acumulación y distribución de macronutrientes minerales en...

172
Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi - boyacense Manuel Iván Gómez Sánchez Universidad Nacional de Colombia Facultad de Ciencias Agrarias Bogotá, Colombia 2018

Upload: others

Post on 16-Feb-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

Acumulación y distribución de macronutrientes minerales en dos

cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano

Cundi-boyacense

Manuel Iván Gómez Sánchez

Universidad Nacional de Colombia Facultad de Ciencias Agrarias

Bogotá, Colombia 2018

Page 2: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis
Page 3: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

Acumulación y distribución de macronutrientes minerales en dos

cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano

Cundi-boyacense

Manuel Iván Gómez Sánchez

Tesis de doctorado presentada como requisito parcial para optar al título de:

Doctor en Ciencias Agrarias

Director:

Ph.D. Stanislav Magnitskiy

CODIRECTOR:

Ph.D Luis Ernesto Rodríguez

Línea de Investigación:

Fisiologia Vegetal

Universidad Nacional de Colombia Facultad de Ciencias Agrarias

Escuela de Posgrados Bogotá, Colombia

2018

Page 4: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis
Page 5: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

Dedicatoria

A la persona más importante que me dio la vida, la salvación, la sabiduria, la sanidad, la ciencia y el conocimiento a mi Señor y Dios y Salvador Jesucristo gracias por ser todo en mi vida. A mi esposa, ayuda idónea, hermosa sabia y amada Mariana Salamanca; a mi primogénito caballero Emanuel David, a mi hija que soñe Laura Valentina; a mi hermosa, tierna y amada hija Marianne Andressa y al hijo de mi vejez mi pequeño caballero Ivan Yeshua. Gracias por su paciencia y fé que junto a sus oraciones permitieron que llegara a esta meta, los amo. A mis padres, hermanos y mi padre espiritual Eduardo Dosantos que me han dado ejemplo de integridad, paciencia, perseverancia, sacrificio y amor. Gracias por creer en mi. “Como el Padre me ha amado, así también yo os he amado; permaneced en mi amor” Jesus de Nazaret tu Salvador Juan 15:9

Page 6: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

“El Presidente de Tesis, el Consejo de Jueces de Tesis y el Consejo examinador no serán responsables de las ideas emitidas por el candidato”.

(artículo 152 de los Estatutos de la Universidad Nacional de Colombia, Acuerdo 66 de 1939).

Page 7: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

Agradecimientos Agradezco a mis directores: Dr Stanislav Magnitskiy (Unal-Bogotá) y Dr Luis Ernesto

Rodriguez (Unal-Bogotá) por su dirección idónea, seguimiento y aportes científicos en la

planeación, realización y culminación de los estudios doctorales.

Agradezco a la Facultad de Ciencias Agrarias de la Unal-Bogotá y el soporte dado en

los laboratorios de fisiología vegetal, equipos e instalaciones y en especial a los

profesores e investigadores: Dra Liz Moreno, Dr Herman Restrepo, Dr Victor Flores y Dr

Carlos Ñústez (Unal-Bogotá); Dr Walter Osorio (Unal-Medellin); Dr Raul Jaramillo (IPNI-

Ecuador); Dr Enrique Combatt (Ucordoba-Monteria) y Dr Pedro Almanza (UPTC-Tunja)

por sus apoyos científicos en la revisión de los seminarios de investigación y aportes

académicos para la construcción de la investigación de la tesis doctoral.

Agradezco al Dr. Enrique Darghan y al I.A. Johan Urquijo de la Unal-Bogotá por los

valiosos aportes en el análisis estadístico y el desarrollo de modelos estadísticos

novedosos para la interacción de factores genotipo x ambiente.

Agradezco a la empresa privada Ingeplant Ingenieria en Nutrición de Cultivos SAS

por el epoyo en tiempo para los estudios doctorales y la financiación económica del 80%

de la investigación doctoral, además, resalto el soporte loable de campo y laboratorio que

me brindo el grupo técnico y de investigación de esta empresa con los ingenieros

agrónomos: Andrea Barragan, Liliana Arevalo, Elias Silva y Paola Torres en cada una de

la fases de la investigación. También una mención especial a Fedepapa por la

financiación del 20% de la investigación en la primera etapa.

Agradezco y exalto especialmente el soporte técnico y apoyo logístico en cultivo del

Ingeniero Walter Guzmán y su empresa Biogenetica-Chocontá y a los agricultores

Ricardo Rojas y Giovanny Pulido en Facatativá y Carlos Acero en Subachoque.

Page 8: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis
Page 9: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

Resumen y Abstract IX

Resumen Los estudios de nutrición mineral en cultivares de papa del Grupo Andigena en Colombia, se

han enfocado principalmente a respuestas de la fertilización N, P y K. Sin embargo, no se ha

cuantificado el comportamiento de estos nutrientes en la planta con relación a las diferentes

etapas fenológicas y su distribución en los diferentes órganos, ni su relación con

componentes fisiológicos de crecimiento para su modelamiento. Por ello en la presente

investigación, bajo ambientes contrastantes de evaluación (suelos de baja y alta fertilidad),

dos ciclos de producción, dos cultivares (Diacol Capiro [Capiro] y Pastusa Suprema

[Suprema]) y fertilización variable, se buscó: (i) caracterizar la distribución de macronutrientes

en órganos de la planta; (ii) determinar la acumulación de N, P y K en diferentes etapas del

cultivo (iii) y establecer a partir de relaciones alométricas la acumulación de nutrientes

minerales, variables fisiológicas de crecimiento y uso eficiente de los nutrientes. Se

determinó que la curva de dilución crítica para cada macronutriente en Capiro es Nc = 6,23 W -0,319, Pc = 0,523 W -0,198 y Kc = 9,02 W -0,269, y para Suprema de Nc= 6,74 W -0,327, Pc= 0,536 W -0,186 y Kc= 6,585 W -0,1353, observandose mejor robustez con peso seco total (W)

con respecto al modelo obtenido con índice de área foliar. Se observó además significancia

estadística en la interacción genotipo x localidad con mejor ajuste en el modelo de consumo

nutricional para suelos de baja fertilidad para Suprema, con Nr = 68,13 W0,504, Pr = 6,72

W0,779 y Kr = 63,93 W0,776, donde se expresa el mayor potencial productivo y altos índices de

cosecha por nutriente con ICN = 0,55-0,69, ICP = 0,75-0,8 y ICK = 0,62, mientras que Capiro

muestra una mayor adaptación en ambos tipos de suelos, con una mejor conversión de

asimilados por su uso eficiente de nutrientes en el tubérculo (UENt) y con Nr = 56,38 W0,58 y

Pr = 4,26 W0,786 en baja fertilidad, y Kr = 79,52 W0,79 en alta fertilidad. Se estableció el índice

de nutrición (INN) con mejor ajuste en Capiro entre 0,25-1,32, en contraste, para Suprema se

evidenció una respuesta entre nula a marginal a la fertilización y consumo de lujo de N (INN

1-1,5) que fue corroborado con inicadores negativos en el UENt, una menor eficiencia de

traslocación (tanto en N, P y K) y una mayor acumulación de NO3ˉ y K+ en savia bajo suelos

de alta fertilidad. Lo anterior permitirá realizar diagnósticos nutricionales oportunos y así

pronosticar un manejo más específico de estos nutrientes por cultivar y diferentes tipos de

suelo para alcanzar altos rendimientos y sostenibilidad en el cultivo de papa en la región

Andina de Colombia. Palabras clave: uso eficiente de nutrientes, relaciones alométricas, consumo de lujo,

eficiencia de traslocación, papa del grupo Andigena.

Page 10: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

X Resumen y Abstract

Abstract Studies of mineral nutrition in potato crop of Group Andigena in Colombia have been

focused mainly on plant responses to fertilization with N, P, and K. However, the behavior

of macronutrients in these plants has not been quantified with respect to the phenological

stages and macronutrient allocation to the different organs or their relationship with the

physiological components of growth. For this reason, the research was undertaken in

contrasting environments and two production cycles using two cultivars (Diacol Capiro

and Pastusa Suprema) under variable fertilization conditions pursuing the following

objectives to (i) characterize the distribution of N, P, and K in organs of the plant; (ii)

determine the accumulation of macronutrients in different stages of crop growth, and (iii)

establish from allometric relationships the accumulation of mineral nutrients, physiological

variables of growth, and efficient use of nutrients. Critical dilution curves based on total

dry biomass (W) were determined for Capiro: Nc = 6.23 W -0.319; Pc = 0.523 W -0.198; Kc =

9.02 W -0.269, and for Suprema: Nc = 6.74 W -0.327; Pc = 0.536 W -0.186; Kc = 6,585W -0.1353,

observing better robustness with respect to the models obtained with leaf area index.

Genotype x locality interaction was identified with the best fit of the uptake model in low

fertility soils for Suprema (Nr = 68.13 W0,504, Pr = 6.72 W0.799 and Kr = 63.93 W0,776),

where it expressed the highest productive potential and high harvest index HIN (0.55-

0.69), HIP (0.75-0.8) and HIK (0.62), while Capiro showed a better adaptation to both

types of soils with a better efficient use of nutrients in the tuber in UENt and with Nr =

56.38 W0.58 and for Pr = 4.26 W0.786 (low fertility) and for Kr = 79.52 W0.79 (high fertility).

The nutrinte index-INN (0.25-1.32) with better adjustment in Capiro was established, in

contrast for Suprema it is evidenced the null to marginal response to the fertilization and

luxury uptake of N (INN 1-1,5) that was corroborated with the negative indices in UENt, a

lower efficiency of translocation (EtN, EtP, and EtP) and a greater accumulation of NO3ˉ

and K+ in sap under high fertility soils. The above data facilitate nutritional diagnostics

and, thus, prediction a more specific management of these nutrients by the crop and soil

type to achieve high yields and sustainability in potato production in the Andean region of

Colombia.

Key words: efficient use of nutrients, allometric relationships, luxury consumption,

translocation efficiency, potato of Group Andigena.

Page 11: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

Contenido XI

Contenido Pág.

Lista de figuras .............................................................................................................. XIV

Lista de tablas .............................................................................................................. XVII

Lista de Símbolos y abreviaturas ................................................................................... XIX

Introducción .......................................................................................................................1

1. Critical Dilution Curve for N, P, and K and Leaf Area Index in Potato (Solanum tuberosum L., Group Andigena) ...................................................................................... 15

1.1 Abstract .............................................................................................................15

1.2 Resumen ...........................................................................................................16

1.3 Introduction .......................................................................................................17

1.4 Materials and methods ......................................................................................19

1.4.1 Field experiments .......................................................................................... 19

1.4.2 Analytical methods ......................................................................................... 22

1.4.3 Data analysis ................................................................................................. 22

1.5 Results and discussion ................................................................................. ….24

1.5.1 Critical Dilution Curves for Nc, Pc, and Kc ..................................................... 24

1.5.2 Nutrition index and optimal fertilization dose .................................................. 30

1.6 Conclusions.......................................................................................................34

1.7 Bibliografía ........................................................................................................34

2. Uptake and partition of N, P and K in potato (Solanum tuberosum L. Group. Andigena) ……………………………………………………………………………………..39

2.1 Abstract .............................................................................................................39

2.2 Resumen ...........................................................................................................40

2.3 Introducción.......................................................................................................41

2.4 Materials and methods ......................................................................................42

2.4.1 Experimental locations and conditions ........................................................... 42

2.5 Analytical methods ............................................................................................45

Page 12: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

XII Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

2.5.1 Statistical analysis ..........................................................................................45

2.6 Results .............................................................................................................. 46

2.6.1 Total uptake of N, P, and K and nutrient harvest indexes ...............................46

2.6.2 Efficiency of translocation and extraction of N, P, and K by tubers .................52

2.7 Discussion ........................................................................................................ 55

2.7.1 Total uptake of N, P, and K and nutrient harvest indexes ...............................55

2.7.2 Efficiency of translocation and extraction of N, P, and K by tubers .................58

2.8 Conclusions ...................................................................................................... 59

2.9 Bibliografía ........................................................................................................ 60

3. Accumulation of N, P, and K in the tubers of potato (Solanum tuberosum L. spp. andigena) under contrasting soils of the Andean region of Colombia ...............................65

3.1 Abastract .......................................................................................................... 65

3.2 Resumen .......................................................................................................... 66

3.3 Introduction ....................................................................................................... 67

3.4 Materials and methods ...................................................................................... 68

3.5 Results and discussion ..................................................................................... 71

3.5.1 Accumulation of N, P and K in tuber phenology ..............................................71

3.5.2 Accumulation of N, P, and K among cultivars .................................................76

3.6 Conclusions ...................................................................................................... 79

3.7 Literature cited .................................................................................................. 80

4. Potential yield and efficiency of N and K uptake in tubers of cvs. Diacol Capiro and Pastusa Suprema (Solanum tuberosum subsp. andigena) ...............................................85

4.1 Abstract ............................................................................................................ 85

4.2 Resumen .......................................................................................................... 86

4.3 Introduction ....................................................................................................... 87

4.4 Materials and methods ...................................................................................... 88

4.4.1 Location and soils ...........................................................................................88

4.4.2 Plant sampling and analysis ...........................................................................90

4.4.3 Efficiency use and recovery of mineral nutrients by tubers .............................91

4.4.4 Statistical analysis ..........................................................................................91

4.5 Results and discussion ..................................................................................... 92

4.5.1 Yield, harvest index, and dry weight of tubers.................................................92

4.5.2 Efficiency in the nutrient use by tubers ...........................................................97

4.6 Conclusions .................................................................................................... 102

4.7 Literature cited ................................................................................................ 103

Page 13: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

Introducción XIII

5. Diagnóstico de K+ y NO3ˉ en savia para determinar el estado nutricional en papa (Solanum tuberosum L. subsp. andigena) ..................................................................... 107

5.1 Resumen ......................................................................................................... 107

5.2 Abstract ........................................................................................................... 108

5.3 Introducción..................................................................................................... 109

5.4 Materiales y métodos ...................................................................................... 111

5.5 Resultados y discusión .................................................................................... 114

5.5.1 K+ y N-NO3ˉ en savia por etapa fenológica y cultivar .................................... 114

5.5.2 N-NO3ˉ y K+ savia y su relación con peso seco y rendimiento ...................... 120

5.6 Conclusiones ................................................................................................... 123

5.7 Referencias bibliográficas ............................................................................... 124

6. Conclusiones .......................................................................................................... 129

7. Recomendaciones.................................................................................................. 131

8. Anexo A: Anovas de rendimiento, eficiencia de traslocación, índices de cosecha y covariables ……………………………………………………………………………………133

9. Anexo B: Coeficientes de consumo, coeficientes de traslocación e índice de cosecha de nutriente ……………………………………………………………………………………139

10. Anexo C: Componentes principales y análisis de diseño en medidas repetidas de acumulación de biomasa, nutrientes y uso eficiente de nutrientes en el tubérculo ........ 141

Page 14: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

Contenido XIV

Lista de figuras Pág.

Figure 1-1. Critical dilution curves for N (A), P (B), and K (C) in cvs. Capiro (z) and Suprema (�) in two production cycles (2013-2016) under non-limiting conditions of fertilization in soils of contrasting fertility. Means consisted of n = 13 data per phenological stage and cultivar. Coefficients a and b of potential allometric function were based on total dry biomass W (equation 1). ........................................................................................... 25

Figure 1-2. Critical dilution curves for N (A), P (B) and K (C) based on LAI in cvs. Capiro (z) and Suprema (�) in two production cycles (2013-2016) under non-limiting conditions of fertilization in soils of contrasting fertility. n = 65 data per cultivar. Coefficients a and b of allometric function were based on LAI (equation 2). .................................................... 26

Figure 1-3. Relationship between relative yield (RY) and nitrogen nutrition index (NNI) (A) in cvs. Capiro and Suprema at tuber filling (125-150 dap) and differential optimum fertilizer dose (dODF) (150-160 dap) (B) for cvs. Capiro (z) and Suprema (�) in two production cycles in soils contrasting in fertility. ***P <0.001; *P < 0.05; ns, not significant. ....................................................................................................................................... 31

Figure 2-1. Average total uptake of N, P, and K in cvs. Capiro (left) and Suprema (right) as a function of total dry biomass (W) in soils of high (Andic Eutrudepts, Facatativa) and low (Humic Dystrudepts, Chocontá) fertility and two production cycles under non-limiting conditions of fertilization. **Indicates significant values of coefficients b with respect to soil fertility at a probability level of 0.05. ns, non-significant model. ....................................... 47

Figure 2-2. Potential yield (PYt) in cvs. Capiro and Suprema cultivated in soils of low (Humic Dystrudepts, Chocontá) or high (Andic Eutrudepts, Facatativá) fertility at 150-160 dap under non-limiting conditions of fertilization in two production cycles. P<0.05 for fertilization x location x cultivar. Error bars indicate standard errors. ............................... 48

Figure 2-3. Harvest index (HI) in cvs. Capiro and Suprema cultivated in soils of low (Humic Dystrudepts, Chocontá) or high (Andic Eutrudepts, Facatativá) fertility under non-limiting conditions of fertilization in two production cycles. P<0.05 for location x cultivar x cycle. Means followed by the different letters are significantly different (LSD, P<0.05). Error bars indicate standard errors. ................................................................................. 48

Figure 2-4. Harvest index for N (NHI) (A), P (PHI) (B), and K (KHI) (C) in cvs. Capiro and Suprema cultivated on Humic Dystrudepts (Chocontá) and Andic Eutrudepts (Facatativá). P<0.001 for location x cultivar x cycle under non-limiting conditions of fertilization. Means

Page 15: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

1. Critical Dilution Curve for N, P, and K and Leaf Area Index in Potato (Solanum tuberosum L., Group Andigena)

XV

followed by the different letters are significantly different (LSD, P<0.05). Error bars indicate standard errors. ..................................................................................................50

Figure 2-5. Average translocation efficiency of N (EtN), P (EtP), and K (EtK) in cv. Capiro (circle) and cv. Suprema (square) in two production cycles under non-limiting conditions of fertilization in contrasting soils. ** Significant differences of coefficients b are shown with respect to the interaction cultivar x location at a probability level of P <0.05. ............53

Figure 3-1. Accumulation of N P K in tubers during the growing season in andigena potato, cvs. Suprema (left) and Capiro (right) in Typic Hapludands (Subachoque, ♦); Humic Dystrudepts (Chocontá, ■) and Andic Eutrudepts (Facatativá, ▲) with fertilization (fer1) in the altiplano Cundiboyacense. Dap, day after planting. Error bars indicate standard error. .................................................................................................................73

Figure 3-2. Relationship between the uptake in tubers of N (A), P (B) and K (C) (kg ha-1) yield (FWT), and cvs. Capiro and Suprema in soils of Cundiboyacense plateau. ** The value of coefficients b were significant at the 0.05 probability level. ns, not significant the value coefficients b. .........................................................................................................77

Figure 4-1. Yield (FWt) of cvs. Capiro and Suprema at the phenological stage V (maximum tuber filling and maturation) in the absence of fertilization F0, with respect to the balanced fertilization by location: F1s, Typic Hapludands (Subachoque); F1ch, Humic Dystrudepts (Chocontá), and F1f, Andic Eutrudepts (Facatativá). P<0.001 for fertilization (location * cultivar) ...........................................................................................................92

Figure 4-2. Harvest index (HI) in cvs. Diacol Capiro and Pastusa Suprema in the absence of fertilization Fer0, with respect to balanced fertilization by location: F1s, Typic Hapludands (Subachoque); F1ch, Humic Dystrudepts (Chocontá), and F1f, Andic Eutrudepts (Facatativá). P<0.001 for location*cultivar. ....................................................94

Figure 4-3. Tuber dry weight (DWt) in cvs. Diacol Capiro and Pastusa Suprema at four phenological stages (II, start of tuberization; III, maximum tuberization-start of filling; IV, filling of tuber; V, maximum filling and maturation) in the absence of fertilization F0, with respect to balanced fertilization by location for soils Typic Hapludands (Subachoque), F1s; Humic Dystrudepts (Chocontá), F1ch and Andic Eutrudepts (Facatativá), Fer1f; P<0.001 for fertilization (location * cultivar). .....................................................................96

Figure 4-4. Efficiency of recovery of N and K in tubers (RFt), kg nutrient extracted per 100 kg nutrient applied in balanced fertilization, cvs. Diacol Capiro and Pastusa Suprema on contrasting soils of the Andean region-Colombia. P<0.001 in N and K for location * cultivar. ............................................................................................................................97

Figure 4-5. EPt of N and K (kg of tuber harvested per kg of nutrient extracted) in ‘Diacol Capiro’ and ‘Pastusa Suprema’ in contrasting soils of the Andean region-Colombia. P<0.001 in N and K for location * cultivar. .......................................................................98

Figure 4-6. Efficient use of N and K in tubers of balanced fertilization, NUEt (kg of dry matter of the tuber per kg of nutrient extracted) in cvs. Diacol Capiro and Pastusa

Page 16: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

XVI Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Suprema in Typic Hapludands, Subachoque, Andic Eutrudepts, Facatativá, and Humic Dystrudepts, Chocontá in Andean region-Colombia. ..................................................... 100

Figura 5-1. Variación de K+ en savia fresca de tallo medida en campo en el ciclo del cultivo de ‘Diacol Capiro’ (A) y ‘Pastusa Suprema’ (B) en respuesta a la fertilización en suelos de alta fertilidad de la Sabana de Bogotá. Letras diferentes entre tratamientos para cada etapa fenológica presenta diferencias estadísticas significativas (Tukey, P<0,05). ........................................................................................................................ 115

Figura 5-2. Variación de NO3ˉ en savia fresca de tallo medida en campo en el ciclo de

cultivo de ‘Diacol Capiro’ (A) y ‘Pastusa Suprema’ (B) en respuesta a la fertilización en suelos de alta fertilidad de la Sabana de Bogotá. Letras diferentes entre tratamientos para cada época presenta diferencias estadísticas significativas, Tukey, P<0,05. ........ 116

Figura 5-3. Relación entre área foliar y el contenido de NO3ˉ (A) y K+ (B) en savia fresca

de tallo medida en campo hasta etapa III (90-100 dds), floración, máxima tuberización e inicio de llenado en papa ‘Diacol Capiro’ en respuesta a la fertilización en suelos de alta fertilidad de la Sabana de Bogotá. ** Modelo altamente significativo (P<0,01); * Modelo significativo (P<0,05). .................................................................................................... 118

Figura 5-4. Relación entre las concentraciones K+ (A) y N-NO3ˉ (B) en savia de tallo

medida en campo y el rendimiento, Pft medido desde etapa de floración a maduración para ‘Diacol Capiro’ (cuadro) y ‘Pastusa Suprema’ (rombo) en suelos de alta fertilidad de la Sabana de Bogotá..................................................................................................... 121

Figura 5-5. Respuesta en rendimiento en ‘Diacol Capiro’ (A) y ‘Pastusa Suprema’ (B) a la fertilización y su relación con concentración de K+ y N-NO3

ˉ en savia de tallo en suelos de alta fertilidad de la Sabana de Bogotá. .......................................................................... 122

Figura 10-1. Componentes principales de variable y acumulación de nutrientes en tubérculos. .................................................................................................................... 141

Page 17: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

Contenido XVII

Lista de tablas Pág.

