analog integrated filters - lira...

102
1 Analog Integrated Filters C. Psychalinos Assist. Professor UNIVERSITY OF PATRAS DEPARTMENT OF PHYSICS SECTION OF ELECTRONICS & COMPUTERS ELECTRONICS LABORATORY GR-26500, Rio, Patras, GREECE

Upload: others

Post on 30-May-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

1

Analog Integrated Filters

C. PsychalinosAssist. Professor

UNIVERSITY OF PATRASDEPARTMENT OF PHYSICS

SECTION OF ELECTRONICS & COMPUTERSELECTRONICS LABORATORY

GR-26500, Rio, Patras, GREECE

Page 2: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

2

Part-I: Overview

Page 3: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

3

Classification of filters– Analog filters

A/Dconverter

DSP D/Aconverter

Analogreconstruction

filterIN OUT

Analogbandlimiting filter

– Digital filters

• Continuous-time

• Sampled-data

LC, RC, gm-C, Log-Domain,….

IN OUT

S/H SC, SIAnalog

reconstructionfilter

IN OUTS/HAnalog

bandlimiting filter

Page 4: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

4

Digital vs. Analog Implementations

Programmability.Flexibility.Short design cycles.Good immunity to noise.Good immunity to manufacturing process tolerances.

Their performance is degraded in very high frequency applications.

Page 5: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

5

The analog part provides the I/O interface (amplification, filtering, etc.) to the core of the chip which is digital.

Page 6: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

6

The approximation problem • Frequency response of ideal filters

Lowpass filter Highpass filter

Bandpass filter Bandreject filter

The above responses could not be realized by causal systems.

Gain

ω0 ω c

1

Gain

ω0 ω c

1

Gain

ω0 ωc1

1

ωc2

Gain

ω0 ωc1

1

ωc2

Page 7: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

7

• Practical specifications for a LP filter

• Characteristic transfer functions.

Page 8: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

8

• Chebyshev vs Butterworth responses.

Higher attenuation in stopband.Steeper roll-off near the cut-off frequency.

More complex filter realizations.Less linear phase characteristics.

The choice of frequency response that should be implemented, requires trade-off between the above conflicting requirements.

Page 9: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

9

⎟⎟⎠

⎞⎜⎜⎝

⎛−

PB

SB

PB

SB

A

A

N

ωω

log

110110log 1.0

1.0

• Determination of the order of a Butterworth filter.

Page 10: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

10

LC ladder filters

υ

R

Rin

1 3 5S

LCL

i i

LC C1

2

2 4

4

3 5 out

o

o

υ

υ υ υ

A doubly terminated LC ladder has the advantage of low sensitivity to component tolerances.LC ladder filters are mainly used in very high frequency

applications.

Inductors are heavy and bulky and thus they are difficult to adapt to IC realization.

Page 11: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

11

Active RC filters• Miller integrator

C

R

Uo

Uin

RCssUsUsH

ino 1

)()()( −==

RCsH o

o 1 ,)( == ωω

ω ωo: unity-gain frequency

Frequency response

Page 12: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

12

• First-order filters

C

R1

Uo

Uin

R2

11

)()()(

212

+−==

CsRRR

sUsUsH

ino

21

2

1

1)(

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=

c

RRjH

ωω

ω

Gain(dB)

ω

0

ωc=1/RC

-3Frequency response

The cutoff frequency is determined by the integrator’s time constant.

Page 13: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

13

• Second-order filters (Biquads)

They are constructing using two-integrator loop.

Tow-Thomas Biquad

Page 14: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

14

Design of high-order RC filters• Using second-order sections in cascade connection or

with multiple-loop feedback.

• Simulating the corresponding LC ladder prototypes.

– Functional simulation of LC ladders.– Topological simulation of LC ladders.

Page 15: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

15

• Cascade connection of biquads

∏=

=n

jj sTsT

1)()(

Design procedure for maximizing the Dynamic Range•Pole-zero pairing: each pole is assigned to the closest zero.

•Section ordering: in the order of increasing values of Q. In addition, LP or BP are employed as first section and HP or BP are

employed as last section.

•Gain assignement: the gain constants are computed in such a way that the maxima of output voltages of all sections would be made equal.

Easy to design and tune.

Higher sensitivity, in comparison to other filter configurations.

Page 16: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

16

• Functional simulation of LC ladders

VoC3

L2

C1

Rs

VinRL

V1 V3

I2

⎟⎟⎠

⎞⎜⎜⎝

⎛−−=

−−=−

⎟⎟⎠

⎞⎜⎜⎝

⎛−

−−=−

2L

3

33

312

2

2s

1in

11

IRV

sC1V

)VV(sL1I

IR

VVsC1V

LC ladder prototype

Voltage/current equations

Page 17: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

17

⎟⎟⎠

⎞⎜⎜⎝

⎛−−=

−−=−

⎟⎟⎠

⎞⎜⎜⎝

⎛−−−=−

RIVRR

sRC1V

)VV(R/sL

1RI

RIVRRV

RR

sRC1V

23L3

3

312

2

21s

ins1

1

1

1sRC

−RsL /

12 3

1sRC

−LR

R

V3=Vo

1

1

1

1-V1

sRR

sRR

Vin -I2R

Signal Flow Graph (SFG)

