buenos conductores de calor son típicamente sustancias densas, cuyas moléculas

están muy cercanas, esto permite al proceso de agitación molecular. Así, los metales son

buenos conductores de calor, mientras que los gases no. Los malos conductores

usualmente se conocen como aislantes.

La propiedad que mide la habilidad de una sustancia de aislar es su resistencia térmica.

Comúnmente se conoce como el valor de R (mK/W), que es inversamente proporcional a

la conductividad térmica, k (W/mK), la habilidad de conducir el calor, una característica

del material.

La base del análisis de la transferencia de calor por conducción es la Ley de Fourier

[Incropera, (2007)]. Esta ley involucra la idea de que el flujo de calor es proporcional al

gradiente de temperatura en cualquier dirección 𝑛. La conductividad térmica, 𝑘, una

propiedad de los materiales que es dependiente de la temperatura, es la constante de

proporcionalidad.

𝑄𝑘 = −𝑘𝐴𝜕𝑇

𝜕𝑥

Donde 𝑄𝑘(𝑊) es el calor transferido, 𝐴 (m2) es el área por donde se conduce el calor

(frecuentemente es una función de la distancia en la dirección 𝑥). El signo menos es

Page 26: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 26

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

consecuencia del hecho que el calor se transfiere en la dirección de la disminución de

temperatura.

El flujo de calor 𝑞𝑘 (W/m2) se puede calcular a partir de la expresión anterior:

𝑞𝑘 = −𝑘𝜕𝑇

𝜕𝑥

Entonces, conociendo la distribución de temperatura respecto a la dirección 𝑥, es posible

resolver la ecuación. A continuación, se presenta un ejemplo.

Ejemplo 1. Conducción de calor

La pared de un contenedor industrial de 0.12 m de espesor está construida de acero al

carbón, con conductividad térmica de 16.3 W/ (m K). Las mediciones hechas durante la

operación en estado estacionario revelan temperaturas de 800 K y 625 K en sus

superficies interna y externa, respectivamente. ¿Cuál es la velocidad de pérdida de calor

a través de la pared que mide 0?8 m por 1.4 m?

Solución:

T1 = 800 K T2 = 625 K

qk Área de pared, A

H = 0.8 m

0 L W = 1.4 m

k = 16.3 W/(m K)

L = 0.12 m

Suposiciones:

1. Condiciones de estado estacionario.

2. Conducción unidimensional a través de la pared.

3. Conductividad térmica constante.

En condiciones de estado estacionario, donde la distribución de temperatura es lineal, el

gradiente de temperatura puede expresarse como:

Page 27: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 27

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

𝑑𝑇

𝑑𝑥=

𝑇2 − 𝑇1

𝐿

Aplicándolo a la ley de Fourier:

𝑞𝑘 = −𝑘𝑇2 − 𝑇1

𝐿= −16.3W/(m K)

(625K − 800K)

0.12 m= 23770.8 W/m2

La pérdida de calor a través de la pared del área 𝐴 = 𝐻𝑊 es:

𝑄𝑘 = (𝐻𝑊)𝑞𝑘 = (0.8 m × 1.4 m)23770.8 W/m2 = 26623.3 W = 26.6 kW

Convección

La transferencia de calor por convección se lleva a cabo por dos mecanismos: el

movimiento molecular aleatorio, conocido como difusión, y el movimiento macroscópico

del fluido (líquido o gas). Este movimiento de fluido se asocia con el hecho que, en

cualquier instante, un gran número de moléculas se mueven colectivamente, lo cual, en

presencia de un gradiente de temperatura, contribuye a la transferencia de calor, de una

porción caliente a una porción fría. Debido a que las moléculas conservan su movimiento

aleatorio, la transferencia total de calor se debe a la superposición de ambos

mecanismos.

Así, la transferencia de calor por convección ocurre entre un fluido en movimiento y una

superficie fronteriza cuando las dos están a diferentes temperaturas. La naturaleza del

flujo determina el tipo de convección: natural y forzada.

En el caso de convección natural, el movimiento del fluido se debe a la diferencia de

densidades ocasionada por las variaciones de temperatura en el fluido. Es decir, el fluido

en contacto con o adyacente al cuerpo a alta temperatura se calienta por conducción. A

medida que se calienta, se expande, se vuelve menos denso y en consecuencia se eleva.