Table 1-1. Environmental and soil fertility characteristics in studied locations. .................20

Table 1-2. Doses of mineral nutrients in fertilizer treatments. ..........................................21

Table 1-3. Allometric relationships and critical dilution coefficients for N, P, and K based on total dry biomass W (above-ground organs and tubers) for cvs. Capiro and Suprema as compared with cultivars of Group Chilotanum. The data for cvs. Capiro and Suprema were obtained under non-limiting conditions of fertilization in soils of contrasting fertility. 27

Table 1-4. Allometric relations and critical dilution coefficients for N, P, and K based on leaf area index (LAI) for cvs. Capiro and Suprema under non-limiting conditions of fertilization in soils of contrasting fertility. .........................................................................29

Table 1-5. Quadratic model for yield and balanced dose of fertilizer; c: quadratic coefficient; b: linear coefficient; a: intercept, R2: coefficient of determination. MY – maximum yield; ODF – optimal dose of fertilizer to achieve maximum yields. .................32

Table 1-6. Average yield of tubers (Mg ha–1) harvested at 150-160 dap for cvs. Capiro and Suprema and statistical significance of mean square of factors and their interactions. ....33

Table 2-1. Characteristics of climate and soils in experimental locations. ........................43

Table 2-2. Contribution of mineral nutrients through fertilizer applications. ......................44

Table 2-3. Prognosis of total uptake and extraction by tubers for N, P and K in cvs. Capiro and Suprema at different yields in soils of high yield potential of the Colombian Andean region. .............................................................................................................................52

Table 2-4. Extraction of N, P, and K by tubers per growth stage for cvs. Suprema and Capiro. The values are estimates from translocation efficiency of N (EtN), P (EtP), and K (EtK) with a projected yield of 70 Mg ha−1. .......................................................................54

Table 3-1. Edaphoclimatic conditions in the locations of the study...................................69

Table 3-2. Doses of mineral nutrients applied with fertilization in the studied locations. ...70

Table 4-1. Environmental and soil fertility characteristics at the study sites. ....................89

Table 4-2. Doses of mineral nutrients applied with fertilizers in the study sites. ...............90

Tabla 5-1. Niveles de NO3ˉ y K+ en savia de peciolo de papa en diferentes estados

fenológicos evaluados con medidores de ion selectivo. ................................................. 110

Page 18: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

XVIII Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Tabla 5-2. Propiedades químicas del suelo en el sitio de evaluación. ........................... 112

Tabla 5-3. Aporte de nutrientes minerales en los tratamientos con fertilización edáfica (dosis en kg ha-1). ......................................................................................................... 113

Tabla 8-1. Anovas e interacciones de factores para consumo y eficiencia de traslocación de N, P y K en cuatro etapas del cultivo e índice de cosecha de nutrientes 150 dds..... 133

Tabla 8-2. Análisis de regresión de covariables de suelo y clima respecto a las variables evaluadas. .................................................................................................................... 135

Tabla 8-3. Anovas e interacciones de factores en las variables rendimiento. ................ 137

Tabla 8-4. Anovas e interacciones de factores en las variables rendimiento por cultivar. ..................................................................................................................................... 137

Tabla 8-5. Anovas e interacciones de factores para índice de cosecha por cultivar. ..... 138

Tabla 9-1. Coeficientes de consumo crítico de N, P y K a partir de la biomasa total para Capiro y Suprema. ........................................................................................................ 139

Tabla 9-2. Coeficientes a y b de eficiencia de traslocación de N, P y K para Capiro y Suprema sin fertilización (0) y bajo condiciones optimas de fertilización (1). ................. 140

Tabla 10-1. Algoritmo de componentes principales de variables fisiológicas de crecimiento, consumo y concentración de nutrientes para análisis exploratorio y reducir la dimensionalidad del conjunto de variables. ................................................................... 142

Tabla 10-2. Algoritmo para las variables fisiológicas de crecimiento (biomasa seca, área foliar, consumo de nutrientes, uso eficiente de nutrientes) diseño en medidas repetidas factorial incompleto en parcelas subdivididas-modelo mixto. Los factores entre sujetos son anidados, pues la naturaleza de la matriz es incompleta. ....................................... 146

Tabla 10-3. Análisis estadístico MANOVA diseño en medidas repetidas (factorial incompleto en parcelas subdivididas-modelo mixto inter sujetos para los componentes que reunía la variables de mayor significancia . ............................................................ 148

Tabla 10-4. Análisis estadístico MANOVA diseño en medidas repetidas (factorial incompleto en parcelas subdivididas-modelo mixto intrasujetos para los componentes que reunía la variables de mayor significancia. .................................................................... 149

Tabla 10-5. Matriz de correlación de Pearson de los componentes de alta significancia. ..................................................................................................................................... 149

Tabla 10-6. Coeficiente b del modelo lineal de la extracción de nutrientes N, P y K ( kg/ha) respecto al rendimiento. ..................................................................................... 150

Page 19: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

Contenido XIX

Lista de Símbolos y abreviaturas Abreviatura Término

AF Área foliar

a Concentración del nutriente cuando el total de la biomasa es ≤ 1 t ha-1

b Coeficiente de dilución

Capiro Cultivar Diacol Capiro

CDC Curvas de dilución crítica

cmol Centimol

cv. (s) Cultivar (es)

DAF Duración del área foliar

dds Días después de siembra

dOFR Diferencia de la dosis óptima de fertilización

DWT Dry weight of tubers/Peso seco de tubérculos

EE Error estándar

EFN Eficiencia fisiológica del nutriente

EPt Accumulated nutrients per tuber yield/Eficiencia de nutrientes para la producción de tubérculos

EtK Eficiencia de traslocación de potasio en el tubérculo

EtN Eficiencia de traslocación de nitrógeno en el tubérculo

EtP Eficiencia de traslocación de fósforo en el tubérculo

EUN Eficiencia de utilización del nutriente

Page 20: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

XX Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Abreviatura Término

FWT Fresh weight of tubers/Peso fresco de tubérculos

ha hectárea

HEI harvest extraction index

IAF Índice del área foliar

IC/HI Índice de cosecha/Harvest index

IEC/EI Índice de extranción/Rate of nutrient extraction

INN Índice de nutrición

ISE Método de electrodo selectivo de iones

Kc Curva de dilución de potasio

Kr Consumo de potasio

MO Materia orgánica

Nc Curva de dilución de nitrógeno

Nr Consumo de nitrógeno

NUEt-UENt Nutrient use efficiency in tubers/ Eficiencia de uso de nutrientes en tubérculos

PFt Rendimeinto potencial

Pc Curva de dilución de fósforo

Pr Consumo de fósforo

PS Peso seco

OFR Dosis óptima de fertilización

RFt Recuperación de nutrientes del fertilizante por el tubérculo/Rates of nutrient recovery efficiency

RR Rendimientos relativos

Subsp., spp Subespecie

Suprema Cultivar Pastusa Suprema

t tonelada

Page 21: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

1. Critical Dilution Curve for N, P, and K and Leaf Area Index in Potato (Solanum tuberosum L., Group Andigena)

XXI

Abreviatura Término

W Biomasa seca total

Page 22: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis
Page 23: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

Introducción

La papa (Solanum tuberosum L.) ha sido consumida por la humanidad desde hace miles

de años y presenta alta versatilidad y adaptabilidad a diferentes condiciones ambientales

(Birch et al., 2012; De Jong, 2016; Hardigan et al., 2017). Actualmente se cultiva en 149

países en latitudes que van desde los 65°N hasta los 50°S y altitudes que varían desde

el nivel del mar hasta los 4.000 m, con una producción anual aproximada de 330 millones

de toneladas (Gebhardt, 2013). Ocupa un lugar importante en la agricultura, economía,

seguridad alimentaria e industria considerándose un cultivo primario básico y

actualmente el tercer cultivo de mayor consumo en el mundo después del maíz y el trigo

(Birch et al., 2012; De Jong, 2016; Li et al., 2013).

Se espera que la población mundial llegue a 9,4 billones de personas en el año 2050

(FAO, 2013) y en estas condiciones será necesario incrementar los rendimientos de los

cultivos y la eficiencia de la producción para lograr un incremento constante, para suplir

la demanda de alimentos. Se estima que los sistemas de producción de maíz, arroz y

papa están funcionando en promedio a 40 y 65% del potencial de rendimiento y que se

necesitan de un incremento entre el 70-80% del potencial de rendimiento para lograr

satisfacer las demandas en los próximos 30 años (Stewart, 2007; Dooberman, 2007;

IPNI, 2009; FAO, 2013).

Para lograr lo anterior, en el ámbito nacional es necesario establecer estrategias que

permitan obtener altos rendimientos, que integren también la conciencia ambiental y la

rentabilidad del agricultor (Bruulsema et al., 2008). El manejo óptimo de nutrientes y un

incremento en la eficiencia de uso serán componentes importantes para lograr este

objetivo (Stewart, 2007; IPNI, 2009).

Para el año 2016, en Colombia se logró una producción estimada de 2,623,700 t ha-1 en

126.100 ha, y los departamentos de Cundinamarca y Boyacá generaron el 76% de la

producción de papa (Riascos, 2016). Diacol Capiro (en adelante Capiro) y Pastusa

Suprema (Suprema) son considerados los cultivares de mayor importancia económica y

representan el 80% del área cultivada en el país para consumo fresco y procesamiento

industrial (Ñústez, 2011).

Page 24: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

2 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Desde el punto de vista de la productividad agrícola, la nutrición mineral es uno de los

factores más limitantes en el crecimiento y por lo tanto, es necesario el manejo óptimo de

nutrientes y fertilización al sistema productivo de papa (Wensterman, 2005; Villamil,

2005; Schilling et al., 2016). El conocimiento de la nutrición mineral vegetal permite a la

planta proporcionar el nutriente correcto, la cantidad necesaria, el lugar indicado y el

momento oportuno para conseguir los óptimos fisiológicos en la producción y calidad de

los cultivos en un entorno sostenible y rentable (Wensterman, 2005; IPNI, 2009).

La fisiología de la nutrición mineral permite entender el funcionamiento de la planta y

según Villamil (2005) y Marshner (2012), el estudio de la nutrición mineral comprende: (i)

clasificación de los nutrientes minerales; (ii) mecanismos de absorción de iones por las

células de la raíz; (iii) transporte a corta distancia; (iv) transporte a larga distancia en el

xilema y floema y sus regulaciones; (v) toma y distribución de elementos minerales por

las hojas y órganos; (vi) crecimiento y su relación con la nutrición; (vii) rendimiento y

relación fuente-demanda; (viii) rendimiento y nutrición mineral; (ix) funciones de

macronutrientes y micronutrientes; (x) deficiencias y toxicidad de macronutrientes y

micronutrientes y (xi) relación entre nutrición mineral y enfermedades.

El crecimiento vegetal, tanto en los sistemas naturales como en los sistemas agrícolas,

depende de la oferta ambiental y de nutrientes (Wensterman, 2005; Schilling et al., 2016),

que interactúan con los genotipos para producir la biomasa vegetal de la cual se obtienen

los productos cosechables para alimento (Zhao et al., 2017). Para el caso del cultivo de

papa, parte de esta energía requerida para la conversión de asimilados se usa en la

absorción, translocación y acumulación de nutrientes esenciales en el tubérculo (Sierra et al., 2002; Villamil, 2005; Kumar et al., 2013), convirtiéndose en una de las especies de

mayor demanda nutricional por kilogramo de materia seca producida y con mayores

aportes nutricionales de los cultivos (White et al., 2009; Kumar et al., 2013) que sustentan

la seguridad alimentaria del mundo (Hardigan et al., 2017).

Los índices fisiológicos de crecimiento están afectados por factores del ambiente como la

intensidad de radiación, la temperatura y la disponibilidad de agua y nutrientes (Wolf et al., 1990). En este sentido la alta disponibilidad de nitrógeno (N) aumenta el índice del

área foliar (IAF), la duración del área foliar (DAF) y la cobertura del suelo por el cultivo de

Page 25: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

1. Critical Dilution Curve for N, P, and K and Leaf Area Index in Potato (Solanum tuberosum L., Group Andigena)

3

papa, principalmente a través de una tasa más alta de aparición de hojas (ramificación) y

de expansión del área foliar (Vos y Biemond, 1992). La expansión del área foliar juega un

papel importante en la demanda principalmente de N y el aporte de fertilizantes de este

nutriente (Lemaire et al., 2007; Zhao et al., 2014; Chakwizira et al., 2016).

El N es el elemento esencial para la síntesis de proteínas, respiración, crecimiento de

tubérculo (Westermann, 2005; Kavvadias et al., 2012), en condiciones de suelos del

trópico frío, el N puede ser afectado por baja tasa de mineralización, bajas temperaturas,

suelos arcillosos y bajos contenidos de materia orgánica (Castro y Gómez, 2013),

aunque bajo excesos de N se puede presentar consumos de lujo y se reduce la

tuberización (Fandika, 2012; Ruza et al., 2013). Bajo deficiencia, se ha observado

reducción de la materia seca por disminución del área foliar y menor número de foliolos

que incide en una menor intercepción de luz y una menor tasa de fotosíntesis (Balemi et al., 2009; Marouani et al., 2014).

Estudios realizados por Villamil (2005) con respecto al comportamiento de la

concentración de N en tejidos del peciolos y el estado fenológico de Capiro, mostraron

mayor asimilación de N en los primeros estados de crecimiento, posteriormente tiende a

disminuir con valores que pasaron de 6,6% alrededor de los 40 días después de siembra

(dds) a 3,3% hacia los 120 dds; la disminución se acentúa principalmente al iniciarse la

tuberización. Resultados similares fueron reportados por Sierra et al. (2002) para el cv.

Desiree en Chile, coincidiendo con una mayor acumulación de N en las etapas de

crecimiento de los primeros 75 dds.

El fósforo (P) promueve el crecimiento de las raíces (Aguilar-Acuña et al., 2006), la rápida

formación de tubérculos y su incidencia en la síntesis de almidón (Chung et al., 2014;

Leonel et al., 2016). En suelos fuertemente ácidos con pH menores a 5,5 de la zona

Andina, el P se fija y forma precipitados con hierro y aluminio lo cual disminuye su

disponibilidad (Hernández et al., 2012; Castro y Gómez, 2013). El P en Capiro en la

Sabana de Bogotá, presentó la mayor asimilación en la etapa de máximo crecimiento

alcanzando concentraciones de 0,8% en los peciolos alrededor de los 40 dds,

posteriormente se estabiliza a 0,5%. Dependiendo del rendimiento, un cultivo puede

extraer alrededor de 60 kg ha-1 de P2O5 (Villamil, 2005). En contraste Covarrubias et al.

Page 26: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

4 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

(2005) encontraron para el cv. Alpha que la absorción de P es mayor al inicio de

tuberización (45 dds) y el máximo desarrollo del tubérculo.

El potasio (K) es esencial para la translocación de azúcares hacia los tubérculos,

regulación hídrica, respiración y síntesis de almidón, procesos fundamentales en el

crecimiento y llenado de tubérculos (Haeder et al., 1973; Perrenoud, 1993; Schilling et al., 2016); la baja oferta edáfica en suelos arenosos, los excesos de Ca (Kavvadias et al., 2012), la salinidad y la fijación por arcillas de tipo 2:1 limitan la disponibilidad de K en el

cultivo de papa (Castro y Gómez, 2013). El K es el elemento que más es extraido por

este cultivo. En Capiro ha presentado un 9% en el peciolo en el inicio de la floración o

cuando ha alcanzado el máximo índice de área foliar, cuando se presenta la mayor

asimilación.

Durante los primeros estadios de crecimiento y hacia el final del llenado del tubérculo, las

concentraciones foliares de K pueden alcanzar concentraciones foliares de 5,5%

(Villamil, 2005). Lo anterior difiere para los cultivares Desiree y Pimpernel en Chile,

donde el K se acumula en los primeros 70 dds y luego en la etapa de máximo

crecimiento del tubérculo entre los 100 a 130 dds con valores entre 8 y 10% en el peciolo

(Sierra et al., 2002), posiblemente por su condición de pertenecer a la subespecie

tuberosum y ser cultivada en zonas templadas bajo fotoperiodo de día largo.

Las relaciones alométricas son medidas indirecta del crecimiento, se utilizan para

pronosticar la concentración (Gilleto y Echevarria, 2015), consumo (Cogo et al., 2006),

eficiencia y pérdida de nutrientes en el ambiente (Abdallah et al., 2016). En el cultivo de

papa, las funciones alométricas se han utilizado principalmente con base en el peso seco

total para estimar las concentraciones críticas de nutrientes minerales, siendo N el más

común (Giletto y Echeverría, 2015; Abdallah et al., 2016) y con menos referencias P

(Zamuner et al., 2016) y K (Cogo et al., 2006).

La partición de nutrientes minerales en hojas, tallos y tubérculos durante el crecimiento

del cultivo de papa, pueden usarse para definir el estatus nutricional, fenómeno que

describe el comportamiento de la planta y explica las diferencias entre cultivares

mediante indicadores de partición de asimilados y nutrientes (Swain et al., 2014; Giletto y

Echeverría, 2015). La curva crítica de consumo de nutrientes es importante para

Page 27: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

1. Critical Dilution Curve for N, P, and K and Leaf Area Index in Potato (Solanum tuberosum L., Group Andigena)

5

pronosticar la cantidad de nutrientes necesaria para producir una determinada biomasa

(Andriolo et al., 2006) de acuerdo al potencial de producción del cultivo.

Los conceptos de uso eficiente de nutrientes y fertilizantes generalmente describen el

adecuado comportamiento fisiológico en la planta en respuesta al uso de nutrientes

(Stewart, 2007; Prochnow et al., 2009). La eficiencia de absorción de los nutrientes se

estima por la diferencia de absorción del elemento entre plantas fertilizadas y no

fertilizadas, usando trazadores isotópicos, o medidas indirectamente a partir de la

acumulación de biomasa seca, que puede definir el concepto de eficiencia de utilización

del nutriente (EUN) y la eficiencia fisiológica del nutriente (EFN) (Dooberman, 2007;

Stewart, 2007; Prochnow et al., 2009), considerando factores de aportes y reciclaje

interno de nutrientes. El uso eficiente para P y K es menos estudiado en el cultivo de

papa (Fernandes y Soratto, 2012; Cogo et al., 2006).

El cultivo de papa es uno de los sistemas productivos con mayor consumo de nutrientes

y fertilizantes por ciclo y unidad de área, para Chile y Argentina estos índices pueden

oscilar entre 0,25 - 0,3 kg m-2 por semestre, respecto a cultivos como zanahoria y maíz

con 0,15 y 0,08 kg m-2 por semestre, respectivamente (Sierra et al., 2002). Un mayor

consumo de fertilizantes en papa, en estos países, se relaciona con altos índices de

cosecha y mayor potencial de rendimiento (50-60 t ha-1) obtenidos por la tecnificación del

sistema especialmente para especies de la subespecie tuberosum cvs. Pimpernel y

Desireé (Sierra et al., 2002; Aguilar-Acuña et al., 2006). En Colombia se han realizado estudios importantes respecto a la fisiología de

crecimiento y desarrollo para los cultivares de papa como Criolla Colombia (Valbuena et al., 2010; Santos, 2010), Capiro y Suprema (Santos et al., 2010), con un incremento en el

potencial productivo en Capiro (50-80 t ha-1) y Suprema (40-70 t ha-1), las dos del grupo

Andigena, debido a un manejo adecuado de semilla certificada, riego, fertilización

específica y mecanizada con el índice de consumo de fertilizantes de 0,2-0,3 kg m-2

(Villamil, 2005; Ríos et al., 2010; Gómez y Torres, 2012), pero no han relacionado ni

cuantificado la acumulación y distribución de nutrientes.

La absorción de nutrimentos durante las etapas fenológicas en cultivares comerciales de

papa del grupo Andígena han sido poco estudiados en Colombia, donde los últimos

Page 28: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

6 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

estudios detallados se realizaron en la década de los 70 para los cultivares ICA Puracé y

Guantivá (Grandet y Lora, 1979).

En los últimos años, trabajos realizados por Villamil (2005) y Gómez y Torres (2012) han

permitido conocer de manera general los niveles foliares y aproximaciones a los

requerimientos nutricionales en Capiro, pero sin una relación de su acumulación y

distribución bajo diferentes ofertas edáfico-ambientales y de aportes nutricionales

variables. La información disponible de fertilización y manejo de nutrición está

encaminada al manejo de respuestas en campo de N, P y K, pero no hay una correlación

con las demandas nutricionales de cada cultivar, ciclo de desarrollo, potencial de

rendimiento e incluso destino de producción (Villamil, 2005).

Dentro de los costos de producción, el manejo de la fertilización incluye el uso de

fertilizantes edáficos, foliares y enmiendas orgánicas que pueden oscilar entre el 22 y

35% del costo total, con un valor equivalente entre 5 y 6 millones de pesos/ha (Gómez y

Torres, 2012; Pérez et al., 2014). En Colombia, los insumos para la fertilización del

cultivo, ocupan un lugar destacado en los costos totales de producción de papa. En

Capiro y Suprema, la inversión en fertilización alcanza en promedio el 23% de los costos

totales. La variación en el rubro y manejo de la fertilización-enmiendas depende del

sistema tecnológico propio dado por el agricultor (mecanización, riego, semilla certificada,

gestión de los procesos agronómicos, técnicas de fertilización) (Gómez y Torres, 2012;

Pérez et al., 2014).

La investigación en nutrición de papa en Colombia se limita a respuestas en dosis y

fuentes y no se han actualizado requerimientos nutricionales ni indicadores de

diagnóstico nutricional (Villamil, 2005; Cevipapa, 2005). Además, no se realiza un manejo

específico de los nutrientes de acuerdo al tipo de suelo, cultivar, fenología en el altiplano

Cundi-Boyacense que afecta el potencial de rendimiento (Gómez y Torres, 2013).

Adicionalmente, un desconocimiento en la distribución y partición de nutrientes y su

relación con índices de crecimiento y uso eficiente de nutrientes.

Con el fin de abordar la problemática anterior, se establecieron las siguientes hipótesis:

(i) no existe diferencias en el crecimiento con el uso de fertilización variable y ciclos del

cultivo para los cultivares Diacol Capiro y Pastusa Suprema; (ii) la extracción de N, P y K

Page 29: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

1. Critical Dilution Curve for N, P, and K and Leaf Area Index in Potato (Solanum tuberosum L., Group Andigena)

7

en los tubérculos dependen del genotipo y no del factor ambiente (suelo) y la fertilización

aplicada y (iii) la partición de N, P y K no necesariamente concuerda con la partición de

biomasa debido a las caracteristicas morfológicas del cultivar y a la funcionalidad

diferencial de N, P y K.

Para responder a las anteriores hipótesis se plantearon los siguientes objetivos:

Objetivo general Caracterizar la acumulación y distribución de macronutrientes en dos cultivares de

Solanum tuberosum L. en diferentes ambientes en el altiplano Cundi-Boyacense.

Objetivos específicos

x Caracterizar la distribución de macronutrientes mediante la partición diferencial de

elementos minerales en hojas, tallos y tubérculos según ambiente de evaluación,

cultivar y niveles de fertilización.

x Determinar la acumulación de macronutrientes minerales en las diferentes etapas

fenológicas por cultivar, niveles de fertilización y el efecto de la oferta edáfica-

ambiental en cada ambiente de evaluación.

x Establecer la relación entre la acumulación de nutrientes minerales, variables

fisiológicas de crecimiento y uso eficiente de nutrientes por cultivar.

El presente trabajo está elaborado como un compendio de cinco artículos que

corresponde a cada capítulo en los cuales se desarrollan los diferentes aspectos

requeridos para el cumplimiento de los objetivos:

Capítulo 1. Critical Dilution Curve for N, P, and K and Leaf Area Index in Potato (Solanum tuberosum L., Group Andigena) in Colombia. Sometido en Agronomy Journal

Page 30: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

8 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Capítulo 2. Uptake and partition of N, P, and K in potato (Solanum tuberosum L., Group

Andigena). Sometido en Field Crops Research Journal.

Capítulo 3. Accumulation of N, P, and K in the tubers of potato (Solanum tuberosum L.)

spp. andigena under contrasting soils of the Andean region of Colombia. Publicado en

Agronomía Colombiana 35(1), 56-67, 2017. Doi: 10.15446/agron.colomb.v35n1.61068

Capítulo 4. Potential yield and efficiency of N and K uptake in tubers of cvs. Capiro and

Suprema (Solanum tuberosum subsp. andigena). Sometido en Agronomía Colombiana.

Capítulo 5. Diagnóstico de K+ y NO3- en savia para determinar el estado nutricional en

papa (Solanum tuberosum L. subsp. andigena). Publicado en la Revista Colombiana de

Ciencias Hortícolas 11(1), 133-142, 2017. Doi: 10.17584/rcch.2017v11i1.6132

Los capítulos 1, 2, 3 y 4 fueron proyectados para su publicación en revistas de habla

inglesa, de tal manera que se elaboraron en dicho idioma. El capitulo 5 y las secciones

restantes fueron elaborados en español. Dado que el trabajo se presenta como un

compendio de artículos, existen algunas diferencias menores de estilo, relacionadas

principalmente con formatos de citas bibliográficas en el texto y elaboración de

referencias bibliográficas.

Bibliografía

Abdallah, F.B., Olivier, M., Goffart, J.P., Minet, O. (2016). Establishing the nitrogen

dilution curve for potato cultivar Bintje in Belgium. Potato Res. 59(3): 241-258.

Aguilar-Acuña, J.L., Martínez-Hernández, J., Volke-Haller, V., Etchevers-Barra, J., Mata-

Vázquez, H., Hernández-Martínez, M. (2006). Distribución del fósforo en suelo, raíces y

materia seca de tubérculos de papa cultivada con fertirriego. Terra Latinoam. 24(2), 269-

276.

Andriolo, J.L., Bisognin, D.A., De Paula, A.L., Matielo De Paula, F.L., Dos Santos, R.,

Teixeira Barros, G. (2006). Curva crítica de diluição de nitrogênio da cultivar Asterix de

batata. Pes. Agrop. Bras. 41, 1179-1184.

Page 31: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

1. Critical Dilution Curve for N, P, and K and Leaf Area Index in Potato (Solanum tuberosum L., Group Andigena)

9

Birch, P.R.J., Bryan, G., Fenton, B., Gilroy, E.M., Hein, I., Jones, J.T., Prashar, A., Taylor,

M.A., Torrance, L., Toth, I.K. (2012). Crops that feed the word 8: Potato: are trends of

increased global production sustainable. Food Sec. 4(1), 477-508.

Bruulsema, T., Witt, C., Garcia, F., Li, S., Rao, T.N., Chen, F., Ivanova, S. (2008). A

global framework for fertilizer BMPs. Better Crops 92(2), 13-15.

Castro, H., Gómez, M.I. (2013). Fertilidad y fertilizantes. pp. 231-304. En: Burbano-

Orjuela, H., Silva-Mojica, F., Burbano-Orjuela, H. (eds.). Ciencia del suelo - principios

básicos. 2a ed. Sociedad Colombiana de la Ciencia del Suelo, Bogotá, Colombia.

Chakwizira, E., de Ruiter, J.M., Maley, S., Teixeira, E. (2016). Evaluating the critical

nitrogen dilution curve for storage root crops. Field Crops Res. 199, 21-30.

Chung, H.J., Li, X.Q., Kalinga, D., Lim, S.T., Yada, R., Liu, Q. (2014). Physicochemical

properties of dry matter and isolated starch from potatoes grown in different locations in

Canada. Food Res. Intl. 57, 89-94.

Cogo, C.M., Andriolo, J.L., Bisognin, D.A., dos Santos Godoi, R., Bortolotto, O.C., da Luz,

G.L. (2006). Relação potássio-nitrogênio para o diagnóstico e manejo nutricional da

cultura da batata. Pes. Agrop. Bras. 41(12), 1781-1786.

Dooberman, A. (2007). Nutrient use efficiency measurement and management. IFA.

Workshop on fertilizer Best management. Belgium.

De Jong, H. (2016). Impact of the potato on society. Am. J. Potato Res. 93(5), 415-429.

Fandika, I.R. (2012). Comparison of heritage and modern crop cultivars in response to

irrigation and nitrogen management: PhD thesis. Institute of Natural Resources, Massey

University, Palmerston North, New Zealand.

FAO. (2013). Estado mundial de la agricultura y la alimentación. Roma.

Fernandes, A.M., Soratto, R.P. (2012). Nutrition, dry matter accumulation and partitioning

and phosphorus use efficiency of potato grown at different phosphorus levels in nutrient

solution. Rev. Bras. Ciênc. Solo 36(5), 1528-1537.

Gebhardt, C. (2013). Bridging the gap between genome analysis and precision breeding

in Potato. Trends in Genetics 29(4), 248-256.

Page 32: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

10 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Giletto, C.M., Echeverría, H.E. (2012). Critical nitrogen dilution curve for processing

potato in Argentinean humid Pampas. Am. J. Potato Res. 89, 102-110.

Gómez, M.I., Torres, P. (2012). Absorción, extracción y manejo nutricional del cultivo de

papa. Rev. Papa (Fedepapa) 26, 20-25.

Grandett, J.G., Lora, S.R. (1979). Acumulación de materia seca y de varios nutrimentos

en tres variedades de papa cultivadas en la serie Mosquera. Programa Nacional de

Suelos, Instituto Colombiano Agropecuario-ICA, Bogotá.