Page 18: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

18

Active RC filter

Vo

R7

R2

C1a

rr

R3

R4R6

R5

C2a

C3a

R1Vin

Page 19: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

19

• Topological simulation of LC ladders

I1I2

V1 V2f(s)21

21

I)s(f

kI

kVV

=

= L1i Z)s(fZ ⋅=

• General impedance converter-GIC

s2i Z)s(f

1Z =

s R sR

Simulation of a grounded inductance

Page 20: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

20

V1

I1 R2 R3 R4 C5

V2

I2

Antoniou circuit

RCs)s(f =

Page 21: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

21

C1

RLL2

C1

RL s R

R2 R3 R4 C5C1

RL R

LC prototype

Equivalent circuit using GIC

Active RC filter

Steps of design

Page 22: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

22

MOSFET-C filters

C

Uo

Uin

Vc

Resistors are replaced by MOS transistors operated in linear region. Their values are electronically adjustable by the gate voltage.

The developed active RC design methods can be directly used in MOSFET-C filters.They suffer from the nonlinearities introduced by MOS transistor.Reduced dynamic range in comparison to active RC filters

MOSFET-C Miller integrator

Fully balanced structures are used, in order to reduce the distortion introduced by MOS transistor.

In low-frequency applications (ωc=10krad/sec) in case of active RC filters,a resistor with value 5MΩ is required, in case that C=20pF.

Page 23: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

23

Transconductance-C (Gm-C) filtersThe opamp frequency limitations (finite GBW) degrade the performance of active RC, MOSFET-C and SC filters.

Basic CMOS transconductance stage

)( 21 ininmout VVGi −⋅=

Box

m IL

WCG2

μ=

Gm is electronically adjustable. The stage has simpler structure, in comparison to the op-amp.

Page 24: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

24

Gm

Vin

C

Vo

• Basic building blocks for functional simulation of LC ladders & biquads

Lossless integrator

sCG

VV m

in

o −=

Gm1

Vin

C

Vo

Gm2

Lossy integrator

1

1

22

1

+=

sGm

CGG

VV

m

m

in

o

Page 25: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

25

VinVo

Gm1 Gm2 Gm3 Gm4 Gm5 Gm6

Gm7Gm8 C2 C3 C4 C5 C6

5-th order LP Gm-C filter.

υ υ'

υ

υ'

υ υυ

-1 -1

-1 -1

1

1 1 1

1 1in

2

3

4

5out

1

RC s RC sRC s(L R) s1 532 4

1 111 1

+ +

+ +

(L R) s-1

+

-1

SFG

Configuration of filter

Page 26: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

26

• Basic building blocks for topological simulation of LC ladders

Inductance simulation

Gm1

Gm2

C

Gm2 Gm1 Gm2

C

21 mmeq GG

CL =

Page 27: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

27

Current-Conveyor (CCII) filters

∞→

∞→

=

=

z

x

y

xz

yx

RR

R

ii

0

υυDefinitions for CCII

RCssIsIsH

io 1

)()()( ==

• CCII lossless integrator

Page 28: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

28

Current Amplifier filters

Mnc3

Mp1 Mp2 Mp3 Mp5

Mpc1 Mpc2 Mpc3 Mpc4

Mn2 Mn4

iin

Vb2

1 1 1: : :

Mnc2Mnc1

Mn1

1

VDD

Mnc5

Mpc6

Mn5

iout

1

oI

1

Mn3

iout

Mp6

VSS

Vb1

Mnc4

Mpc5

Mp4

: :

INOUT+OUT-

iiniout

ioutC

current amplifierIN

OUT-

OUT+

inout iAi ⋅=

mgRRCs

sH

/11

1)(

=+

=

• Lossy integrator

The time-constant of integrator can be electronically adjusted

om IL

WKg 2=

Page 29: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

29

Switched-Capacitor (SC) filtersThe time-constants in active RC circuits could not be accurately implemented on chip.Large resistor values are needed in case of low-frequency applications.

1

1/ CT

VTVC

i ininav ==

1CTReq =

SC integrator

The time-constant is:

For a resistor value of 10MΩ, and using 100kHz clock, a capacitor 1pF is needed.

1

2CCT ⋅=τ

The time-constant of integrator is defined by capacitors ration and thus the achieved accuracy is 0.1%.

Tuning is achieved using that clock frequency.

Page 30: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

30

)2Tt(C)t(q nin1n1 −= υΔ

)]Tt()t([C)t(q nono2n2 −−−= υυΔ

)t(q)t(q nn 21 ΔΔ =

12/1

21

ino

2/1z1

zCC

)z(V)z(V)z(H −

−−==

The previous direct replacement of resistors by switched capacitors is valid only in case that the clock frequency is much higher than the signal frequency.The frequency limitations of op-amps degrade the performance of SC filters.

Setting z=ejω:)2/sin(

2/j

C/C)(H 212/1 ω

ωω

ω −=

SC filters were designed using s-z transformations.

