Ammonia - Max Appl

Download Ammonia - Max Appl

Post on 31-Oct-2015

228 views

Category:

Documents

1 download

Embed Size (px)

DESCRIPTION

Ammonia - Max Appl

TRANSCRIPT

<ul><li><p>M. Appl Ammonia </p><p>@ WILEY-VCH </p></li><li><p>Max Appl </p><p>Ammonia Principles and Industrial Practice </p><p>@ WILEY-VCH Weinheim * New York * Chichester 1 Brisbane * Singapore * Toronto </p></li><li><p>Dr. Max Appl Berliner StraBe 12 D-67 I25 Dannstadt-Schauernheim </p><p>This book was carefully produced. Nevertheless, author and publisher do not warrant the information contained therein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate. </p><p>Cover photograph: Ammonia plant ( I 800 t/d) of BASF Antwerp NV. Design and construction: Krupp Uhde GmbH (courtesy of Krupp Uhde) </p><p>Library of Congress Card No.: Applied for. British Library Cataloguing-in-Publication Data: A catalogue record for this book is available from the British Library. </p><p>Die Deutsche Bibliothek - CIP-Einheitsaufnahme Appl, Max: Ammonia : principles and industrial practice I Max Appl. - Weinheim ; New York : Chichester ; Brisbane ; Singapore ; Toronto : Wiley-VCH, I999 ISBN 3-527-29593-3 </p><p>0 WILEY-VCH Verlag GmbH, D-69469 Weinheim (Federal Republic of Germany). 1999 Printed on acid-free and chlorine-free paper. All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form - by photoprinting, microfilm, or any other means - nor transmitted o r translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law. </p><p>Composition and Printing: Rombach GmbH, Druck- und Verlagshaus, 0-79 I 15 Freiburg Bookbinding: Wilhelm Osswald &amp; Co., D-67433 Neustadt Cover Design: Wolfgang Scheffler, D-55 I28 Mainz Printed in the Federal Republic of Germany </p></li><li><p>Preface </p><p>The Ullmanns Encyclopedia of Industrial Chemistry is now available on CD Rom and I had the privilege of up-dating and revising the article of ammonia. When reviewing the new ammonia version the publisher WILEY-VCH came up with the idea of using it as a basis for a printed book and extending the subject to the whole ammonia production technology in theory and practice. Consequently, synthesis gas production and purification could be treated in more detail and quite a number of newer publications have been included. For economic aspects of the worldwide ammonia production the newest available data have been used. The extensive bibliography will assist readers in pursuing the subject more intensively but it is of course, not possible to list the enormous number of publications on ammonia exhaustively. Research and technology development are still going on and even with a rather low probability of fundamental technology changes small but economically interesting improvements are still happening. </p><p>I would like to thank WILEY-VCH, especially Dr. Th. Kellersohn, for making the publication of this book possible. In particular I should express my thanks to Mrs. Karin Sora and Ms. Ulrike Winter for their exellent editorial work. I am also very much indebted to the authors of the old Ullmann article of 1985, H. Bakemeier, Th. Huberich, R. Krabetz, W. Liebe, M. Schunk, D. Mayer. C. L. Becker. Many thanks for valuable information material and exchange of experience go to all friends and collegues in the industry and the supporting companies which supply it: process licensors, catalyst manufacturers, equipment fabricators, and especially the engineering companies. Additionally, I should mention Alexander More, John French and Bernard Brentnall of British Sulphur who provide a wonderful and continuous documentation of the progress and development in ammonia technology and business through the Nitrogen magazine and the regular Nitrogen Confrenres in Europe, Asia and South America. Especially, I would like to acknowledge the important contribution of the Ammonia Safety Committee of the American Institute of Chemical Engineers and its annual symposium, which provided so much interesting information on technology developments and experience, contributing greatly to the progress of the ammonia industry. </p><p>January 1999 Max Appl </p><p>V </p></li><li><p>Contents 1. 