chapter 7 효소반응메커니즘 -...

Post on 25-Jan-2020

7 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Chapter 7 효소반응 메커니즘

( Transition State Theory)

� 본 이론은 반응속도가 기질의 기저상태와 전이상태 사이의에너지 차이인 Gibbs free energy의 차이의 함수로 표시된다는이론이다. 즉, [X≠ ] = [X]exp ( -ΔG≠ / RT )즉, [X ] = [X]exp ( -ΔG / RT )

ΔG≠uncat

X≠ ΔG≠cat

ΔG0

rxn coordinate

E

reactants

products

ES EP

Transition State Theory

이때 전이상태 물질의 분해되는frequency가깨지는 bond의 vibrational frequency ν와 같다고 가정하면,E= hν = kT의 관계에서 ν =kT/h 가 된다.

k : Boltzmann constant (1.381×10-23JK-1)h : Plank constant (6.626×10-34JHz-1)그러면 25℃에서 이 된다.그러면 25℃에서 이 된다.

반응물 의 분해가 1차 반응일 경우 아래와 같은 식이 된다.- (1)

그러므로 이 때의 1차 반응 속도 상수- (2)

효소의 반응은 Michaelis-Menten equation으로주로 아래와 같이 나타내는데

Ks kcatE + S ES E + P

여기에서 kcat는 (2)식의 k1과 매우 유사한 성질을가짐을 알 수 있다. 그러므로 효소 반응도 유기화학에서의 촉매 반응과 유사함을 알 수 있으며, homogeneous catalyst의 촉매 반응과 같이 효소반응은 아래와 같은 메카니즘에 의해 일어남이알려져 있다.

예) 1. General base catalysis

① specific acid(H+), base(OH-) catalysis② general acid, base catalysis ③ electrostatic catalysis, metal ion catalysis④ covalent catalysis

General acid catalysis

General acid- base catalysis.

Definition: 반응속도가 base의 농도에 비례하여 증가한다(변한다).kobs= 2nd order rate const.

BrÖnsted eqn : efficiency of acid-base catalysis

Log k2 = A + β*pKa, log k2 = A-α*pKa

β : BrÖnsted β valueβ : BrÖnsted β valuemeasures the sensitivity of the rxn to the pKa of the conjugate acid of

the baseα : in acid catalysisusually o < α, β < 1

Note: 0= means no transfer of a proton 1= means complete transfer of a proton

Ex) ester hydrolysis β ≈ 0.3~0.5

General and acid-base form

“In general, the stronger the base, the better the general-base catalysis; the stronger the acid, the better the genera-acid catalysis.”즉, “pH와 pKa를 비교하여 catalyst의 (즉 acid 혹은 base의) ionization state가 반응을 하는데 있어 매우 중요하다.”

Electrostatic catalysis

E = where, D=dielectric const

- enzymes stabilize polar transition states better than water does, because the enzyme has dipoles that are kept oriented toward the charge, whereas water

)*(

2*1

rD

ee

re kept oriented toward the charge, whereas water dipoles are randomized by outer solvation shells interacting with bulk solvent.: In fact, enzyme plays an important role for substrate salvation

- electrostatic interactions are much stronger in organic solvents than in water because of lower dielectric const.

Metal ion catalysis

- electrophilic catalysis, stabilizing the negative charges- 104~106 rate enhancement factor

Ex) hydrolysis of glycine ethylesterCo3+ coordinated rxn. 2×106 fold 증가.

- because a source of OH- ions at neutral pHEx) pKa of Cobalt-bound water moleculeEx) pKa of Cobalt-bound water molecule(NH3)sCO3++H2O (NH3)5Co2+OH + H+

pKa=6.6pKa of H2O = 14.7, so that the difference is ca. 8 units.But, Co-bound OH group is only 40 times less reactive than the free OH- in catalyzing the hydration of CO2.∴ becomes Metal-bound H2O is the most effective for nucleophilic attack.Ex) carbonic anhydrase

즉, combination of a metal-bound hydroxyl group and an intramolecular reaction provides the largest rate enhancement.

Covalent catalysis.

structure-reactivity relationships

A. nucleophilic attack at the carbonyl group.model system: nucleophilic attack on ester synthesisincreases with i) e- withdrawal in the acyl portion

ii) e- withdrawal in the leaving groupiii) increasing basic strength of the nucleophileiii) increasing basic strength of the nucleophile

반응의 e-withdrawal 및 donation에 대한 민감도를 정량적으로측정하기 위해서는 rate const(2차 반응속도상수) term logk2 와nucleophile 의 pKa를 general-base catalysis처럼 plot할 수 있다

logk2=A+βpKa :직선관계

Linear Free Energy Relationship in covalent catalysis

이로부터 linear free energy relationship 이 성립함을 알수 있다.