Page 31: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

31

The circuit is sensitive to the effect of parasitic capacitances.

z1z

CCC

)z(V)z(V)z(H 1

2/1

2

1p1

ino

2/1 −

+−==

SC integrator insensitive to the effect of parasitic capacitances.

z11

CC

)z(V)z(V)z(H 12

11/1

in

o−−

−==

Page 32: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

32

• Steps for designing SC filters

VoC3

L2

C1

Rs

VinRL

V1 V3

I2LC ladder prototype

Continuous-time SFG

Page 33: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

33

Discrete-time SFG using s-z transformation

⎟⎠⎞

⎜⎝⎛=−= −

2sin

T2 ,

zz1

T1s 2/1

1 ωΩ

The above SFG was derived using the LDI transformation

Page 34: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

34

SC filter

Page 35: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

35

Switched-Current (SI) filters

L2WC

iJVoxo

inTGS μυ +

+=

Basic memory element

2/1

in

o2/1 Az

)z(i)z(iH −−==

•In time-slot 1 the voltage at gate capacitance is equal to:

•In time-slot 2 transistor M1 sustains its drain current, and thus:

Capacitors are not further needed and as a result SI filter are fully compatible with standard digital CMOS process.

Page 36: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

36

Dynamic current copier cell

2/1

in

o2/1 z

)z(i)z(iH −−==

This cell is insensitive to the effect of MOS transistor parameters mismatch.

Scaling of output current is not available.

Full period delay cell

Page 37: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

37

• SI lossless integrator

1

11/1

1)( −

−=

zzAzH

21/1

2sin

2)(ω

ωω

ω

ω

jj e

jAeH

⎟⎠⎞

⎜⎝⎛

=

Transfer function

Frequency response

The time-constant of integrator is defined by the MOS transistors aspect ratio.

Page 38: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

38

1

1

1/1

111

1)(−

+−

+=z

B

zB

A

zH

BB

T

j

BA

eH j

+

+=

221

)(1/1 ωω

frequency off-cut 2

2

gain frequency low

BB

T

BAa

o

o

+=

=

ω

• SI lossy integrator

Transfer function

Frequency response

Page 39: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

39

• Effects of non-idealities in SI filters

MOS transistor parameters mismatch

Page 40: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

40

Finite input-output conductance ratio of MOS transistor.

ioin

o

gg

zzizizH 21)()()(

2/11/2

+−==

0)(

2)(

)()(1)()(1/2

=

−=

−−=

ωθ

ω

ωθω

ωω

io

jij

ggm

jmeHeH

Regulated-cascode structures are used

⎟⎟⎠

⎞⎜⎜⎝

⎛≅

11

mds

ooc gggg

Page 41: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

41

Clock-feedthrough effect in MOS switches.

•The error that is caused is similar to that of VT mismatch.

Page 42: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

42

RFERENCES

1. T. Deliyannis, Y. Sun and J. K. Fidler, “Continuous-time active filter design”, CRC Press, 1999.

2. R. Schaumann and Mc E. Van Valkenburg, “design of active filters”, Oxford University Press, 2001.

3. M. Ismail, T. Fiez “Analog VLSI-Signal and information processing”, McGraw-Hill 1994.

4. C. Toumazou, F. J. Lidgey, and D. G. Haigh,”Analog IC design: the current-mode approach”, IEE Circuits and Systems Series 2, 1990.

5. C. Toumazou, J. B. Hughes and N. C. Battersby,”Switched-currents:an anlogtechnique for digital technology”, IEE Circuits and Systems Series 5, 1993.

6. M. S. Ghausi and K. R. Laker, “Modern filter design: active RC and switched capacitor”, Englewood Cliffs, NJ:Prentice-Hall Inc., 1981.

7. R. Gregorian, and G.C. Temes, “Analog MOS integrated circuits for signal Processing”, John Willey & Sons, 1986.

Page 43: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

43

Part-II:Companding

filters

Page 44: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

44

INTRODUCTION

They open the door to elegantly realizing a linear system with inherently non-linear building blocks, and may achieve the advantageous potential of companding (compress-expand) signal processing.

Log-Domain filter expandercompressor

in out

Page 45: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

45

•Linear and companding signal processing

Page 46: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

46

20 20.5 21 21.5 22 22.5

-30

-20

-10

0

10

20

(mV )

20 20.5 21 21.5 22 22.5

-15

-10

-5

0

5

10

15

2 (mV )

Waveforms at the internal nodes of a typical log-domain system.

Companding filters have potential for low-voltage operation, as the signal swings within filter are typically less than 100mV.

Page 47: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

47

Log-Domain Filters

Page 48: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

48

Methods for designingLog-Domain filters

Using the well-known state-space synthesis approach in linear domain, and an appropriate mapping of the resulted equations.

Using the well-known Signal Flow Graph (SFG) synthesis approach in linear domain, and a set of complementary operators.

A large number of equations is needed in case of high order filters.

This method is more simpler than the ESS.

By following the concept of Wave Active Filters.

The design procedure of high-order filters is quite facilitated.

Modular filter structures are derived.

Page 49: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

49

Log-Domain filters synthesis using the SFG approach

Representation of a Log-Domain filter using complementary operators

Page 50: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

50

BJT Translinear principle

For any closed loop comprising any number of pairs of clockwise and counter-clockwise forward-biased identical junctions, the product of currents for the elements in one direction is equal to the corresponding product in the opposite direction.

