ars.els-cdn.com · web viewfield-effect transistor (fet)-based aptamer-modified cnts bpa standard...

12
Supporting Information Quantitative screening for endocrine-disrupting bisphenol A in consumer and household products using NanoAptamer assay 1 Hyun Jeong Lim, 1 Eun-Hee Lee, 1 Sang-Don Lee, 2 Yeomin Yoon, and *1 Ahjeong Son 1 Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea 2 Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC 29208, USA *Corresponding Author (A. Son): 52 Ewhayeodae-gil, Seodaemun-gu, Ewha Womans University, Seoul, 03760, Republic of Korea; E-mail: [email protected]; Phone: +82 (2) 3277-3339; Fax: +82 (2) 3277-3275 1

Upload: others

Post on 02-Nov-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ars.els-cdn.com · Web viewField-Effect transistor (FET)-based aptamer-modified CNTs BPA standard solution 2.28×10-7 Kim et al. (2016) Author Eun-Hee Lee Created Date 07/10/2018

Supporting Information

Quantitative screening for endocrine-disrupting bisphenol A in consumer and

household products using NanoAptamer assay

1Hyun Jeong Lim, 1Eun-Hee Lee, 1Sang-Don Lee, 2Yeomin Yoon, and *1Ahjeong Son

1 Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760,

Republic of Korea

2 Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC 29208,

USA

*Corresponding Author (A. Son): 52 Ewhayeodae-gil, Seodaemun-gu, Ewha Womans University, Seoul,

03760, Republic of Korea; E-mail: [email protected]; Phone: +82 (2) 3277-3339; Fax: +82 (2) 3277-

3275

1

Page 2: ars.els-cdn.com · Web viewField-Effect transistor (FET)-based aptamer-modified CNTs BPA standard solution 2.28×10-7 Kim et al. (2016) Author Eun-Hee Lee Created Date 07/10/2018

BPA thermal/lined papers (retail receipts, magazine/flyer, ticket), Soaking for 4 hr at ambient temperature

A1 (0.1 g, 100 mL) A2 (0.1 g, 100 mL) A3 (0.1 g, 100 mL A4 (0.1 g, 100 mL) A5 (0.1 g, 100 mL)Various plastic toys for children, Soaking for 1 day at 40℃

B1 (13.5 g, 100 mL) B2 (11.8 g, 100 mL) B3 (13.0 g, 100 mL) B4 (38.4 g, 80 mL) B5 (8.4 g, 100 mL)Epoxy lined food cans (solid food and beverage), soaking for 3 days at 60℃

C1 (54.8 g, 300 mL) C2 (56.5 g, 300 mL) C3 (32.7 g, 150 mL) C4 (12.2 g, 150 mL) C5 (11.9 g, 150 mL) Plastic containers (cups and food containers), soaking for 15 min at 100℃

D1 (36.9 g, 100 mL) D2 (92.7 g, 150 mL) D3 (40.7 g, 150 mL) D4 (53.8 g, 150 mL) D5 (84.8 g, 200 mL)Figure S1. Pictures and pre-treatment information of total 20 consumer and household products from 4 categories.

2

Page 3: ars.els-cdn.com · Web viewField-Effect transistor (FET)-based aptamer-modified CNTs BPA standard solution 2.28×10-7 Kim et al. (2016) Author Eun-Hee Lee Created Date 07/10/2018

Figure S2. The schematic procedures of BPA detection for consumer and household products by (a) NanoAptamer assay and (b) HPLC analysis.

3

Page 4: ars.els-cdn.com · Web viewField-Effect transistor (FET)-based aptamer-modified CNTs BPA standard solution 2.28×10-7 Kim et al. (2016) Author Eun-Hee Lee Created Date 07/10/2018

Table S1. Summary of various detection methods for bisphenol A.