2. 3. </p><p>3.1. </p><p>3.2. </p><p>3.3. 3.4. </p><p>3.5. 3.6. 3.6.1 3.6.1.1. 3.6.1.2. 3.6.1.3. 3.6.1.4. 3.6.1.5 3.6.2. 3.6.2.1 3.6.2.2. 3.6.2.3. </p><p>4. </p><p>4.1. 4.1.1. 4.1.1.1. </p><p>4.1.1.2. </p><p>4.1.1.3. 4.1.1.4. 4.1.1.5. 4.1.1.6. 4.1.1.7. 4.1.1.8. 4.1.1.9. </p><p>Introduction . . . . . . . . . . . . . </p><p>Historical Development . . . . . </p><p>Fundamentals of the Synthesis Reaction . . . . . . . . . . . . . . . . </p><p>Physical Properties of Ammonia . . . . . . . . . . . . . . . </p><p>Thermodynamic Data of the Reaction . . . . . . . . . . . . . . . . General Aspects. . . . . . . . . . . Mechanism of the Intrinsic Reaction . . . . . . . . . . . . . . . . Kinetics </p><p>Catalysts . . . . . . . . . . . . . . . . Classical Iron Catalysts Composition . . . . . . . . . . . . . . Particle Size and Shape. . . . . . . Catalyst-Precursor Manufacture . Catalyst Reduction Catalyst Poisons. . . . . . . . . . . . Other Catalysts . . . . . . . . . . . . General Aspects. . . . . . . . . . . . Metals with Catalytic Potential. . Commercial Ruthenium Catalysts </p><p>Process Steps of Ammonia Production . . . . . . . . . . . . . . Synthesis Gas Production Steam Reforming. . . . . . . . . . . Thermodynamics, Operation, Pressure, Steam/Carbon Ratio . . Mechanisms and Kinetics of Steam </p><p>Reforming Catalysts . . . . . . . . . Primary Reformer . . . . . . . . . . Secondary Reformer Reduced Primary Reforming . . . Pre-reforming . . . . . . . . . . . . . Heat-Exchange Reforming . . . . . Fully Autothermal Reforming. . . </p><p>4.1.1.10.0ther Reforming Processes . . . . 4.1.2. Partial Oxidation . . . . . . . . . . . </p><p>1 </p><p>5 </p><p>9 </p><p>9 </p><p>17 </p><p>20 </p><p>24 </p><p>29 </p><p>35 37 39 47 49 52 56 59 59 61 62 </p><p>65 </p><p>65 68 </p><p>69 </p><p>72 74 78 89 91 92 92 96 97 98 </p><p>4.1.2.1. Chemistry of Partial Oxidation. . 98 4.1.2.2. Partial Oxidation of </p><p>Hydrocarbons . . . . . . . . . . . . . 100 4.1.2.3. Partial Oxidation of Coal (Coal </p><p>Gasification Processes) . . 107 4.1.3. Alternative Routes for Su </p><p>Synthetic Gas . . . . . . . . . . . . . U1 </p><p>Conversion . . . . . . . . . . . . . . 112 </p><p>Reforming Plants . 113 </p><p>(ms) . . . . . . . . . . . . . . . . . . 113 </p><p>(LTS) . . . . . . . . . . . . . . . . . . . </p><p>(ITS) . . . . . . . . . . . . . . . . . . . </p><p>Oxidation Plants ~. . . . . . . . . . Gas Purification.. . . . . . . . . . C 0 2 Removal . . . </p><p>4.2. Carbon Monoxide Shift 4.2.1. Shift Conversion in Steam </p><p>4.2.1.1. High-Temperature Shift Conversion </p><p>4.2.1.2. Low-Temperature Shift Conversion </p><p>4.2.1.3. Intermediate-Temperature Shift </p><p>4.2.2. Shift Conversion in Partial </p><p>116 </p><p>119 </p><p>120 </p><p>121 4.3. 4.3.1. 4.3.1.1. Process Configurati 4.3.1.2. Chemical Absorption Systems . . 4.3.1.3. Physical Absorption Solvents. . . 4.3.1.4. Sour Gas Removal in Partial </p><p>Oxidation Processes . . . . . . . . . 4.3.2. Final Purification . . . . . . . . . . . 4.3.2.1. Methanation. ~ 4.3.2.2. Selectoxo Proc 4.3.2.3. Methanolation. . . . . . . . . . . . . 4.3.2.4. Dryers . . . . . . . . . . . . . . . . . . 4.3.2.5. Cyrogenic Methods. . </p><p>126 130 </p><p>131 135 </p><p>136 137 </p><p>4.4. Compression . 4.4.1. Reciprocating C </p><p>4.4.3. 144 </p><p>4.5. Ammonia Synthesis. . . . . . . . 144 4.5.1. Synthesis Loop Configurations. . 145 4.5.2. Formation of Ammonia in the </p><p>Converter 146 4.5.3. Commercial Ammonia Converters 150 4.5.3.1. Principal Converter Configurations 150 </p><p>Compressor Drivers . . . . . . . . . </p><p>VII </p></li><li><p>3 4.5.3.2. C 8 4.5.3.3. g 4.5.4. u 4.5.5. </p><p>4.5.6. </p><p>4.5.6.1. </p><p>4.5.6.2. </p><p>4.5.6.3. </p><p>4.5.6.4. </p><p>4.5.6.5 </p><p>4.5.7. </p><p>4.5.8. </p><p>4.6. </p><p>5 . </p><p>5.1. </p><p>5.1.1. </p><p>5.1.2. 