ammonia - max appl

Download Ammonia - Max Appl

Post on 31-Oct-2015

244 views

Category:

Documents

3 download

Embed Size (px)

DESCRIPTION

Ammonia - Max Appl

TRANSCRIPT

  • M. Appl Ammonia

    @ WILEY-VCH

  • Max Appl

    Ammonia Principles and Industrial Practice

    @ WILEY-VCH Weinheim * New York * Chichester 1 Brisbane * Singapore * Toronto

  • Dr. Max Appl Berliner StraBe 12 D-67 I25 Dannstadt-Schauernheim

    This book was carefully produced. Nevertheless, author and publisher do not warrant the information contained therein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

    Cover photograph: Ammonia plant ( I 800 t/d) of BASF Antwerp NV. Design and construction: Krupp Uhde GmbH (courtesy of Krupp Uhde)

    Library of Congress Card No.: Applied for. British Library Cataloguing-in-Publication Data: A catalogue record for this book is available from the British Library.

    Die Deutsche Bibliothek - CIP-Einheitsaufnahme Appl, Max: Ammonia : principles and industrial practice I Max Appl. - Weinheim ; New York : Chichester ; Brisbane ; Singapore ; Toronto : Wiley-VCH, I999 ISBN 3-527-29593-3

    0 WILEY-VCH Verlag GmbH, D-69469 Weinheim (Federal Republic of Germany). 1999 Printed on acid-free and chlorine-free paper. All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form - by photoprinting, microfilm, or any other means - nor transmitted o r translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

    Composition and Printing: Rombach GmbH, Druck- und Verlagshaus, 0-79 I 15 Freiburg Bookbinding: Wilhelm Osswald & Co., D-67433 Neustadt Cover Design: Wolfgang Scheffler, D-55 I28 Mainz Printed in the Federal Republic of Germany

  • Preface

    The Ullmanns Encyclopedia of Industrial Chemistry is now available on CD Rom and I had the privilege of up-dating and revising the article of ammonia. When reviewing the new ammonia version the publisher WILEY-VCH came up with the idea of using it as a basis for a printed book and extending the subject to the whole ammonia production technology in theory and practice. Consequently, synthesis gas production and purification could be treated in more detail and quite a number of newer publications have been included. For economic aspects of the worldwide ammonia production the newest available data have been used. The extensive bibliography will assist readers in pursuing the subject more intensively but it is of course, not possible to list the enormous number of publications on ammonia exhaustively. Research and technology development are still going on and even with a rather low probability of fundamental technology changes small but economically interesting improvements are still happening.

    I would like to thank WILEY-VCH, especially Dr. Th. Kellersohn, for making the publication of this book possible. In particular I should express my thanks to Mrs. Karin Sora and Ms. Ulrike Winter for their exellent editorial work. I am also very much indebted to the authors of the old Ullmann article of 1985, H. Bakemeier, Th. Huberich, R. Krabetz, W. Liebe, M. Schunk, D. Mayer. C. L. Becker. Many thanks for valuable information material and exchange of experience go to all friends and collegues in the industry and the supporting companies which supply it: process licensors, catalyst manufacturers, equipment fabricators, and especially the engineering companies. Additionally, I should mention Alexander More, John French and Bernard Brentnall of British Sulphur who provide a wonderful and continuous documentation of the progress and development in ammonia technology and business through the Nitrogen magazine and the regular Nitrogen Confrenres in Europe, Asia and South America. Especially, I would like to acknowledge the important contribution of the Ammonia Safety Committee of the American Institute of Chemical Engineers and its annual symposium, which provided so much interesting information on technology developments and experience, contributing greatly to the progress of the ammonia industry.

    January 1999 Max Appl

    V

  • Contents 1. 2. 3.

    3.1.

    3.2.

    3.3. 3.4.

    3.5. 3.6. 3.6.1 3.6.1.1. 3.6.1.2. 3.6.1.3. 3.6.1.4. 3.6.1.5 3.6.2. 3.6.2.1 3.6.2.2. 3.6.2.3.

    4.

    4.1. 4.1.1. 4.1.1.1.

    4.1.1.2.

    4.1.1.3. 4.1.1.4. 4.1.1.5. 4.1.1.6. 4.1.1.7. 4.1.1.8. 4.1.1.9.

    Introduction . . . . . . . . . . . . .

    Historical Development . . . . .

    Fundamentals of the Synthesis Reaction . . . . . . . . . . . . . . . .

    Physical Properties of Ammonia . . . . . . . . . . . . . . .

    Thermodynamic Data of the Reaction . . . . . . . . . . . . . . . . General Aspects. . . . . . . . . . . Mechanism of the Intrinsic Reaction . . . . . . . . . . . . . . . . Kinetics

    Catalysts . . . . . . . . . . . . . . . . Classical Iron Catalysts Composition . . . . . . . . . . . . . . Particle Size and Shape. . . . . . . Catalyst-Precursor Manufacture . Catalyst Reduction Catalyst Poisons. . . . . . . . . . . . Other Catalysts . . . . . . . . . . . . General Aspects. . . . . . . . . . . . Metals with Catalytic Potential. . Commercial Ruthenium Catalysts

    Process Steps of Ammonia Production . . . . . . . . . . . . . . Synthesis Gas Production Steam Reforming. . . . . . . . . . . Thermodynamics, Operation, Pressure, Steam/Carbon Ratio . . Mechanisms and Kinetics of Steam

    Reforming Catalysts . . . . . . . . . Primary Reformer . . . . . . . . . . Secondary Reformer Reduced Primary Reforming . . . Pre-reforming . . . . . . . . . . . . . Heat-Exchange Reforming . . . . . Fully Autothermal Reforming. . .