∏∏ =ccw

Ccw

C II

•As an extension to the above principle, when a voltage source is introduced into the loop, then:

∏∏ ⋅=ccw

CV

cwC IeI T

Page 51: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

51

Non-linear transconductance

Io

Io

VCC

iOUT

VEE

E+iOUT

OUTυIN

υ

INυ

OUTυ

Io

Io

VCC

iOUT

VEE

INυ

OUTυ

E-iOUT

INυ

OUTυ

Io

T

OUTIN

OUTV

ˆˆ

o eIi

υυ −

⋅=

Positive cell

Negative cell

Page 52: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

52

Ioi

Io

OUTυ

Io

Io Io

υi

⎟⎟⎠

⎞⎜⎜⎝

⎛ +⋅=

−⋅=

o

oT

oVˆ

o

IIilnV)i(LOG

I e I)ˆ(EXP T

υ

υ

Implementation of complementary operators

LOG

EXP

Page 53: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

53

Log-Domain integrators

iC

E-Io

E+Io

INυ

OUTυ

Lossless integrator

T

OUT

T

OUTINOUT

CV

oV

o eIeIdt

dCi

υυυυ

ˆˆˆˆ −

⋅−⋅=⋅=

[ ] dt EXPEXPINOUT ∫ ⋅= )ˆ(1)ˆ( υ

τυ

The time-constant of integrator is:

o

TI

CV=τ

Electronic tuneability using a DC current source.

The time constant is depended from temperature.

∫INυ

OUTυ

Page 54: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

54

Lossless integrator-subractor

E-

Io

E+

Io

C

1INυ

2INυ OUT

υ

∫ OUTυ

INυ

+

INυ

1

-1

Page 55: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

55

Lossy integrator

∫INυ

OUTυ+

-1

Io

E+

Io

INυ OUT

υ

Damping is achieved using a DC current source.

( )[ ] ( ) ( )OUTINOUT

ˆEXPˆEXPˆEXPdtd υυυτ −=

Page 56: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

56

High-order Log-Domain filters

Operational simulation of all-pole LC ladders

L2

C1 C3RL

RS

sυ oυ

LC ladder prototype

1

1sRC

−RsL /

12 3

1sRC

−LR

R

V3=Vo

1

1

1

1-V1

sRR

sRR

Vin -I2R

Linear domain Signal Flow Graph (SFG)

Page 57: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

57

Transposition to Log-Domain using the following rules:

•A LOG block is placed at the output of each integrator.

•An EXP block is placed at each input of integrators (before scaling).

•A LOG block is placed at the input of the system.

•An EXP block is placed at the output of the system.

iS

LOG

EXP1

1sRC RsL /

12 3

1sRC

1

-1

-1

1

1

-1 -1

iout

Page 58: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

58

Implementation using Log-Domain cells

Iois

Io

Io

Io Io

iout

Io

E+

Io

E-

Io

E+

Io

C1

E-

Io

E+

Io

C2

Io

E+

Io

C3

Page 59: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

59

Operational simulation LC ladders with finite zeros

LC ladder prototypeL2

C2C1 C3RL

RS

i2

iSiL

1υ 3υ

)sRC(sRC

1322S

eq,11

υυυυ +′−′=

Differentiation is required:

Alternative form without differentiation:

3eq,1

22S

eq,11 C

C)(

sRC1 υυυυ +′−′=

Page 60: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

60

Log-Domain Signal Flow Graph (SFG)

eq,1sRC1

R/sL1

2

eq,3sRC1

1−

1

eq,1

2CC

eq,3

2C

C1

1−

LOG

EXPiS 1

1 1iout

2υ ′

*3υ

*1υ

1−

1

1−

Page 61: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

61

Implementation using Log-Domain cells

INυ OUT

υ

INυ

Io

E-

KIo

E+

KIo

E+

Io

INυ

INυ

OUTυ

1:1

1:K

Log-Domain summing block

)ˆ(EXPK)ˆ(EXP)ˆ(EXP21out

υυυ ⋅+=

Page 62: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

62

Log-Domain elliptic filter

E-Io

Iois

E-Io

E+Io

E+Io

E-Io

E-

Io

E+Io

Io

Io Io

iout

*1υ

2υ′

*3υ

1C

2C

3C

1:11:K

1:11:K

Page 63: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

63

0E+000 1E+007 2E+007 3E+007 4E+007

Frequency, (Hz)

-80

-70

-60

-50

-40

-30

-20

-10

0Gain(dB)

Ideal case

Realistic model

Frequency response of the filter @ modulation index factor 0.8

The frequency response of a Log-Domain filter is evaluated using large-signal transient simulations and FFT analysis.

The AC analysis of HSPICE is valid only for small modulation index factor !!!

Page 64: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

64

Non-linear analysis

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Modulation index

-70

-65

-60

-55

-50IMD3(dB)

A two-tone test was performed, in order to measure the third-order intermodulation distortion factor.

The IMD3 was -52dB @ modulation index equal to 1.

Page 65: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

65

Noise analysis

0.01 0.1 1

Modulation index

0

10

20

30

40SNR(dB)

The achieved Dynamic Range was 35dB.

