design dell'energia comportamentale

Post on 04-Jun-2015

107 Views

Category:

Environment

1 Downloads

Preview:

Click to see full reader

DESCRIPTION

"Design dell'energia comportamentale. Sostenibilità, equilibrio tra Materia e Uomo", presentazione di Masaya Hashimoto, direttore dello studio Isao Hosoe & Associati. Materiali sostenibili, risparmio energetico, qualità e durabilità, design e riciclo, ecco alcuni dei principi del design sostenibile. Un viaggio per massimizzare l'energia comportamentale della materia e dell'uomo. Approfondimenti teorici e laboratori pratici ci hanno spiegato come.

TRANSCRIPT

Design dell’Energia ComportamentaleSostenibilità - equilibrio tra Materia e Uomo

Masaya Hashimoto, Isao Hosoe Design

12 dicembre 2013, Faenza

IntenioniL’obiettivo del design sostenibile è l’eliminazione o la riduzione degli effetti negativi sull’ambiente nella produzione industriale, attraverso una progettazione attenta alle tematiche ambientali. Attraverso l’utilizzo di risorse, materiali e processi produttivi rinnovabili, si ottiene un minor impatto nell’ambiente naturale.

Principi del design sostenibile- Materiali sostenibili: materiali non tossici, riciclati o riciclabili, realizzati secondo processi produttivi che utilizzano energie alternative.- Risparmio energetico: utilizzo di processi produttivi o prodotti che consumano meno energia.- Qualità e durabilità: una maggiore resistenza all’usura ed un funzionamento otti-male garantisce una riduzione dell’impatto dei rifiuti prodotti.- Design e riciclo: un progetto che prevede un secondo utilizzo per l’oggetto pro-dotto sia come materiale sia come funzione.

Design Sostenibile

IL MITO DELLA MACCHINA (1967), Lewis Mumford

“Potenza, velocità, movimento, standardizzazione, produzione in serie, quantificazione, disciplina, precisione, uniformità, regolarità astronomica, controllo, soprattutto controllo divennero le parole d’ordine della società moderna alla nuova maniera occidentale”

Scheda di ricerca, Isao Hosoe

Mappa di Manhattan N.Y. elaborato da Isao Hosoe

Civiltà e imperi del Mediterraneo nell’età di Filippo II - Fernand Braudel, 1949

Mandala del Diamante Mandala del Grembo

MEMORIE UMANE

Cultura CACCIATORE NOMADE

200,000 anni

Cultura AGRICOLA10,000 anni

Cultura INDUSTRIALE200 anni Cultura NEOMADICA

presente - futuro

COMPARAZIONI CULTURARI

CULTURAAGRICOLA

CULTURAINDUSTRIALE

CULTURANEOMADICA

RISORSE

LAVORO

SENSI

VITA

- consumare- possedere - giocare

“...l’’uomo è completo solo quando gioca” - Friedrich Schiller

Giocare

COMPARAZIONI CULTURARI

CULTURAAGRICOLA

CULTURAINDUSTRIALE

CULTURANEOMADICA

RISORSE

LAVORO

SENSI

VITA

- possedere

- dedizione

- consumare

- competizione

- giocare

- performance

Jemaa el-Fna Plaza - Marrakech, Marocco

Performance

COMPARAZIONI CULTURARI

CULTURAAGRICOLA

CULTURAINDUSTRIALE

CULTURANEOMADICA

RISORESE

LAVORO

SENSI

VITA

- possedere

- dedizione

- tatto

- consumare

- competizione

- vista

- giocare

- performance

- otto sensi

1. occhio2. orecchio3. naso4. lingua5. pelle6. testa7. emotività8. alaya

Otto sensi

COMPARAZIONI CULTURARI

CULTURAAGRICOLA

CULTURAINDUSTRIALE

CULTURANEOMADICA

RISORSE

LAVORO

SENSI

VITA

- possedere

- dedizione

- tatto

- induzione

- consumare

- competizione

- vista

- deduzione

- giocare

- performance

- otto sensi

- abduzione

Abduzione

prodotto: InterAct categoria: sistema interattivo per u� cio azienda: Steelcase, Francia anno: 2004 premi: ADI Design Index 2004

TACIT - dynamic posture seating system - Itoki, 2004

prodotto: Tacit categoria: sedia multi posture azienda: Itoki, Giappone anno: 2004 premi: Japan Good Design Award 2005

prodotto: FBP categoria: Forno bicanale per la cottura delle piastrelle azienda: Sacmi, Italia anno: 2006 premi: ADI Design Index 2006 XXI° Compasso D’Oro - selezione, ADI Good Design Award 2006, The Chicago Athenaem