Esto comienza un proceso de movimiento del fluido en donde una corriente de fluido se

mueve sobre el cuerpo caliente y transfiere continuamente el calor lejos de él.

En el caso de convección forzada, el movimiento del fluido se fuerza mediante un

ventilador, una bomba o algún otro medio externo.

La convección depende de las propiedades térmicas del fluido, así como de las

condiciones de la superficie de contacto, y otros factores que afectan la habilidad del

fluido para fluir.

Page 28: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 28

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

El flujo de calor por convección se puede calcular mediante la ley de enfriamiento de

Newton [Fuente: tomado de Incropera, (2007)]:

𝑄𝑐 = ℎ𝐴(𝑇𝑠 − 𝑇𝑓)

Donde los subíndices 𝑓 y 𝑠, se refieren al fluido y a la superficie, respectivamente, y ℎ

(W/m2K) es el coeficiente convectivo de transferencia de calor, el cual, depende de la

geometría de la superficie de contacto, la naturaleza del movimiento del fluido, y una

variedad de propiedades termodinámica y de transporte del fluido.

El flujo de calor 𝑞𝑐 (W/m2) se puede calcular a partir de la expresión anterior:

𝑞𝑘 = ℎ(𝑇𝑠 − 𝑇𝑓)

El estudio del proceso de convección se reduce, entonces, a la determinación del

coeficiente convectivo de transferencia de calor. En general, en los problemas que se

resolverán, se asumirá que el valor de ℎ es conocido, usando valores típicos reportados

en la literatura.

Debes tener en cuenta que, el flujo de calor por convección se considera positivo si el

calor se transfiere desde la superficie (Ts > Tf).

Radiación térmica

La radiación térmica es energía emitida como ondas electromagnéticas similares a las

ondas de luz. Estas ondas pueden ser visibles e invisibles. Un ejemplo muy común es el

calentamiento de un cuerpo de agua mediante energía solar. La radiación es invisible,

pero puedes sentirla calentándote.

Los objetos reciben radiación térmica cuando son alcanzados por las ondas

electromagnéticas, las cuales, agitan las moléculas y átomos. Más agitación significa más

energía y una mayor temperatura.

La energía radiante es transferida a un cuerpo desde otro sin necesidad de contacto o

medio de transporte, como aire o agua. De hecho, la transferencia de calor por radiación

térmica es la única forma de transferencia posible en el vacío, donde es más efectiva.

Los tres principales mecanismos en la interacción de una sustancia con la radiación

térmica son: absorción, en donde la radiación ingresa al cuerpo y se convierte en calor;

Page 29: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 29

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

transmisión, en donde la radiación pasa a través del cuerpo; y reflexión, en donde la

radiación no es absorbida o transmitida a través del cuerpo, sino rechazada.

La cantidad total de energía radiante que incide puede, entonces, contabilizarse a través

de tres propiedades relacionadas con los mecanismos anteriores:

Absortancia, 𝛼, que es la fracción de radiación incidente que es absorbida por el

cuerpo;

Transmitancia, , fracción de radiación incidente que es transmitida por el cuerpo;

y

Reflectancia, , fracción de radiación incidente que es reflejada por el cuerpo.

La suma de estas tres fracciones es igual a uno.

Todos los cuerpos emiten una cierta cantidad de radiación, la cantidad depende de la

temperatura del cuerpo y la naturaleza de su superficie. La condición de la superficie de

un cuerpo determinará la cantidad de radiación térmica que es absorbida, reflejada o

reemitida.

El flujo de calor emitido por una superficie real está dado por:

𝐸 = 𝜀𝜎𝑇𝑠4

Donde es una propiedad radiativa de la superficie denominada emisividad, es la

constante de Stefan-Boltzmann (5.6697×10-8 W/m2K4), y el subíndice 𝑠 se refiere a la

superficie. (Incropera, 2007).