Page 66: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

66

Log-Domain Wave filters

Wave variables

1A1B

+

2A

2B

+

1,2)(k R

iA kkk =+=

υ

1,2)(k R

iB kkk =−=

υ

incident wave

reflected wave

Page 67: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

67

Scattering parameters description

Passive element Symbol of wave equivalent in the log-domain

⎥⎥⎦

⎢⎢⎣

⎡⋅

⎥⎥

⎢⎢

+=

⎥⎥⎦

⎢⎢⎣

⎡ ⋅

1

2

1

s 1

1

2 11 A

A

s

L

B

B

L

Ls

τ

ττ1s

1

L+⋅τ1 1

1 -1

-1 1

A1 A2

B1 B2

+

+ +

Page 68: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

68

lossy integrator

1A 2A

2B1B

EXP

LOG1 -1

1 1

1-1

+

+ +

Transposition of linear domain SFG to the Log-Domain SFG

1B 2B

1A 2A

Page 69: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

69

Io

E+

Io

E-

Io

E+

Io

C

1INυ

2INυ OUT

υ

1INυ

2INυ OUT

υ

1INυ

2INυ

OUTυ

1INυ

2INυ OUT

υ

1INυ

2INυ

OUTυ

INυ

OUTυ

INυ OUT

υ

Lossy integration

Subtraction

Summation

Inversion

Page 70: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

70

L Lτ

1B 2B

1A2A

RL

L 2=τ

1B 2B

1A2A

RCC 2=τ

C

Prototype Log-Domain wave equivalent

2RC

C =τC

Cτ1A

2A

1B

INVERTER

INVERTER

2B-1

-1

RL

L2

=τL

1B 2B

1A 2A

INVERTER

INVERTER

Lτ -1

-1

Log-domain wave equivalents of 1st-order blocks

Page 71: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

71

Log-domain wave equivalents of 2nd-order blocks

1B 2B

1A2A

1B 2B

1A2A

1A2A

1B

INVERTER

INVERTER

2B

1B 2B

1A 2A

INVERTER

INVERTER

Prototype Log-Domain wave equivalent

-1

-1

-1

-1

LC

L

C

L

C

CL

CL

RQ

LC

21

10

=

LCRQ

LC

2

10

=

CL

RQ

LC2

10

=

LCRQ

LC

2

10

=

ωο Q

ωο Q

ωο Q

ωο Q

Page 72: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

72

Log-Domain wave filter

c,outi

EXP

ini

LOG

INVERTER

INVERTER EXP

outi

INVERTER

INVERTER

Modular filter structures are derived.

2C

3L1LSR

LRsυ outυ4C

5L

A quick design procedure is offered.

The circuit complexity is increased in comparison to the leapfrog filters.

Page 73: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

73

Effects of non-idealities

Effect of non-zero RE

INVOUTV

OUTi

0I

0I

EEV

CCV

ER ER

The cut-off frequency is shifted, while the filter shape remains unchanged.

0

ˆˆ

0

IRV

OUT

BT

OUTIN

eII β

υυ

+

=

Page 74: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

74

( ) ( )[ ] ( ) ( ) ( )∫ +−=+

12110

0 ˆˆˆˆˆ

υυ EXPAEXPAEXPEXPdtd

IVC

VRIV T

T

ET

• Input-output relationship for a lossy integrator

The effect of non-zero RE is compensated by multiplying the value of DC current source by a factor

( )T

ETRE V

RIVk 0+=

-60.0

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

10.0

0.0E+00 5.0E+05 1.0E+06 1.5E+06 2.0E+06 2.5E+06 3.0E+06 3.5E+06 4.0E+06

Συχνότητα (Hz)

Κέρδος

(dB

)

Ω= 0ER

Ω= 30ER

Ω= 60ER

Page 75: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

75

Effect of BJT transistor finite beta.

( )∫ dtC

.1

1ˆINυ

2ˆINυ0υ

EXPLOG

β3k−

β3k

βf−−1

The finite beta introduces a scalar error and an extra feedback path.

The cut-off frequency and the phase response of the filter are changed.

The above imperfections can be electronically removed.

Page 76: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

76

E-

E+

E+

1BE-

E+

E+

E-

E+1A

2B

2A

E+

β30 / kI

1υ0Ifβ

C

0I

0I

β30 / kI

β30 / kI

β10 / kI

β10 / kI

β10 / kI

β20 / kI

β20 / kI

β20 / kI

β30 / kI

Wave equivalent of a floating inductance, with additional circuitry for removing the effect of finite beta.

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

2.0

0.0E+00 5.0E+05 1.0E+06 1.5E+06 2.0E+06

Συχνότητα (Hz)

Κέρδος

(dB)

β=100

Αντισταθμισμένη

Ιδανική

Page 77: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

77

Effect of non-zero RB.

This deviation is canceled by following the same procedure as in non- zero RE.

INυ

OUTυ

OUTi

0I

0I

EEV

CCV

BR BR

The cut-off frequency is shifted, while the filter shape remains unchanged.