5.1.3. </p><p>5.1.4. </p><p>Tube-Cooled Converters . . . . . . . 151 Multibed Converters . . . . . . . . . 154 Waste-Heat Utilization and Cooling 162 Ammonia Recovery from the Synthesis Loop . . . . . . . . . . . . 163 Inert-Gas and Purge-Gas Management . . . . . . . . . . . . . . 165 Hydrogen Recovery by Cyrogenic Units . . . . . . . . . . . . . . . . . . . 166 Hydrogen Recovery by Membrane Separation . . . . . . . . . . . . . . . 167 Hydrogen Recovery by Pressure Swing Adsorption . . . . . . . . . . 168 Hydrogen Recovery with Mixed Metal Hydrides . . . . . . . . . . . . 169 Argon Recovery from Ammonia Purge Gas . . . . . . . . . . . . . . . . 169 Influence of Pressure and Other Variables of the Synthesis Loop . 169 Example of an Industrial Synthesis Loop . . . . . . . . . . . . . . . . . . . 172 </p><p>Waste-Heat Boilers for High- Pressure Steam Generation . . 172 </p><p>Complete Ammonia Production Plants . . . . . . . . . . . . . . . . . . 177 </p><p>Steam Reforming Ammonia Plants . . . . . . . . . . . . . . . . . . 177 The Basic Concept of Single-Train Plants . . . . . . . . . . . . . . . . . . 177 Further Development . . . . . . . . 180 Minimum Energy Requirement for Steam Reforming Process . . . . . 182 Commercial Steam Reforming Ammonia Plants . . . . . . . . . . . 186 </p><p>5.2.1. </p><p>5.2.2. </p><p>6 . </p><p>6.1. 6.2. 7 . </p><p>8 . </p><p>8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 9 . 9.1. 9.1.1. 9.1.2. 9.1.3. 9.1.4. </p><p>9.2. 9.2.1. 9.2.2. </p><p>9.2.3. </p><p>5.1.4.1. Advanced Conventional Processes 187 9.2.4. 5.1.4.2. Processes with Reduced Primary </p><p>Reformer Firing . . . . . . . . . . . . 190 5.1.4.3. Processes without a Fired Reformer </p><p>(Exchanger Reformer) . . . . . . . . 194 l1 . 5.1.4.4. Processes without a Secondary </p><p>10 . </p><p>Reformer (Nitrogen from Air 11.1. Separation) . . . . . . . . . . . . . . . 197 </p><p>5.2. Ammonia Plants based on Partial Oxidation . . . . . . . . . . 198 11.2. </p><p>Ammonia Plants based on Heavy Hydrocarbons . . . . . . . . . . . . . 198 Ammonia Plants Using Coal as Feedstock . . . . . . . . . . . . . . . . 203 </p><p>Modernization of Older Plants (Revamping) . . . . . . . . . . . . . 205 </p><p>Revamping Objectives . . . . . . 205 </p><p>Revamping Options . . . . . . . . 205 </p><p>Integration of Other Processes into an Ammonia Plant . . . . . </p><p>Material Considerations for Equipment Fabrication . . . . . . 209 </p><p>Hydrogen Attack . . . . . . . . . . 209 </p><p>Nitriding . . . . . . . . . . . . . . . . 211 </p><p>Temper Embrittlement . . . . . . 211 </p><p>Metal Dusting . . . . . . . . . . . . 211 </p><p>Hydrogen Sulfide Corrosion . . 212 </p><p>Stress Corrosion Cracking . . . 212 </p><p>Storage and Shipping . . . . . . . 213 </p><p>Storage . . . . . . . . . . . . . . . . . 213 Pressure Storage . . . . . . . . . . . 214 Low-Temperature Storage . . . . . 215 Underground Storage . . . . . . . . 218 Storage of Aqueous Ammonia . . 218 </p><p>Transportation . . . . . . . . . . . . 218 Transportation in Small Containers 218 Transportation in Trucks and Rail Cars . . . . . . . . . . . . . . . . . . . . 218 Shipping in Ocean-Going Vessels and River Barges . . . . . . . . . . . 219 </p><p>207 </p><p>Transport by Pipelines . . . . . . </p><p>Quality Specifications and Analysis . . . . . . . . . . . . . . . </p><p>Health Aspects . . . . . . . . . . . Environmental. Safety. and </p><p>Environmental Aspects of Ammonia Production and Handling . . . . . . . . . . . . . . . </p><p>Safety Features . . . . . . . . . . </p><p>. 2 1 9 </p><p>. 2 2 1 </p><p>. 2 2 3 </p><p>. 2 2 3 </p><p>. 2 2 5 </p><p>VIII </p></li><li><p>11.3. </p><p>12 . </p><p>12.1. </p><p>12.2. </p><p>13 . 13.1. </p><p>13.2. </p><p>13.3. </p><p>Health Aspects and Toxicity of Ammonia . . . . . . . . . . . . . . . 228 </p><p>Chemical Reactions and Uses of Ammonia . . . . . . . . . . . . . . . 231 </p><p>Reactions of Ammonia . . . . . . 231 </p><p>Uses of Ammonia . . . . . . . . . . 