Dado que el estudio de la transferencia de calor por radiación es sumamente complejo,

sólo se presenta el caso donde se supone que la superficie que emite la radiación es gris,

es decir, tiene emisividad constante y ∝= 𝜀, para estas condiciones la velocidad de

transferencia de calor desde la superficie es:

𝑞𝑟 =𝑄𝑟

𝐴= 𝜀𝜎(𝑇𝑠

4 − 𝑇𝑎𝑙𝑟𝑒𝑑𝑒𝑑𝑜𝑟𝑒𝑠4 )

Hay muchas aplicaciones donde conviene expresar el intercambio neto de calor por

radiación en la forma:

𝑄𝑟 = ℎ𝑟𝐴(𝑇𝑠 − 𝑇𝑎𝑙𝑟𝑒𝑑𝑒𝑑𝑜𝑟𝑒𝑠)

Page 30: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 30

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

Donde:

ℎ𝑟 = 𝜀𝜎(𝑇𝑠 + 𝑇𝑎𝑙𝑟𝑒𝑑𝑒𝑑𝑜𝑟𝑒𝑠)(𝑇𝑠2 + 𝑇𝑎𝑙𝑟𝑒𝑑𝑒𝑑𝑜𝑟𝑒𝑠

2 )

Lo que permite modelar la radiación de manera similar a la convección.

Ejemplo 2. Convección y radiación

Una tubería de calor no aislada pasa a través de una habitación en donde el aire y las

paredes están a 22°C. El diámetro exterior de la tubería es de 25mm, su temperatura de

superficie es de 180°C y su emisividad de 0.85. ¿Cuál es el flujo de calor emitido? Si el

coeficiente asociado de transferencia de calor por convección de la superficie hacia el aire

es 18 W/(m2K) ¿Cuál es la velocidad de pérdida de calor de la superficie por unidad de

longitud de tubería?

Solución:

El flujo de calor emitido se calcula como:

𝐸 = 𝜀𝜎𝑇𝑠4 = 0.85 (5.67 × 10−8

W

m2K4

) (453.15 K)4 = 2029.5 W/m2

La velocidad de pérdida de calor es la suma de la convección en el aire de la habitación y

la radiación intercambiada con las paredes, con 𝐴 = 𝜋𝐷𝐿:

𝑄 = 𝑄𝑘 + 𝑄𝑟 = (𝜋𝐷𝐿)[ℎ(𝑇𝑠 − 𝑇𝑓) + 𝜀𝜎(𝑇𝑠4 − 𝑇𝑎𝑙𝑟𝑒𝑑𝑒𝑑𝑜𝑟𝑒𝑠

4 )]

𝑄

𝐿= 𝜋(0.025𝑚) {(18 W/(m2K))(180 − 22)°C

+ 0.85 (5.67 × 10−8W

m2K4

) [(453.15 K)4 − (295.15 K)4]} = 354.2 W/m

Con estos ejemplos se concluye la sección sobre el procedimiento para analizar

problemas de balances de energía. Cómo pudiste confirmar, el análisis es más complejo

Aire Tf = 22°C h = 18 W/(m2K)

D = 25 mm L = ¿? Ts = 180°C E = ¿? 𝑄

𝐿 = ¿?

= 0.85 Talrededores = 22°C

Page 31: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 31

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

que el de balances de masa, debido principalmente a las diferentes formas en que se

puede encontrar y transferir la energía. Sin embargo, la estrategia de solución es igual a

la de los balances de masa.

Así mismo, se presentó una introducción a los mecanismos de transferencia de calor, los

cuales te servirán para el análisis de las operaciones unitarias.

Page 32: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 32

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

1.3. Balances simultáneos de masa y energía

En general, los procesos que encontrarás en tu actividad profesional serán problemas

más complejos que los de transferencia exclusiva de masa o de energía, en los cuales

intervienen ambos balances, acoplados.

En este tema se abordan las técnicas que te ayudarán a afrontarlos y resolverlos,

verificando primero si el problema está correcto y completamente especificado mediante

el análisis de grado de libertad.

1.3.1. Determinación de grados de libertad en un proceso

Lo principal que debes asegurar al enfrentarte a un problema de balance de masa y

energía combinado es que las ecuaciones de proceso estén determinadas, es decir, que

tengan una única solución.

La primera pregunta que debes contestar es: ¿cuántas variables son incógnitas?, y

después: ¿con cuántas ecuaciones cuento para resolver el problema?

Como se presentó antes, el número de grados de libertad es el número de variables en un

conjunto de ecuaciones independientes a los que es necesario asignar valores para poder

resolver dichas ecuaciones. Es decir:

𝑁𝑑 = 𝑁𝑣 − 𝑁𝑒

Donde 𝑁𝑑 es el número de grado de libertad, 𝑁𝑣 el número de variables y 𝑁𝑒 el número

de ecuaciones independientes o restricciones. (Ten en cuenta que no debes escribir

todas las ecuaciones, sólo identificarlas, para usarlas posteriormente). Así, con 𝑁𝑑

variables especificadas es posible resolver el problema.