-30.0

-25.0

-20.0

-15.0

-10.0

-5.0

0.0

5.0

1.0E+05 6.0E+05 1.1E+06 1.6E+06 2.1E+06 2.6E+06

Συχνότητα (Hz)Κέρδος

(dB

)

0=BR

KRB 2=

KRB 5=

100=β

0

ˆˆ

0

IRV

OUT

BT

OUTIN

eII β

υυ

+

=

Page 78: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

78

Combined effects

E-

E+

E+

1BE-

E+

E+

E-

E+1A

2B

2A

E+

AVkkkI 3350 / β

1υ50, / kIf

AVβ

C

50 / kI

AVkkkI β150 /

AVkkkI 3350 / β

AVkkkI 3350 / β

AVkkkI 3350 / β

AVkkkI 1150 / β

50 / kI

AVkkkI 1150 / β

AVkkkI 2250 / β

AVkkkI 2250 / β

AVkkkI 2250 / β

Page 79: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

79

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

10.0

1.0E+05 5.0E+05 9.0E+05 1.3E+06 1.7E+06 2.1E+06 2.5E+06 2.9E+06

Συχνότητα (Hz)

Κέρδος

(dB

)

Μη ιδανική

Ιδανική

Αντισταθμισμένη

100=β

Ω= KRB 1Ω= 30ER

The values of factors are calculated using a fitting algorithm.

Page 80: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

80

Square-Root-Domain filters

Page 81: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

81

Representation of a Square-Root-Domain filter using complementary operators

A method for designingSquare-Root-Domain filters

IN1in

111

2 n22 INin

OUT out

OUT out

υi

i

i

υ i

O

O

O

O

^

^

^

^

SQ SQ

SQ SQ

Linearoperation

SQRTSQRT

SQRTSQRT

. .. ... .. . ...

Linear system

x - domain cellυ

υ

Page 82: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

82

• Definition of operators

oi

υ=

I

K

O

O

O

.

^

VDD

VSS

SQRT(i)

o

DD

SS

i=SQ( )

υ

υI

V

KO

O

O

^

^

V

.

( ) oT IVKSQ −−= 2ˆ2

)ˆ( υυ TO V

KIiiSQRT +

+=

)(2)(

SQ[SQRT(i)]=i

Page 83: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

83

Square-Root-Domain integrators

O

O

IN

IN

C

OUT

IN a

o

X

Y

Y

Z

XZ1

Wi

i

i

υ

υI

I

.C

OUT

OUT

o

aIN

i

i

IIi

1:1

K

K

MULTIPLIER / DIVIDER # 1

GEOMETRIC-MEAN

^

^

a

X

Y

Z

W

I

MULTIPLIER / DIVIDER # 2

OUTo

ao

iIII

IN

OUT

VDD

V

V

SS

SS

Mc

oI

OUTo iI

OUTo iI

Z2

Z

YXW i

iii =.

X Yi i= .

Zni

Z

YXW i

iii.

.

.

.

.

.

.

=

VDD

1:1

IN OUTυ υOO^ ^

SQ SQRT

∫Lossless integrator

OUTOUT

OUT

iIII

iIIi

dtd

Cio

ao

o

aINc −==

υ

( )∫ ⋅= dt ˆSQ1)ˆ(SQINOUT

υτ

υ

a

o

IKIC

2=τ

The time-constant of integrator is:

Electronic tuneability using a DC current source.

Page 84: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

84

Lossless integrator-subtractor

IN1

IN2

OUT

υ

υ

++

-υO

O

O

^

^

^

SQ

SQ

SQRT

O

O

IN1

IN1

C

OUT

IN1 a

o

X

Y

Y

Z

XZ1

Wi

i

i

υ

υI

I

.C

OUTi

1:1

K

K

MULTIPLIER / DIVIDER # 1

GEOMETRIC-MEAN

^

^

X

Y

Z

W

MULTIPLIER / DIVIDER # 2

IN1

OUT

VDD

V

V

SS

SS

Mc

Z2

Z

YXW i

iii =.

X Yi i= .

Zni

Z

YXW i

iii.

=

VDD

1:1

O

IN2

IN2

IN2 a

ii

υI

1:1

K^

IN2

VDD

VSS

Page 85: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

85

Lossy integrator

IN OUTυ ++-

υOO^ ^

SQ

SQ

SQRT

dampF

O

O

IN

IN

C

OUT

INa

o

X

Y

Y

Z

XZ1

Wi

i

i

υ

υI

I

.C

OUTi

K

K

MULTIPLIER / DIVIDER # 1

GEOMETRIC-MEAN

^

^

IN

OUT

VDD

V

V

SS

SS

Mc

Z2

Z

YXW i

iii =.

X Yi i.

Zni =

VSSMF1 MF2

1:1

DD

1:1

V

1: aIIo

( )[ ] ( ) ( )OUTINOUT

SQFSQSQdtd

damp υυυτ ˆˆˆ −=

Damping is achieved using a current mirror.

Page 86: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

86

Complete system of current integrator

INOUT

υυ

outin ii. .

^^

SQ SQSQRTSQRT

x - domain cell

ININ

C

OUT

IN a

o

X

Y

Y

Z

XZ1

Yii

i

υ

υ I

I

.C

OUTi

K

K

MULTIPLIER / DIVIDER # 1

GEOMETRIC-MEAN

^

^

a

X

Y

Z

W

I

MULTIPLIER / DIVIDER # 2

V

V

SS

SS

Mc

oI

Z2

K

VSS

VDD

I Oini

K

VSS

VDD

IO

outi

x - domain cell

Mout

Min

Z

XW i

iii =

.W

Y

Z

XW i

iii =

.