Detection methods Sample type Detection limit(ng/mL, ppb)

Reference

GC-MS

Natural water 0.0004 González-Casado et al. (1998)Environmental water 0.6 Olmo et al. (1996)Landfill leachates 0.5 Yamamoto et al. (2001)Beverages 1 ng/g Varelis and Balafas (2000)

LC-MSBreast milk 0.22 Zimmers et al. (2014)Water and soft drink 0.021 Khedr (2013)Drinking water 0.001 Riva et al. (2018)

HPLCHuman serum 0.01 Inoue et al. (2000)Human urine 0.1 Anderson et al. (2014)Mineral water 5.7 Toyo'oka and Oshige (2000)

Immunoassay

ELISA Canned food 0.05 Moreno et al. (2011)Indirect competitive chemiluminescence-ELISA Lateral flow immunoassay;

Baby bottles 100;0.02

Maiolini et al. (2014)

Chirality based sensor using immuno-recognition-driven nanoparticle assembly

Tap water 0.02 Xu et al. (2012)

Aptasensor

Aptamer/Graphene oxide FRET biosensor Water sample 0.05 Zhu et al. (2015)Fluorescence resonance energy transfer-based biosensors

Mineral water 0.16 Duan et al. (2015)

MO2-CNT-based label-free aptamer sensor River water 0.46 He et al. (2017)Colorimetric aptasensor with positively charged GNPs

Tap water 0.11 Xu et al. (2015)

Surface-enhanced Raman scattering (SERS)-encoded aptasensor

Tap water 3.9 Feng et al. (2016)

Field-Effect transistor (FET)-based aptamer-modified CNTs

BPA standard solution 2.28×10-7 Kim et al. (2016)

4

Page 5: ars.els-cdn.com · Web viewField-Effect transistor (FET)-based aptamer-modified CNTs BPA standard solution 2.28×10-7 Kim et al. (2016) Author Eun-Hee Lee Created Date 07/10/2018

Figure S3. Conditions tested for the BPA detection by NanoAptamer assay: SDS concentration in rinsing buffer.

5

Page 6: ars.els-cdn.com · Web viewField-Effect transistor (FET)-based aptamer-modified CNTs BPA standard solution 2.28×10-7 Kim et al. (2016) Author Eun-Hee Lee Created Date 07/10/2018

Table S2. P-value of statistical analysis for optimum conditions of NanoAptamer assay.

P-values obtained from two tailed t-test

Incubation time

0 hr 0.5 hr 1 hr 2 hr 4 hr 8 hr

0.787 0.504 0.305 0.141 0.272 0.204

Incubation temperature

10°C vs. 25°C 10°C vs. 37°C 25°C vs. 37°C

0.064 0.003 0.408

Incubation buffer

0 % SDS 0.001 % SDS 0.005 % SDS 0.01 % SDS 0.1 % SDS

0.221 0.119 0.001 0.058 0.252

Each concentration vs. 0.005%

0.064 0.387 - 0.393 0.038

6

Page 7: ars.els-cdn.com · Web viewField-Effect transistor (FET)-based aptamer-modified CNTs BPA standard solution 2.28×10-7 Kim et al. (2016) Author Eun-Hee Lee Created Date 07/10/2018

Table S3. Chemical structure and information of BPA and its analogs (BPS and BPF)

Bisphenol A Bisphenol S Bisphenol F

Chemical structure

3D structure*

Linear Formula (CH3)2C(C6H4OH)2 O2S(C6H4OH)2 CH2(C6H4OH)2

Molecular weight

(g/mole)228.29 250.27 200.23

* ChemDoodle web component, https://web.chemdoodle.com

7

Page 8: ars.els-cdn.com · Web viewField-Effect transistor (FET)-based aptamer-modified CNTs BPA standard solution 2.28×10-7 Kim et al. (2016) Author Eun-Hee Lee Created Date 07/10/2018

Figure S4. Calibration curve obtained from BPA quantification by HPLC analysis

8

Page 9: ars.els-cdn.com · Web viewField-Effect transistor (FET)-based aptamer-modified CNTs BPA standard solution 2.28×10-7 Kim et al. (2016) Author Eun-Hee Lee Created Date 07/10/2018

References

Anderson, D.J., Brozek, E.M., Cox, K.J., Porucznik, C.A., Wilkins, D.G., 2014. Biomonitoring method for bisphenol A in human urine by ultra-high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 953, 53-61.

Duan, N., Zhang, H., Nie, Y., Wu, S., Miao, T., Chen, J., Wang, Z., 2015. Fluorescence resonance energy transfer-based aptamer biosensors for bisphenol A using lanthanide-doped KGdF4 nanoparticles. Anal. Methods. 7, 5186-5192.

Feng, J., Xu, L., Cui, G., Wu, X., Ma, W., Kuang, H., Xu, C., 2016. Building SERS-active heteroassemblies for ultrasensitive Bisphenol A detection. Biosens. Bioelectron. 81, 138-142.