Ahora, el número de variables requeridas para cada corriente involucrada, 𝑁𝑣,𝑐, a fin de

especificar por completo su condición está dado por:

𝑁𝑣,𝑐 = 𝑁𝑠𝑝 + 2

Donde 𝑁𝑠𝑝 es el número de componentes o especies que hay en la corriente. Este cálculo

lo debes realizar para cada corriente entrando o saliendo de la frontera del sistema

analizado.

Page 33: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 33

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

Cada flujo de calor y/o trabajo involucrado lo debe considerar como otra variable, de tal

manera que, finalmente:

𝑁𝑣 = 𝑁𝑣,𝑐 + 𝑁𝑣,𝑒

Donde 𝑁𝑣,𝑒 se refiere a las variables contabilizadas como flujo de calor y/o trabajo.

Esta ecuación es válida bajo la premisa de un proceso continuo en estado estacionario. Si

el análisis se hace a un proceso en estado no estacionario se debe tomar en

consideración el término de acumulación.

Otro aspecto importante que no debes perder de vista es que en el análisis de grados de

libertad se incluyen variables extensivas como intensivas, las más comunes son:

1. Temperatura

2. Presión

3. Velocidad de flujo másico

4. Concentración

5. Entalpías específicas

6. Velocidad de flujo de calor o de trabajo

7. Si tienes más de una fase, la proporción entre una y otra

Siempre debes verificar que las variables especificadas sean completamente

independientes, por ejemplo, en algunos casos al conocer la temperatura se puede

calcular la entalpía específica, por lo cual, sólo debes considerar una de ellas como

independiente de la otra.

Las ecuaciones que generalmente se utilizan para resolver un problema de balance

simultáneo, y por consiguiente, el análisis de grados de libertad, son:

1. Balances de masa independientes para cada especie (o un balance de masa total

en lugar del balance de una especie)

2. Balance de energía

3. Relaciones de equilibrio de fases, o composiciones de especies como fracciones

másicas o molares

4. Relaciones de equilibrio químico (si existe reacción química)

5. Relaciones implícitas, como que la concentración de una especie es cero en una

corriente

6. Relaciones explícitas, cono que una fracción dada de una corriente se condensa.

Page 34: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 34

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

Ahora, cuando analizas dos o más procesos simples combinados, se pueden calcular sus

grados de libertad mediante una combinación adecuada de los grados de libertad

individuales, ya que debes tener en cuenta que el número de grados de libertad del

sistema combinado no es igual a la suma de los grados de libertad de cada proceso, sino

menor. Sólo debes tener cuidado de que, al sumar los grados de libertad de las unidades,

elimines cualquier conteo doble, ya sea de variables o de restricciones, y tomar en cuenta,

debidamente, las corrientes interconectadas, cuyas características a menudo se fijan

únicamente por deducción.

1.3.2. Balances simultáneos en estado estacionario

En general, en una planta de proceso se tienen varios procesos simples combinados, en

donde las incógnitas implicadas y las ecuaciones disponibles para resolver son muchas.

Durante la operación de la planta, usualmente se tiene estado estacionario, es decir, las

condiciones y el comportamiento del sistema no varían con el tiempo. Es por esta razón

que, para realizar el análisis del o los sistemas involucrados, es posible aplicar las

ecuaciones de balance de masa y de energía simplificadas para estado estacionario.

Por ello, la forma generalizada de atacar el problema es mediante métodos

computacionales de simulación, en lugar de obtener la solución de manera manual.

Sin embargo, a continuación, se presentan algunos pasos útiles a seguir para resolver

problemas sencillos que combinan cálculos de balance de masa y energía:

1. Dado que los balances de masa deben cumplirse incluso si se realiza un balance de

energía, lo primero que debes hacer es la parte del problema referente al balance de

masa (escoger una base, hacer el diagrama de flujo, identificar las incógnitas, hacer el

análisis de grados de libertad, escribir las ecuaciones, resolverlas).

2. Si existe intercambio de energía, existirán más incógnitas en el problema. Éstas

pueden ser una temperatura, la cantidad de calor adicionado, entre otros. La ecuación

extra que usarás para resolver esta variable adicional es el balance de energía.