XZn Yii i= .

VDD DDV

Page 87: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

87

IN

C

OUT

a

o

X

Y

Y

Z

XZ1

Y

i

i

υ

I

I

.C

OUTi

K

MULTIPLIER / DIVIDER # 1

GEOMETRIC-MEAN

^

a

X

Y

Z

W

I

MULTIPLIER / DIVIDER # 2

VSS

Mc

oI

Z2

+IO

K

VSS

VDD

IO

outi

Mout

Z

XW i

iii =

.W

Y

Z

XW i

iii =

.

XZn Yii i= .

DDV

Simplification of circuit:

Page 88: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

88

MOS Translinear principle

∑∑ =ccw

D

cw

DLW

ILW

I//

In the closed loop, the gate-source voltages are in series, with equal number of transistors arranged clockwise and counter-clockwise.

Page 89: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

89

Stacked topology

Suffers from a strong influence of the body effect.

Offers simple circuits.

Page 90: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

90

Up-down topology

Requires some extra circuitry, in comparison with the stacked configuration.

The body effect is much smaller than that in case of stacked topology.

Page 91: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

91

Electronically simulated loop topology

The body effect is completely eliminated.

The achieved bandwidth is limited by the speed of additional circuitry.

A relative large number of elements is required in same cases.

The average of the gate-source voltages of transistors M1 and M2 is forced equal to the average of the gate-source voltages of transistors M3 and M4.

Page 92: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

92

Basic SQRD blocksCurrent geometric-mean circuit

M

MM

M M M M

M MM M

.

.

.

.

V

V

I I

I

X' Y

DD

SS

X1 Y Y1XY

c c

c

p p p p

K K4K

K K K K

1:1

K

X XZ

XY

XY

Y

YY i ii

i

i

i

ii

=2

X'Y

X Z1Y

υ

υ

υ P2 P3 P4P1

3 4

MZ

XZ1 Yii i=

M X

K .

MMVDD

1:11 2

Xi

Z1

X'

MMVDD

1:1o o1

Z

Xi Z1i.

Zn

XZn Yii i=

Mon

. .

.

1:1

2:1

Z1

Y

i

Y

X Z1

GEOMETRIC-MEAN

i

i X

XZn Yii i=Zn

Zni

YXXY iii +=

YX ii2iz ⋅=

•The voltage averaging subcircuit produces a gate voltage υX’Y , which is forcedto be equal with the average of the gate voltages of MX, and MY.

MOS translinear principle:

Output current:

Page 93: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

93

Current multiplier topology

.

.

.

..

.

...

V

1:1 1:1

II II

I

DD

c c c c

c

pp pp pp pp

K KK KK 4K4K

KK KK KK KK

KK

X

X XY ZW

XY

Y

Y

W

W+

Z

Zi

i i i

ii

i

i

i

i

i

i

X Y W

2A

M M M MM MMM MXZ1 W W1XY ZWYX1 Y1

Z

YXW i

iii =

.

.K

Zi

Z

MZ

VSS

. .

.

I cVSS

It is constructed by two properly connected geometric-mean circuits.

X

Z

Y

i

i

i Z

YXW i

iii =X

YZ

WWi

MULTIPLIER / DIVIDER

.

Page 94: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

94

Performance of the proposed multiplier.

Time, (ms)

Error,(μΑ)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5New[11]

•Comparison with a multiplier based on up-down topology.

TH D, (dB)

Amp litude,(μΑ)0 10 20 30 40 50

-76

-72

-68

-64

-60

-56

-52

The minimum supply voltage requirement for both proposed circuits is:

GSSATDSVVVDD +=

,2min

.

A reduction of about 50% for the required transistor area is achieved in the proposed circuit.

Page 95: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

95

High-order Square-Root-Domain filters

Operational simulation of all-pole LC ladders

LC ladder prototype

Linear domain Signal Flow Graph (SFG)

υ

R

Rin

1 3 5S

LCL

i i

LC C1

2

2 4

4

3 5 out

o

o

υ

υ υ υ

υ υ'

υ

υ'

υ υυ

-1 -1

-1 -1

1

1 1 1

1 1in

2

3

4

5out

1

RC s+1 RC s+1RC s(L R) s1 532 4

1 111 1

+ +

+ +

(L R) s

Page 96: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

96

Transposition to Square-Root Domain using the following rules:

•A SQRT block is placed at the output of each integrator.

•A SQ block is placed at each input of integrators (before scaling).

•A SQRT block is placed at the input of the system.

•A SQ block is placed at the output of the system.

i υ' ^

^^υ υ υ

υ'

i

-1 -1

-1 -1

1

1 1

1 1in 2

1 3 5

4

out

RC s+1 RC s+1RC s(L R)s1 532

1 111

+ +

+ +

SQ

SQRT

(L R)s4

1

Page 97: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

97

Implementation using Square-Root-Domain cells

o

o

iout

iin

I

I

K

K

O

O .