Haeder, H.E., Mengel, K., Forster, H. (1973). The effect of potassium on translocation of

photosynthates and yield pattern of potato plants. J. Sci. Food Agric. 24(12), 1479-1487.

Hardigan, M.A., Laimbeer, F.P.E., Newton, L., Crisovan, E., Hamilton, J.P., Vaillancourt,

B., Veilleux, R.E. (2017). Genome diversity of tuber-bearing Solanum uncovers complex

evolutionary history and targets of domestication in the cultivated potato. Proc. Natl. Acad.

Sci. U.S.A. 114(46), E9999-E10008.

Hernández, H.M., Forero, F., Otálora-Antolines, D., Serrano-Cely, P.A. (2012). Respuesta

agroeconómica del cultivo de papa (Solanum tuberosum L.) bajo diferentes fuentes de

fósforo en Villapinzon, Cundinamarca. Cienc. Agric. 9(2), 97-104.

IPNI. (2009). Uso eficiente de nutrientes. San José, Costa Rica.

Kavvadias, V., Paschalidis, C., Akrivos, G., Petropoulos, D. (2012). Nitrogen and

potassium fertilization responses of potato (Solanum tuberosum) cv. Spunta. Com. Soil

Sci. Plant Anal. 43(1-2), 176-189. Doi: 10.1080/00103624.2012.634711

Kumar, C.V., Prakash, S.S., Prashantha, G.M., Kumar, M.B.M., Lohith, S.,

Chikkaramappa, T. (2013). Dry matter production and yield of potato as influenced by

different sources and time of fertilizer application and soil chemical properties under

rainfed conditions. Res. J. Agric. Sci. 4, 55-159.

Li, L., Tacke, E., Hofferbert, H., Lübeck, J., Strahwald, J., Draffehn, A.M., Walkemeier, B.,

Gebhardt, C. (2013). Validation of candidate gene markers for marker-assisted selection

of potato cultivars with improved tuber quality. Theor. Appl. Genet. 126(4), 1039-1052.

Doi: 10.1007/s00122-012-2035-z

Page 33: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

1. Critical Dilution Curve for N, P, and K and Leaf Area Index in Potato (Solanum tuberosum L., Group Andigena)

11

Lemaire, G., Oosterom, E., Sheehy, J., Jeuffroy, M.H., Massignam, A., Rossato, L.

(2007). Is crop N demand more closely related to dry matter accumulation or leaf area

expansion during vegetative growth? Field Crops Res. 100, 91-106.

Leonel, M., Carmo, E.L., Fernandes, A.M., Franco, C.M., Soratto, R.P. (2016). Physico‐chemical properties of starches isolated from potato cultivars grown in soils with different

phosphorus availability. J. Sci. Food Agric. 96(6), 1900-1905.

Marshner, P. (2012). Mineral nutrition of higher plants. 3a ed. Elsevier, Australia.

Ñústez, C. (2011). Variedades colombianas de papa. Universidad Nacional de Colombia,

Bogotá.

Pérez, J., Cusguen, I., Porras, P.D. (2014). Costos de producción, base de la

competitividad. Rev. Papa (Fedepapa) 31(1), 45-48.

Perrenoud, S. (1993). Fertilizing for high yield potato. IPI Bulletin 8. 2nd ed. International

Potash Institute, Basel, Switzerland.

Prochnow, L., Casarin, V., Fageria, N.K., Moraes, M.F. (2009). Eficiencia de nutrientes

en Brasil. pp 26-36. In: Memorias Simposio uso eficiente de nutrientes. XVIII Congreso

Latinoamericano de la Ciencia del Suelo. Sociedad Latinoamericana de la Ciencia del

Suelo. Costa Rica.

Riascos, S. (2016). Hechos y realidades de la papa en Colombia. Rev. Papa (Fedepapa).

39, 44-48.

Ríos Q., J.Y., Jaramillo V., S.D.C., González S., L.H., Cotes T., J.M. (2010).

Determinación del efecto de diferentes niveles de fertilización en papa (Solanum tuberosum ssp. andigena) Diacol Capiro en un suelo con propiedades ándicas de Santa

Rosa de Osos, Colombia. Rev. Fac. Nal. Agr. Medellin 63(1), 5225-5237.

Ruza, A., Skrabule, I., Vaivode, A. (2013). Influence of nitrogen on potato productivity and

nutrient use efficiency. Proc. Latvian Acad. Sci. 67(3), 247-253.

Santos, M., Segura, M., Ñústez, C. (2010). Análisis de crecimiento y relación fuente-

demanda de cuatro variedades de papa (Solanum tuberosum L.) en el municipio de

Zipaquirá (Cundinamarca, Colombia). Rev. Fac. Nal. Agr. Medellín 63, 5253-5266.

Page 34: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

12 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Schilling, G., Eißner, H., Schmidt, L., Peiter, E. (2016). Yield formation of five crop

species under water shortage and differential potassium supply. J. Plant Nut. Soil Sci.

179(2), 234-243.

Sierra, G., Santos, J., Kalazich, B. (2002). Manual fertilización del cultivo de papa en la

zona Sur de Chile. Instituto de Investigaciones Agropecuarias. Santiago, Chile.

Stewart, W.M. (2007). Consideraciones en el uso eficiente de nutrientes. Informaciones

Agronómicas 67, 1-7.

Swain, E.Y., Rempelos, L., Orr, C.H., Hall, G., Chapman, R., Almadni, M., Cooper, J.M.

(2014). Optimizing nitrogen use efficiency in wheat and potatoes: interactions between

genotypes and agronomic practices. Euphytica 199(1-2), 119-136.

Valbuena, R., Roveda, G., Bolaños, A., Zapata, J., Medina, C., Almanza, P., Porras, D.

(2010). Escalas fenológicas de las variedades de papa Parda Pastusa, Diacol Capiro y

Criolla “Yema de Huevo” en las zonas productoras de Cundinamarca, Boyacá, Nariño y

Antioquia. Corpoica, Bogotá, Colombia.

Villamil, H. (2005). Fisiología de la nutrición en papa. CEVIPAPA, Consejo Nacional de la

Papa. Bogota, Colombia.

Vos, J., Biemond, H. (1992). Effects of nitrogen on the development and growth of the

potato plant. 2. The partitioning of dry matter, nitrogen and nitrate. Ann. Bot. 70(1), 37-45.

Westermann, D. (2005). Nutritional requirements of potatoes. Am. J. Pot. Res. 82, 301-

307. Doi: 10.1007/BF02871960

White, P.J., Bradshaw, J.E., Finlay, M., Dale, B., Ramsay, G., Hammond, J.P., Broadley,

M.R. (2009). Relationships between yield and mineral concentrations in potato tubers.

HortScience 44, 6-11.

Wolf, S., Marani, A., Rudich, J. (1990). Effects of temperature and photoperiod on

assimilate partitioning in potato plants. Ann. Bot. 66(5), 513-520.

Zamuner, E.C., Lloveras, J., Echeverría, H.E. (2016). Use of a critical phosphorus dilution

curve to improve potato crop nutritional management. Am. J. Potato Res. 93(4), 392-403.

Page 35: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

1. Critical Dilution Curve for N, P, and K and Leaf Area Index in Potato (Solanum tuberosum L., Group Andigena)

13

Zhao, B., Yao, X., Tian, Y., Liu, X., Ata-Ul-Karim, S.T., Ni, J., Cao, W., Zhu, Y. (2014).

New critical nitrogen curve based on leaf area index for winter wheat. Agron. J. 106, 379-

389.

Zhao, B., Ata-Ul-Karim, S.T., Liu, Z., Ning, D., Xiao, J., Liu, Z., Duan, A. (2017).

Development of a critical nitrogen dilution curve based on leaf dry matter for summer

maize. Field Crops Res. 208, 60-68.

Page 36: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis
Page 37: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

1. Critical Dilution Curve for N, P, and K and Leaf Area Index in Potato (Solanum

tuberosum L., Group Andigena)1

Curvas de dilución crítica para N, P y K e índice de área foliar en papa (Solanum tuberosum subsp. andigena en Colombia)

Manuel Iván Gómez S., Stanislav V. Magnitskiy, Luis Ernesto Rodríguez

1.1 Abstract The critical dilution curves (CDC) for nitrogen (Nc), phosphorus (Pc), and potassium (Kc)

obtained from total dry biomass (W) and leaf area index (LAI) were used as a diagnostic

tool to determine nutrient status and to adjust fertilization rates in two cultivars of potato

Group Andigena. The objective of this research was to determine allometric ratios of Nc,

Pc, and Kc (%) and nutrition index (NI) based on W and LAI in cultivars (cv.) Diacol

Capiro (Capiro) and Pastusa Suprema (Suprema). Additionally, optimal fertilization rate

was evaluated to achieve maximum yields during two growth cycles in contrasting

environments of the Andean zone of Colombia. The CDC was validated using W in cv.

Capiro: Nc = 6.23W –0.3197; Pc = 0.523W –0.198; Kc = 9.02W –0.269 and in cv. Suprema: Nc = 6.74 W –0.327; Pc = 0.536W –0.186; Kc = 6.585W –0.1353 and presented higher robustness

than the CDC obtained from LAI. Cv. Capiro presented a lower dilution coefficient b than

cv. Suprema due to the higher physiological efficiency in tuber growth. The NI ranged

between 0.25-1.32 with better fit in cv. Capiro and relative yields (RY) starting from 40%

1 Artículo sometido en Agronomic Journal

Page 38: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

16 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

without fertilization; for cv. Suprema, null to marginal response to fertilization was

obtained indicating a luxury uptake of N (NI 1-1.5) with RY starting from 70%. Except for

this research, Nc, Pc, and Kc have not been validated for cultivars of Group Andigena.

The CDC for this cultivated Group could serve to identify deficiency, sufficiency, or excess

of N, P, and K and to predict final yield per cultivar under highland equatorial conditions.

Key words: nutrition index, allometric relationships, dry biomass, Solanaceae.

Core Ideas

• Diagnostics of mineral nutrition in field is poorly developed for potato Group Andigena.

• Critical dilution curves CDC for N, P, and K were validated in potato Group Andigena.

• The CDC serve to identify macronutrient status and to predict yield of potato in the tropics.

Abbreviations: CDC, critical dilution curve; W, total plant biomass; LAI, leaf area index; Nc, total critical concentration of mineral nutrient; NI, nutrition index; RY, relative yield; ODF, optimal dose of fertilizer; MY, maximum yield.

1.2 Resumen Las curvas de dilución crítica (CDC) para nitrógeno (Nc), fósforo (Pc) y potasio (Kc)

estimadas a partir de la biomasa seca total (W) y el índice de área foliar (IAF) se usan

como métodos de diagnóstico, para determinar el estado nutricional y realizar ajustes en

la fertilización para optimizar el potencial de rendimiento en papa. El objetivo de este

estudio fue determinar las CDC mediante relaciones alométricas de Nc, Pc y Kc (%) y el

índice de nutrición (INN) con base en W y el IAF en los cultivares Diacol Capiro (Capiro) y

Pastusa Suprema (Suprema). Adicionalmente, se determinó la dosis óptima de

fertilización para obtener mayores rendimientos en dos ciclos de cultivo en ambientes

contrastantes de la zona Andina de Colombia. Se determinó la CDC a partir de W

encontrando para Capiro: Nc = 6,23 W-0,319; Pc = 0,523W -0,19; Kc = 9,02W -0,269, mientras

para Suprema: Nc= 6,74 W -0,327; Pc= 0,536W -0,186; Kc= 6,585W -0,1353, observandose

mejor robustez comparado con IAF. Capiro presentó un menor coeficiente de dilución b

que Suprema por su mayor eficiencia fisiológica en el crecimiento de tubérculos. El INN

presentó rangos entre 0,25-1,32 con mejor ajuste en Capiro y rendimientos relativos (RR)

Page 39: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

1. Critical Dilution Curve for N, P, and K and Leaf Area Index in Potato (Solanum tuberosum L., Group Andigena)

17

desde 40% sin fertilización, para Suprema se observó respuesta nula a marginal en la

fertilización mostrando consumo de lujo de N (INN 1-1,5) con RR desde 70%. Las CDC

pueden identificar situaciones de deficiencia, suficiencia y exceso de N, P y K y puede

ser usadas para predecir el rendimiento final por cultivar.

Palabras clave: Indice de nutrición, relaciones alométricas, biomasa seca, Solanaceae.

1.3 Introduction Potato (Solanum tuberosum L.) is one of the species with the highest nutritional demand

in nitrogen (N), phosphorus (P), and potassium (K) per kg of dry matter produced (Kumar

et al., 2013, Gómez et al., 2017a). In the Colombian Andean region, potato cultivation

requires a high consumption of fertilizers per cycle and unit area (0.2-0.3 kg m-2 of

fertilizer) to obtain high yields and product quality (Gómez and Torres, 2012). However,

the optimal fertilization dose of N (Giletto and Echeverría, 2015), P (Fernandes and

Soratto, 2016) and K (Zelelew et al., 2016) can vary widely between cultivars and per site,

so that a proper management of these mineral nutrients favors the profitability and

sustainability of potato productive system.

Diagnostics methods in plants can be used to improve nutrient efficiency and reduce

nutrient losses in the environment (Abdallah et al., 2016). The critical dilution curves

(CDC) are established between the concentrations of N, P and K (%) in organs in relation

to the dry biomass (W) (Chakwizira et al., 2016, Abdallah et al., 2016), leaf area index

(LAI) (Ata-Ul-Karim et al., 2014; Zhao et al., 2014) by means of direct measurements in

plants or indirect estimation, such as through a duration of leaf area (Wang et al., 2017).

Expansion of leaf area plays an important role in the main demand of N and contribution

of N fertilizers (Lemaire et al., 2007; Zhao et al., 2014; Chakwizira et al., 2016) and is

considered a fundamental growth variable to monitor environmental and agronomic

variations due to the capacity of light interception by canopi and crop photosynthetic

capacity (Ata-Ul-Karim et al., 2014). In potato crop, allometric equations have been based

mainly on total dry weight to estimate critical concentration of mineral nutrients, such as N

that is more common (Giletto and Echeverria, 2015; Abdallah et al., 2016) and, with fewer

references, P (Zamuner et al., 2016) and K (Cogo et al., 2014).

Page 40: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

18 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

The critical value of the mineral nutrient is defined as a minimum concentration of nutrient

needed for the crop to reach maximum growth rates at given biomass accumulation

(Greenwood et al., 1990; Lemaire et al., 2007; Raut, 2017) (Equation 1) or at given LAI

(Ata-Ul-Karim et al., 2014; Wang et al., 2017) (Equation 2). The (CDC) for nitrogen (Nc)

could be represented by a negative exponential model:

Nc = aW-b (1)

Nc = aIAF-b (2),

where W is a total biomass (t ha-1), the LAI is a leaf area index, Nc (%) is a total critical

concentration of the nutrient (N, P or K) in total biomass (g 100 g-1), the coefficient a

represents the concentration of nutrient when total biomass is lower than 1 t ha-1, and the

parameter b represents a "dilution coefficient", which describes the reduction in the

concentration of the nutrient to the extent that total biomass increases.

CDC of mineral nutrients nutrient is used to diagnose nutrient deficiency (Bélanger et al., 2015), adjust fertilization (Gilleto and Echevarria, 2015; Zamuner et al., 2016), or simulate

demand of the nutrient and yield in productive systems (Lemaire et al., 2007). Thus, for N,

Nc defines three levels of this mineral element in plants (Marouani et al., 2014): (i) values

significantly below the curve represent crop growth limited by the supply of the nutrient,

(ii) values above the curve represent the growth under a luxury consumption of nutrient

(iii) the values on the curve represent the growth in the Nc, in other words, the adequate

level of nitrogen for an optimum crop growth.

In potato, the values of parameters a and b have been estimated using the sum of

biomass of leaves, stems, and tubers with respect to the concentration of mineral

nutrients in these organs under contrasting edapho-climatic conditions with different

cultivars and under different rates of nutrients (Marouani et al., 2014, Zamuner et al., 2016). In other studies for ssp. tuberosum, Greenwood et al. (1990) reported values 5.36

and -0.46 for coefficients a and b, respectively, while Gilletto and Echevarria (2015)

obtained values for a ranging from 5.19 to 5.53 and for b ranging from -0.25 to -0.42 in

Russet cultivars in Argentina.

Page 41: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

1. Critical Dilution Curve for N, P, and K and Leaf Area Index in Potato (Solanum tuberosum L., Group Andigena)

19

Evaluation of CDC based on dry biomass is more common than the one obtained by LAI

(Wang et al., 2017). Evaluation for Nc that for Pc is more usual for ssp. tuberosum

(Abdallah et al., 2016; Zamuner et al., 2016) and currently there are no reports for Nc, Pc

and Kc in ssp. andigena. Andriolo et al. (2006) in Brazil evaluated Nc in cv. Axterix, while

the other studies were done by Marouani et al. (2014) in Tunisia in cvs. Spunta and Bellini

and Gilleto and Echeverria (2015) in cvs. Gen Russet, Umatilla Russet, Bannock Russet,

and Markies Russet in Argentina. On the other hand, CDC evaluation of Pc is less

common and was initially established by Zamuner et al. (2016) for ssp. tuberosum in cv.

Innovator in Argentina. Currently, there are no reports on evaluation of Kc in potato in the

field but only in greenhouse conditions for cv. Asterix by Cogo et al. (2006). Our study

might be one of the first CDC references regarding LAI for N, P and K in potato ssp.

andigena; although it has been evaluated in other crops, such as rice (Ata-Ul-Karim et al., 2014) and wheat (Zhao et al., 2014; Wang et al., 2017).

The objectives of this study were (i) to establish allometric relationships for Nc, Pc, and Kc

(%) and NI based on the total dry biomass (W) and leaf area index (LAI) in cvs. Capiro

and Suprema; (ii) compare CDC evaluated in ssp. andigena with that evaluated in ssp.

tuberosum; (iii) determine the optimal fertilization dose to achieve the maximum yields in

cvs. Capiro and Suprema. This study was undertaken under variable fertilization rates at

five stages of growth and during two growth cycles in soils that were contrasting in fertility.

The research was done in 2013-2016 in the Andean region of Colombia to provide a

diagnostics and timely management of N, P, K fertilizers and to predict the crop yield.

1.4 Materials and methods

1.4.1 Field experiments The field evaluation was carried out in two production cycles (2013-2016) in two locations

of altiplano Cundiboyacense (Colombia): Facatativá (soils of high fertility saturated in

bases, Andic Eutrudepts) and Chocontá (desaturated acid soils of low fertility, Humic

Dystrudepts). These locations were representative for the region and presented high yield

potential and contrasting edaphoclimatic conditions (Table 1-1).

Page 42: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

20 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Table 1-1. Environmental and soil fertility characteristics in studied locations.

Environmental conditions†† / Location

Facatativá Chocontá Cycle 1 Cycle 2 Cycle 1 Cycle 2 (I-2013) (I-2015) (II-2013) (I-2016)

Altitude, m.a.s.l. 2597 2597 2780 2710

North Latitude 4°49´26.9” 4°49´39.9” 5°5´30.37” 5°6´23.94”

West Longitude 74°22´29.7” 74°22´49.3” 73°43´2.04” 73°40´48.53”

Annual rainfall, mm 951 850 1295 1058

Rainfall per crop cycle, mm 397 415 712 803

ET per crop cycle, mm 454 382 640 603

Max air temperature, ºC 18.1 18.5 16.2 16.5

Min air temperature, ºC 7.0 7.2 4.4 10.1

Average air temperature, ºC 12.7 12.5 10.6 12.9

Soil properties/classification†

Andic Eutrudepts

Andic Eutrudepts

Humic Dystrudepts

Humic Dystrudepts

Texture Loam Loam Clay Loam Clay Loam

Soil fertility††† High High Low Low

pH 6.4 5.8 5.5 5.3

Al, cmolc kg–1 0 < 0.1 0.1 0.54

Organic matter, g kg–1 166.7 127.1 67.7 85.9

CEC, cmolc kg–1 31.95 19.14 9.52 7.9

N, g kg–1 8.3 6.4 3.3 4.3

P, mg kg–1 39.64 70.16 18.18 41.5

K, cmolc kg–1 3.14 0.87 0.68 0.84

†Physical-chemical analysis of soil in arable layer (0-30 cm) was done according to IGAC (2006). Classification of soils followed USDA classification system (Soil Survey Staff, 2014). ††Environmental conditions data were taken and calculated from IDEAM (2017). †††Potential chemical fertility was evaluated in arable layer 0-30 cm of soil (Castro and Gómez, 2013). For each location and cycle, the experiment was established using incomplete factorial

design in divided subplots – a mixed model with four replicates in complete blocks at

random, where the main plot corresponded to cultivars (Capiro or Suprema) and the

subplots corresponded to four levels of fertilization (F0, F1, F2, or F3), where F0 were

unfertilized plots (initial conditions of soil fertility). The contribution of mineral nutrients

from fertilizer treatments to each location and in each cycle, the sources of fertilizers and

dose fractionation are presented in Table 1-2.

Page 43: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

1. Critical Dilution Curve for N, P, and K and Leaf Area Index in Potato (Solanum tuberosum L., Group Andigena)

21

Table 1-2. Doses of mineral nutrients in fertilizer treatments.

Location †Nutrient dose (kg ha–1)

Cycle 1 Cycle 2 F1 F2 F3 F1 F2 F3 1186 1582 1977 1450 1900 2375

Facatativá

N 128 171 214 123 164 205

P2O5 196 261 326 216 288 360

K2O 135 180 225 176 235 294

Mg 53 70 88 60 80 100

S 56 74 93 113 150 188

B 2.55 3.4 4.3 1.7 2.3 2.9

Zn 4.2 5.6 7.0 3.5 4.6 5.8

Mn 5.25 7.0 8.8 4.2 5.6 7.0

Total 1632 2175 2719 1500 2000 2500

Chocontá

N 144 192 240 143 191 239

P2O5 255 340 425 285 380 475

K2O 261 348 435 236 315 394

Mg 42 56 70 30 40 50

S 90 120 150 29 38 48

B 0.9 1.2 1.5 3.3 4.4 5.5

Zn 1.8 2.4 3.0 3.6 4.8 6.0

Mn 2.3 3.0 3.8 4.1 5.4 6.8

†Fertilization rates were recommended by soil-plant balance method (Castro and Gómez, 2013) and fractionated according to historical practices carried out in the areas, where high yields (> 50 Mg ha–1 tuber fresh weight) were obtained: N, 60% at planting and 40% at 45-50 dap; P, 70% at planting and 30% at 45-50 dap; K, 30% at planting and 70% at 45-50 dap. Granulated fertilizers were used: Diammonium phosphate (18-46-0) for N and P; K, KCl (0-0-60) and Potassium Sulfate (0-0-50); Ca, Calcium Nitrate (25% CaO); Mg, Kieserite; Nutricomplet® – Ingeplant Colombia (complex source of B, Zn, Cu, Mn and S, based on sulfates). Thirty two combinations of factors were evaluated using repeated measures design with

four factors: two growth cycles (I, II); two cultivars (Capiro, Suprema); two locations

(Facatativá and Chocontá) and four levels of balanced fertilization (Table 1-2), with an

intra-subject factor of time associated with five critical phenological stages of crop growth

(Valbuena et al., 2010): Stage I, 50-55 days after planting (dap) (formation of branches

and primary stems); Stage II, 70-75 dap (formation of secondary stems and initiation of

tuberization); Stage III, 90-100 dap (flowering, maximum tuberization, and start of tuber

filling); Stage IV, 120-125 (end of flowering, filling of tubers); Stage V, 150-160 dap

(senescence, maximum filling, and maturation of tubers). Planting was done in

Page 44: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

22 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

experimental units of 50 m2 (135 plants plot–1), with 1 m between the rows and 0.37 m

between the plants, a useful area of 36 m2 (three central rows) and a density of 27000

plants ha-1. Irrigation was applied following indications of weather stations (IDEAM, 2017)

and weed and phytosanitary controls were carried out according to the needs of the crop.

1.4.2 Analytical methods Four plants were selected per experimental unit and growth stage and a destructive

analysis of leaves, stems, and tubers was carried out. At each sampling moment, each

organ was weighed in fresh for each plant separately. For chemical analysis, all plant

parts were rinsed with deionized water, then the same organs from four plants were

mixed to receive a subsample of 200 g (fresh weight) that was dried in an oven at 70°C

for 72 h and the dry weight (DW) was measured (IGAC, 2006).

All organs were subjected to chemical analysis according to IGAC (2006). Total contents

of N, P and K in each organ were estimated by multiplying nutrient concentrations in the

organ (g 100 g–1 DW) by the amount of dry biomass accumulated per stage (Mg ha–1)

according to Abdallah et al. (2016). Leaf area (cm2) was determined in green plants using

a LI-COR leaf area meter (LI-3100, Lincoln, NE, USA) and LAI was estimated (Ata Ul

Karim et al., 2014). In both cycles and locations, the yield at Stage V was evaluated at

150-160 dap (senescence, maximum filling, and tuber maturation).

1.4.3 Data analysis Nutrient dilution curves for Nc, Pc and Kc in relation to total dry mass W (plant biomass

without roots and stolons) (Mg ha–1) were elaborated according to equations (1) and (2),

with the procedure adapted from Greenwood et al. (1990) for potato, Giletto and

Echeverría (2015) for Nc, Zamuner et al. (2016) for Pc; the previous models for Kc were

adjusted since no current references were found for this mineral element. On the other

hand, the procedure of Ata-Ul-Karim et al. (2014) was adapted to obtain CDC based on

LAI. The calibration of critical curves required identification of values by which the

evaluated nutrients might not limit crop growth (Abdallah et al., 2016; Wang et al., 2017).

For this reason, analysis of variance was done by cultivar, location, and crop cycle at

each sampling stage with respect to W and LAI and the total concentrations of nutrients

(N, P, and K) in plants (leaves, stems, and tubers). When significant differences were

found between fertilizer doses (Table 1-2), the data was selected with concentration of

nutrient that expressed maximum accumulation of DW or LAI using LSD test (P < 0.05).

Page 45: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

1. Critical Dilution Curve for N, P, and K and Leaf Area Index in Potato (Solanum tuberosum L., Group Andigena)

23

From the selected data, a non-linear regression was performed to adjust the data to

allometric curve. The coefficient of determination (R2) was calculated from the sum-

squared relation of error and total (adjusted coefficient), where 95% confidence intervals

were constructed for each of the estimators to evaluate differences of models among the

cultivars.