    4.1.1.10.0ther Reforming Processes . . . . 4.1.2. Partial Oxidation . . . . . . . . . . .

    1

    5

    9

    9

    17

    20

    24

    29

    35 37 39 47 49 52 56 59 59 61 62

    65

    65 68

    69

    72 74 78 89 91 92 92 96 97 98

    4.1.2.1. Chemistry of Partial Oxidation. . 98 4.1.2.2. Partial Oxidation of

    Hydrocarbons . . . . . . . . . . . . . 100 4.1.2.3. Partial Oxidation of Coal (Coal

    Gasification Processes) . . 107 4.1.3. Alternative Routes for Su

    Synthetic Gas . . . . . . . . . . . . . U1

    Conversion . . . . . . . . . . . . . . 112

    Reforming Plants . 113

    (ms) . . . . . . . . . . . . . . . . . . 113

    (LTS) . . . . . . . . . . . . . . . . . . .

    (ITS) . . . . . . . . . . . . . . . . . . .

    Oxidation Plants ~. . . . . . . . . . Gas Purification.. . . . . . . . . . C 0 2 Removal . . .

    4.2. Carbon Monoxide Shift 4.2.1. Shift Conversion in Steam

    4.2.1.1. High-Temperature Shift Conversion

    4.2.1.2. Low-Temperature Shift Conversion

    4.2.1.3. Intermediate-Temperature Shift

    4.2.2. Shift Conversion in Partial

    116

    119

    120

    121 4.3. 4.3.1. 4.3.1.1. Process Configurati 4.3.1.2. Chemical Absorption Systems . . 4.3.1.3. Physical Absorption Solvents. . . 4.3.1.4. Sour Gas Removal in Partial

    Oxidation Processes . . . . . . . . . 4.3.2. Final Purification . . . . . . . . . . . 4.3.2.1. Methanation. ~ 4.3.2.2. Selectoxo Proc 4.3.2.3. Methanolation. . . . . . . . . . . . . 4.3.2.4. Dryers . . . . . . . . . . . . . . . . . . 4.3.2.5. Cyrogenic Methods. .

    126 130

    131 135

    136 137

    4.4. Compression . 4.4.1. Reciprocating C

    4.4.3. 144

    4.5. Ammonia Synthesis. . . . . . . . 144 4.5.1. Synthesis Loop Configurations. . 145 4.5.2. Formation of Ammonia in the

    Converter 146 4.5.3. Commercial Ammonia Converters 150 4.5.3.1. Principal Converter Configurations 150

    Compressor Drivers . . . . . . . . .

    VII

  • 3 4.5.3.2. C 8 4.5.3.3. g 4.5.4. u 4.5.5.

    4.5.6.

    4.5.6.1.

    4.5.6.2.

    4.5.6.3.

    4.5.6.4.

    4.5.6.5

    4.5.7.

    4.5.8.

    4.6.

    5 .

    5.1.

    5.1.1.

    5.1.2. 5.1.3.

    5.1.4.

    Tube-Cooled Converters . . . . . . . 151 Multibed Converters . . . . . . . . . 154 Waste-Heat Utilization and Cooling 162 Ammonia Recovery from the Synthesis Loop . . . . . . . . . . . . 163 Inert-Gas and Purge-Gas Management . . . . . . . . . . . . . . 165 Hydrogen Recovery by Cyrogenic Units . . . . . . . . . . . . . . . . . . . 166 Hydrogen Recovery by Membrane Separation . . . . . . . . . . . . . . . 167 Hydrogen Recovery by Pressure Swing Adsorption . . . . . . . . . . 168 Hydrogen Recovery with Mixed Metal Hydrides . . . . . . . . . . . . 169 Argon Recovery from Ammonia Purge Gas . . . . . . . . . . . . . . . . 169 Influence of Pressure and Other Variables of the Synthesis Loop . 169 Example of an Industrial Synthesis Loop . . . . . . . . . . . . . . . . . . . 172

    Waste-Heat Boilers for High- Pressure Steam Generation . . 172

    Complete Ammonia Production Plants . . . . . . . . . . . . . . . . . . 177

    Steam Reforming Ammonia Plants . . . . . . . . . . . . . . . . . . 177 The Basic Concept of Single-Train Plants . . . . . . . . . . . . . . . . . . 177 Further Development . . . . . . . . 180 Minimum Energy Requirement for Steam Reforming Process . . . . . 182 Commercial Steam Reforming Ammonia Plants . . . . . . . . . . . 186

    5.2.1.

    5.2.2.

    6 .

    6.1. 6.2. 7 .

    8 .

    8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 9 . 9.1. 9.1.1. 9.1.2. 9.1.3. 9.1.4.

    9.2. 9.2.1. 9.2.2.

    9.2.3.

    5.1.4.1. Advanced Conventional Processes 187 9.2.4. 5.1.4.2. Processes with Reduced Primary

    Reformer Firing . . . . . . . . . . . . 190 5.1.4.3. Processes without a Fired Reformer

    (Exchanger Reformer) . . . . . . . . 194 l1 . 5.1.4.4. Processes without a Secondary

    10 .

    Reformer (Nitrogen

Recommended

View more >