Primero, identifica el sistema y escribe la forma apropiada de balance de energía para

él (sistema cerrado, abierto, aislado, etc.). También, elimina cualquier término del

balance que sea cero o despreciable comparado con los otros términos.

3. Para cada especie que necesites conocer su energía interna o entalpía necesitarás

seleccionar un estado de referencia. Si usas una fuente externa, como tablas o

gráficas, el estado de referencia lo especificará esta fuente. Debes asegurarte que

todos tus cálculos tengan el mismo estado de referencia.

4. Has una lista de todos los términos en el balance de energía que necesitas calcular o

revisar para resolver las incógnitas de interés. En la lista, pueden estar energías

internas, entalpías, velocidades de flujo másico, entre otros.

Page 35: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 35

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

5. Calcula todas las cantidades especificadas en el paso 4.

6. Resuelve el balance de energía para las incógnitas remanentes. Para hacerlo,

deberás insertar los valores de todos los otros términos que aparecen en el balance

de energía que hayas identificado y calculado en los pasos 4 y 5.

Ahora bien, si el problema es más complejo, con muchas operaciones unitarias

involucradas, deberás aplicar un programa computacional de simulación.

Las dos formas principales de resolver los balances de materia y de energía con

programas de simulación:

a) Con base en ecuaciones y

b) Con base en módulos. (Los cuales no se van a describir).

Sin embargo, en la simulación de procesos mediante programas de simulación se

requieren seguir tres pasos comunes:

1. Realizar un diagrama de flujo como representación de los flujos de masa y energía

del proceso.

2. Ingresar los datos en el programa de simulación.

3. Resolver los balances de masa y energía, en el programa computacional,

representándolos mediante ecuaciones o módulos. Cada una de estas

representaciones requiere estrategias diferentes para su resolución, algunas de

las cuales están patentadas.

Algunos programas de uso común para simulación de procesos son: ASPEN PLUS de

Aspen Technology Corp., Cambridge, MA; CHEMCAD de Chemstations, Houston, TX;

DESIGN/2000 Chem Share, Houston, TX; PROCESS de Simulation Sciences, Fullerton,

CA, entre otros.

1.3.3. Balances simultáneos en estado transitorio

Algunas veces es interesante analizar el valor del estado de un sistema en función del

tiempo, en este caso al proceso se le denomina en estado transitorio o no estacionario, es

decir, se refiere a los procesos en los que las cantidades o las condiciones operativas

dentro del sistema cambian con el tiempo. Los sistemas intermitentes y semi continuos

siempre son transitorios; y los sistemas continuos siempre son transitorios al arrancar y

detenerse, y se vuelven transitorios en otros momentos debido a cambios planeados o

inesperados en las condiciones de operación, como una fuga.

Page 36: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 36

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

El estado transitorio es un poco más complicado que el estado estacionario, y en general,

los problemas que implican procesos en estado transitorio son más difíciles de formular y

resolver que aquellos en los que intervienen procesos en estado estacionario.

Sin embargo, los procedimientos para derivar los balances en sistemas transitorios son,

en esencia, iguales a los de los sistemas en estado estacionario. La diferencia principal es

que los balances transitorios tienen términos de acumulación diferentes de cero que son

derivadas con respecto al tiempo, de modo que, en vez de tener ecuaciones algebraicas,

los balances son ecuaciones diferenciales.

Al realizar balances en estado transitorio debes recordar que el tiempo es la variable

independiente en el balance, y que las variables dependientes, como la concentración y la

temperatura, no se consideran funciones de la posición, sino que representan promedios

globales que abarcan todo el volumen del sistema.

Para simplificar el problema, se considera que el sistema está bien mezclado, así que las

concentraciones y temperaturas de salida son equivalentes a las concentraciones y

temperaturas dentro del sistema.

Como siempre, para realizar el balance se parte de la ecuación general de balance:

[𝐸𝑛𝑡𝑟𝑎𝑑𝑎 – 𝑆𝑎𝑙𝑖𝑑𝑎] a través de las fronteras + [𝐺𝑒𝑛𝑒𝑟𝑎𝑐𝑖ó𝑛 – 𝐶𝑜𝑛𝑠𝑢𝑚𝑜]dentro del sistema

= [𝐴𝑐𝑢𝑚𝑢𝑙𝑎𝑐𝑖ó𝑛]dentro del sistema

Los términos de esta ecuación se pueden escribir para un intervalo de tiempo muy

pequeño, ∆𝑡, y luego se deja que tienda a cero. También es conveniente considerar

positiva la acumulación en el sentido que el tiempo es positivo, es decir, conforme el

tiempo se incrementa de 𝑡 a 𝑡 + ∆𝑡.