∵ k2 = ƒn exp (-∆G≠/RT) = kT exp -∆G≠

h RT

또한, -logKa(=pKa) 는 equilibrium const로 G≠ 와 비례또한, -logKa(=pKa) 는 equilibrium const로 ∆G≠ 와 비례관계가 있음을 알 수 있다.

∴ logk2=A+βpKa는① Gibbs energy of activation of bond formation with c

arbonyl carbon② Gibbs energy of transfer of a proton to the nucleop

hile의 비례관계라고 볼 수 있다.

B. Hammett eqn : alternative way of plotting data for aromatic compounds.

(refer to BrÖnsted eqn)

(pKa)x = (pKa)o –ρδx

Ex) ionization of phenol.δx : substituent const: measure e-donating or –withdrawing po

Covalent bond Catalysis

δx : substituent const: measure e-donating or –withdrawing power of the substituent in a benzene ring.

ρ: constant of proportionality 혹은 logkx =logko + ρδx 라고 쓸 수도 있다.

Ex) alkaline hydrolysis of phenylacetate∴ BrŐnsted and Hammett plots are equivalent.즉 β or ρ : sign & magnitude of this value are an indication of the charge developed in the transition state.

Ex) In the case of tertiary amine attack on esters of very basic alcohol

• β=1.6-1.7, acetyl group is more e- withdrawing than the proton.i) -1.5 < β value < 1.5

Ex) acyl transfer from the alcohol to the amine,

R3N + CH3 C

OEt

O

CH3 C

OEt-δ

O-δ

R3N TS

i) -1.5 < β value < 1.5variation of alcohol(-oEt) variation of nucleophile(amine)’s pKa

즉, transiton state is very close to the structure of product.

ii) rxn of basic nucleophiles with esters containing activated leaving group

+ CH3 C

OAr

O

CH3 C

OAr

O-δ

ROTS

RO-

-0.1~-0.2 < β < 0.1~0.2[variation of leaving group] [variation of nucleophile]

“즉, 이를 종합해보면 β is a measure of the charge formed in the transition state rather than of the extent of bond formation” �이는 특히 acid-base catalysis 로 인해transition state 에 형성된 charge를 neutralize할 경우는 β 값과 extent of bond formation 과 관계가 없다. 그러나 일반적으로는 charge 와 bond formation은 연결되어 있어 bond formation 정도의 측정값이기도 하다.

C. Factors determining nucleophilicity and leaving group abilityC. Factors determining nucleophilicity and leaving group ability• In general, the magnitude of general acid-base catalysis depends only on

substrate’s pK value, and independent of chemical their nature. • However, nucleophilic reactivity depends markedly on the nature of the reagents.

① In the case of nucleophilic reaction:� basic strength reflects nucleophilicity� NH2, -S- > -O-

� 두개의 electronegative atom이 붙어있는 경우는 pKa로 예상되는 값보다more reactive-called “α effect”

� NH2OH, NH2NH2, NH2CONHNH2, HOO- and CH3OO-

② ease of expulsion of a group

� depends both on its pKa and its state of protonation

� basic strength increases the ease of expulsion

예) Acetate > p-nitrophenol & phosphate

(pKa=4.76 < pKa7)

③nucleophilic reactions with saturated carbon� attack of a thiol on the methyl carbon of S-adenosylmethionine

★ not a normal bond이 경우는, large polarizability가 더 중요.예) S, I예) S, I

① leaving group activation

A.Electrophilic catalysis (i.e. Stabilization of an electron(negative charge))

1) Schiff base formation2) Pyridoxal phosphate3) Thiamine pyrophosphate

A. Electrophilic catalysis

1) Shiff base

예) i) acetoacetate decarboxylase

acetoacetate� acetone + CO2

ii) Aldolase and transaldolase

iii) Thiamine pyrophosphate

-positive charge on the nitrogen promotes the ionization of the

C-2 carbon by electrostatic stabilization.

-Hydroxyethylthiamine pyrophosphate 의 반응을 이용해

② decarboxylation

pyr + TPP � CH3CHO+ CO2 + TPP

③ C-C bond formation and breaking ( eg: transketolase)

D-xylulose5-ⓟ + D-ribose-5ⓟD-sedoheptulose-7ⓟ + D-glyceraldehyde 3-ⓟ

ii) PLP. ~ coenzyme pyridoxal phosphate-pyridine ring in the shiff base acts as an electron

sink� stabilize a negative charge.a. removal of α-hydrogen cause

i)racemizationii)transamination�shiff base of an α-ketoacidiii)β-decarboxylation� amino acid가 aspartate일iii)β-decarboxylation� amino acid가 aspartate일

경우iv)interconversion of side chains

b.α-decarboxylation

B.Nucleophile catalysis① serine hydroxyl ② thiol protease, lipase, alkaline phosphatase③ imidazole of histidine

5-2 Why does Enzyme dramatically enhance Rxn rates?

