alexander lisetskiy

22
Beta-decay of neutron-rich Ni and Cu isotopes in a shell model approach Alexander Lisetskiy Hirschegg 2006

Upload: vail

Post on 09-Jan-2016

28 views

Category:

Documents


1 download

DESCRIPTION

Beta-decay of neutron-rich Ni and Cu isotopes in a shell model approach. Alexander Lisetskiy. Hirschegg 2006. Exotic regions. Shell Model Effective Interaction. Fitting Landscape. F. Lisetskiy, B. A. Brown, M. Horoi, H. Grawe, PRC 70, 044314, (2004). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Alexander Lisetskiy

Beta-decay of neutron-rich Ni and Cu isotopes in a shell model approach

Alexander Lisetskiy

Hirschegg 2006

Page 2: Alexander Lisetskiy

Exotic regions

Page 3: Alexander Lisetskiy

Shell Model Effective Interaction

Page 4: Alexander Lisetskiy

Fitting Landscape

Ni + Cu isotopes + N=49,48 isotones

A. F. Lisetskiy, B. A. Brown, M. Horoi, H. Grawe, PRC 70, 044314, (2004)

Page 5: Alexander Lisetskiy

Nuclear structure phenomena near 78Ni

• No seniority isomers in 72Ni and 74Ni

• No high-spin isomers in 73Cu,75Cu and 77Cu

• No 8+ isomers in 72Zn,74Zn,76Zn • 5/2- ground state in 75Cu,77Cu and 79Cu

• Pseudo-magicity of 68Ni

Page 6: Alexander Lisetskiy

Theoretical tools for beta-decay studies

Global picture:

Finite Range Droplet Model +QRPA (P. Moeller, K. L. Kratz)

Self-consistent HF-BCS + continium QRPA(I. Borzov, S. Fayans)

Local picture: Shell Model with effective interactions Unified picture for many different properties of particular nucleus

Page 7: Alexander Lisetskiy

Model Space

Page 8: Alexander Lisetskiy

Importance! Sn : for r-process path Pn : abundance pattern T1/2 : timescale, abundance pattern

Sn – neutron separation energy Pn – branching of beta delayed neutron emission

beta-decay scheme

(Z,A)

(Z+1,A)

(Z+1,A-1)Sn

n

Q

Page 9: Alexander Lisetskiy

Ni beta-decay: Energetics

Q(A,Z) = M(A,Z) - M(A,Z+1)

Page 10: Alexander Lisetskiy

Ni beta-decay: Energetics

Sn(A,Z) = B(A,Z) - B(A-1,Z)

Page 11: Alexander Lisetskiy

Ni beta-decay: Half-lives

Quenching for Gamow -Teller operator: q=0.37!Common q value is 0.70-0.75

P. T. Hosmer et al., PRL 94, 112501 (2005)

Page 12: Alexander Lisetskiy

Ni beta-decay: Half-lives

Quenching factor is Q-value dependent

Page 13: Alexander Lisetskiy

Ni beta-decay: beta-delayed n-emission

Pn = GT branching for states with Q > Eexc > Sn

H. Schatz, in prep. (MSU data)

Page 14: Alexander Lisetskiy

Cu beta-decay: Energetics

Q(A,Z) = M(A,Z) - M(A,Z+1)

Page 15: Alexander Lisetskiy

Cu beta-decay: Energetics

Sn(A,Z) = B(A,Z) - B(A-1,Z)

Page 16: Alexander Lisetskiy

Cu beta-decay: Half-lives

Quenching for Gamow -Teller operator: q=0.37!Common q value is 0.70-0.75

P. T. Hosmer et al., PRL 94, 112501 (2005)

Page 17: Alexander Lisetskiy

Cu beta-decay: Half-lives

Quenching factor is Q-value dependent

Page 18: Alexander Lisetskiy

Cu beta-decay: beta-delayed n-emission

Pn = GT branching for states with Q > Eexc > Sn

H. Schatz, in prep. (MSU data)

Page 19: Alexander Lisetskiy

75Ni: B(GT) distribution

Page 20: Alexander Lisetskiy

78Ni: beta-decay

f7/2 included f7/2 included

x10

Page 21: Alexander Lisetskiy

Summary & Outlook

• Improved shell model effective interaction for the p3/2p1/2f5/2g9/2 space in action

• Self-consistent good description of beta-decay data for Ni and Cu isotopes

• Strong quenching of GT strength: origin ? Large-scale shell model calculations

• Tests for Zn and Ga beta-decay

• rp-process nuclei: 64Ge, 68Se

• Role of first forbidden transitions

Page 22: Alexander Lisetskiy

Collaborators

Alex Brown, NSCL, MSU

Mihai Horoi, CMU

Hendrik Schatz, JINA, NSCL, MSU

GSI:

K. Langanke

G. Matrinez-Pinedo