The nutrition index (NI) and relative yield (RY) that characterized nutritional status of

plants were calculated. For each cultivar, the NI for N (i.e. NNI) was obtained by dividing

the N concentration (%) in W by the Nc at each sampling date in different locations and

growth cycles (Bélanger et al., 2001; Giletto and Echeverría, 2012). The RY was

calculated as a ratio of the harvested yield (tuber fresh weight, Mg ha–1) obtained at each

fertilization rate to the highest yield (tuber fresh weight, Mg ha–1), multiplied by 100

(Marouani et al., 2014). The optimum dose of fertilizer (ODF, kg ha-1), which provides the

maximum yield (MY, Mg ha–1), was obtained from the first derivative of a quadratic

polynomial model between the fertilizer dose and yield for each cultivar, cycle, and

location according to Giletto and Echeverría (2015). This model defines the ODF as

follows: Y = a + bX + cX2, where Y corresponds to RY, X is fertilizer dose (kg ha-1), c is

quadratic coefficient, b is linear coefficient, and a is intercept; therefore, with dy/dx = 0,

the ODF is equal to c/2b (Giletto and Echeverría, 2015). In the present study, the RY was

expressed as a function of NI and the difference of the optimal fertilizer dose (dODF)

under a quadratic model was adapted from Giletto and Echeverría (2015).

For variables yield (tuber fresh weight, Mg ha–1) and LAI evaluated at 150-160 dap, a

mixed model was proposed assuming the replicates were random effects, while the main

effects, cultivation, location, crop cycle, and fertilizer levels were assumed as fixed effects

considering all the possible interactions between the main effects. After that analysis of

variance mean comparisons was made for each pair of combinations Cultivar x Location x

Cycle x Fertilization using LSD test (P < 0.05). For all statistical analyzes described, SAS

9.4 software was used (SAS Institute, 2014).

Page 46: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

24 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

1.5 Results and discussion

1.5.1 Critical Dilution Curves for Nc, Pc, and Kc

The critical curves for Nc, Pc, and Kc in both cultivars followed a negative exponential

model in relation to W (Figure 1-1) and LAI (Figure 1-2). According to the curves, the

concentration of mineral nutrients decreased during expansive growth (AF) and growth in

mass (W); the total biomass increased more at stages of tuber filling because of a higher

accumulation of assimilates in sink organs complying with a "dilution law" proposed by

Justes et al. (1994). This model in cultivars of Group Andigena was similar to the ones

described in Group Chilotanum by Greenwood et al. (1990) for N, Zamuner et al. (2016)

for P, and Cogo et al. (2006) for K based on W and by Ata-Ul-Karim et al. (2014) and

Wang et al. (2017) for C3 plants based on LAI.

For Nc, no significant differences were observed between the cultivars in coefficients a and b based on W, with coefficient a ranging from 6.23 to 6.74 and dilution coefficient b

ranging from -0.3197 to -0.327 for cvs. Capiro and Suprema, respectively (Table 1-3);

these coefficients were higher than those reported in Group Chilotanum by Greenwood et al. (1990); Andriolo et al. (2006); Giletto and Echeverría (2012); Giletto and Echeverría

(2015) in cv. Gem Russet; Marouani et al. (2014) in cv. Bellini and by Abdallah et al.

(2016) in cv. Bintje. The coefficients b obtained in the present study were inferior to those

obtained by Giletto and Echeverría (2015) in cv. Markies (-0.250) and similar to ones

obtained in cv. Spunta (-0.310) by Marouani et al. (2014) (Table 1-3). All references used

for the comparison (Table 1-3) referred to total dry biomass in the same terms as the

present study employing W as a sum of above-ground and tuber matter.

Page 47: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

1. Critical Dilution Curve for N, P, and K and Leaf Area Index in Potato (Solanum tuberosum L., Group Andigena)

25

Figure 1-1. Critical dilution curves for N (A), P (B), and K (C) in cvs. Capiro (z) and Suprema (�) in two production cycles (2013-2016) under non-limiting conditions of fertilization in soils of contrasting fertility. Means consisted of n = 13 data per phenological stage and cultivar. Coefficients a and b of potential allometric function were based on total dry biomass W (equation 1).

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30

N c

once

ntra

tion

Nc

(%) Capiro

Suprema

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30

P co

ncen

trat

ion

Pc

(%)

0

2

4

6

8

10

12

0 5 10 15 20 25 30

K co

ncen

trat

ion

Kc (%

)

Total dry biomass (Mg ha-1)

(a)

(b)

(c)

Page 48: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

26 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Figure 1-2. Critical dilution curves for N (A), P (B) and K (C) based on LAI in cvs. Capiro

(z) and Suprema (�) in two production cycles (2013-2016) under non-limiting conditions

of fertilization in soils of contrasting fertility. n = 65 data per cultivar. Coefficients a and b

of allometric function were based on LAI (equation 2).

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

N c

once

ntra

tion

Nc

(%)

Capiro

Suprema

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

P co

ncen

trat

ion

Pc (%

)

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

K co

ncen

trat

ion

Kc (%

)

Leaf area index (LAI)

(a)

(b)

(c)

Page 49: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

1. Critical Dilution Curve for N, P, and K and Leaf Area Index in Potato (Solanum tuberosum L., Group Andigena)

27

Table 1-3. Allometric relationships and critical dilution coefficients for N, P, and K based on total dry biomass W (above-ground organs and tubers) for cvs. Capiro and Suprema as compared with cultivars of Group Chilotanum. The data for cvs. Capiro and Suprema were obtained under non-limiting conditions of fertilization in soils of contrasting fertility.

Nutrient Cultivar Dilution curve Range W

(Mg ha–1) R2 Interval of confidence a 95%

Interval of confidence -b 95%

SEa SEb

Nc = aW–b

N

Capiro 6.23 W –0.3197 1-22 0.93 5.55-6.90ns 0.26-0.38ns 0.3375 0.0318

Suprema 6.74 W –0.327 1-24 0.91 5.83-7.65ns 0.24-0.39ns 0.4578 0.0377

Innovator1 5.30 W –0.420 1-14 0.92 - - - -

Gem Russet2 5.32 W –0.580 1-19 0.76 - - - -

Markies2 5.53 W –0.250 1-24 0.89 - - - -

Bintje3 5.37 W –0.45 1-12.7 0.86 - - - -

cv. Group

Chilotanum4 5.36 W –0.460 1-15 - - - - -

Spunta5 3.25 W –0.310 - 0.99 - - - -

Bellini5 2.99 W –0.380 - 0.94 - - - -

Asterix6 3.60 W –0.370 1-13 0.88 - - - -

P

Capiro 0.523 W –0.198 1-22 0.95 0.47-0.57ns 0.15-0.25ns 0.0256 0.0252

Suprema 0.536 W –0.186 1-24 0.95 0.45-0.63ns 0.11-0.26ns 0.0444 0.0392

Innovator7 0.392 W –0.304 1-16 0.91 - - - -

K

Capiro 9.02 W –0.269 1-22 0.91 7.78-10.3** 0.19-0.34** 0.6205 0.0400

Suprema 6.585 W –0.1353 1-24 0.92 5.38-7.76** 0.05-0.18** 0.600 0.0399

Asterix8 5.54 W –0.317 1-7 0.90 - - - -

W, total dry biomass; a and b, coefficients of critical dilution curve (NC) for N, P, and K under non-limiting conditions of fertilization. SE, standard error of means of coefficients. **Significant differences (P<0.05) of coefficients a and b between the studied cultivars; ns, not significant. 1Giletto and Echeverría (2012); 2Giletto and Echeverría (2015); 3Abdallah et al. (2016); 4Greenwood et al. (1990); 5Marouani et al. (2014); 6Andriolo et al. (2006); 7Zamunner et al. (2016); 8Cogo et al. (2006). As for Pc for cvs. Capiro and Suprema, coefficient a ranged within 0.523 and 0.536 and

dilution coefficient b varied from -0.198 to -0.186, respectively; the coefficient b did not

present differences among the cultivars being higher in the cultivars of Group Andigena

than those reported for cv. Innovator by Zamuner et al. (2016) (Figure 1-1B and Table

1-3). Similar ranges for Pc were reported in wheat by Bélanger et al. (2015) and Raut et

al. (2017). The highest coefficients a for Nc and Pc in the studied cultivars could be

Page 50: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

28 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

associated with higher requirement of N and P at the initial stages of growth in this crop,

such as required for stolon branching and differentiation of tubers that characterize these

cultivars corroborating data by Santos et al. (2010).

The highest coefficients b for Pc could indicate a lower efficiency in assimilation and

translocation of N and P in cvs. Capiro and Suprema at tuber filling due to their higher

production of W up to 30 to 35 Mg ha–1 as compared to Group Chilotanum with W of 24

Mg ha–1 according to Giletto and Echeverría (2015). The low efficiency of Pc in cultivars of

Group Andigena could be associated with fixation of P in soils of Andean region that

requires application of higher doses of P2O5 (220 to 350 kg ha–1) with respect to

applications of 50-130 kg ha–1 P2O5 in cultivars of Group Chilotanum in temperate regions

of the world (Zamuner et al., 2016).

The coefficients a and b for Nc and Pc did not differ among the cultivars, possibly

because of the accumulation of these nutrients mostly in the aerial part with low

dependency on tuber growth. These results suggest a higher demand for N and P in

cultivars of Group Andigena as compared to Group Chilotanum to accumulate the same

total biomass. This was due to the higher dry weight of total biomass W that reached cvs.

Capiro (22 Mg ha–1) and Suprema (24 Mg ha–1) for being plants of average to high height

as compared to smaller plants with lesser dry biomass in Group Chilotanum (Table 1-3).

This favors higher requirements for N and P in cvs. Capiro and Suprema necessary for

continuous formation of organs (leaves, stems, and tubers), since these cultivars have a

longer vegetative period and are plants of greater size under conditions of the cold

tropics.

In contrast, intra-specific variability with significant differences between the cultivars was

observed for Kc in relation to coefficient a with respect to W (Table 1-3) and LAI (Table

1-4); a higher K requirement with 27% increase in K concentration was obtained in cv.

Capiro than in cv. Suprema at initial stages of growth (Stage I, formation of branches and

primary stems). At this stage Kc in cv. Capiro ranged between 7.5 and 10% K and

coefficient a was 9.02 for W and 8.84 for LAI, while cv. Suprema presented lesser Kc of 5-

7.4% and coefficients a of 6.58 (for W) and of 5.59 (for LAI); the lower values of Kc (5.56)

were reported for Group Chilotanum by Cogo et al. (2006) in cv. Asterix under

greenhouse conditions. The previous findings corroborate existence of genotypic

differences between cultivars of Group Andigena in demand for K despite similar

Page 51: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

1. Critical Dilution Curve for N, P, and K and Leaf Area Index in Potato (Solanum tuberosum L., Group Andigena)

29

accumulation of dry biomass (Figure 1-1 and Figure 1-2 C). This was due to the lower

coefficient a for Kc in cv. Suprema at early stages of growth, which was related to higher

vegetative growth with LAI of 0.9-3.1 as compared to cv. Capiro with LAI of 0.5-2.1 (Table

1-4), thus, favoring “dilution” of K in cv. Suprema since this mineral element is not part of

the organic compounds in the plant cells. The phenomenon of dilution by expansive

growth was also explained by Lemair et al. (2007) and Chakwizira et al. (2016).

Table 1-4. Allometric relations and critical dilution coefficients for N, P, and K based on leaf area index (LAI) for cvs. Capiro and Suprema under non-limiting conditions of fertilization in soils of contrasting fertility.

Nutrient Cultivar Dilution curve Range

of LAI R2

Interval of confidence (a) 95%

Interval of confidence (-b) 95%

SEa SEb NC = aLAI–b

N Capiro 4.33 LAI –0.235 0.5-6.3 0.84 3.57-5.09ns 0.08-0.39ns 0.3808 0.0762

Suprema 4.90 LAI –0.250 0.9-7.1 0.83 3.77-6.02ns 0.06-0.44ns 0.5618 0.0930

P Capiro 0.39 LAI –0.082 0.5-6.3 0.91 0.33-0.45ns 0.04-0.21ns 0.0293 0.0618

Suprema 0.41 LAI –0.090 0.9-7.1 0.88 0.31-0.51ns 0.08-0.26ns 0.0490 0.0861

K Capiro 8.84 LAI –0.437 0.5-6.3 0.89 7.41-10.3** 0.28-0.59ns 0.7132 0.0768

Suprema 5.95 LAI –0.149 0.9-7.1 0.91 4.79-7.10** 0.05-0.30ns 0.5787 0.0729

SE, standard error of coefficients; IC, Interval of confidence 95%. ** Significant differences p <0.05 of coefficients a and b between the study cultivars; ns, non-significant differences. On the other hand, for Kc in cv. Capiro, a lower dilution coefficient b was observed at both

allometric ratios with significant differences (P < 0.05) as compared to cv. Suprema

(Table 1-3 and Table 1-4). The Kc concentrations at maturity stage were equal to 3.5% in

cv. Capiro and 4.2% in cv. Suprema with 30 Mg ha–1 W obtained (Figure 1-1C), which

may explain a more efficient use of K in cv. Capiro since it presented a better

translocation than cv. Suprema at both locations and cycles with higher production of

tubers and biomass per kg of K uptake (data not shown). Regarding dilution coefficient b

Cogo et al. (2006) obtained the lower values in a greenhouse study (-0.317). This

research corroborated the existence of a "dilution phenomenon” for K considering that this

element does not enter into a structural pool of the cells but locates in the metabolic pool

associated with enzymatic reactions of photosynthesis, respiration, and translocation of

assimilates for tuber growth similar to that reported by Zelelew et al. (2016).

Page 52: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

30 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Comparing allometric functions and coefficients a and b obtained from the dry biomass

(Table 1-3) and LAI (Table 1-4) for Nc, Pc, and Kc, the present study showed that the

model based on total dry biomass was more robust in both cultivars with higher

determination coefficient for Nc, Pc, and Kc and with significant differences among the

confidence intervals (P < 0.05) of coefficients for Nc and Pc. This was because LAI was

drastically reduced at filling and maturation stage with average LAI up to 2.8 in cv. Capiro

and up to 3.8 in cv. Suprema (Figure 1-2) with loss up to 60% of leaf area starting from

flowering stage, favoring a rapid translocation of photosynthetic assimilates to the tubers,

which affects loss of turgor, specific leaf weight and, in some cases, causes leaf

abscission due to senescence, a similar phenomenon reported by Santos et al. (2010) for

cvs. Capiro and Esmeralda, and by Chakwizira et al. (2016) for crops with storage roots.

Contrary to that was reported by Zhao et al. (2014) and Ata-Ul-Karim et al. (2014) for

cereal crops, where the LAI model for Nc and Pc could be extrapolated with the function

obtained by W, probably, due to minor changes in LAI at maturity stage and minor losses

in leaf weight.

A high density of plants could increase concentrations of mineral nutrients in tissues with

higher coefficients a because it results in smaller plants (Bélanger et al., 2001; Giletto and

Echeverría 2015), but this was not the case of cvs. Capiro and Suprema (27000 plants

ha–1) with coefficients higher than 6.23-6.74 as compared to ones reported by Bélanger et

al. (2001) in cv. Shepody (44000 plants ha–1) with coefficient a around 5.36. For the

studied cultivars, a “dilution phenomenon” was more affected by the rapid growth of

tubers and translocation of assimilates to the tubers under non-limiting conditions of

fertilization and water supply than by the effects of leaf overlap, shading, or high crop

density coinciding with that reported by Justes et al. (1994) and Bélanger et al. (2001).

1.5.2 Nutrition index and optimal fertilization dose The relationship between NI, dODF, and RY (%) followed a significant quadratic model for

cv. Capiro with most points located in deficiency or adjustment zone (NI between 0.25-0.8

and dODF < 0) and with RY between 30 and 80% in sufficiency zone (Figure 1-3), where

Nc was 2.3-2.5% between 125 to 150 dap for RY of 90-100%. The critical curves for Nc,

Pc, and Kc and NI define nutrient status of the crop, where areas of deficiency and

adjustment, sufficiency, luxury consumption or excesses could be observed as reported by Gómez et al. (2017b).

Page 53: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

1. Critical Dilution Curve for N, P, and K and Leaf Area Index in Potato (Solanum tuberosum L., Group Andigena)

31

Figure 1-3. Relationship between relative yield (RY) and nitrogen nutrition index (NNI) (A) in cvs. Capiro and Suprema at tuber filling (125-150 dap) and differential optimum fertilizer dose (dODF) (150-160 dap) (B) for cvs. Capiro (z) and Suprema (�) in two production cycles in soils contrasting in fertility. ***P <0.001; *P < 0.05; ns, not significant.

In contrast, cv. Suprema presented a smaller adjustment in quadratic model with more

data located in sufficiency zone (NI 0.5-0.8), luxury consumption (NI 0.8-1.1) and areas of

excess (NI 1.2-1.5; dODF >0; RY starting from 75%), especially in soils with high N

availability (Andic Eutrudepts, Facatativá), where no response to fertilization was

observed with maximum yields lower than their production potential (Table 1-5) and to the

Capiro: If NNI<1.0 than y = -0.3734x2 + 1.1446x + 0.1328 If NNI>1.0 than RY = 92% R² = 0.73***

Suprema: If NNI<1.0 than y = -0.4862x2 + 0.802x + 0.6356 If NNI >1.0 than RY= 94%: R² = 0.36 ns

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00 0.50 1.00 1.50 2.00

Rel

ativ

e Yi

eld

NNI

(a)

(b)

Suprema: y = -1E-07x2 + 6E-07x + 0.9781 R² = 0.6694**; If dOFR = 0 than RY=97.2%

Capiro: y = -4E-07x2 + 2E-05x + 1.0108 R² = 0.6547** If dOFR = 0 than RY=95.6%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-1500.0 -500.0 500.0 1500.0

Rel

ativ

e Yi

eld

dODF (kg ha-1)

Page 54: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

32 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

detriment of yield where luxury N consumption was found, limiting tuberization processes

and tuber growth. The similar data was evaluated by Gómez et al. (2017 b) for NO3- in

sap for ssp. andigena, and corroborated by Ruza et al. (2013) for ssp. tuberosum. The NI

range between 0.25 and 1.5 for the studied cultivars was lower than that reported by

Gilleto and Echeverria (2015) (NI, 0.32-1.91) and similar to those reported by Abdallah et al. (2016) (NI, 0.39-1.53) for ssp. tuberosum.

Table 1-5. Quadratic model for yield and balanced dose of fertilizer; c: quadratic coefficient; b: linear coefficient; a: intercept, R2: coefficient of determination. MY – maximum yield; ODF – optimal dose of fertilizer to achieve maximum yields.

Cultivar Location - Cycle c b a R2 MY (Mg ha–1)

ODF (kg ha–1)

Capiro

Chocontá - I -0.0000046 0.021 35.6448 0.94*** 60.6 2293

Chocontá - II -0.0000078 0.031 34.1819 0.86*** 67.7 1971

Facatativa - I -0.0000300 0.059 50.9718 0.96*** 82.8 975

Facatativa - II -0.0000050 0.016 72.4079 0.98*** 87.0 1657

Suprema

Chocontá - I -0.0000100 0.029 62.014 0.89*** 83.4 1430

Chocontá - II -0.0000094 0.026 47.0487 0.93*** 66.3 1377

Facatativa - I -0.0000002 0.009 34.4964 ns 53.6 -

Facatativa - II 0.0000002 0.002 32.6206 ns 40.0 -

The phosphorus nutrition index and potassium nutrition index were not included because

a quadratic coefficient was positive or not significant, since the data were located mainly

in areas of sufficiency and luxury consumption, which did not allow the inflection of the

curve. It could be recommended to adjust nutrition indices of these elements with lower

doses of P and K and with less availability of these elements in soils of the Colombian

Andean region.

Regarding the optimal dose of fertilizer (ODF), a marginal response to fertilization in soil

fertility was observed for cv. Suprema without adjustment of model in two cycles with very

variable responses, where luxury consumption was proved with NI > 1 and dODF > 0.

However, in low fertility soils and at higher altitudes in Chocontá, the response was more

favorable with significance in quadratic model (Table 1-5), where ODF was established

between 1377 and 1430 kg for a maximum yield (MY) of 66.3 and 83.3 Mg ha–1 as

compared to ODF between 1971-2293 kg ha–1 in cv. Capiro that reached MY of 60.6 to

67.7 Mg ha–1 (Figure 1-3, Table 1-5).

Page 55: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

1. Critical Dilution Curve for N, P, and K and Leaf Area Index in Potato (Solanum tuberosum L., Group Andigena)

33

The yield potential of cv. Suprema was more related to edaphoclimatic supply as

evidenced by the significance of location x cycle interaction, while, in cv. Capiro, it

depended more on the interaction location x fertilization, with higher expression of yield

potential in soils of high fertility (Facatativa) with ODF between 975 and 1675 kg ha–1

reaching MY of 82 to 87 Mg ha–1 (Table 1-5 and Table 1-6). It is known that fertilization

must be site-specific and cultivar-specific, such as that cv. Capiro maximum yields could

be obtained with doses 0.1-0.15 kg m–2 in high fertility soils (Facatativá) and 0.2 to 0.22

kg m–2 in low fertility soils (Chocontá), while cv. Suprema in soils of lower fertility requires

0.135-0.145 kg m–2, that is 30% less fertilization than cv. Capiro, these ranges were lower

than those reported by Gómez and Torres (2012) (0.2 and 0.3 kg fertilizer m–2).

Table 1-6. Average yield of tubers (Mg ha–1) harvested at 150-160 dap for cvs. Capiro and Suprema and statistical significance of mean square of factors and their interactions.

Factor Tuber fresh weight (Mg ha–1) Cycle Capiro (A) Suprema (B)

I 60.56 (b) 69.31 (a)

II 78.76 (a) 47.55 (b)

Location

Chocontá 59.17 (b) 67.26 (a)

Facatativá 80.16 (a) 49.60 (b)

Fertilization

F0 52.08 (b) 65.25 (a)

F1 78.77 (a) 59.35 (a)

F2 75.98 (a) 56.65 (a)

F3 71.82 (a) 52.47 (a)

Interactions Mean squares

Cycle 2391.1*** 4392.8**

Location 7330.9*** 4934.4***

Fertilization 1993.2*** 331.5 ns

Cycle x Location 1664.7*** 1135**

Cycle x Fertilization 144.9 ns 156.9 ns

Location x Fertilization 321.4*** 241.9 ns

Cycle x Location x Fertilization 144.4 ns 31.27 ns

Error 9119.0 9120

Similar letters indicate non-significant statistical differences per cultivar (lowercase) and between cultivar (capital letters) according to the LSD test, P < 0.05. **Significant P < 0.05; ***highly significant P<0.001.

Page 56: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

34 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

1.6 Conclusions The allometric relationships by dilution curves for Nc, Pc, and Kc were quantified for the

first time in cvs. Capiro and Suprema of Group Andigena. The Nc, Pc, and Kc of best

adjustment for cvs. Capiro and Suprema were those obtained from total dry biomass W

with respect to LAI due to the higher variation in leaf area, a product of rapid translocation

of photoassimilates to the tubers. The studied cultivars only had differences in critical

dilution curve for Kc, where cv. Capiro presented a higher requirement Kc at initial stages

of growth than cv. Suprema demonstrating, with higher coefficient a and lower coefficient

b, that cv. Capiro was more efficient in use of K to obtain higher dry biomass. For the first

time, critical dilution curves for Nc, Pc, and Kc were obtained for potato Group Andigena

making it one of the first references of Kc for potato. The critical dilution curves were

adjusted to the model proposed for Group Chilotanum but with less dilution in coefficients

a and b for N and P, which shows a higher requirement of these elements with lower

nutrient efficiency. The highest adjustment of NI in the studied areas showed that N was

the most limiting element for obtaining high yields, mainly in cv. Capiro. In addition, cv.

Suprema was more prone to luxury uptake and doses in soils of low fertility can be 70% of

the optimal dose for cv. Capiro. Determining nutritional status of N, P, and K at early

growth stages from dilution curves allows providing timely adjustments in management of

these elements at tuberization and filling stages and, thus, potentiates the yields.

Acknowledgements

The authors express their gratitude to INGEPLANT SAS, FEDEPAPA, and Universidad

Nacional de Colombia-Bogotá for the funding and support in laboratory analysis. The

authors acknowledge the help of research assistants Mrs. Paola Torres, Mrs. Liliana

Arevalo, Mr. Elías Silva, and Mrs. Andrea Barragán for field support. We also thank the

growers Mr. Walter Guzmán – Biogenética, Mr. Yovanny Pulido, and Mr. Ricardo Rojas

for the logistical contribution to the development of this research.

1.7 Bibliografía Abdallah, F.B., M. Olivier, J.P. Goffart, and O. Minet. 2016. Establishing the nitrogen

dilution curve for potato cultivar Bintje in Belgium. Potato Res. 59:241–258.

doi:10.1007/s11540-016-9331-y

Page 57: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

1. Critical Dilution Curve for N, P, and K and Leaf Area Index in Potato (Solanum tuberosum L., Group Andigena)

35

Andriolo, J.L., D.A. Bisognin, A.L. De Paula, F.L. Matielo De Paula, R. Dos Santos, and

B.G. Teixeira. 2006. Curva crítica de diluição de nitrogênio da cultivar Asterix de batata.

Pesquisa Agropec. Brasil. 41:1179–1184.

Ata-Ul-Karim, S., T. Zhu, Y.X. Yao, and W. Cao. 2014. Determination of critical nitrogen

dilution curve based on leaf area index in rice. Field Crops Res. 167:76–85.

doi:10.1016/j.fcr.2014.07.010

Bélanger, G., J.R. Walsh, J.E. Richards, P.H. Milburn, and N. Ziadi. 2001. Critical nitrogen

curve and nitrogen nutrition index for potato in Eastern Canada. Am. J. Potato Res.

78:355–364. doi:10.1007/BF02884344

Bélanger, G., N. Ziadi, D. Pageau, C. Grant, M. Högnäsbacka, P. Virkajärvi, Z. Hu, J. Lu,

J. Lafond, and J. Nyiraneza. 2015. A model of critical phosphorus concentration in the

shoot biomass of wheat. Agron J. 107:963–970. doi:10.2134/agronj14.0451

Castro, H., and M.I. Gómez. 2013. Fertilidad y fertilizantes. In: O.H. Burbano and M.F.