이와 같이 화학반응과 효소 반응이 다른게 하나도 없다면도대체 효소는 어떻게 화학 반응에 비해 kcat 값이 매우큰 것일까? 이에 대한 해답은 두 가지 정도로 나누어 볼수 있는 데

1) 첫째로는 효소 반응이 대부분 intramolecular1) 첫째로는 효소 반응이 대부분 intramolecularcatalysis이기 때문에 반응 참여 관능기의 effective concentration을 증가시키는 역할을 하기 때문이다. 이와같은 effective concentration의 증가는 intramolecular반응이 intermolecular 반응에 비교해 translation 및rotational entropy의 감소로 인한 효과 만큼 이라고생각할 수 있다. 즉 아래 반응의 경우

i) A + B AB≠ ABi) A-B AB≠ A-B

ⅱ) 의 반응과 동일한 반응 속도를 얻기 위해 ⅰ)반응에서A의 농도가 6×109M 정도가 되어야 함을 보면 이해할수 있다.

2) 둘째로는 효소의 경우 효소-기질 복합체의 전이2) 둘째로는 효소의 경우 효소-기질 복합체의 전이상태가 효소와의 구조적 complementarity(보완성)를갖는 성질을 통해 효소와 기질의 binding energy를촉매 작용에 매우 유효 적절하게 사용하여 활성화에너지(activation energy)를 효과적으로 낮출 수 있기때문이다.

5-2 Why does Enzyme dramatically enhance Rxn rates?

A. Intramolecular catalysis

1) increases effective concentration of substrates

Intramolecular catalysis ~ first-order kineticsIntramolecular catalysis ~ first-order kineticsIntermolecular catalysis~(general acid-base catalysis) 2

nd order kinetics

Ex) hydrolysis 반응의 경우 intramolecular rxn rate를얻기 위해 약 13M 상당의 external base가 필요

2) Entropy loss in transition state : The effect of high effective S concentration of intramolecular group can be explained by the entropy loss term in transition state theory.

Entropy(ΔS) = Σ translational, rotational, internal entropies - high translational entropy, ≅ 120J/deg/mol,

40kJ/mol at 25℃- rotational entropy, ≅ 120J/deg/mol- 보통 Mass(분자량)에 대한 영향은 매우 낮다.- 보통 Mass(분자량)에 대한 영향은 매우 낮다.

low vibrational entropy

Note: 그러나 translational entropy의 경우 분자가 차지하는 volume 에 비례하여 증가.

∴ low volume = low entropy

3) lose 3 degree of translational & rotational freedom: When two molecules become one molecule,2 X (3 degrees of translational freedom and 3 degrees of rotational freedom for one molecule)- 3=3 remaining

대신 internal vibrational and rotational entropy의 획득으로인해 약간 상쇄됨.

Ex) IM의 경우,Internal rotation loss에 의한 entropy loss = 190J/deg/mol

Ex) IM의 경우,Internal rotation loss에 의한 entropy loss = 190J/deg/mol

55~59kJ/mol at 25℃if soln is dilute, the loss will be greater.상기 예를 exp(∆S≠/R) 에 대입하면 6×109 배의 차이가 있음.이를 2차반응과 1차반응의 분자수 차이에 의한 양으로 보면maximum effective conc ≅ 6×109M 임.

Enzyme must be complementary to the reaction transition state not the substrate

- Binding energy offsets the activation energy, lead to lower a net activation energy (refer to Fig.1 )

Binding energy to form [ES]1) Entropy reduction---proper arrangement of

substrates to react � rate enhancement 2) Solvation shell--- desolvation of the substrate by

replacing water-substrate interactions to enzyme-substrate interactions

3) Distortion of substrate---Thermodynamical3) Distortion of substrate---Thermodynamicalcompensation by binding energy

4) Need for proper alignment of catalytic functional groups---Induced fit

5-3 Enzyme Kinetics

A. Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1)

Steady state approximation: (정의) rate of formation is balanced by its rate of destruction

Assumption : 1) The fomation of ES complex is rapid and reversible.1) The fomation of ES complex is rapid and reversible.2) The dissociation of EP is fast and can be ignored in

the forward rxn.