OUT

OUT

OUT

IN2

IN2

IN2

IN1

IN1

IN1

integrator

integrator

integrator

subtractor#1

#2

#3subtractor

subtractor

OUT

IN2

IN1

integratordamped

subtractor

OUTINdampedintegrator

V

VDD

DD

V

V

SS

SS

.

.

..

.

Page 98: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

98

Frequency response of the filter @ modulation index factor 0.8

The frequency response of a Square-Root-Domain filter is evaluated using large-signal transient simulations and FFT analysis.

The AC analysis of HSPICE is valid only for small modulation index factor !!!

Gain, ( dB)

Frequency, (Hz)

Level 1

Level 3

0 25000 50000 75000 100000

-60

-50

-40

-30

-20

-10

0

Gain, (dB)

Frequency, (Hz)

Level 1Level 3

0 10000 20000 30000 40000 50000

-7.4

-7.2

-7.0

-6.8

-6.6

-6.4

-6.2

-6.0

Page 99: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

99

0 25000 50000 75000 100000

-80

-70

-60

-50

-40

-30

-20

-10

0Gain, (dB)

Frequency, (Hz)

Iα=6μΑ

Iα=10μΑ

Iα=12μΑ

Electronic tuneability of Square-Root-Domain filters.

Page 100: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

100

Non-linear analysis

A two-tone test was performed, in order to measure the third-order intermodulation distortion factor. The IMD3 was -42dB @ modulation index factor equal to 1.

5 10 15 20 25 30 35 40 45 50

-65

-60

-55

-50

-45

-40THD, (dB)

Amplitude, (μΑ)

Page 101: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

101

Noise analysis

The achieved Dynamic Range was 49.7dB.

0.1 1.0 10.0

0

5

10

15

20

25

30

35

40

45

50

55

60SN R, (dB)

Amplitude, (μΑ)

Page 102: Analog Integrated Filters - Lira Eletrônicaliraeletronica.weebly.com/uploads/4/9/3/5/4935509/analog...Mpc1 Mpc2 Mpc3 Mpc4 Mn2 Mn4 iin Vb2::1 11: Mnc1 Mnc2 Mn1 1 V DD Mnc5 Mpc6 Mn5

102

[1] E. Seevinck and R. Wiegerink, ‘Generalized translinear circuit

principle’, IEEE J. Solid-State Circuits, vol.26, pp.1098-1102, Aug.

1991.

[2] M. Eskiyerli, A. Payne: ‘Square-root domain filter design and

performance’, Analog Integrated Circuits and Signal Processing,

vol.22, pp.231-243, Mar. 2000.

[3] J. Mulder, A.C. Van der Woerd, W. A. Serdjin, A. H. M. Van

Roermud: ‘Current-mode companding x – domain integrator’,

Electron. Lett., vol. 32, pp.198-199, Feb. 1996.

[4] A. J. Lopez-Martin and A. Carlosena, ‘Geometric-mean based

current-mode multiplier/divider’, in Proc. IEEE Int. Symp. Circuits

Syst. (ISCAS), 1999, pp. 342-345.

[5] A. J. Lopez-Martin and A. Carlosena, ‘A 3.3V tunable current-mode

square-root domain biquad’, in Proc. IEEE Int. Symp.Circuits Syst.

(ISCAS), 2000, pp. 5-8.

[6] A. J. Lopez-Martin and A. Carlosena, ‘A systematic approach to the

synthesis of square-root domain systems’, in Proc. IEEE Int. Symp

Circuits Syst.(ISCAS), 1999, pp. 306-309.

[7] R. Wiegerink, ‘Analysis and synthesis of MOS translinear circuits’,

Dordrecht, The Netherlands: Kluwer Academic Publishers Group,

1993.

[1] B. Gilbert: “Translinear circuits: An historical overview”, Analog Integrated

Circuits and Signal Processing’, vol.9, no.2, pp.95-118, Mar. 1996.

[2] D. R. Frey: “Log-domain filtering: an approach to current-mode filtering”, IEE

Proc., Part-G, vol.140, no.6, pp. 406-416, Dec. 1993.

[3] D. R. Frey: “Exponential state-space filters: a generic current mode design

strategy”, IEEE Trans. Circ. Systems-I, vol.43, no.1, pp.290-305, Jan. 1996.

[4] E. M. Drakakis, A. J. Payne and C. Toumazou: “Log-domain state space: a

systematic transistor level approach for log-domain filtering”, IEEE Trans.

Circ. Systems- II, vol.46, no.3, pp.290-305, Mar. 1999.

[5] D. Perry and G. W. Roberts: “The design of log-domain filters based on the

operational simulation of LC ladders”, IEEE Trans. Circuits Syst. II,vol. 43,

no.11, pp.763-774, Nov.1996.

[6] V. W Leung and G. W. Roberts: “Effects of transistor nonidealities on high

order log-domain ladder filter frequency responses”, IEEE Trans. Circuits Syst.

II, vol.47, no.5, pp.373-387, May 2000.

[7] D. R. Frey: “LOG-domain filtering for RF applications”, IEEE J. Solid-State

Circuits, vol.31, no.10, pp.1468-1475, Oct. 1996.

REFERENCES

Log-Domain Square-RootDomain