Silva, editors, Ciencia del suelo – principios básicos. Sociedad Colombiana de la Ciencia

del Suelo, Bogotá. p. 231–304.

Chakwizira, E., J.M. de Ruiter, S. Maley, and E. Teixeira. 2016. Evaluating the critical

nitrogen dilution curve for storage root crop. Field Crops Res. 199:21–30.

doi:10.1016/j.fcr.2016.09.012

Cogo, C.M., J.L. Andriolo, D.A. Bisognin, R. dos Santos Godoi, O.C. Bortolotto, and G.L.

da Luz. 2006. Relação potássio-nitrogênio para o diagnóstico e manejo nutricional da

cultura da batata. Pesquisa Agropec. Brasil. 41:1781–1786.

Fernandes, A., and R. Soratto. 2016. Phosphorus fertilizer rate for fresh market potato

cultivars grown in tropical soil with low phosphorus availability. Am. J. Potato Res.

93:404–414. doi:10.1007/s12230-016-9515-7

Giletto, C.M., and H.E. Echeverría. 2012. Critical nitrogen dilution curve for processing

potato in Argentinean humid pampas. Am. J. Potato Res. 89:102–110.

doi:10.1007/s12230-011-9226-z

Giletto, C.M., and H.E. Echeverría. 2015. Critical nitrogen dilution curve in processing

potato cultivars. Am. J. Plant Sci. 6:3144–3156. doi:10.4236/ajps.2015.619306

Page 58: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

36 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Gómez, M.I., and P. Torres. 2012. Absorción, extracción y manejo nutricional del cultivo

de papa. Rev. Papa Fedepapa 26:20–25.

Gómez, M.I., S. Magnitskiy, L.E. Rodríguez, and E. Darghan. 2017a. Accumulation of N,

P, and K in the tubers of potato (Solanum tuberosum L. group Andigena) under

contrasting soils of the Andean region of Colombia. Agron. Colomb. 35:59–67.

doi:10.15446/agron.colomb.v35n1.61068

Gómez, M.I., S. Magnitskiy, and L.E. Rodríguez. 2017b. Diagnóstico de K+ y NO3- en

savia para determinar el estado nutricional en papa (Solanum tuberosum L. subsp.

andigena). Revista Colomb. Cienc. Hortíc. 11:133–142.

doi:10.17584/rcch.2017v11i1.6132

Greenwood, D.J., G. Lemaire, G. Gosse, P. Cruz, A. Draycott, and J.J. Neeteson. 1990.

Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann. Bot. 66:425–

436. doi:10.1093/oxfordjournals.aob.a088044

Hardigan, M.A., P.F.E. Laimbeer, L. Newton, E. Crisovan, J.P. Hamilton, B. Vaillancourt,

K. Wiegert-Rininger, J.C. Wood, D.S. Douches, E.M. Farré, R.E. Veilleux, and C.R. Buell.

2017. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history

and targets of domestication in the cultivated potato. PNAS 114:E9999–E10008.

doi:10.1073/pnas.1714380114

IDEAM. 2017. Reportes meteorológicos y climáticos estación Villa Inés (Facatativa) y

Silos (Chocontá) 2012-2016. Instituto de Hidrología, Meteorología y Estudios

Ambientales, Bogotá, Colombia. http://www.ideam.gov.co/ (accessed 18 May 2018).

IGAC. 2006. Métodos analíticos de laboratorios de suelo y tejidos. Instituto Geográfico

Agustín Codazzi, Bogotá.

Justes, E., B. Mary, J.M. Meynard, J.M. Machet, and L. Thelier-Huché. 1994.

Determination of a critical nitrogen dilution curve for winter wheat crops. Ann. Bot.

74:397–407. doi:10.1006/anbo.1994.1133

Kumar, C.V., S.S. Prakash, G.M. Prashantha, M.B.M. Kumar, S. Lohith, and T.

Chikkaramappa. 2013. Dry matter production and yield of potato as influenced by different

sources and time of fertilizer application and soil chemical properties under rainfed

conditions. Res. J. Agric. Sci. 4:155–159.

Page 59: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

1. Critical Dilution Curve for N, P, and K and Leaf Area Index in Potato (Solanum tuberosum L., Group Andigena)

37

Lemaire, G., E. Oosterom, J. Sheehy, M.H. Jeuffroy, A. Massignam, and L. Rossato.

2007. Is crop N demand more closely related to dry matter accumulation or leaf area

expansion during vegetative growth? Field Crops Res. 100:91–106.

doi:10.1016/j.fcr.2006.05.009

Marouani, A., O. Behi, A. Sahli, and J. Ben. 2014. Critical nitrogen curve for two potato

cultivars under semi-arid conditions. In: Fifth International Scientific Agricultural

Symposium Agrosym 2014. October 23-26, 2014. University of East Sarajevo, Jahorina.

p. 332–339.

Raut, P. 2016. Determining a critical phosphorus dilution curve for spring wheat. MSc

thesis. Norwegian University of Life Sciences, Ås. doi:10.13140/RG.2.2.24469.73443

Ruža, A., I. Skrabule, and A. Vaivode. 2013. Influence of nitrogen on potato productivity

and nutrient use efficiency. Proc. Latvian Acad. Sci. 67:247–253. doi:10.2478/prolas-

2013-0043

Santos, M., M. Segura, and C. Ñústez. 2010. Análisis de crecimiento y relación fuente-

demanda de cuatro variedades de papa (Solanum tuberosum L.) en el municipio de

Zipaquirá (Cundinamarca, Colombia). Rev. Fac. Nac. Agron. Medellín 63:5253–5266.

Soil Survey Staff. 2014. Keys to soil taxonomy. 12th ed. USDA-Natural Resources

Conservation Service, Washington, DC.

Valbuena, R., G. Roveda, A. Bolaños, J. Zapata, C. Medina, P. Almanza, and D. Porras.

2010. Escalas fenológicas de las variedades de papa Parda Pastusa, Diacol Capiro y

Criolla “Yema de Huevo” en las zonas productoras de Cundinamarca, Boyacá, Nariño y

Antioquia. Corpoica, Produmedios, Bogotá.

Wang, X., T. Ye, S. Ata-Ul-Karim, Y. Zhu, L. Liu, W. Cao, and L. Tang. 2017.

Development of a critical nitrogen dilution curve based on leaf area duration in wheat.

Front. Plant Sci. 8:1517-1529. doi:10.3389/fpls.2017.01517

Zamuner, E.C., J. Lloveras, and H.E. Echeverría. 2016. Use of a critical phosphorus

dilution curve to improve potato crop nutritional management. Am. J. Potato Res. 93:392–

403. doi:10.1007/s12230-016-9514-8

Page 60: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

38 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Zelelew, D.Z., S. Lal, T.T. Kidane, and B.M. Ghebreslassie. 2016. Effect of potassium

levels on growth and productivity of potato varieties. Am. J. Plant Sci. 7:1629–1638.

doi:10.4236/ajps.2016.712154

Zhao, B., X. Yao, Y. Tian, X. Liu, S.T. Ata-Ul-Karim, J. Ni, W. Cao, and Y. Zhu. 2014. New

critical nitrogen curve based on leaf area index for winter wheat. Agron. J. 106:379–389.

doi:10.2134/agronj2013.0213

Page 61: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

2. Uptake and partition of N, P and K in potato (Solanum tuberosum L. Group. Andigena)1

Consumo y partición de N, P y K en el cultivo de papa (Solanum tuberosum L. Grupo Andigena)

Manuel Iván Gómez, Stanislav Magnitskiy, Luis Ernesto Rodríguez

2.1 Abstract Uptake curves for nitrogen (Nuptake), phosphorus (Puptake), and potassium (Kuptake) obtained

from total dry biomass (W) together with analysis of nutrient allocation into the tubers

derived from nutrient harvest index (NHI, PHI, KHI) are important for prognosis of potato

growth in the Andean region. These indices permit a more specific management of

mineral nutrients according to soil type and plant genotype obtaining maximum yields at

adequate fertilizer doses and avoiding economic and environmental impacts on potato

production systems. This research established critical uptake curves (Nuptake, Puptake, and

Kuptake) and translocation curves for N, P, and K using allometric relationships in potato

cultivars Diacol Capiro and Pastusa Suprema (Solanum tuberosum, Group Andigena)

cultivated on soils of high and low fertility. The significant differences were observed in the

genotype x location interaction with the best fit of uptake model obtained on low fertility

soils for Suprema (Nuptake = 68.13W0.504, Puptake = 6.724W0.779, and Kuptake = 63.93W0.776),

where this cultivar expressed the highest productive potential and high NHI (0.55-0.69),

PHI (0.75-0.8) and KHI (0.62). Capiro was better adapted to the changes in soil fertility

than Suprema, since the models for nutrient uptake in Capiro were significant for both

soils. The efficiency of N, P, and K translocation into the tubers followed a positive

logarithmic model and revealed the differences in favor of Capiro in efficiency of 1 Sometido en Field Crops Research Journal

Page 62: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

40 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

partitioning of assimilates and N, P, and K. The uptake of mineral nutrients was identified

per cultivar and per phenological stage, with up to 33% more P extracted by tubers in

Capiro than in Suprema and comparable extraction of N and K by tubers in both cultivars.

The uptake of these elements was differentiated by phenological stage permitting a more

precise adjustment of fertilization plans.

Key words: harvest index, efficiency of translocation, uptake curves, macronutrient

extraction

2.2 Resumen Las curvas críticas de consumo de nitrógeno (Nr), fósforo (Pr) y potasio (Kr)

determinadas a partir de la biomasa seca total (W) y el análisis de la partición nutricional

en el tubérculo y el índice de cosecha de nutrientes (ICN, ICP, ICK) son importantes para

cultivares de importancia económica del país, porque permite evaluar las diferencias

entre genotipos y se puede realizar un manejo más específico de nutrientes por tipo de

suelo, cultivar y fenología en busca de disminuir la brecha tecnológica para alcanzar

máximos rendimientos con un uso adecuado de los fertilizantes y así evitar impactos

económicos y ambientales en sistemas productivos de papa. El objetivo de este estudio

fue determinar curvas de consumo de Nr, Pr y Kr (kg ha-1) y curvas de traslocación de

nutrientes (ENt, EPt y EKt) mediante relaciones alométricas durante el crecimiento en

dos ciclos de cultivo en cvs. Diacol Capiro (Capiro) y Pastusa Suprema (Suprema) bajo

suelos alta y baja fertilidad. Se observó una significancia en la interacción genotipo x

localidad con el mejor ajuste del modelo de consumo en suelos de baja fertilidad para

Suprema (Nr = 68,13 W0,504, Pr = 6,72 W0,779 y Kr = 63,93 W0,776) donde expresa el mayor

potencial productivo y altos ICN (0,55-0,69), ICP (0,75-0,8) e ICK (0,62), mientras Capiro

muestra una mayor adaptación en ambos tipos de suelos porque los modelos de

consumo fueron significativos con mejor significancia para Nr = 56,38 W0,58 y para Pr =

4,26 W0,786 en suelos de menor fertilidad y para Kr = 79,52 W0,79 en suelos fértiles. La

eficiencia de traslocación sigue un modelo logarítmico positivo y evidencia diferencias a

favor de Capiro en la partición de asimilados y nutrientes con mejor eficiencia en el uso

de N, P y K por su hábito determinado. Se estableció requerimientos nutricionales por

cultivar y por etapa fenológica con un 35% más de extracción nutricional de P en Capiro

que en Suprema y similares de N y K, con diferenciación en consumo por fenología lo

cual permite realizar ajuste más precisos en planes de fertilización.

Page 63: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

2. Uptake and partition of N, P and K in potato (Solanum tuberosum L. Group. Andigena)

41

Palabras clave: índice de cosecha de N, P y K, eficiencia de translocación, curvas de

consumo, extracción nutricional.

2.3 Introducción The distribution of assimilates among sink-source organs determines crop yield (Gifford

and Evans, 1981) and, in potato (Solanum tuberosum L.) production, is strongly regulated

by water and nutrient availability (Schilling et al., 2016). The relationships between

accumulation of nutrients in different organs with respect to increment of plant dry mass

(Zhao et al., 2017) reflect requirements of mineral elements that plants need for adequate

growth and development. Although uptake of mineral nutrients with respect to

accumulation of biomass in potato is genetically determined (Bélanger et al., 2001;

Sandaña and Kalazich, 2015), it could be modified by environmental factors (Ata-Ul-Karim

et al., 2014), fertilizer dose (Swain et al., 2014), and initial soil fertility (Gómez et al.,

2017).

The critical curve of nutrient uptake Nuptake is important to predict the amount of a mineral

nutrient needed to produce a given biomass (Andriolo et al., 2006) according to crop

production potential and is defined by the following allometric relationship adapted from

Bélanger et al. (2001) and Cogo et al. (2006):

Nuptake (kg ha-1)=aWb (equation 1),

where W is total biomass (Mg ha-1), Nuptake is uptake of N (Nuptake), P (Puptake), or K (Kuptake)

(kg ha-1) by plants at a given total biomass. The coefficient a represents the concentration

of nutrient when total biomass is equal to or exceeds 1 Mg ha-1, while parameter b

represents the "uptake coefficient" that determines the differences in nutrient

requirements as long as the total biomass is increasing.

According to Lemoine et al. (2013) and Griffith et al. (2016), assimilate partitioning in

green plants starts with: (i) photosynthetic activity (carbon fixation) in leaves, (ii)

conversion of carbon fixed in leaves into sucrose and synthesis of starch in chloroplasts,

(iii) sucrose loading into the phloem, (iv) long-distance translocation of sucrose, and (v)

phloem unloading and use of sucrose by source organs. Assimilation of carbon in plants

is coupled to assimilation of nitrogen to ensure that basic components of biomass

production, such as amino acids and carbon skeletons, are available in the required

quantities and stoichiometry, and to their transport from the sites of synthesis to the sites

Page 64: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

42 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

of demand. Carbon gain by plants depends intrinsically on the successful absorption of

other mineral nutrients, particularly, N and P (Griffith et al., 2016) and K (Lemoine et al.,

2013).

Compartmentalization of mineral nutrients in leaves, stems, and tubers during potato

growth could be used to define the nutrient status of the crop. This process describes

nutrient allocation within the plant and reflects the differences existing between the

cultivars (Swain et al., 2014) by means of nutrient harvest index (Giletto and Echeverría,

2015) and nutrient translocation efficiency (Fernandes and Soratto, 2012) as indicators of

partitioning of assimilates and mineral nutrients. In potato, these indexes describe well the

nutrient uptake under conditions of nutrient or water deficit (Schilling et al., 2016),

contrasting temperatures, and changes in photoperiod (Wolf et al., 1990) or soil fertility

(Gómez et al., 2017). Additionally, the stage of plant development constitutes a factor that

affects partitioning of mineral elements, with a high export of assimilated elements from

potato leaves after formation of tubers (Wolf et al., 1990).

In the world, potato is one of the major crops defining food security and reducing poverty

and human malnutrition (George et al., 2018). At the same time, in potato Group

Andigena, which represents the second largest product of the basic consumer basket in

Colombia, almost no studies were done in uptake of mineral elements by the plants

(Gómez et al., 2017). The objective of this study was to evaluate uptake and partitioning

of primary macronutrients N, P, and K in two potato cultivars Diacol Capiro (Capiro) and

Pastusa Suprema (Suprema) (Andean cultivated tetraploids Solanum tuberosum L.,

Group Andigena) at different phenological stages of growth. The research aimed to

establish the uptake curves for N (Nuptake), P (Puptake), and K (Kuptake) and their translocation

efficiency under fertilization on soils contrasting in fertility. The study planned to evaluate

partitioning of N, P, and K by means of harvest indexes that would allow to characterize

the cultivars and, thus, to predict nutrient requirements and time-specific management of

these macronutrients in field.

2.4 Materials and methods

2.4.1 Experimental locations and conditions The research was carried out in two production cycles (2013-2016) in two locations of the

Andean region of Colombia: (i) Facatativá with Andic Eutrudepts soils, highly fertile and

Page 65: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

2. Uptake and partition of N, P and K in potato (Solanum tuberosum L. Group. Andigena)

43

saturated in bases, and (ii) Chocontá with Humic Dystrudepts soils of low fertility, acid and

desaturated in bases. These locations were representative for the region of potato

production in Colombia and had contrasting edaphoclimatic conditions (Table 2-1). Table 2-1. Characteristics of climate and soils in experimental locations.

1 Climatic variables

Crop cycle

Altitude (m.a.s.l.)

North latitude

West longitude

Annual rainfall (mm)

Rainfall (mm

cycle-1)

Evaporation (mm cycle-1)

T max (ºC)

T min (ºC)

T media

(ºC)

Facatativá

Cycle 1

(I-2013) 2,520

4° 49´

26.9”

74° 22’

29.7” 951 397 454 18.1 7.0 12.7

Cycle 2

(II-

2015)

2,520 4° 49´

26.9”

74° 22’

29.7” 850 415 382 18.5 7.2 12.5

Chocontá

Cycle 1

(II-

2013)

2,780 5° 5´

30.37”

73° 43´

2.04” 1,295 712 640 16.2 4.4 10.6

Cycle 2

(I-2016) 2,710

5° 5´

30.37”

73° 43´

2.04” 1,058 803 603 16.5 10.1 12.98

2 Soil

characteristics

Texture Soil

fertility †† pH

Al (cmolc

kg-1)

O.M. (g

kg-1)

CEC

(cmolc

kg-1)

N (g kg-1) P (mg

kg-1)

K

(cmolc

kg-1)

(Ca +

Mg)/K

Facatativá

(Andic

Eutrudepts)

Loam High 6.4 0 166.7 31.95 8.3 39.64 3.14 9.1

Loam High 5.82 <0.001 127.1 19.14 6.4 70.16 0.87 20.87

Chocontá

(Humic

Dystrudepts)

Clay

Loam Low 5.5 0.1 67.7 9.52 3.3 18.18 0.68 12.8

Clay

Loam Low 5.28 0.54 85.9 7.9 4.3 41.5 0.84 7.56

1 Climatic data obtained and calculated from IDEAM, Colombia (IDEAM, 2017). 2 Physical-chemical characteristics of soils and potential chemical fertility determined in arable layer (0-30 cm) (IGAC, 2006; Castro and Gómez, 2013). The soils were classified according to USDA (Soil Survey Staff, 2010). An incomplete factorial arrangement was used in divided subplots of a mixed model with

four replicates (one plant per replicate) arranged in randomized complete block design

with main plot corresponding to the cultivars (Capiro and Suprema) and the subplots

matching to four levels of fertilization (F0, F1, F2, and F3); F0 referred to unfertilized plots

(initial conditions of soil fertility). Intra-subject factor of time was associated with five

critical phenological stages of crop growth adapted from Valbuena et al. (2010): Stage I,

Page 66: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

44 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

50-55 days after planting (dap) (formation of primary stems and ramification); Stage II, 70-

75 dap (formation of secondary stems and initiation of tuberization); Stage III, 90-100 dap

(flowering, maximum tuberization, and start of tuber filling); Stage IV, 120-125 dap

(ceasing of flowering and tuber filling); Stage V, 150-160 dap (senescence, maximum

tuber filling, and tuber maturation). The contribution of mineral nutrients through fertilizer

plans, fertilizer sources, and dose fractionation are presented in Table 2-2.

Table 2-2. Contribution of mineral nutrients through fertilizer applications.

Location Crop

cycle

1 Fertilizer dose

(kg ha-1)

Supply of mineral nutrients (kg ha-1)

N P2O5 K2O Mg S B Zn Mn

Facatativá

Cycle 1

F1 1,186 128 196 135 53 56 2.55 4.2 5.25

F2 1,582 171 261 180 70 74 3.4 5.6 7.0

F3 1,977 214 326 225 88 93 4.3 7.0 8.8

Cycle 2

F1 1,450 123 216 176 60 113 1.7 3.5 4.2

F2 1,900 164 288 235 80 150 2.3 4.6 5.6

F3 2,375 205 360 294 100 188 2.9 5.8 7

Chocontá

Cycle 1

F1 1,632 144 255 261 42 90 0.9 1.8 2.3

F2 2,175 192 340 348 56 120 1.2 2.4 3.0

F3 2,719 240 425 435 70 150 1.5 3.0 3.8

Cycle 2

F1 1,500 143 285 236 30 29 3.3 3.6 4.1

F2 2,000 191 380 315 40 38 4.4 4.8 5.4

F3 2,500 239 475 394 50 48 5.5 6.0 6.8 1 Fertilizer doses suggested using a soil-plant balance method (Castro and Gómez, 2013); fertilizer doses fractionated following the historical practices employed in locations of the highest yields (>50 Mg ha-1): N 60% at planting, 40% 45-50 dap; P 70% at planting, 30% 45-50 dap; K 30% at planting, 70% 45-50 dap. Granulated fertilizers were used: DAP for N and P; KCl (0-0-60) and K2SO4 (0-0-50) for K; Ca(NO3)2 (25% CaO) for Ca; MgSO4·H2O for Mg; a complex micronutrient fertilizer based on sulfates Nutricomplet® (Ingeplant, Colombia) for B, Zn, Cu, Mn, and Fe.

The tubers of about 70 g were planted in experimental units of 50 m2 (135 plants plot-1),

with a distance 1 m between the rows and 0.37 m between the plants, a useful area of 36

m2 (three central rows) and a density of 27,000 plants ha-1. The practices of irrigation,

weed management, and phytosanitary control were scheduled when required. For

Chocontá location of highly acidic soils, a dolomite-type amendment was applied preplant

at a dose of 1.0 Mg ha-1.

Page 67: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

2. Uptake and partition of N, P and K in potato (Solanum tuberosum L. Group. Andigena)

45

2.5 Analytical methods In each production cycle, four plants were selected per experimental unit and per growth

stage and a destructive analysis of leaves, aerial stems, and tubers was performed. For

chemical analysis, plant organs were rinsed with deionized water, then each organ was

mixed up to obtain a subsample of 200 g (fresh weight) and dried in an oven at 70 °C for

72 h, after that the dry weight (DW) was measured. The total concentrations of N, P, and

K were determined in each organ according to IGAC (2006). The total contents of N, P,

and K in each organ were calculated by multiplying a concentration of mineral nutrient in

the given organ (g 100 g-1 DW) by its dry biomass W (kg ha-1) at a respective

phenological stage (Abdallah et al., 2016). The differences among distribution of

assimilates within potato plants were evaluated by indices of physiological efficiency of

mineral nutrients in potato adapted from Fernandes and Soratto (2012) and Giletto and

Echeverría (2015):

Efficiency of translocation of N (EtN), P (EtP), or K (EtK) into the tubers was evaluated by

determining nutrient accumulation in tubers Nut (kg ha-1) with respect to total nutrient

uptake Nuptake (kg ha-1) at given moment of growth: EtN = (Nut / Nuptake) x 100%.

Harvest index HI was calculated as a relation between dry biomass of tubers DWt and

total (aerial part + tubers) dry biomass W of the plant: HI = (DWt / W).

Nutrient harvest index for N (NHI), P (PHI), or K (KHI) was calculated as a relation

between nutrient uptake by tubers (Nut, kg ha-1) at 150-160 dap and total (aerial part +

tubers) nutrient uptake by the plant (Nuptake, kg ha-1): NHI = (Nut / Nuptake).

2.5.1 Statistical analysis A multivariate analysis was carried out for cultivar, location, fertilizer dose, and crop cycle

at each sampling moment (dap) with respect to total dry biomass W (kg ha-1). When

significant differences were found between the fertilizer doses in individual analysis (Table

2-2), LSD test (p <0.05) was utilized to select the data with nutrient uptake corresponding

to maximum W values. From the selected data, a non-linear regression was obtained to

adjust the data to the allometric curve. The uptake curves for Nuptake, Puptake, and Kuptake (kg

ha-1) with respect to the total biomass W were proposed according to equation 1 using the

potential models of Bélanger et al. (2001) and Cogo et al. (2006). The curves of nutrient

translocation efficiency EtN, EtP, and EtK were determined over time using a logarithmic

Page 68: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

46 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

regression analysis. The coefficient of determination (R2) was calculated from the relation

between the sum of squares of the error and the total sum (adjusted coefficient), and the

95% confidence intervals were constructed for each of the estimators (a and b) to

evaluate differences of models between the cultivars or the most significant factors.

For biomass and nutrient harvest indexes (NHI, PHI, and KHI) at 150-160 dap, a mixed

model was used assuming the replicates to be random effects, while the main effects,

cultivar, location, crop cycle, and fertilizer levels were assumed to be fixed effects.

Considering all interactions between the main effects, the different interactions between

the factors were evaluated by LSD test (p < 0.05); the mean comparison (LSD) was

performed for a statistically significant interaction of the highest level in this case. For all

statistical procedures described previously, SAS 9.4 software (SAS Institute, 2014) was

used. Because the interaction genotype x environment was determined to be highly

significant, analysis of covariables of soil fertility and climate was performed to determine

which one(s) accounted for a significant proportion of the variability of the interaction, for

variables of nutrient uptake, total yield, and total dry biomass. This analysis was

performed by GEAR software (Pacheco et al., 2015).

2.6 Results

2.6.1 Total uptake of N, P, and K and nutrient harvest indexes According to the ANOVA, a highly significant interaction location x cultivar (p < 0.001) was

determined for the means of nutrient uptake (Nuptake, Puptake, and Kuptake) at different

phenological stages; no effects were revealed for the factors “production cycles” and

“levels of fertilization”, which explains that the total uptake of N, P and K in Capiro and

Suprema was mostly mediated by a genotype-environment factor.

Dynamics of total biomass accumulation (W, Mg ha−1) per phenological stage and

potential tuber yield (PYt, Mg ha−1) were affected mostly by soil fertility (p <0.001) than by

climatic factors according to analysis of covariance carried out in two locations and

production cycles. For this, a model searched to describe a behavior of total nutrient

uptake with respect to total biomass accumulation by comparing soil fertility in each

studied location (Figure 2-1). Figure 2-1 shows close allometric relations among total dry

biomass (W) and uptakes of N, P, or K during crop growth using a logarithmic model,

Page 69: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

2. Uptake and partition of N, P and K in potato (Solanum tuberosum L. Group. Andigena)

47

which accords to the models for N uptake in potato (Bélanger et al., 2001) and rice (Oryza sativa L.) (Ata-Ul-Karim., 2014) and for K uptake in potato cv. Asterix (Cogo et al., 2006).