Note: 보통 steady state 를 가정하고 효소반응 속도를 측정한다.(e.g. 초기 substrate 농도를 large excess 로 하여 intermediate

농도가 steady state 까지를 기다려서 reaction rate 를 재면시간에 따라 큰 변화가 없다)

A. Michaelis-Menten Kinetics

1) Steady State ApproximationKs kcat

E + S ES E + P

: equilibrium approach

v = kcat[ES] [E] = [E] – [ES]][

]][[

ES

SEKs=

v = kcat[ES] [E] = [E]o – [ES]

Ks ≒ Km : dissociation constant of enzyme-substrate complex

2) Briggs-Haldane equation ( kcat >=k-1): Pseudo steady-state Approximation

1) M-M 식에서의 상수kcat 정의 : turnover number, 기질분자가 효소의 활성 부위당, 단

위시간당 생성물로 전환되는 최대수, unit=[sec-1]

Km 정의: 겉보기 평형상수 (혹은 겉보기 해리 상수), unit=[M]

Definition of Kinetic Parameters

kcat /Km정의: specificity constant, unit=[M sec-1]

When S≪Km, M-M식은 로 된다. 여기서 kcat/Km은 겉보기 2차속도상수이다. 즉, 이 상수로 free enzyme과 기질의 반응속도를 나타낼수 있다. 왜냐하면 낮은 기질의 농도에서는 (S≪Km, [E]≈[E0]) 이므로 v =(kcat/Km)[E0][S] 로 사용할 수 있다. 또한 이식은 어떤 기질의 농도에서도 성립함을 증명할 수 있다. 그러므로 보통 효소의 성질을 비교할 때는 이 상수를 비교해서 우위를 결정한다.

A. Lineweaver-Burk plot

slope= Km/Vmax, X intercept =-1/Km ,y intercept=1/Vmax

SV

Km

VV maxmax

11+=

max

Advantage: V vs. [S] easy to read it.Defects: compressing the data points at high substrate concentration

s into a small region and emphasizing the points at lower concentrations

B. Eadie and Hofstee plot

Slope=-Km,

x intercept=Vmax/Km,

S

KmVVV −= max

x intercept=Vmax/Km,

y intercept=Vmax

C. Eisenthal and Cornish-Bowden plot

이 식에서 볼 때, S 및 V가 일정할 때, Km에 대한 Vmax plot은선형식이다: statistical analysis methods

When Vmax=V, Km=0, When Km=-S, Vmax=0When Km=-S, Vmax=0

[S]

v

v*max

v1

vn

S1

[S]n

K*M

5-4 Haldane relationship for Reversible Rxns.

� Compare the kinetics of the forward and backward rxns.

S P k1 k2

S + E ES/EP P + Ek-1 k-2

forward : vf = vSmax[So] /(Km

s + [So]) : initial velocity in the forward direction

Kms = (k-1 + k2)/k1

reverse : vb = vPmax[Po]/ (Km

p + [Po]) : initial velocity in the backward direction

Kmp = (k-1 + k2)/k-2

relationship b/w kinetic constants and equilibrium constants

At equilibrium,k-1[ES] = k1[E][S] [ES] /[E]= k1[S]/ k-1

k2[ES] = k-2[E][P] [ES]/[E] = (k-2/ k2 )[P] = (k1/k-1) [S]

그러므로, Keq = [P]/[S] = (k 1 * k2)/( k-1* k-2)

그런데, vsmax =k2[Eo] and vp

max = k-1[Eo],So that , vS

max / vpmax = ( k2/ k-1)

In addition , Kms / Kmp = {(k + k )/k } /{k /(k + k )} = k / kIn addition , Kms / Kmp = {(k-1 + k2)/k1} /{k-2 /(k-1 + k2)} = k -2/ k1

Keq = (k1*k2)/( k-1*k-2) = { vs

maxKmp / vp

maxKms}= {(kcat/Km)s /(kcat/Km)p }

(Haldane relationship for Reversible reaction)

Keq= fixed by free energies of the reactant and product, “kcat and Km change at the same time.”

5-5 Kinetic expressions of Enzymes for Competing

Substrates

A. An alternative formulation of the M-M eqn.Km = [E][S]/ (Σ [ES] ), Σ ES : sum of all bound enzyme = [E][S] / [ES] (1) if only one intermediate is present.