233 </p><p>Economic Aspects . . . . . . . . . 235 </p><p>Capacity and Production . . . . 235 </p><p>Feedstock Choice . . . . . . . . . . 238 </p><p>Capital Demand for Ammonia Production . . . . . . . . . . . . . . 239 </p><p>13.4. </p><p>13.5. </p><p>14 . 14.1. </p><p>14.1.1. 14.1.2. </p><p>14.2. </p><p>15 . </p><p>Other Production Cost Factors 241 $ </p><p>Production Costs for Various C at Y C </p><p>Geographical Locations . . . . . 242 </p><p>Future Perspectives . . . . . . . . 245 </p><p>Other Nitrogen Fixation Methods for the Future . . . . . 245 Biological Processes . . . . . . . . . 246 Abiotic Processes . . . . . . . . . . . 247 </p><p>Conclusions . . . . . . . . . . . . . . 248 </p><p>References . . . . . . . . . . . . . . . 251 </p><p>IX </p></li><li><p>1 . </p><p>f- Man i (+H,O+C) </p><p>Introduction </p><p>I t i - - / Haber-Bosch Animal t </p><p>A in m o n i a t-r I </p><p>The name ammonia for the nitrogen - hydrogen compound NH, is derived from the oasis Ammon (today Siwa) in Egypt, where Ammonia salts were already known in ancient times and also the Arabs were aware of ammonium carbonate. For a long time only the sal ammoniacum was available. Free ammonia was prepared much later (PRIESTLEY, 1774). </p><p>In nature ammonia, NH, occurs almost exclusively in the form of ammonium salts. Natural formation of ammonia is primarily by decomposition of nitrogen-containing organic materials or through volcanic activity. Ammonium chloride can deposite at the edges of smoldering, exposed coal beds (already observed in Persia before 900 A. D.). Similar deposits can be found at volcanoes, for example, Vesuvius and Etna in Italy. Ammonia and its oxidation products, which combine to form ammonium nitrate and nitrite, are produced from nitrogen and water vapor by electrical discharges in the atmosphere. These ammonium salts supply a significant proportion of the nitrogen needed by growing plants when eventually deposited on the earths surface. Ammonia and its salts are also byproducts of commercial processing (gasification, coking) of fuels such as coal, lignite and peat (see Fig. 1) Other sources of nitrogen compounds are exhausts from industrial, power-generation, and automotive sectors. </p><p>Following the discovery of the nature and value of mineral fertilization by LIEBIG in 1840, nitrogen compounds were used in increasing quantities as an ingredient of mineral fertilizers. At the end of the last century ammonia was recovered in coke oven plants and gas works as a byproduct of the destructive distillation of coal. The produced ammonium sulfate was used as fertilizer. Since these sources of nitrogen were limited in quantity they did not suffice for fertilization. Therefore, it was necessary to use saltpeter from natural deposits in Chile. The earliest source of synthetic nitrogen compunds as fertilizers was the Frank- Car0 calcium cyanamide process from 1898 onwards. But the supply was far from sufficient and scientists were concerned with the possibility of future famine because of insufficient agricultural yields. In September </p><p>Sod </p><p>M ine ra l fe r t i l i zers </p><p>Figure 1. The nitrogen cycle </p><p>1 </p><p>Ammonia: Principles and Industrial Practice Max Appl </p><p>Copyright 0 WILEY-VCH Verlag GmbH, I999 </p></li><li><p>1898, in his famous presidential speech to the British Association of Advanced Science. SIR WILLIAM CROOKS adressed the problem and concluded with the prophetic words: It is the chemist who must come to the rescue of the threatened communities. I t is through the laboratory that starvation may ultimately be turned into plenty. Before we are in the grip of actual dearth the chemist will step in and postpone the days of famine to so distant a period that we, our sons and grandsons may live without undue solicitude for the future. </p><p>The development of the synthesis of ammonia from its elements is therefore a landmark in the history of industria...</p></li></ul>