González-Casado, A., Navas, N., Olmo, M.d., Vílchez, J.L., 1998. Determination of Bisphenol A in water by micro liquid—liquid extraction followed by silylation and gas chromatography—mass spectrometry analysis J. Chromatogr. Sci. 36, 565-570.

He, M.-Q., Wang, K., Wang, J., Yu, Y.-L., He, R.-H., 2017. A sensitive aptasensor based on molybdenum carbide nanotubes and label-free aptamer for detection of bisphenol A. Anal. Bioanal. Chem. 409, 1797-1803.

Inoue, K., Kato, K., Yoshimura, Y., Makino, T., Nakazawa, H., 2000. Determination of bisphenol A in human serum by high-performance liquid chromatography with multi-electrode electrochemical detection. J. Chromatogr. B 749, 17-23.

Khedr, A., 2013. Optimized extraction method for LC–MS determination of bisphenol A, melamine and di(2-ethylhexyl) phthalate in selected soft drinks, syringes, and milk powder. J. Chromatogr. B 930, 98-103.

Kim, S.G., Lee, J.S., Jun, J., Shin, D.H., Jang, J., 2016. Ultrasensitive bisphenol A field-effect transistor sensor using an aptamer-modified multichannel carbon nanofiber transducer. ACS Appl. Mater. Interfaces 8, 6602-6610.

Maiolini, E., Ferri, E., Pitasi, A.L., Montoya, A., Giovanni, M.D., Errani, E., Girotti, S., 2014. Bisphenol A determination in baby bottles by chemiluminescence enzyme-linked immunosorbent assay, lateral flow immunoassay and liquid chromatography tandem mass spectrometry. Analyst 139, 318-324.

Moreno, M.J., D’Arienzo, P., Manclús, J.J., Montoya, Á., 2011. Development of monoclonal antibody-based immunoassays for the analysis of bisphenol A in canned vegetables. J. Environ. Sic. Health B 46, 509-517.

Olmo, M.d., Gonz6lez-Casado, A., Navas, N.A., Vilchez, J.L., 1996. Determination of bisphenol A (BPA) in water by gas chromatography-mass spectrometry. Anal. Chim. Acta. 346, 87-92.

Riva, F., Castiglioni, S., Fattore, E., Manenti, A., Davoli, E., Zuccato, E., 2018. Monitoring emerging contaminants in the drinking water of Milan and assessment of the human risk. Int. J. Hyg. Environ. Health 221, 451-457.

Toyo'oka, T., Oshige, Y., 2000. Determination of alkylphenols in mineral water contained in PET bottles by liquid chromatography with coulometricdetection. Anal. Sci. 16, 1071-1076.

Varelis, P., Balafas, D., 2000. Preparation of 4,4′-(1-[2H6]methylethylidene)bis-[2,3,5,6-2H4]phenol and its application to the measurement of bisphenol A in beverages by stable isotope dilution mass spectrometry. J. Chromatogr. A 883, 163-170.

Xu, J., Li, Y., Bie, J., Jiang, W., Guo, J., Luo, Y., Shen, F., Sun, C., 2015. Colorimetric method for determination of bisphenol A based on aptamer-mediated aggregation of positively charged gold nanoparticles. Microchim. Acta. 182, 2131-2138.

Xu, Z., Xu, L., Zhu, Y., Ma, W., Kuang, H., Wang, L., Xu, C., 2012. Chirality based sensor for bisphenol A detection. Chem. Commun. 48, 5760-5762.

Yamamoto, T., Yasuhara, A., Shiraishi, H., Nakasugi, O., 2001. Bisphenol A in hazardous waste landfill leachates. Chemosphere 42, 415-418.

Zhu, Y., Cai, Y., Xu, L., Zheng, L., Wang, L., Qi, B., Xu, C., 2015. Building an aptamer/graphene oxide fret biosensor for one-step detection of Bisphenol A. ACS Appl. Mater. Interfaces 7, 7492-7496.

Zimmers, S.M., Browne, E.P., O’Keefe, P.W., Anderton, D.L., Kramer, L., Reckhow, D.A., Arcaro, K.F., 2014. Determination of free Bisphenol A (BPA) concentrations in breast milk of U.S. women using a sensitive LC/MS/MS method. Chemosphere 104, 237-243.

9