De esta manera, el balance de masa, con reacción química, se puede rescribir como:

𝑑𝑀

𝑑𝑡= ��𝑒𝑛𝑡𝑟𝑎𝑑𝑎 + ��𝑔𝑒𝑛𝑒𝑟𝑎𝑑𝑎 + ��𝑠𝑎𝑙𝑖𝑑𝑎 + ��𝑐𝑜𝑛𝑠𝑢𝑚𝑖𝑑𝑎

Donde 𝑀 es la masa del sistema (kg), 𝑡 el tiempo (s), �� la velocidad de flujo másico (kg/s)

y �� la velocidad de reacción química (kg/s). (Nótese que si se considera estado

estacionario, 𝑀 debe ser una constante y la ecuación se reduce a la general de balance).

Para poder resolver una ecuación diferencial de este tipo es necesario dar una condición

de frontera – un valor específico de la variable dependiente (𝑀) para cierto valor de la

Page 37: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 37

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

variable independiente (𝑡); si el valor de 𝑀 se especifica para el tiempo 𝑡 = 0, se le llama

condición inicial.

De manera integral, esta ecuación se puede rescribir como:

∫ 𝑑𝑀𝑡𝑓

𝑡0

= ∫ ��𝑒𝑛𝑡𝑟𝑎𝑑𝑎

𝑡𝑓

𝑡0

𝑑𝑡 + ∫ ��𝑔𝑒𝑛𝑒𝑟𝑎𝑑𝑎

𝑡𝑓

𝑡0

𝑑𝑡 − ∫ ��𝑠𝑎𝑙𝑖𝑑𝑎

𝑡𝑓

𝑡0

𝑑𝑡 − ∫ ��𝑐𝑜𝑛𝑠𝑢𝑚𝑖𝑑𝑎

𝑡𝑓

𝑡0

𝑑𝑡

Donde 𝑡0 es el tiempo inicial del proceso y 𝑡𝑓 es el tiempo final del proceso.

El procedimiento para obtener la ecuación general de balance de energía en estado

transitorio, es equivalente al de balance de masa, así que no se presenta, simplemente se

dará la ecuación para procesos no reactivos de una sola fase:

𝑑𝑈𝑠𝑖𝑠𝑡𝑒𝑚𝑎

𝑑𝑡+

𝑑𝐸𝑐,𝑠𝑖𝑠𝑡𝑒𝑚𝑎

𝑑𝑡+

𝑑𝐸𝑝,𝑠𝑖𝑠𝑡𝑒𝑚𝑎

𝑑𝑡

= ��𝑒𝑛𝑡𝑟𝑎𝑑𝑎 (𝐻𝑒𝑛𝑡𝑟𝑎𝑑𝑎 +𝜐𝑒𝑛𝑡𝑟𝑎𝑑𝑎

2

2+ 𝑔ℎ𝑒𝑛𝑡𝑟𝑎𝑑𝑎)

− ��𝑠𝑎𝑙𝑖𝑑𝑎 (𝐻𝑠𝑎𝑙𝑖𝑑𝑎 +𝜐𝑠𝑎𝑙𝑖𝑑𝑎

2

2+ 𝑔ℎ𝑠𝑎𝑙𝑖𝑑𝑎) + �� − ��𝑠

Si hay varias corrientes de entrada y salida, debe incluirse un término para cada corriente,

de:

�� (𝐻 +𝜐2

2+ 𝑔ℎ𝑒𝑛𝑡𝑟𝑎𝑑𝑎)

La ecuación de balance es bastante difícil de resolver, así que generalmente, se hacen

varias simplificaciones:

1. El sistema sólo tiene una corriente de entrada y una de salida:

��𝑒𝑛𝑡𝑟𝑎𝑑𝑎 = ��𝑠𝑎𝑙𝑖𝑑𝑎 = ��

2. Los cambios de energía cinética y potencial en el sistema, así como entre las

corrientes de entrada y salida son despreciables. En estas condiciones, la ecuación se

simplifica a:

𝑑𝑈𝑠𝑖𝑠𝑡𝑒𝑚𝑎

𝑑𝑡= ��(𝐻𝑒𝑛𝑡𝑟𝑎𝑑𝑎 − 𝐻𝑠𝑎𝑙𝑖𝑑𝑎) + �� − ��𝑠

Page 38: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 38

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

3. La temperatura y composición del contenido del sistema no varían con su posición

dentro de este (está bien mezclado), entonces:

𝑇𝑠𝑎𝑙𝑖𝑑𝑎 = 𝑇𝑠𝑖𝑠𝑡𝑒𝑚𝑎 = 𝑇

4. No hay cambios de fase ni reacciones químicas dentro del sistema:

𝐻𝑠𝑎𝑙𝑖𝑑𝑎 = 𝐶𝑝(𝑇 − 𝑇𝑟)

Donde 𝐶𝑝 es la capacidad calorífica media del contenido del sistema y 𝑇𝑟 es una

temperatura de referencia, en la cual 𝐻 se define como cero.

Entonces, a partir de estas simplificaciones, el balance general de energía, para un

sistema abierto es:

𝑀𝐶

𝑑𝑇

𝑑𝑡= ��𝐶𝑝(𝑇𝑒𝑛𝑡𝑟𝑎𝑑𝑎 − 𝑇) + �� − ��𝑠

Y para un sistema cerrado:

𝑀𝐶

𝑑𝑇

𝑑𝑡= �� − ��

Hasta ahora, se han obtenido las ecuaciones de balance de masa y de energía en estado

transitorio, por separado.

Para sistemas en estado estacionario las ecuaciones que deben resolverse de manera

simultánea son algebraicas, pero cuando los sistemas son transitorios, es necesario

resolver ecuaciones diferenciales simultáneas. Para los sistemas más simples, las

soluciones analíticas pueden obtenerse a mano, pero es más común que se requieran

soluciones numéricas. Para ello, existen paquetes de software que resuelven sistemas de

ecuaciones diferenciales ordinarias, como Mathematica®, Matlab®, Maple®, Polymath®,

entre otros.

En este curso no se resolverán este tipo de sistemas, pero se te presentan las bases para

que eventualmente puedas hacerlo.

Page 39: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 39

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

Cierre de la unidad

En esta unidad, se explicó la ecuación general de balance, y a partir de ella se

presentaron los fundamentos del análisis de balances de masa y de energía, en casos por

separado y en casos donde hay transferencia simultánea, tanto en estado estacionario,

como en transitorio.

Se procuró establecer una estrategia sólida y consistente para resolver problemas de

balance de masa y balance de energía, que pueda usarse continuamente como marco de

referencia para resolver problemas conceptuales.

También se introdujo el concepto de transferencia de calor, se explicaron los tres

mecanismos de transferencia existentes y se presentaron sus bases de cálculo.

El objetivo primordial de la unidad fue instruirte en los conceptos fundamentales para que

continúes con el estudio de los balances de masa y de energía, y que puedas comenzar a

resolver nuevos tipos de problemas por cuenta propia.

Toda esta información y el conocimiento adquirido te serán de utilidad en las siguientes

unidades para el estudio de las operaciones unitarias, con énfasis en el análisis de las

mismas.

Page 40: Balance de masa y energía y - Universidad Abierta y a ......Balance de masa y energía y operaciones unitarias U1 Balance de masa y energía Proceso: Zona donde sucede una transformación

División de Ciencias de la Salud, Biológicas y Ambientales | Ingeniería en Energías Renovables 40

Balance de masa y energía y operaciones unitarias

Balance de masa y energía U1

Fuentes de consulta

1. Felder, R.M., Rousseau, R.W. (2005). Elementary principles of chemical

processes. USA: John Wiley & Sons.

2. Himmelblau, D.M. (1989). Basic principles and calculations in chemical

engineering. USA: Prentice-Hall, Inc.

3. Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S. (2007). Fundamentals of

heat and mass transfer. USA: John Wiley & Sons.

4. Izquierdo, J.F., Costa, J., Martínez de la Ossa, E., Rodríguez, J., Izquierdo, M.

(2011). Introducción a la ingeniería química: Problemas resueltos de balances de

materia y energía. Barcelona: Reverté.

5. McCabe, W.L., Smith, J.C., Harriott, P. (2007). Operaciones unitarias en ingeniería

química. México: McGraw-Hill Interamericana.

6. Towler, G., Sinnott, R. (2008). Chemical engineering design. Principles, practice

and economics of plant and process design. USA: Elsevier Inc.