Figure 2-1. Average total uptake of N, P, and K in cvs. Capiro (left) and Suprema (right) as a function of total dry biomass (W) in soils of high (Andic Eutrudepts, Facatativa) and low (Humic Dystrudepts, Chocontá) fertility and two production cycles under non-limiting conditions of fertilization. **Indicates significant values of coefficients b with respect to soil fertility at a probability level of 0.05. ns, non-significant model.

Nuptake = 56.383W0.584 R² = 0.9033**

Nuptake = 73.594W0.6588 R² = 0.8246**

0

200

400

600

800

1000

0 5 10 15 20 25 30 35

N u

ptak

e cv

. Cap

iro

(kg

ha-1

)

Low fertility High fertility Nuptake = 78.018W0.6918 R² = 0.67786*

Nuptake = 68.131W0.5048 R² = 0.8682**

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35

N u

ptak

e cv

. Sup

rem

a (k

g ha

-1)

Puptake = 4.2675W0.786 R² = 0.96908**

Puptake = 6.5042W0.7538 R² = 0.9181**

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35

P up

ttak

e cv

. Cap

iro

(kg

ha-1

)

Puptake = 6.7246W0.7795 R² = 0.89419**

Puptake = 4.7655W0.6625 R² = 0.87755**

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35

P up

take

cv.

Sup

rem

a (k

g ha

-1)

Kuptake = 77.637W0.6713 R² = 0.7595*

Kuptake = 79.521W0.799 R² = 0.85355**

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35

K up

take

cv.

Cap

iro

(kg

ha-1

)

Total dry biomass (Mg ha-1)

Kuptake = 42.774W0.7724 R² = 0.39325 ns

Kuptake = 63.934W0.7761 R² = 0.91032**

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35

K up

take

cv.

Sup

rem

a (k

g ha

-1)

Total dry biomass (Mg ha-1)

(e) (f)

(a) (b)

(c)

(d)

Page 70: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

48 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

The prominent slopes in uptake curves Nuptake and Puptake for both cultivars indicated the

presence of significant differences (p<0.05) among the coefficients b for soil fertility

(Figure 2-1, Table 2-3), where the demand of nutrients in relation to total biomass

depended mainly on the high fertility of Andic Eutrudepts as compared to the low fertility

of Humic Dystrudepts (Table 2-1). However, the values of Kuptake in Suprema on fertile

soils did not result in significant differences (R2 = 0.39), while the model for Kuptake in

Capiro on fertile soils was highly significant (Figure 2-1). Additionally, for Nuptake in

Suprema, a significance (R2 = 0.68) was lower than the one found in Capiro (R2 = 0.82).

Figure 2-2. Potential yield (PYt) in cvs. Capiro and Suprema cultivated in soils of low (Humic Dystrudepts, Chocontá) or high (Andic Eutrudepts, Facatativá) fertility at 150-160 dap under non-limiting conditions of fertilization in two production cycles. P<0.05 for fertilization x location x cultivar. Error bars indicate standard errors.

Figure 2-3. Harvest index (HI) in cvs. Capiro and Suprema cultivated in soils of low (Humic Dystrudepts, Chocontá) or high (Andic Eutrudepts, Facatativá) fertility under non-limiting conditions of fertilization in two production cycles. P<0.05 for location x cultivar x cycle. Means followed by the different letters are significantly different (LSD, P<0.05). Error bars indicate standard errors.

0102030405060708090

100110120

Chocontá - 1 Facatativa - 1 Chocontá - 2 Facatativa - 2

Pote

ntia

l yie

ld (M

g ha

-1)

Location - Cycle

Capiro Suprema

b b a

b a

d

b

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chocontá 1 Facatativa 1 Chocontá 2 Facatativa 2

Har

vest

inde

x

Location x cycle

Capiro Suprema

Page 71: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

2. Uptake and partition of N, P and K in potato (Solanum tuberosum L. Group. Andigena)

49

Suprema had better adaptation to desaturated acid soils of higher altitudes under non-

limiting conditions of fertilization agreeing with its genotypic features of longer stolons and

a deeper root system that improves absorption of mineral nutrients as shown by Valbuena

et al. (2010). Low fertility soils for Suprema favored tuberization and ensured a better

yield of 63 and 73 Mg ha−1 when compared to 46-50% losses in productive potential on

high fertility soils and yields of 31-41 Mg ha−1 (Figure 2-2). Furthermore, high soil fertility

favored a continuous allocation of N and K into aerial parts of Suprema plants similar to

that observed in Capiro during tuber filling and maturation. However, this was to the

detriment of biomass accumulation in tubers with reduced translocation efficiency of

assimilates evidenced by low HI (40 to 50%) for Suprema as compared to HI 75-78% for

Capiro in the same soil (Figure 2-3).

Suprema presented a higher requirement in N when W was equal to or less than 1 Mg

ha−1 (early growth stage, 55-60 dap), with 78.01 and 68.13 kg N ha-1 uptake on high and

low fertility soils, respectively. In this case, for Suprema, the values of coefficient a were

higher and significantly different than the ones in Capiro, which had 73.59 and 56.38 kg N

ha-1 uptake on high and low fertility soils, respectively. This could be due to a higher N

requirement for superior biomass of branches and stems in Suprema as compared to

Capiro. This advocates for a timely supply of N to the plants before tuberization (45 dap)

at a rate of 10-15% of its total uptake in Suprema and 20-24% in Capiro.

Significant differences among the cultivars were found in "uptake coefficient" b for Nuptake

on high fertility soils (p <0.05) indicating a higher demand for N in Suprema due to a

higher W with b = 0.69 with respect to b = 0.65 in Capiro (Figure 2-1). However, Suprema

had low productive potential (Figure 2-2) with HI ranging from 0.4 to 0.5 (Figure 2-4A) that

were lower when compared to HI of 0.75-0.8 in various accessions of Group Andigena

(Zebarth et al., 2008). At the same time, in poor soils of Chocontá, no significant

differences were found between b of 0.58 and 0.5 for Capiro and Suprema, respectively,

with similar N uptake in these cultivars at the highest W. This high uptake of N was

related to a better yield potential (Figure 2-2) and adequate HI of 0.75 to 0.82 in both

cultivars (Figure 2-3), which illustrates a highly productive potential of potato Group

Andigena as reported by Zebarth et al. (2008).

Page 72: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

50 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Figure 2-4. Harvest index for N (NHI) (A), P (PHI) (B), and K (KHI) (C) in cvs. Capiro and Suprema cultivated on Humic Dystrudepts (Chocontá) and Andic Eutrudepts (Facatativá). P<0.001 for location x cultivar x cycle under non-limiting conditions of fertilization. Means followed by the different letters are significantly different (LSD, P<0.05). Error bars indicate standard errors.

b ab b

ab

a

c

b

c

-0.1

0.1

0.3

0.5

0.7

0.9

Chocontá 1 Facatativa 1 Chocontá 2 Facatativa 2

N H

arve

st In

diex

Capiro Suprema

a a a a

a

b

a

b

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Chocontá 1 Facatativa 1 Chocontá 2 Facatativa 2

P H

arve

st In

dex

bc b

a a a

d

a

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Chocontá 1 Facatativa 1 Chocontá 2 Facatativa 2

K H

arve

st In

dex

Location x cycle

(a)

(b)

(c)

Page 73: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

2. Uptake and partition of N, P and K in potato (Solanum tuberosum L. Group. Andigena)

51

A difference in uptake curves was obtained between the cultivars for P (Puptake) (Figure

2-1C, D), with a equal to 6.5 and 4.7 kg P ha-1 and b equal to 0.75 and 0.66 in Capiro and

Suprema, respectively, on fertile soils. In contrast, Suprema presented larger P uptake at

initial stages of growth with a = 6.72, while Capiro had a = 4.26 kg P ha-1 and no

significant difference (p > 0.05) in b were found among genotypes in poor soils. This

indicated similar P requirements in both cultivars, with efficient translocation of P to tubers

and PHI ranging between 0.75 and 0.8 (Figure 2-4B). The high accumulation of P in

tubers was due to its role of an essential element in formation of amylopectin and

amylase for the synthesis of starch, which represents 15 to 20% of the tuber weight

(Chung et al., 2014; Leonel et al., 2016).

In both locations, the coefficient a for Kuptake presented significant differences favoring

Capiro and reaching 79.52 and 77.63 kg ha-1 on fertile and poor soils, respectively,

whereas, in Suprema, a was equal to 42.7 and 63.9 kg ha-1 on fertile and poor soils,

respectively (Figure 2-1E, F), which revealed a higher K requirement in Capiro at initial

stages of growth. This finding was, probably, due to earlier tuberization and tuber filling in

this cultivar. In contrast, on poor soils, Suprema presented differences (p <0.05) in

coefficient b = 0.77 that surpassed the one in Capiro with b = 0.67. Therefore, in order to

reach W of 25 Mg ha−1 (PYt of 80 Mg ha−1), a total K uptake of 762 kg ha-1 and of 673 kg

ha-1 was needed in Suprema and Capiro, respectively. Capiro was more efficient in the

use of K producing tubers with a less variable KHI (0.5-0.7) than Suprema (0.13-0.62) on

both low and high fertility soils (Figure 2-4C).

Considering uptake curves (Figure 2-1) and HI (Figure 2-4) on soils of highest productive

potential, the total uptake and extraction by tubers of N, P, and K could be predicted for a

given level of production (Table 2-3). This would allow adjustment of the fertilizer

recommendations for the projected yields in Capiro and Suprema. Additionally, 2.01 and

1.76 kg of K were absorbed by Suprema and Capiro, respectively, per 1 kg of N as

compared to 1.9 kg K absorbed per 1 kg of N in cv. Asterix (Group Chilotanum) (Cogo et

al., 2006). A 10-12% higher extraction for N and K and 33% higher extraction for P were

obtained in Capiro compared to Suprema in order to reach high (> 65 Mg ha−1) yields

(Table 2-3).

Page 74: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

52 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Table 2-3. Prognosis of total uptake and extraction by tubers for N, P and K in cvs. Capiro and Suprema at different yields in soils of high yield potential of the Colombian Andean region.

Cultivar

Potential yield

(PYt) W

1 Total uptake

(kg ha-1)

2 Extraction by

tubers

(kg ha-1)

Extraction index EI

(kg of nutrient

Mg-1 PYt)

Mg ha-1 Mg ha-1 N P K N P K N P K

Suprema

15 5.0 154 14 223 83 10 123 5.6 0.70 8.2

32 10.0 218 22 382 118 16 210 3.7 0.51 6.5

49 15.0 267 29 523 144 21 288 2.9 0.44 5.8

66 20.0 309 35 654 167 26 360 2.5 0.39 5.4

84 25.0 346 40 777 187 30 428 2.2 0.36 5.1

Capiro

17 5.0 144 15 229 82 11 160 4.9 0.68 9.6

35 10.0 216 26 364 123 20 255 3.5 0.56 7.3

54 15.0 274 36 478 156 27 335 2.9 0.50 6.3

72 20.0 324 45 580 185 34 406 2.6 0.47 5.6

90 25.0 369 54 674 211 40 472 2.3 0.44 5.2 3 Percentage of increment, Capiro vs Suprema

7.96 0.0 6.79 33.26 -13.34 12.72 33.26 10.30 4.41 23.44 2.17

1 The quantities (kg ha-1) estimated for Capiro: N = 56.38W0.584; P = 4.27W0.786; K = 77.63W0.786, and for Suprema; N = 68.131W0.505; P = 6.724W0.779; K = 63.934W0.786. The yield (Mg ha-1) was estimated from total dry biomass (W) in Capiro (W = PYt 0.2717 + 1.6959) and Suprema (W = PYt 0.2908 + 2.311). 2 Nutrient extraction by tubers estimated from NHI, PHI, KHI in each cultivar (Figure 2-4). 3 The comparison done between total uptake and extraction by tubers of mineral elements in Suprema with respect to Capiro (% of relative increase) at a projected W of 25 Mg ha-

1.

2.6.2 Efficiency of translocation and extraction of N, P, and K by tubers

The timely changes in the efficiency of nutrient translocation in plants followed a positive

logarithmic model (Figure 2-5) with highly significant differences (P <0.001) observed in

the interaction genotype x location, which indicated that partitioning of assimilates in

potato was affected by the stage of tuber development as referenced by Wolf et al.

(1990).

Page 75: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

2. Uptake and partition of N, P and K in potato (Solanum tuberosum L. Group. Andigena)

53

Figure 2-5. Average translocation efficiency of N (EtN), P (EtP), and K (EtK) in cv. Capiro (circle) and cv. Suprema (square) in two production cycles under non-limiting conditions of fertilization in contrasting soils. ** Significant differences of coefficients b are shown with respect to the interaction cultivar x location at a probability level of P <0.05.

EtN = 54.498ln(dds) - 220.62 ns, R² = 0.991

EtN= 55.866ln(dds) - 228.82 ns, R² = 0.964

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Effic

ienc

y of

N tr

aslo

cati

on (%

) Suprema

Capiro

EtP = 60.833ln(dds) - 244.36**, R² = 0.998

EtP = 77.898ln(dds) - 315.47**, R² = 0.9895

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Effic

ienc

y of

P t

rasl

ocat

ion

(%) Suprema

Capiro

EtK = 49.035ln(dds) - 197.64**, R² = 0.993

EtK= 62.929ln(dds) - 255.62**, R² = 0.981

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Effic

ienc

y of

K t

rasl

ocat

ion

(%)

Days after planting (dap)

Suprema

Capiro

A

B

C

Page 76: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

54 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

On the other hand, a lower EtN (7-10%) and reduced extraction of N were observed at the

start of tuberization indicating a lower N:P:K ratio in Suprema than in Capiro (Table 2-4),

with lesser uptake of N favoring tuber differentiation in Suprema. These results were

similar to that reported by Fontes et al. (2016) for cvs. Asterix and Atlantic.

Table 2-4. Extraction of N, P, and K by tubers per growth stage for cvs. Suprema and Capiro. The values are estimates from translocation efficiency of N (EtN), P (EtP), and K (EtK) with a projected yield of 70 Mg ha−1.

Cultivar Phenological stage

Extraction by tubers (kg ha-1) for yield of 70 Mg ha-1

Accumulation per stage (% of the extraction by tubers)

Ratio N:P:K

Stage dap N P K N P K N P K

Suprema

Start of

tuberization 55-75 25 7 75 15 26 20 7 2 22

Flowering,

maximum

tuberization

75-100 82 16 217 48 58 58 11 2 28

Tuber filling,

cessation of

flowering

100-125 123 22 276 72 82 74 11 2 25

Maximum

filling,

maturation of

tubers

125-160 171 27 373 100 100 100 13 2 28

Capiro

Start of

tuberization 55-75 38 8 78 21 22 20 10 2 20

Flowering,

maximum

tuberization

75-100 93 20 216 51 55 54 9 2 22

Tuber filling,

cessation of

flowering

100-125 140 29 331 77 82 83 10 2 23

Maximum

filling,

maturation of

tubers

125-160 182 36 399 100 100 100 10 2 22

Page 77: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

2. Uptake and partition of N, P and K in potato (Solanum tuberosum L. Group. Andigena)

55

2.7 Discussion

2.7.1 Total uptake of N, P, and K and nutrient harvest indexes The results obtained for nutrient uptake (Figure 2-1) were similar to that described for N

by Bélanger et al. (2001) in cvs. Shepody and Russet Burbank (Group Chilotanum) and

contrary to that identified by Swain et al. (2014), when the interaction genotype x

fertilization (conventional vs. organic) affected uptake and efficiency of N use in cvs.

Sarpo Mira and Sante (Group Chilotanum). On the other hand, Fernandes et al. (2017)

found that increasing doses of P improved uptake of this element by potato plants, with

differences obtained between the genotypes of Group Chilotanum that favored cv.

Mondial with respect to cv. Agata.

Capiro was more efficient in allocation of assimilates to the source organs on fertile soils,

with yields ranging from 70 (Cycle I) to 99 (Cycle II) Mg ha−1 (Figure 2-2) and high HI of

78 and 83% (Figure 2-3). This might be due to a compact size of Capiro plants of

determined growth habit, shorter stolons, and limited period of tuberization between 75-

100 dap, the conditions that favored better translocation of assimilates and faster growth

after tuber formation as reported in Chilotanum cultivars by Gliletto and Echeverría

(2015). The differences in yield and dry biomass and high HI for Capiro were determined

mainly by a higher soil offer of P (p < 0.001) and an improved ratio Ca+Mg/K (p < 0.001)

with better availability of soil K (Table 2-1) according to analysis of covariance.

Additionally, Fernandes et al. (2017) found that an adequate availability of soil P might

favor the translocation and assimilation of K in tubers.

In Suprema, poor soils were beneficial for tuberization and a higher yield, while soils of

high fertility favored an allocation of N and K to stems and leaves (Figure 2-2, Figure 2-3).

A reduction in translocation of photoassimilates from leaves could be due to the excess of

N, since N inhibits tuberization and increases flow of photoassimilates to new shoots

instead of promoting tuber growth; in our study, this phenomenon might have been due to

the excess of nutrients, mainly N and K. Similar responses to luxury uptake of N in potato

were referenced by Bowen et al. (1999) in cv. Yungay (Group Andigena) in Peru,

Abdallah et al. (2016) in cv. Bintje (Group Chilotanum), and Fontes et al. (2016) in cv.

Atlantic in Brazil. On the other hand, the effects of a luxury uptake of K were discussed by

Kang et al. (2014) and Svenson and Aide (2017) in cv. Atlantic.

Page 78: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

56 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

A significant interaction crop cycle x location x cultivar (p <0.005) was found for HI, with

no effect of fertilizer dose on HI detected at 150-60 dap, probably, due to a nutrient

balance that favored the better assimilation of N, with high adaptation of cultivars to soil

type. The genotypic differences among the cultivars and fertilizer effect on dry biomass

accumulation in tubers were corroborated by Zebarth et al. (2008) for Group Andigena

and by Giletto and Echeverría (2015) for Group Chilotanum.

The coefficients a for Nuptake in Group Andigena reflect a higher N requirement at initial

stages of growth than those reported for Group Chilotanum, with Nuptake equal to 42.24W 0.63 in cv. Shepody, 37.15W 0.63 in cv. Russet Burbank (Bélanger et al., 2001), and 36.0W 0.63 in cv. Asterix (Andriolo et al., 2006). The coefficients b for Nuptake obtained in our study

(Figure 2-1A, B) were higher on high fertility soils, but lower on poor soils when compared

to the ones reported for Group Chilotanum (Bélanger et al., 2001). Furthermore, on fertile

soils, a very low efficiency in N use by tubers (NHI of 0.18 to 0.25) was evidenced in

Suprema (Figure 2-4A) as compared to low fertility soils with NHI of 0.65. This finding

proves a better adaptation of Suprema to locations of higher altitudes and lower edaphic

offer of mineral nutrients. This indicates that Suprema possess greater sink strength for N

assimilates (possibly, proteins) that promote tuber growth, similar to found by Snyder et

al. (1977) in cvs. Kennebec, Norchip, and Norland of Group Chilotanum.

A differential response of NHI according to genotype x cycle (p <0.05) (Figure 2-4A) on

low fertility soils, with NHI of 0.57 (Capiro) and 0.65 (Suprema), was similar to that

reported for accessions of Group Andigena (Zebarth et al., 2008) and cv. Bannock Russet

of Group Chilotanum (Giletto and Echeverria, 2015), although, in the latter study, cvs.

Innovator and Gem Russet had higher NHI values of 0.78 and 0.7, respectively, because

these genotypes had earlier senescence.

The PHI for Capiro under non-limiting conditions of fertilization was not affected by the

differences in soil and climate conditions among the locations (Figure 2-4B)

demonstrating once again that this genotype had higher phenotypic plasticity in its

ambient adaptation with comparative advantages over Suprema on fertile soils, where

Suprema had a lower PHI of 0.3 to 0.4 due to the excess of N and K in soil (Table 2-1;

Figure 2-4B). The PHI values of 0.3-0.4 were significantly lower when those reported for

Chocontá soils depleted in P (Figure 2-4B) and favored the higher partitioning of

assimilates into aerial parts of the plants. This was, possibly, due to increased

accumulation of proteins that promoted an excessive vegetative growth inhibiting

Page 79: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

2. Uptake and partition of N, P and K in potato (Solanum tuberosum L. Group. Andigena)

57

tuberization as explained by Abdallah et al. (2016). Jenkins and Mahmood (2003) found

that deficiency of P together with an adequate availability of K and N increased

partitioning of dry biomass into the tubers.

An increased uptake of P by a cultivar could be due to a better adaptation of this cultivar

to a soil type and features of root morphology (higher root density) and longer stolons (the

case of Suprema) together with genetic mechanisms improving P absorption from soil.

The latter mechanism might include expression of high affinity P transporters in roots on

P-deprived soils and low affinity P transporters (for Capiro) on soils with higher P

availability. The cellular mechanisms of P absorption were not yet evaluated in these

cultivars, but this phenomenon related to efficiency of potato nutrition with P on poor soils

was approached by Liu et al. (2017). In potato, evaluation of Puptake and PHI are less

common as compared to Nuptake and NHI; therefore, the current research represents one

of the first reported references on these indexes for Group Andigena.

The coefficients a and b for Kuptake in Capiro and Suprema were highly significant

according to R2 (Figure 2-1E, F) surpassing their counterparts in Group Chilotanum with

Kuptake = 55.4W 0.683 (Cogo et al., 2006). An exception was seen for coefficient b in Capiro

on low fertility soils, with values similar to those reported for cv. Asterix (Cogo et al.,

2006); however, Capiro was more efficient in the use of K requiring 500 kg K ha-1 to reach

W of 25 Mg ha-1. A high uptake of K by potato is due to the active involvement of K in

carbon fixation by Rubisco, respiration, synthesis of amino acids (Oosterhuis et al., 2014),

and, additionally, unloading of photoassimilates in short- (AKT2 channels) and long-

distance (H+ transporters/sucrose) transport. Also, K positively influences the mobility of

amino acids in phloem (Lemoine et al., 2013). On the other hand, K favors cell turgor and

water balance of aerial parts in potato plants facilitating transport of carbohydrates and

organic acids (Oosterhuis et al., 2014), besides promoting synthesis of starch in tubers

and amino acids in roots; the latest are employed for growth of leaves, stems, and tubers

(Haeder et al., 1973).

Page 80: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

58 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

2.7.2 Efficiency of translocation and extraction of N, P, and K by

tubers The EtN was similar among the two studied cultivars due to characteristics of Group

Andigena having a considerable level of proteins in tubers (Andre et al., 2007; Hardigan

et al., 2017). Allocation of nitrogenous forms into tubers was accentuated towards the

period of tuber maturation, since proteins were needed for rapid tuber growth between

tuberization (75 dap) and tuber filling (125 dap); in this period, tubers accumulated 72-

76% of their total N (Figure 2-5; Table 2-4). At the same time, accumulation of N in tubers

decreased during maximum maturation, probably, due to increasing rates of K

accumulation and, jointly, of starch synthesis. A similar phenomenon was observed by

Snyder et al. (1977) with differences obtained among cvs. Kenebec and Norchip (Group

Chilotanum) and by Chung et al. (2014) with no differences observed among cvs.

Shepody, Russet Burbank, and Innovator.

Under non-limiting conditions of fertilization, in locations of high productive potential, EtP

and EtK in Capiro exceeded the ones in Suprema, with significant differences (P <0.05)

observed in the coefficient b, which once again proved the high sink strength of Capiro.

The EtP and EtK close to 77% and 61%, respectively, at tuber maturity indicated a fast

allocation of P and K to the tubers (Figure 2-5) once the tuberization started 75 dap, as

these were fundamental mineral elements for starch synthesis in tubers. Chung et al.

(2014) showed that 30% of the total P in tubers is stored as starch, with concentrations

around 2.3% P in tubers of cv. Innovator and up to 2.4% P in total biomass according to

the critical dilution curve for P (Zamuner et al., 2016); in this cultivar, partitioning of P

might have been similar to that in Capiro, since it was a medium-size plant with tubers of

high sink strength.

The low efficiency of translocation of N, P, and K (10 to 16%) at the start of tuberization

(55-75 dap) (Figure 2-5) did not differ among the cultivars (tubers accumulated 15-26% N,

P, and K of the total extraction) due to differentiation processes, when small tubers had

more meristematic cells than the storage ones. The tissues with high meristematic activity

contain low to zero amounts of storage starch and proteins and contribute to an increment

in dry biomass, while, during tuber growth, parenchyma had higher growth rates with

respect to other tissues and accumulated starch and proteins; these phenomena were

explained by Snyder et al. (1977) and Chung et al. (2014).

Page 81: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

2. Uptake and partition of N, P and K in potato (Solanum tuberosum L. Group. Andigena)

59

The major allocation of mineral elements to the tubers in Capiro occurred from start of

tuberization and flowering to tuber filling and cessation of flowering in a short period of 50

days with accumulation of 56% N, 60% P, and 63% K of their total extraction by tubers.

Suprema presented a similar accumulation for N, but a lower one for P (56%) and K

(54%) at this same period (Table 2-4) due to a stepped tuberization during crop cycle and

greater proliferation of branches and leaves. Suprema increased allocation of mineral

elements to tubers towards the end of the cycle as promoted by an increased mobility of

K, which favored a later filling of tubers and was directly related to accumulation of dry

biomass in tubers (data not shown).

This phenomenon coincides with the distribution of K in the studied cultivars and is proved

by Santos et al. (2010) who showed the highest sink strength for Capiro between 100-125

dap (80-90 g DW biomass week-1) that gradually decreased by 125-150 dap (30 g DW

biomass week-1). However, for Suprema, three phases in biomass accumulation were

detected: (i) the highest sink strength starting from flowering and tuberization 100-110 dap

(80 g DW week-1); (ii) a decrease towards cessation of flowering 125-130 dap (60 g DW

week-1), and (iii) an increase towards maturation and senescence 130-160 dap (95 g DW

week-1) (Santos et al., 2010). This compartmentalization of photoassimilates at the end of

maturation might vary with extended duration of leaf area, such as favored by irrigation

and K fertilization during tuber filling, similar to that reported by Schilling et al. (2016) for

Group Chilotanum.