Isao Hosoe Design 02.12.2004

Foto modelli

TACIT - dynamic posture seating system - Itoki, 2004

prodotto: TAIS Cube categoria: quadro di distribuzione azienda: Palazzoli, Italia anno: 2013

prodotto: Light+M categoria: piastrella azienda: Kale Seramik, Turchia anno: 2011 premi: ADI Design Index 2013

Koryo Miuraingegnere aerospaziale

Nato a Tokyo nel 1930Partecipa allo sviluppo di numerosi satelliti artifi ciali e contribuisce all’invenzione e alla realizzazione di nuove strutture aerospaziali

Isao Hosoedesigner

Nato a Tokyo nel 1942Ha collaborato con l’Arch. Alberto Rosselli dello Studio Ponti-Fornaroli-Rosselli dal 1967 al 1974

Nel 1985 fonda “ISAO HOSOE DESIGN”

Miura-ori

dalla ricerca alla realizzazione: 17 anni

Mappa di Venezia Olivetti japan, 1978

Pannello solare sull’unità Space Flyer , 1995

Self-Organized OrigamiL. Mahadevan1* and S. Rica2

The controlled folding and unfolding of maps,

space structures, wings, leaves, petals, and other

foldable laminae is potentially complicated by the

independence of individual folds; as their num-

ber increases, there is a combinatorial explo-

sion in the number of folded possibilities. The

artificially constructed Miura-ori (1) pattern,

with a periodic array of geometrically and

elastically coupled mountain and valley folds

(Fig. 1A), circumvents this complication by

allowing the entire structure to be folded or

unfolded simultaneously. Making such a pat-

tern is not easy, so it may be surprising to find

an elegant natural counterpart that is a few

hundredmillennia old. In Fig. 1B, we show the

different stages of the opening of a hornbeam

leaf that starts life in its bud as a Miura-ori

folded pattern (2). Similar structures arise in

insect wings (3) and elsewhere in nature (4),

suggesting that these origami patterns are a

result of convergent design. This raises a ques-

tion of mechanism: How might this spatial

organization of folds be brought about?

In Fig. 1C, we show the realization of a

simple physical solution to this question.

The biaxial compression of a thin, stiff, elas-

tic film (with Young_s modulus E, Poisson

ration n, thickness h, and size L d h)

supported on a thick, soft substrate (with

Young_s modulus Ep¡ E and thick-

ness H d h) yields into a Miura-ori

pattern without any external guidance

other than that induced by relatively

benign, isotropic, compressive strains

that arise because of the relative ex-

pansion and contraction between the

film and substrate induced by ther-

mal (5) or desiccating (6) effects.

Initially, we get primary buckles with

wavelength l È h(E/Ep)1/3 (5), which is

very small compared to the lateral extent

of the system. However, at the onset of

the instability, these straight primary

buckles do not have any preferred

orientation in a large system and instead

form large uncorrelated patches. Non-

linear deformations of these primary

buckles, through global compression or

extension parallel or perpendicular to

their orientation, lead to modulational

instabilities wherein the buckles col-

lectively deform through soft modes,

which are energetically cheaper than the

local extension or compression of in-

dividual buckles (supporting online

text). Thus, the Miura-ori pattern is

just the natural response of a softly

supported stiff skin to weak compression along

the primary buckles (or weak extension per-

pendicular to them), wherein the buckles tilt

into a zigzag pattern separated by kinks.

Quantifying this through a mathematical

analysis of the equations of elasticity (supporting

online text) away from the onset of the

instability leads to the Newell-Whitehead-

Segel equation (7, 8) for the complex-valued

amplitude A(x,y)

eA þ h2

12ð1 j n2Þ

� ð¯x ji

2kc¯yyÞ2A j gkAk2A 0 0 ð1Þ

Here ReEA(x,y)eikcx^ is the vertical deflectionof the skin, k

c0 2p/l is the wave number at

onset, e characterizes the distance from the

instability threshold, and g characterizes the

saturation amplitude. The form of Eq. 1 follows

from symmetry considerations (supporting online

text) and describes a variety of planform patterns,

including the zigzag patterns found in fluid

convection, superconductivity, liquid crystals,

etc. Our interpretation in the context of folding

patterns suggests that Eq. 1 also provides a

natural mathematical framework for the self-

organization of Miura-ori. Indeed, a numerical

simulation of Eq. 1 in a rectangular domain with

periodic boundary conditions in one direction

and Neumann conditions in an orthogonal

direction reproduces the Miura-ori patterns with

creases of wavelength l (Fig. 1D).