V = kcat [E]0 [S] /( KM+[S]) put eq’n (1) into the above Eqn. Where, Vmax =kcat [E]0put eq’n (1) into the above Eqn. Where, Vmax =kcat [E]0

= kcat[E]0[S]/ {([E][S]/ [ES])+[S]}=kcat[E]0[S][ES]/{ [E][S] +[S][ES]}= kcat[E]0[S][ES] / {[S]([E] +[ES])} = kcat[E]0[ES]/ [E]0

= kcat[ES] = {(kcat [E][S])/Km}

-easy to use and rapidly calculating the ratio of the rxn rate

B. Specificity for competing substrateskB

B EB

EkA

A EA

d[A] /dt = v = (kcat/Km) [E][A]d[A] /dt = vA = (kcat/Km)A [E][A]d[B] /dt = vB = (kcat/Km)B [E][B]

(vA / vB ) = {( kcat/Km )A[A]}/ {( kcat/Km )B[B]}

Specificity is determined by the ratio of kcat/Km, and not by Km alone.

Since kcat/ KM is not affected by (1) non-productive binding, nor by (2) accumulation of intermediates, these phenomena do not affect specificity

5-6 Enzyme Inhibitions

A. Competitive inhibition

inhibitor와 기질이 active site에 대해 경쟁적임.Enz Binding to active siteVo =Vmax [S] / (αKm + [S]), , where α =( 1 + [I] / K ), K = [E]*[I] / [EI] , where α =( 1 + [I] / KI ), KI = [E]*[I] / [EI]

Increase in apparent Km by αNo change in Vmax

A. Competitive Inhibitions

B. Uncompetitive inhibition

- inhibitor가 ES complex를 이룰 경우에만 반응하며효소자체(E)일 경우는 결합하지 않음.

-Binding only to ES complex at a site distinct from the

active siteactive site

Vo =Vmax [S] / (Km + α’ [S])

α’ = (1 + [I] / K’I ), K’I = ([ES] [I] / [ESI])

- Decrease in Vmax :Vmax /α’ , Decrease in apparent Km

How do we measure Ki ?

C. Noncompetitive inhibition

( or Mixed inhibition)

- inhibitor와 기질이 동시에 active site에 결합함.

- Binding to either E or ES at a site distinct from the active siteVo =Vmax [S] / (α Km + α’ [S])α = α’ , affects Vmax but not Km

Equation Derivatization

How do we measure Ki ?

Summary

v/[S]

v

1/[S]

1/v

(a) (b)

Competitive

v/[S]

v

v/[S]

v

1/[S]

1/v

1/[S]

1/v

Uncompetitive

Noncompetitive

A. Three mechanisms① ping-pong bi-bi mechanism

이 경우는 효소의 한 개의 결합부위에서 반응이 일어나는경우임.

E EE-AX E-XA

AX A B BX

EX E-XB E-BX

5-7 . Multisubstrate system

경우임.

② random-order mechanism보통 ternary complex를 형성하고 두 개의 다른 결합부위를

가지고 있는 경우.

E + AX E-AX

E-AX-B

EBE + B

+B

+AX

EA-BX

EA-BX

-A E-BX

E + A

E + BX

③ ordered mechanism (예: ordered Bi-Bi)보통 ternary complex를 형성하는 경우임.

E EEA

A PB Q

EAB-EPQ EQ

B. Steady state kinetics for multi-substrates

multisubstrate의 경우도 한 개의 기질농도를일정하게 유지하고 나머지 다른 기질에 대해M-M equation을 따르는 식으로 변환할수있음을 알 수 있다.

<random bi-bi>인 경우를 예를 들어 보면<random bi-bi>인 경우를 예를 들어 보면

E+A

+

B

EA

+

B

EB+A EAB EPQ

EP

+

Q

P+EQ

P+E

+

Q

KA

KB

αKA

αKB

kp

k-p

βKQ

Kp

βKp

KQ

random bi-bi kinetics

V=k0[EAB], 만약, 속도결정단계가 EAB가 EPQ로 변하는step이라면 P,Q가 아직 생기지 않았다고 가정할 때, 초기반응속도는 라고 생각할 수 있다. 이때,

이며 이때,

이므로

A, B 두 개의 기질 중 B를 고정하고 A를 변화시킬 때,

상기한 속도식을 정리하면 M-M식과 같이 쓸 수있다.

이때,

5-5Enzyme Inhibitions

이 식에서 볼 때, 의 농도가 saturation 되었을 때, 이고임을 알 수 있으며 의 농도를 고정하고 의 농도를변화시키면 L-B plot을 그릴 수 있다. (그림 2 참조)변화시키면 L-B plot을 그릴 수 있다. (그림 2 참조)

이와 같이 ordered Bi-Bi 및 ping-pong Bi-Bi 식을 구하면아래와 같다.

ordered Bi-Bi:

ping-pong Bi-Bi:

How do we measure KmA and KmB ?

top related