2.8 Conclusions The uptake of N, P, and K by potato plants (Group Andigena) was identified per cultivar

and per phenological stage, with 35% more P extracted by tubers in Capiro than in

Suprema and similar extraction of N and K by tubers in both cultivars. The ratios and

allocation dynamics of N, P, and K in plants could serve to suggest a fertilizer formula

adjusted to phenological stages of Capiro and Suprema and being more precise under

fertigation conditions. Fractionation of fertilizer doses from start of tuberization up to a

maximum flowering should be implemented, since actual field practices in the region

include application of total edaphic fertilizers before start of tuberization, thus, limiting

uptake of P and K by the plants.

Page 82: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

60 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Acknowledgments The authors greatly acknowledge the help of the Faculty of Agricultural Sciences, National

University of Colombia for development of this research. We acknowledge valuable

support of Ingeplant SAS and FEDEPAPA for funding and laboratory analysis. The

authors express their gratitude to research assistants Mrs. Paola Torres, Mrs. Liliana

Arevalo, Mr. Elías Silva, and Mrs. Andrea Barragán for help in the field. We also thank the

growers Mr. Walter Guzmán of Biogenética, Mr. Yovanny Pulido and Mr. Ricardo Rojas

for providing logistic service to this research.

2.9 Bibliografía Abdallah, F., Olivier, M., Goffart, J., Minet, O., 2016. Establishing the nitrogen dilution

curve for potato cultivar Bintje in Belgium. Potato Res. 59, 241–258.

Andre, C.M., Ghislain, M., Bertin, P., Oufir, M., del Rosario Herrera, M., Hoffmann, L.,

Hausman, J.F., Larondelle, Y., Evers, D., 2007. Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. J. Agric. Food

Chem. 55, 366–378.

Andriolo, J.L., Bisognin, D.A., De Paula, A.L., Matielo De Paula, F.L., Dos Santos, R.,

Teixeira, B.G., 2006. Curva crítica de diluição de nitrogênio da cultivar Asterix de batata.

Pesq. Agropec. Brasil. 41, 1179–1184.

Ata-Ul-Karim, S., Zhu, T., Yao, Y.X., Cao, W., 2014. Determination of critical nitrogen

dilution curve based on leaf area index in rice. Field Crops Res. 167, 76–85.

Bélanger, G., Walsh, J.R., Richards, J.E., Milburn, P.H., Ziadi, N., 2001. Critical nitrogen

curve and nitrogen nutrition index for potato in Eastern Canada. Am. J. Potato Res. 78,

355–364.

Page 83: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

2. Uptake and partition of N, P and K in potato (Solanum tuberosum L. Group. Andigena)

61

Bowen, W., Cabrera, H., Barrera, V.H., Baigorria, G., 1999. Simulating the response of

potato to applied nitrogen, in: Impact on a Changing World. Program Report 1997-98.

International Potato Center, Peru, pp. 381–386.

Castro, H., Gómez, M.I., 2013. Fertilidad y fertilizantes, in: Burbano, H., Silva, F. (Eds.),

Ciencia del Suelo – Principios Básicos. Sociedad Colombiana de la Ciencia del Suelo,

Bogotá, pp. 231–304.

Chung, H.J., Li, X.Q., Kalinga, D., Lim, S.T., Yada, R., Liu, Q., 2014. Physicochemical

properties of dry matter and isolated starch from potatoes grown in different locations in

Canada. Food Res. Int. 57, 89–94.

Cogo, C.M., Andriolo, J.L., Bisognin, D.A., dos Santos, R., Bortolotto, O.C., da Luz, G.L.,

2006. Relação potássio-nitrogênio para o diagnóstico e manejo nutricional da cultura da

batata. Pesq. Agropec. Brasil. 41, 1781–1786.

Fernandes, A.M., Soratto, R.P., 2012. Nutrition, dry matter accumulation and partitioning

and phosphorus use efficiency of potato grown at different phosphorus levels in nutrient

solution. Rev. Brasil. Ciência Solo 36, 1528–1537.

Fernandes, A.M., Soratto, R.P., Souza, E.D., Job, A.L., 2017. Nutrient uptake and

removal by potato cultivars as affected by phosphate fertilization of soils with different

levels of phosphorus availability. Rev. Brasil. Ciência Solo 41, 1–23.

Fontes, P.C., Braun, H., de Castro Silva, M.C., Silva, F., Cecon, P.R., Partelli, F.L., 2016.

Tuber yield prognosis model and agronomic nitrogen use efficiency of potato cultivars.

Aust. J. Crop Sci. 10, 933–939.

George, TS., Taylor, M.A., Dodd, C., White, P.J., 2018. Climate change and

consequences for potato production: A review of tolerance to emerging abiotic stress.

Potato Res. 61, 1–30.

Gifford, R.M., Evans, L.T., 1981. Photosynthesis, carbon partitioning, and yield. Annu.

Rev. Plant Physiol. 32, 485–509.

Page 84: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

62 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Giletto, C., Echeverría, H., 2015. Critical nitrogen dilution curve in processing potato

cultivars. Am. J. Plant Sci. 6, 3144–3156.

Gómez, M.I., Magnitskiy, S., Rodríguez, L.E., Darghan, E., 2017. Accumulation of N, P,

and K in the tubers of potato (Solanum tuberosum L. ssp. andigena) under contrasting

soils of the Andean region of Colombia. Agron. Colomb. 35, 59–67.

Griffiths, C.A., Paul, M.J., Foyer, C.H., 2016. Metabolite transport and associated sugar

signaling systems underpinning source/sink interactions. Biochim. Biophys. Acta (BBA)-

Bioenergetics 1857, 1715–1725.

Haeder, H.E., Mengel, K., Forster, H., 1973. The effect of potassium on translocation of

photosynthates and yield pattern of potato plants. J. Sci. Food Agric. 24, 1479–1487.

Hardigan, M.A., Laimbeer, F.P., Newton, L., Crisovan, E., Hamilton, J. P., Vaillancourt, B.,

Wiegert-Rininger, K. Wood, J.C., Douches, D.S., Farré, E.M., Veilleux, R.E., Buell, C.R.,

2017. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history

and targets of domestication in the cultivated potato. Proc. Natl. Acad. Sci. USA 114,

E9999–E10008.

IGAC (Instituto Geográfico Agustín Codazzi), 2006. Métodos Analíticos de Laboratorios

de Suelo y Tejidos, sixth ed. IGAC, Bogotá.

IDEAM (Instituto de Hidrología, Meteorología y Estudios Ambientales), 2017. Reportes

Meteorológicos y Climáticos Estación Villa Inés (Facatativá) y Silos (Chocontá) 2012-

2016, IDEAM, Bogotá.

Jenkins, P.D., Mahmood, S., 2003. Dry matter production and partitioning in potato plants

subjected to combined deficiencies of nitrogen, phosphorus and potassium. Ann. Appl.

Biol. 143, 215–229.

Kang, W., Fan, M., Ma, Z., Shi, X., Zheng, H., 2014. Luxury absorption of potassium by

potato plants. Am. J. Potato Res. 91, 573–578.

Page 85: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

2. Uptake and partition of N, P and K in potato (Solanum tuberosum L. Group. Andigena)

63

Lemoine, R., La Camera, S., Atanassova, R., Dédaldéchamp, F., Allario, T., Pourtau, N.,

Bonnemain J.L., Laloi, M., Coutos-Thévenot, P., Maurousset, L., Faucher, M., Girousse,

C., Lemonnier, P., Parrilla, J., Faucher, M., 2013. Source-to-sink transport of sugar and

regulation by environmental factors. Front. Plant Sci. 4, 1–21.

Leonel, M., Carmo, E.L., Fernandes, A.M., Franco, C.M., Soratto, R.P., 2016. Physico‐chemical properties of starches isolated from potato cultivars grown in soils with different

phosphorus availability. J. Sci. Food Agric. 96, 1900–1905.

Liu, B., Zhao, S., Wu, X., Wang, X., Nan, Y., Wang, D., Chen, Q., 2017. Identification and

characterization of phosphate transporter genes in potato. J. Biotech. 264, 17–28.

Oosterhuis, D.M., Loka, D.A., Kawakami, E.M., Pettigrew, W.T., 2014. The physiology of

potassium in crop production. Advan. Agron. 126, 203–233.

Pacheco, Á., Vargas, M., Alvarado, G., Rodríguez, F., Crossa, J., Burgueño, J., 2015.

GEA-R (Genotype x Environment Analysis with R for Windows). CIMMYT (Distributor).

Retrieved from http://hdl.handle.net/11529/10203.

Sandaña, P., Kalazich, J., 2015. Ecophysiological determinants of tuber yield as affected

by potato genotype and phosphorus availability. Field Crops Res. 180, 21–28.

Santos, C.M., Segura, A.M., Ñústez, C.E., 2010. Análisis de crecimiento y relación

fuente-demanda de cuatro variedades de papa (Solanum tuberosum L.) en el municipio

de Zipaquirá (Cundinamarca, Colombia). Rev. Fac. Nac. Agron. Medellin 63, 5253–5266.

SAS Institute, 2014. Base SAS 9.4 Procedures Guide: statistical procedures. SAS

Institute Inc, Cary.

Schilling, G., Eibner, H., Schmidt, L., Peiter, E., 2016. Yield formation of five crop species

under water shortage and differential potassium supply. J. Plant Nutr. Soil Sci. 179, 234–

243.

Page 86: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

64 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Soil Survey Staff, 2010. Keys to Soil Taxonomy, ninth ed. USDA Soil Conservation

Service, Washington.

Svenson, S., Aide, M., 2017. Evaluation of potato potassium, phosphorus, and sulfur

uptake and leaching under center pivot irrigation in Southeastern Missouri. Int. J. Appl.

Agric. Res. 12, 309–319.

Snyder, J., Desborough, S., Holm, D., 1977. Accumulation of protein, non-protein nitrogen

and starch during tuber growth of three potato cultivars. Am. Potato J. 54, 545–555.

Swain, E.Y., Rempelos, L., Orr, C.H., Hall, G., Chapman, R., Almadni, M., Stockdale,

E.A., Kidd, J., Leifert, C., Cooper, J.M., 2014. Optimizing nitrogen use efficiency in wheat

and potatoes: interactions between genotypes and agronomic practices. Euphytica 199,

119–136.

Valbuena, R., Roveda, G., Bolaños, A., Zapata, J., Medina, C., Almanza, P., Porras, D.,

2010. Escalas Fenológicas de las Variedades de Papa Parda Pastusa, Diacol Capiro y

Criolla “Yema de Huevo” en las Zonas Productoras de Cundinamarca, Boyacá, Nariño y

Antioquia, first ed. Produmedios, Bogotá.

Wolf, S., Marani, A., Rudich, J., 1990. Effects of temperature and photoperiod on

assimilate partitioning in potato plants. Ann. Bot. 66, 513–520.

Zamuner, E.C., Lloveras, J., Echeverría, H.E., 2016. Use of a critical phosphorus dilution

curve to improve potato crop nutritional management. Am. J. Potato Res. 93, 392–403.

Zhao, B., Ata-Ul-Karim, S.T., Liu, Z., Ning, D., Xiao, J., Liu, Z., Xiao, J., Liu, Z., Qin, A.,

Nan, J., Duan, A., 2017. Development of a critical nitrogen dilution curve based on leaf

dry matter for summer maize. Field Crops Res. 208, 60–68.

Zebarth, B.J., Tarn, T.R., De Jong, H., Murphy, A., 2008. Nitrogen use efficiency

characteristics of andígena and diploid potato selections. Am. J. Potato Res. 85, 210–

218.

Page 87: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

3. Accumulation of N, P, and K in the tubers of potato (Solanum tuberosum L. spp.

andigena) under contrasting soils of the Andean region of Colombia1

Acumulación de N, P y K en tubérculos de papa (Solanum tuberosum L.) spp. andigena bajo suelos contrastantes en zona andina de Colombia

Manuel Iván Goméz, Stanislav Magnitskiy, Luis Ernesto Rodríguez, Aquiles E. Darghan

3.1 Abastract The relationship between tuber growth and demand for NPK in andigena group of potato

(Solanum tuberosum) is poorly documented under conditions of the Andean region of

Colombia. It is necessary to establish a specific nutrient management for high yields to

changes in edaphic-environmental supply and improve the production of Diacol Capiro

and Pastusa Suprema cultivars. Twelve treatments were evaluated at different stages

(75-100-125-150 days after planting ) of tuber growth using a repeated measures design

with three factors: two cultivars (Diacol Capiro and Pastusa Suprema); three locations

with contrasting soils (Subachoque, Facatativá, and Choconta) and two levels of

fertilization, F0 (unfertilized) and F1 (fertilized) of incomplete nature by differential

fertilization by soil type. A positive correlation between fresh weight, dry weight and

extraction of N, P and K (kg ha-1) by the tubers, beside harvest extraction index was

1 Publicado en Agronomía Colombiana 35(1): 59-67, 2017. Doi: 10.15446/agron.colomb.v35n1.61068

Page 88: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

66 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

determined. Under optimal conditions of fertilization significant differences (P<0.001)

between factor interactions cultivar x phenology x location for accumulation of N and P

were detected, where ‘Pastusa Suprema’ was less demanding in the HEI of N (1,92 kg

Mg-1 harvest) and HEI of P (0.38 kg Mg-1 harvest) than ‘Diacol Capiro’ and was better

adapted to acid soils of low fertility, in contrast the HEI of K between 5.28 and 5.34 kg Mg-

1 harvest did not show differences between cultivars due to the genotypic characteristics

in the accumulation of dry biomass and starch that make them suitable for industrial use,

in addition it was verified that the nutritional extraction depends on the genetic potential

determined by the interaction with the environmental and edaphic supply.

Key words: nutrient extraction, nutritional requirements, macronutrients, Solanaceae.

3.2 Resumen La relación entre el crecimiento del tubérculo y la acumulación NPK en cultivares de papa

(Solanum tuberosum) de spp. andigena está poco documentada bajo condiciones de la

zona andina colombiana y es necesaria para establecer un manejo específico de la

fertilización en la obtención de altos rendimientos de los cultivares Diacol Capiro y

Pastusa Suprema ante las variaciones de oferta edáfico-ambiental. Se evaluaron 12

tratamientos en diferentes etapas el crecimiento del tubérculo (75-100-125-150 días

después de siembra) mediante un diseño en medidas repetidas con tres factores: dos

cultivares (Diacol Capiro y Pastusa Suprema); tres localidades con suelos contrastantes

(Subachoque, Facatativá y Chocontá) y dos niveles de fertilización, F0 (no fertilizado) y F1

(fertilizado) de naturaleza incompleta por la fertilización diferencial realizada por tipo de

suelo. Se presentó correlación positiva entre el peso fresco, peso seco y extracción N, P

y K (kg ha-1) del tubérculo además se determinó el índice de extracción de cosecha (IEC).

Bajo condiciones óptimas de fertilización se presentaron diferencias significativas

(P<0,001) entre las interacciones de los factores cultivar x fenología x localidad para la

acumulación de N y P, donde ’Pastusa Suprema’ fue menos exigente en el IEC de N

(1,92 kg Mg-1 cosecha) y el IEC de P (0,43 kg Mg-1 cosecha) que ‘Diacol Capiro’, además

se adaptó mejor a suelos ácidos de baja fertilidad, en contraste el IEC de K entre 5,28 y

5,34 kg Mg-1 cosecha no presentó diferencias entre cultivares debido a las características

genotípicas en la acumulación de biomasa seca y almidón que los hacen adecuados para

Page 89: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

3. Accumulation of N, P, and K in the tubers of potato (Solanum tuberosum L. spp. andigena) under contrasting soils of the Andean region of Colombia

67

uso industrial, además se comprobó que la extracción nutricional depende del potencial

genético determinado por la interacción con la oferta edáfico-ambiental.

Palabras clave: extracción nutricional, requerimientos nutricionales, macronutrientes,

Solanaceae.

3.3 Introduction The growth of potato plants depends on the environmental conditions and genotype-

environment interaction (Corchuelo, 2005; Cabezas, 2013), where absorption,

translocation, and accumulation of essential nutrients in the tuber allow starch

accumulation (Corchuelo, 2005; Kumar et al., 2013). Potato stays among the crops of the

highest demand for mineral nutrients per kg of dry matter produced (Sierra et al., 2002;

White et al., 2009; Kumar et al., 2013). The andigena potatoes are well adapted to soils of

low fertility, but respond favorably to NPK fertilization achieving high yields (Ríos et al., 2010; Hernández et al., 2012). According to Grandett and Lora (1979), Villamil (2005),

and Gómez and Torres (2012), the macronutrients of the highest requirement in andigena

potato plants are K, N, and P followed by Mg, S, and Ca.

In potato, N is the element essential for protein synthesis, respiration, and growth of

tubers (Westermann, 2005; Kavvadias et al., 2012). In soil conditions of mountain tropical

regions, N availability to the plants could be affected by low mineralization rate, low

temperatures, clay soils, and low organic matter content (Castro and Gómez, 2013),

although the excess of N may result in luxury consumption and reduce tuberization (Ruza

et al., 2013). Deficiency of N caused a reduction in dry matter, reduced leaf area and

fewer leaflets that provides less light interception and a lower rate of photosynthesis

(Balemi, 2009; Marouani et al., 2015; Li et al., 2016). Phosphorus promotes root growth

(Aguilar-Acuña et al., 2006), rapid formation of tubers and starch synthesis (Perrenoud,

1993). In strongly acid soils with pH lower when 5.5 of the Andean regions with cultivated

potato, P is fixed and forms precipitates with iron and aluminum, which decreases its

availability (Hernández et al., 2012; Castro and Gómez, 2013). Potassium is essential for

translocation of sugars to the tubers and starch synthesis, a fundamental processes in the

tuber growth and filling (Reis and Monnerat, 2000). Low soil supply of K in sandy soils,

Page 90: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

68 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

excess of Ca (Kavvadias et al., 2012), salinity and clay minerals of 2:1 type (Castro and

Gómez, 2013) limit availability of K to potato crop.

The relationship between tuber growth and demand for macronutrients NPK in andigena

potatoes is scarcely documented, especially as affected by the changes in edaphic-

environmental conditions of Colombian Andean region. This relationship is important to

establish a specific nutrition management and efficient use of nutrients, and optimize

fertilization moments in order to improve productivity and sustainability of cultivars

Pastusa Suprema and Diacol Capiro as economically important for fresh consumption

and industrial use. The aim of the study was to evaluate the accumulation of N, P and K in

two cultivars spp. andigena, under different stages of tuber growth in contrasting soils of

the Cundiboyacense plateau. The second objective of the research was to analyze the

effect of fertilization on the growth and yield of tuber in order to establish an efficient and

specific management of nutrition as dependent on soil type and plant phenology.

3.4 Materials and methods The study was done in 2013 and 2014 in soils contrasting in the level of fertility in the

Andean region of Colombia in representative locations in Cundinamarca province

characterized with high yield potential (> 50 t ha-1) of potato and different environmental

and soil fertility conditions (Table 3-1).

Twelve treatments were evaluated using a repeated measures design with three factors:

two cultivars spp. andigena (Diacol Capiro and Pastusa Suprema), three locations

(Subachoque, Facatativá and Chocontá), and two levels of fertilization, F0 (unfertilized)

and F1 (fertilized). The experimental design was of incomplete nature by differential

fertilization by soil type (Table 3-2), with a within-subjects factor associated with four

phenological critical stages tuber growth adapted from Segura et al. (2006). These stages

were stage II, 70-75 days after planting (dap) (formation of secondary stems and

tuberization initiation); stage III, 90-100 dap (bloom, maximum tuberization, and beginning

of tuber filling); stage IV, 120-125 dap (final flowering, tuber filling); stage V, 150-160 dap

(senescence, maximum filling, and maturation of tubers).

Page 91: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

3. Accumulation of N, P, and K in the tubers of potato (Solanum tuberosum L. spp. andigena) under contrasting soils of the Andean region of Colombia

69

Table 3-1. Edaphoclimatic conditions in the locations of the study.

Climatic conditions ††

Subachoque

Facatativá Chocontá

Altitude, msnm 2,680 2,520 2,780

North Latitude 4°57’50.1” 4°49’26.9 ” 5°5’30.37”

West Longitude 74°09’28.1” 74°22’29.7” 73°43’2.04”

Annual precipitation (mm) 870 951 1295

Max. temperature (ºC) 18.7 18.1 16.9

Min. temperature (ºC) 6.3 7.0 4.4

Average temperature (ºC) 12.5 12.6 10.6

Soil characteristics Typic Hapludand

Andic Eutrudept

Humic Dystrudept

Soil fertility ††† Low High Low

pH 5.16 6.4 5.5

Al (cmolc kg-1) 0.59 0.0 0.1

MO (g kg-1) 171.0 166.7 67.7

CEC (cmolc kg-1) 8.31 31.95 9.52

Texture Loamy Loamy Clay loamy

N (g kg-1) 8.5 8.3 3.3

P (mg kg-1) 24.8 39.64 18.18

K (cmolc kg-1) 0.1 3.14 0.68

Ca (cmolc kg-1) 6.11 24.26 7.20

Mg (cmolc kg-1) 1.29 4.34 1.57

S (mg kg-1) 23.0 29.53 11.58

Saturation K (g 100 g-1) 1.2 9.82 7.14

Saturation Ca (g 100 g-1) 75 77 75

Saturation Mg (g 100 g-1) 15 13.17 16.4

Ca/K 62.52 7.72 10.51

(Ca+Mg)/K 71.1 9.1 12.8 † Physico-chemical characterization of soils in arable layer (0-30 cm) was done according to methodology IGAC (2006). The soils were classified according to USDA classification system (Soil Survey Staff, 2010). †† Environmental data were taken and calculated from IDEAM (2012-2013). ††† Chemical fertility potential was assessed in the topsoil 0-30 cm (Castro and Gómez, 2013).

Page 92: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

70 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

In each locality, divided plot design with three replicates was used, where the main plot

corresponded to the cultivars and subplots corresponded to the two levels of fertilization.

The contribution of mineral nutrients, fertilizer sources and fractionation of fertilization (F1)

levels in each location were done according to Table 3-1. Planting was done in

experimental units of 50 m2 (135 plants/unit) with a row spacing of 1 m and 0.37 m

between the plants, and useful harvest area of 36 m2 with a density of 27,000 plants/ha.

Table 3-2. Doses of mineral nutrients applied with fertilization in the studied locations.

Nutrient† (kg ha-1)

Subachoque (F1s)

Facatativa (F1f)

Choconta (F1ch)

N 198 171 192

P2O5 374 261 340

K2O 380 180 348

CaO 40 110 45

Mg 55 70 56

S 37 74 80

B 2,8 3,4 1,2

Zn 5,6 5,6 2,4

Mn 7,0 7,0 3,0

Cu 1,4 1,4 0,6

Fe 2,8 2,8 1,2 † Fertilizers applied according to the method of soil-plant balance (Castro and Gómez, 2013) and fractioned according to historical management in areas, where the high yields have been obtained (>50 Mg ha-1): N, 60% sowing, 40% dap 45-50; P, 70% sowing, 30% 45-50 dap; K, 30% sowing and 70% 45-50 dap. The sources of granular fertilizers were: N-P, DAP; K, KCl (0-0-60) potassium sulfate (0-0-50); Ca, calcium nitrate (25% CaO); Mg, kieserite; Nutricomplet®, a complex micronutrient source B, Zn, Cu, Mn and Fe, based on sulfates.

At each stage of tuber growth four plants were taken from each experimental unit and a

destructive analysis of tubers and aerial part was carried out. At each stage, fresh weight

of tubers (FWT) (kg ha-1) was measured. For dry weight of tubers (DWT), 200 g of fresh

plant material were dried to constant weight in oven at 70°C for 72 h and the

concentrations of N, P, and K was determined in tubers (IGAC, 2006). The methods used

for elemental analysis were Micro-Kjeldahl volumetric for total nitrogen (%), calcination at

475 °C colorimetric with molybdate and ammonium vanadate for total phosphorus (g kg-1),

Page 93: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

3. Accumulation of N, P, and K in the tubers of potato (Solanum tuberosum L. spp. andigena) under contrasting soils of the Andean region of Colombia

71

calcination at 475 °C for K (g kg-1). Using the accumulation of macronutrients per dry

weight values the nutritional extraction (kg ha-1) and nutrient (g kg-1) were quantified per

growth stage of tubers adapted from Cabalceta et al. (2005) and Gómez and Torres

(2012). With the above mentioned variables harvest index (HI) and the rate of nutrient

extraction at harvest (EI) (kg of nutrient extracted per t of harvested tuber) were

evaluated.

Principal component analysis was used to perform an exploratory analysis and reduce the

dimensionality of the set of variables. Two components were analyzed with a cumulative

variability highly significant 87.55% as a result of statistical analysis; the weights of the

components were used as new variables for which the multivariate analysis of variance,

MANOVA (Ravindra and Dayanand, 1999) was performed. The Pearson correlation

matrix of qualitative variables was analyzed and the regression curves were fitted;

additionally, the graphs of the interaction of factors that describe the behavior and

distribution of nutrients were compared. SAS statistical software version 2014 and Stat

graphics version 2010 were used for the graphics.

3.5 Results and discussion

3.5.1 Accumulation of N, P and K in tuber phenology At the beginning of tuberization, 75 dap, ‘Pastusa Suprema’ took up 51 kg ha-1 N, and 100

kg ha-1 K, while ‘Diacol Capiro’ took up about 30 kg ha-1 N and 84 kg ha-1 K, with similar

uptakes of P (Figure 3-1) in Humic Dystrudepts (Choconta) with increased extraction and

higher yields than other soil evaluated. These significant differences between the cultivars

for N y K (P<0.05) could be attributed to early and stepped tuberization in ‘Pastusa

Suprema’ and to highly bearing phenotype of this cultivar.