Although Eq. (1) is asymptotically valid only

in the weakly nonlinear regime, in practice it

describes the patterns well even far from the onset

of the zigzag folds. Additionally, the strong

localization of the creases and kinks follows

naturally from the nonlinear evolution of the

pattern in light of the small thickness of the skin-

like upper film and the softness of the substrate,

leading to almost isometric mountain-valley fold

patterns (Fig. 1, A and C). The size d of the kinks

is determined by minimizing the sum of the kink-

bending energy UKÈ Eh3ln(R/d), due primarily

to conical bending of the thin sheet of size R, and

the additional energy of deforming the attached

substrate below the kinks, UsÈ E

pd3. This yields

d È hð EEpÞ1=3È l, consistent with observations

(Fig. 1C).

Our observations and analysis provide a

mechanism for naturally occurring Miura-ori.

Stresses induced by the relative growth of stiff

skins on soft supports will spontaneously fold

into structures such as those shown in Fig. 1;

stress-mediated apoptosis may then separate the

skin from the tissue to form deployable laminae

such as leaves and insect wings.

References and Notes1. K. Miura, Proceedings of the 31st Congress of the

International Astronautical Federation, IAF-80-A 31,(American Institute for Aeronautics and Astronautics,New York, 1980), pp. 1–10.

2. H. Kobayashi, B. Kresling, J. Vincent, Proc. R. Soc.London Ser. B. 265, 147 (1998).

3. F. Haas, R. W. Wooton, Proc. R. Soc. London Ser. B.263, 1651 (1996).

4. B. Kresling, Biomimetics 3, 105 (1991).5. N. Bowden, S. Brittain, A. G. Evans, J. Hutchinson, G.

Whitesides, Nature 393, 146 (1998).6. R. Rizzieri, personal communication.7. L. A. Segel, J. Fluid Mech. 38, 203 (1969).8. A. C. Newell, J. Whitehead, J. Fluid Mech. 38, 279 (1969).9. L.M. acknowledges support from the Harvard Materials

Research Science and Engineering Center and theOffice of Naval Research Young Investigator Program;S.R. acknowledges support from Fondo de Ciencia yTecnologia (FONDECYT), Chile.

Supporting Online Materialwww.sciencemag.org/cgi/content/full/307/5716/1740/DC1SOM TextFig. S1References and Notes

13 September 2004; accepted 2 February 200510.1126/science.1105169

BREVIA

1Division of Engineering and Applied Sciences and Depart-ment of Organismic and Evolutionary Biology, HarvardUniversity, Cambridge, MA 02138, USA. 2Departamento deFisica, Universidad de Chile, Blanco Encalada 2008, Santiago,Chile.

*To whom correspondence should be addressed.E-mail: lm@deas.harvard.edu

Fig. 1. (A) Plan view of a paper Miura-ori pattern (size, 5cm), showing the periodic mountain-valley folds. The sharpre-entrant creases that come together at kinks allow thewhole structure to fold or unfold simultaneously. (B)Hornbeam leaves (length, 5 cm) in the process of bloomingshow a natural occurrence of Miura-ori. A single row ofkinks along the midrib allows a folded leaf to be deployedonce the bud opens (2), as seen in the different stages ofleaf opening (clockwise from the top). (C) Zigzag Miura-oripatterns in a thin film atop a thick elastic substrate that iscompressed biaxially manifest here in a drying slab of gelatinwith a thin skin that forms naturally (6), showing thephysically driven self-organization of Miura-ori. Scale bar,35 mm. (D) Simulations of Eq. 1 yield Miura-ori patternsthat arise as a modulational instability of the primary(straight) wrinkles (supporting online text).

18 MARCH 2005 VOL 307 SCIENCE www.sciencemag.org1740

“Science Magazine”, marzo 2005

PCCP shell (Pseudo Cylindrical Concave Polyhedral)

dalla ricerca alla realizzazione: 21 anni

Lattine PCCP, 1995(compressione assiale)

Tension Truss

dalla ricerca alla realizzazione: 9 anni

ELASTICA, Euler

Telescopio radiofonico “Halca”, 1997

Massimizzare Energia Comportamentaledella Materia edell’Uomo

top related