These plant features, apparently, promoted higher demand for assimilate flow into the

tubers at initial growth stages in soils of low fertility, such as of Chocontá. ‘Pastusa

Suprema’ presented better uptake in soils of low fertility Humic Dystrudepts and Typic

Hapludands (Figure 3-1) with reduced availability of N, P, and K (Table 3-1), while

accumulation of ‘Diacol Capiro’ depended directly on increased availability of P in the soil,

Page 94: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

72 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

where the highest uptake of P was obtained in Andic Eutrudepts slightly acidic soil (Figure

3-1, Table 3-1). Therefore, it should be performed earlier and gradual fertilization management of

Supreme as related to the fertilization of ‘Diacol Capiro’ that presented accumulation of

NPK 75 dap after the beginning of tuberization (Figure 3-1B, D and F). After this growth

stage, ‘Diacol Capiro’ and ‘Pastusa Suprema’ increased the demand of assimilates that

coincided with increased nutrient transport to tubers and a localized tuberization at this

phenological stage (Figure 3-1). This is consistent with reports Villamil (2005) for ‘Diacol

Capiro’ and comparable with the data found by Sierra et al. (2002) for the cultivar Desiree

in Chile and White et al. (2009) for spp. tuberosum; where the authors reported increase

in NPK accumulation after the beginning of the tuberization. The uptake should be

synchronized with the application of NPK fertilizer to promote initial growth associated

with the growth of stolons, leaves and stems, increased number of tubers and protein

accumulation. In this sense, it is also important to consider factors, such as hormonal

balance, low temperatures and photosynthetically active radiation (Ruza et al., 2013;

Marouani et al., 2015).

In both cultivars, the maximum extraction of N, P, and K by the tubers presented at the

tuber filling stage 150-160 dap, except cv. Diacol Capiro in Subachoque that presented a

maximum extraction at 125 dap (Figure 3-1 B, D and F). Compared with Facatativa and

Choconta, Subachoque likely had more adverse conditions in the availability of N and K

(Table 3-1) and water deficit in this locality, which accelerated ripening and affected

proportionately losses in yield potential because tuberization of ‘Diacol Capiro’ was

grouped into more defined stages 70-100 dap, with greater emphasis on nutrient

availability at flowering stages.

Therefore, it should be avoided stress affecting organs and metabolism sources for filling

of tubers towards the end of the cycle, such as nutritional and hydric deficits, phenomena

that have been reported by Monneveux et al. (2013). Equally, cv. Ica Purace presented

the earliest maximum accumulation of nutrients at 120 dap (Grandett and Lora, 1979), cv.

Pimpernel at 130 dap (Sierra et al., 2002) regarding accumulation at the end of the cycle

for cv. Desiree (Sierra et al., 2002) and cv. Atlantic (Coraspe-León et al., 2009). The

differences in nutrient accumulation were directly related to soil fertility and tuberization

Page 95: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

3. Accumulation of N, P, and K in the tubers of potato (Solanum tuberosum L. spp. andigena) under contrasting soils of the Andean region of Colombia

73

dynamics per cultivar, whether determinate or indeterminate, so it is important to consider

these conditions in fertilizer management.

Figure 3-1. Accumulation of N P K in tubers during the growing season in andigena potato, cvs. Suprema (left) and Capiro (right) in Typic Hapludands (Subachoque, ♦); Humic Dystrudepts (Chocontá, ■) and Andic Eutrudepts (Facatativá, ▲) with fertilization (fer1) in the altiplano Cundiboyacense. Dap, day after planting. Error bars indicate standard error.

0

50

100

150

200

0 25 50 75 100 125 150 175

Upt

ake

N (k

g ha

-1)

SUBACHOQUECHOCONTÁFACATATIVÁ

(a)

0

50

100

150

200

0 25 50 75 100 125 150 175

(b)

-5

5

15

25

35

45

0 25 50 75 100 125 150 175

Ubt

ake

P (k

g ha

-1)

(c)

-5

5

15

25

35

45

0 25 50 75 100 125 150 175

(d)

050

100150200250300350400450500

0 25 50 75 100 125 150 175

Upt

ake

K (k

g ha

-1)

dap, Suprema

(e)

050

100150200250300350400450500

0 25 50 75 100 125 150 175

dap, Capiro

(f)

Page 96: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

74 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

The P accumulation had significant differences (P≤0.05) between localities and cultivars

mainly for ‘Diacol Capiro’, probably because of its higher nutrient requirement and lower

extraction on soils poor in P (Typic Hapludands and Humic Dystrudepts) (Figure 3-1 D).

Regarding ‘Pastusa Suprema’, it presented a better response in these soils of low fertility

and without differences in extraction in studied soils. Thus, ‘Pastusa Suprema’ showed a

better adaptation of this cultivar to soils low in P and a lower requirement of P applied with

fertilization and probably for its further exploration at the root and mechanisms of

adaptation to acid soils by exudates of root organic acids that improve the availability of P

fixed. These mechanisms of differential absorption have not yet been investigated for

these cultivars.

Phosphorus was the mineral nutrient of less accumulation in tubers as compared to N and

K in evaluated cultivars characterized with 17-40 kg ha-1 uptake P (Figure 3-1 C and D),

which coincided with local study by Villamil (2005) for ‘Diacol Capiro’. The importance of P

should not be underestimated, because its deficiency in potato crops dramatically

reduced the size of tubers, yields (Aguilar-Acuña et al., 2006; Barben et al., 2007;

Hernandez et al., 2012) and tuber quality (Fernandes et al., 2015). Phosphorus deficiency

slowed down the apical growth, resulting in small plants and reduced formation of starch

in tubers, which manifests itself with necrotic spots distributed in the tubers (Hernández et al., 2012). Several reports indicated that potato plants growing in soils with low P develop

less leaf area, which affected light interception, reduced plant growth and differentiation,

and generated less stolon bearing tubers (Barben et al., 2007). Results obtained by

Balemi (2009) in three genotypes of spp. tuberosum showed that a low supply of P

affected dramatically the plant growth and production of dry matter, also the importance of

P in starch accumulation in potato was comparable with that of K (Perrenoud, 1993).

Accumulation of K in tubers of ‘Diacol Capiro’ was similar in three locations, with a

maximum extraction of 373 kg ha-1 in soils matching high availability of this element in

Choconta and Facatativa (soil saturations with K >7%). ‘Pastusa Suprema’ presented the

maximum extraction of 429 kg ha-1 in Choconta followed by Subachoque (335 kg ha-1)

and Facatativa (232 kg ha-1); this cultivar evidenced a differential extraction (P≤0.05)

curves according to location and that were similar to those of N (Figure 3-1 A and E).

Page 97: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

3. Accumulation of N, P, and K in the tubers of potato (Solanum tuberosum L. spp. andigena) under contrasting soils of the Andean region of Colombia

75

The most uptake rate of K by the tubers of this cultivar was more associated with

adequate environmental supply with lower temperatures <12°C and greater efficiency in

the use of K y N in these soils that allows adequate sink-source management and

potassium fertilization in soils of low fertility balance. In soils of high fertility, such as Andic

Eutrudepts, potato plants could present luxury consumption of N y K, as it was evidenced

in Facatativa, where a similarly extraction was obtained but with greater accumulation of

N and K in the aerial parts and similar yields in Choconta, suggesting lower doses of

these elements in these soil conditions. In addition, the higher average air temperature in

Facatativa over Choconta may cause a higher photosynthetic rate that matches high

growth of the aerial part and could encourage higher activity of enzymes related to

assimilation of K and, therefore, a high demand for this element.

Importantly, ‘Diacol Capiro’ in soils of low fertility of Subachoque with low concentrations

of native soil K (0.1 cmolc kg-1) (Figure 3-1 F) presented an earlier accumulation of K in

the tubers (125 dap) unlike 150 d in other locations (Figure 3-1F). These data contrasted

in this locality with an accumulation of K at the end of the cycle (150-160 dds) for ‘Pastusa

Suprema’, where tuberization and tuber filling was evident by persistent vegetative

development and tuber growth. This implicates a need for more precise handling of

supplementary fertilization in soils of low offer of K. It could be suggested after 100 dap to

keep photosynthetically active and "green" plant until the end of the cycle avoiding early

ripening and to make liquid or foliar fertilization at the late stages of the crop. These

technologies have been evaluated by Horvat et al. (2014) as an alternative in the

supplementary fertilization management of this crop.

The steps of tuber filling and accumulation of K after 100 dap were related directly to the

partition of the dry matter in tubers and were higher than the rest of the plant, which

coincided with high harvest index > 75%, which favors high yield potential. Similar rates of

harvest were found by Sierra et al. (2002) and Sauceda Acosta (2010) for spp. tuberosum

cv. Desireé with yields close to 90 Mg ha-1 and Santos et al. (2010) for cvs. Diacol Capiro

and Pastusa Suprema with yields close to 50 Mg ha-1. In soils Andic Eutrudepts of

Facatativa, the harvest indexes (HI) for Supreme were lower than 55% and lower than

those obtained in low fertility soils with HI >75%, which corroborates a low sink-source

capacity in soils of high fertility associated with high availability of N and K.

Page 98: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

76 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

3.5.2 Accumulation of N, P, and K among cultivars

The demand for N, P, and K in the cultivars was directly related to the accumulation of

FWT and DWT. A sequence of accumulation of mineral nutrients K> N> P in both

cultivars was observed, similar to that reported by Westermann (2005); Coraspe-León et al. (2009); Subramanian et al. (2011) and Fallas and Bertsch (2014) in spp. tuberosum,

and by Grandett and Lora (1979), Villamil (2005); Gomez and Torres (2012) and Lefèvre

et al. (2012) in andigena potato.

The significant relationship between nutrient extraction and FWT allowed estimating the

harvest extraction index (HEI) in kg of nutrient extracted per ton of harvestable organ

(Figure 3-1), and is important to determine nutrient requirements in fertilizer

recommendations according to performance targets locals as reported Ciampitti and

García (2008) and Fallas and Bertsch (2014). HEI of N and P showed significant

differences among cultivars with higher yields at 50 Mg ha-1 (P≤0.05) and HEI higher for

‘Pastusa Suprema’ than for ‘Diacol Capiro’ in a positive linear model (Figure 3-1A and B).

For ‘Pastusa Suprema’ HEI was 1.92 kg Mg-1 N, 0.38 kg Mg-1 P; 5.3 kg Mg -1 K, while for

‘Diacol Capiro’ HEI was 2.27 kg Mg-1 N, 0.47 kg Mg -1 P; 5.3 kg Mg -1 K, when compared

with results reported by Sierra et al. (2002) and Ciampitti and Garcia (2008), when in

potato spp. tuberosum HEI was 3.5 kg Mg-1 N, 0.7 kg Mg-1 P; 5.4 kg Mg-1 K with greater

differences for N and P and equal for K.

‘Diacol Capiro’ required 32% more of N and 48% more of P for the yields superior than 50

Mg ha-1 more than ‘Pastusa Suprema’ with significant differences in beta coefficient

according to a positive lineal model in both cultivars (Figure 3-2 A and B). These

variations in N and P uptake in ‘Diacol Capiro’ can be explained by a genotype of low

stature and tuberization more synchronized with better adaptation to fertile soils and

highest genetic potential; in addition this was also associated with accumulation forms

organic an mineral that determine the nutritional characteristics of the tubers. This

confirms the differences in accumulation of NPK between potato genotypes reported by

White et al. (2009), Karam et al. (2009) and Wekesa et al. (2014). It coincides with the

differences in accumulation of these nutrients in cultivars spp. tuberosum made by

Page 99: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

3. Accumulation of N, P, and K in the tubers of potato (Solanum tuberosum L. spp. andigena) under contrasting soils of the Andean region of Colombia

77

Tekalign and Hammes (2005) and White et al. (2009) in identical environments and

andigena cultivars in the Bogota Plateau made by Grandett and Lora (1979).

Figure 3-2. Relationship between the uptake in tubers of N (A), P (B) and K (C) (kg ha-1) yield (FWT), and cvs. Capiro and Suprema in soils of Cundiboyacense plateau. ** The value of coefficients b were significant at the 0.05 probability level. ns, not significant the value coefficients b.

y = 0,0023x - 10,99, R² = 0,9458**

y = 0,002x + 0,9887, R² = 0,80512**

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90

N u

ptak

e (k

g ha

-1)

N-CapiroN-Suprema

y = 0,0005x - 0,6094 R² = 0,84685**

y = 0,0004x + 2,7127 R² = 0,85868**

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90

P up

take

(kg

ha-1

)

P-CapiroP-Suprema

y = 0,0053x + 2,9223, R² = 0,95218 ns

y = 0,0052x + 5,6299, R² = 0,9612 ns

050

100150200250300350400450500

0 10 20 30 40 50 60 70 80 90

K u

ptak

e (k

g ha

-1)

FWT (Mg ha-1)

K-CapiroK-Suprema

(a)

(b)

(c)

Page 100: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

78 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Significant differences (P≤0.05) in extracting P in favor of cultivar Diacol Capiro regarding

‘Pastusa Suprema’ (Figure 3-1B) can be explained by the most concentrated tuberization,

the better translocation of assimilates and increased demand of sinks than that in

‘Pastusa Suprema’. This features in ‘Diacol Capiro’ facilitate uniform ripening with a

defined harvest, which requires a greater demand for ATP and may be associated with

organic and inorganic forms of P. These forms of P could serve as a reserve and will

explain responses in the dormancy period of the tubers that lasts up to 4 months in this

cultivar and is longer than that in ‘Pastusa Suprema’ that presented an earlier period of up

to two months.

The differences in P suggest a higher concentration of phytate complex for ‘Diacol Capiro’

than that in ‘Pastusa Suprema’, which should be evaluated in future studies to test this

hypothesis. In relation to P in the tubers Subramanian et al. (2011) mentioned that this

element was metabolized from organic bonds orthophosphate-ester in starch that

accumulate early in tuber formation and from mineral forms of complexes of phytic acid

(myo-inositol hexakisphosphate) towards maturation of tuber and sprouting and is

necessary for proper formation of seeding tubers. The latter complex may reach between

0.1 and 0.27% DWT with differences between cultivars spp. tuberosum according to

Phillippy et al. (2004).

HEI for K showed no significant differences between the cultivars and this was the

element that had the highest correlation (r2 >0.95) with both yield and DWT compared to

N and P (Figure 3-1C). According to the results for K, HEI presented independent effects

between cultivar, locality and fertilization, suggesting that the K extraction in these

cultivars of spp. andigena was mainly depended on the genetic potential of the cultivars.

The later corroborate the direct effect of K in transport, storage, and conversion of

carbohydrates in spp. andigena, therefore, the importance of studied cultivars for the

process of industrial transformation whit high dry matter in tuber that was corroborated in

this study.

The K compared to N and P is the nutrient that had the highest correlation in ‘Diacol

Capiro’ (r2 0.95) and ‘Pastusa Suprema’ (r2 0.99) respect to DWT. The relationship

between K and tuber growth matched the one reported by Coraspe-León et al. (2009),

Karam et al. (2009), Sarkar et al. (2010), Kavvadias et al. (2012) for potato spp.

Page 101: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

3. Accumulation of N, P, and K in the tubers of potato (Solanum tuberosum L. spp. andigena) under contrasting soils of the Andean region of Colombia

79

tuberosum and Villamil (2005) and Pérez (2015) for potato spp. andigena. The

accumulation of K was directly related to accumulation of dry matter (% DWT) and starch

in the tubers (Perrenoud, 1993; Westerman et al., 1994; Reis Jr and Monnerat, 2000) of

19-28% DWT for spp. andigena (Jiménez et al., 2009). DWT % evaluated in this study

(20-27%) was similar to those reported by Jiménez et al. (2009) and Ñústez (2011).

3.6 Conclusions It is necessary a differential management of mineral nutrition in cultivars according to their

phenology and soil type and considering the differences in nutritional extractions with

higher yields to 40 Mg ha-1 in both cultivar. It is suggested the management ‘Pastusa

Suprema’ fertilization in soils of low fertility applying 30% of total extraction N P K before

stage II, beginning of tuberization (75 dap) in a uptake ratio N:P:K of 10-2-12 N as related

to ‘Capiro Capiro’ requires about 15% of the total extraction NPK in the uptake ratio N: P:

K 10 2-18; which shows a higher uptake ratio of K in early stages, so its best response

was in soils Humic Dystrudepts of Chocontá and Andic Eutrudepts of Facatativá where

saturation K soil was >7%. For tuber filling stages, before stage III (maximum tuberization

and start filling), 70% (‘Pastusa Suprema’) and 85% (‘Diacol Capiro’) of the total NPK

required by the tuber with an 8-1-20 uptake ratio for ‘Pastusa Suprema’ and 12-2-25

uptake ratio for ‘Diacol Capiro’ should be applied. These recommendations can improve

the physiological efficiency of these nutrients by taking into account the timing between

doses, ratio, and age. Actually, it is fractionated in two applications before 50 dap and is

not applied according to the nutrient extraction.

Acknowledgements The authors express their gratitude to INGEPLANT SAS, FEDEPAPA and UNAL for

funding and technical support of the agronomists of INGEPLANT SAS Paola Torres,

Liliana Arevalo, Elias Silva, and Andrea Barragan. We also thank growers Walter Guzman

- Biogenética, Yovanny Pulido, Ricardo Rojas and Carlos Acero for their support in the

development of research.

Page 102: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

80 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

3.7 Literature cited Aguilar-Acuña, J.L., J. Martínez-Hernández, V. Volke-Haller, J. Etchevers-Barra, H. Mata-

Vázquez, and M. Hernández-Martínez. 2006. Distribución del fósforo en suelo, raíces y

materia seca de tubérculos de papa cultivada con fertirriego. Terra Latinoam. 24(2), 269-

276.

Balemi, T. 2009. Effect of phosphorus nutrition on growth of potato genotypes with

contrasting phosphorus efficiency. Afr. Crop Sci. J. 17(4), 199-212.

Barben, S., B. Nichols, B. Hopkins, V. Jolley, J. Ellsworth, and B. Webb. 2007.

Phosphorus and zinc interactions in potato. pp. 219-223. In: Western nutrient

management conference Salt Lake City, UT, USA.

Cabalceta, G., M. Saldias y A. Alvarado. 2005. Absorción de nutrimentos en el cultivar de

papa MNF-80. Agron. Costarr. 29(3).

Cabezas, M. 2013. Fisiología de la maduración del tubérculo de la papa. Fedepapa,

Bogota, Colombia.

Castro, H. and M.I Gómez. 2013. Fertilidad y fertilizantes. pp. 231-304. En: Burbano-

Orjuela, H., Silva-Mojica, F., Burbano-Orjuela, H. (eds.). Ciencia del suelo - principios

básicos. Sociedad Colombiana de la Ciencia del Suelo. 2ª ed. Bogota, Colombia.

Ciampitti I. A. and O. García. 2008. Requerimientos nutricionales: absorción y extracción

de macro nutrientes y nutrientes secundarios II. Hortalizas, frutales y forrajeras. Archivo

Agronómico No 12. International Plant Nutrition Institute (IPNI), Buenos Aires, Argentina.

Coraspe-León, H., T. Muraoka, V. Franzini, M. De Stefano, and N. Granja. 2009.

Absorción de macronutrientes por plantas de papa (Solanum tuberosum L.) en la

producción de tubérculo-semilla. Interciencia 34(1), 57-63.

Corchuelo, G. 2005. Ecofisiología de la papa. pp. 13-17. In: Memorias I Taller nacional

sobre suelos, fisiología y nutrición vegetal en el cultivo de papa. CEVIPAPA, Consejo

Nacional de la Papa. Bogota, Colombia.

Page 103: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

3. Accumulation of N, P, and K in the tubers of potato (Solanum tuberosum L. spp. andigena) under contrasting soils of the Andean region of Colombia

81

Fallas, R. and F. Bertsch. 2014. Análisis del estado nutrimental del cultivo de la papa en

Costa Rica con base en información existente. Agron. Costarr. 38(1), 199-206.

Fernandes, A.M., R.P. Soratto L.A Moreno, R.M. Evangelista. 2015. Effect of phosphorus

nutrition on quality of fresh tuber of potato cultivars. Bragantia 74, 102-109. Doi:

10.1590/1678-4499.0330

Gómez, M.I. and P. Torres. 2012. Absorción, extracción y manejo nutricional del cultivo

de papa. Revista Papa Fedepapa 26, 20-25.

Grandett, G. and R. Lora. 1979. Acumulación de materia seca y de varios nutrimentos en

tres variedades de papa cultivadas en la serie Mosquera del Centro Experimental

Tibaitata. pp. 98-102. En: Marín M. (ed.). Programa Nacional de Suelos. Informe de

Progreso 1978. Mosquera. Instituto Colombiano Agropecuario (ICA), Mosquera,

Colombia.

Hernández, H.M., F. Forero, D. Otálora-Antolines, and P.A. Serrano-Cely. 2012.

Respuesta agroeconómica del cultivo de papa (Solanum tuberosum L.) bajo diferentes

fuentes de fósforo en Villapinzon, Cundinamarca. Cienc. Agric. 9(2), 97-104.

Horvat, T., M. Poljak, B. Lazarevic, Z. Svecnjak, and K. Hanacek. 2014. Effect of foliar

fertilizers on physiological characteristics of potato. Roman. Agric. Res. 31(1), 159-165.

Jiménez, M., A. Rossi, and N. Sammán. 2009. Phenotypic, agronomic and nutritional

characteristics of seven varieties of Andean potatoes. J. Food Comp. Anal. 22, 613-616.

Doi: 10.1016/j.jfca.2008.08.004

Karam, F., Y. Rouphael, R. Lahoud, J. Breidi, and G. Colla. 2009. Influence of genotypes

and potassium application rates on yield and potassium use efficiency of potato. J. Agron.

8(1), 27-32.

Kavvadias, V., C. Paschalidis, G. Akrivos, and D. Petropoulos. 2012. Nitrogen and

potassium fertilization responses of potato (Solanum tuberosum) cv. Spunta. Com. Soil

Sci. Plant Anal. 43(1-2), 176-189. Doi: 10.1080/00103624.2012.634711

Page 104: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

82 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Kumar, C. V., S.S. Prakash, G.M. Prashantha, M.B.M. Kumar, S. Lohith, and T.

Chikkaramappa. 2013. Dry matter production and yield of potato as influenced by different

sources and time of fertilizer application and soil chemical properties under rainfed

conditions. Res. J. Agric. Sci. 4, 155-159.

Lefèvre, I., J. Ziebel, C. Guignard, J.F. Hausman, R.O. Gutiérrez Rosales, M. Bonierbale,

and D. Evers. 2012. Drought impacts mineral contents in Andean potato cultivars. J.

Agron. Crop Sci. 198(3), 196-206. Doi: 10.1111/j.1439-037X.2011.00499.x

Li, W., B. Xiong, S. Wang, X. Deng, L. Yin, and H. Li. 2016. Regulation effects of water

and nitrogen on the source-sink relationship in potato during the tuber bulking stage. PloS

one 11(1), e0146877. Doi: 10.1371/journal.pone.0146877

Marouani, A., O. Behi, H.B.H. Salah, and O.A. Quilez, 2015. Establishment of chlorophyll

meter measurements to manage crop nitrogen status in potato crop. Com. Soil Sci. Plant

Anal. 46(4), 476-489. Doi: 10.1080/00103624.2014.997386

Monneveux, P., D.A Ramírez, and M.T. Pino. 2013. Drought tolerance in potato (S. tuberosum L.): Can we learn from drought tolerance research in cereals?. Plant Sci. 205,

76-86. Doi: 10.1016/j.plantsci.2013.01.011

Ñústez, C. 2011. Variedades colombianas de papa. Universidad Nacional de Colombia,

Bogota.

Pérez, J.A. 2015. Efecto de diferentes dosis de N y K sobre el rendimiento y fritura en

papa (S. tuberosum L.) variedad pastusa suprema. Trabajo de grado. Facultad de

Ciencias Agrarias, Universidad Nacional de Colombia, Bogota, Colombia.

Perrenoud, S. 1993. Fertilizing for high yield potato. IPI Bulletin 8. 2nd ed.. International

Potash Institute, Basel, Switzerland.

Phillippy, B., M. Lin, B. Rasco. 2004. Analysis of phytate in raw and cooked potatoes. J.

Food Comp. Anal. 17, 217-226. Doi: 10.1016/j.jfca.2003.08.001

Ravindra, K. and N.K. Dayanand. 1999. Applied multivariate statistics with SAS®

Software. 2nd ed. SAS Institute Inc., Cary, NC, USA.

Page 105: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

3. Accumulation of N, P, and K in the tubers of potato (Solanum tuberosum L. spp. andigena) under contrasting soils of the Andean region of Colombia

83

Reis, Jr, R.d.A. and P. Monnerat. 2000. Nutrient concentrations in potato stem, petiole

and leaflet in response to potassium fertilizer. Sci. Agric. 57, 251-255. Doi:

10.1590/S0103-90162000000200009

Ríos Q., J.Y., S.D.C. Jaramillo V., L.H. González S., and J.M. Cotes T. 2010.

Determinación del efecto de diferentes niveles de fertilización en papa (Solanum tuberosum ssp. andigena) Diacol Capiro en un suelo con propiedades ándicas de Santa

Rosa de Osos, Colombia. Rev. Fac. Nal. Agr. Medellin 63(1), 5225-5237.

Ruza, A., I. Skrabule, and A. Vaivode. 2013. Influence of nitrogen on potato productivity

and nutrient use efficiency. Proc. Latvian Acad. Sci. 67(3), 247-253.

Santos, C.M., A.M Segura, L. Ñústez. 2010. Análisis de crecimiento y relación fuente-

demanda de cuatro variedades de papa (Solanum tuberosum L.) en el municipio de

Zipaquirá (Cundinamarca, Colombia). Rev. Fac. Nal. Agr. Medellin 63(1), 5253-5266.

Sarkar, D., S.K. Pandey, and S. Sharma. 2010. High K+ does not affect potato (Solanum tuberosum L.) tuber induction, but represses its development in vitro. In Vitro Cell Dev.

Biol-Plant, 46(6), 569-577. Doi: 10.1007/s11627-010-9307-6

Sauceda A., C.P. 2010. Dosis de nitrógeno y fecha de siembra en la modelación del

rendimiento de papa (Solanum tuberosum L.) en el norte de Sinaloa. MSc. thesis. Colegio

de Postgraduados, Montecillos,México.

Segura, M., M. Santos, C. Ñústez. 2006. Desarrollo fenológico de cuatro variedades de

papa (Solanum tuberosum L.) en el municipio de Zipaquirá (Cundinamarca). Fitotec.

Colomb. 6(1), 33-43.

Sierra, G., J. Santos, and B. Kalazich. 2002. Manual fertilización del cultivo de papa en la

zona Sur de Chile. Instituto de Investigaciones Agropecuarias. Santiago, Chile.

Soil Survey Staff. 2010. Keys to soil taxonomy. 9th ed. Soil Conservation Service. 331.

United States Department of Agriculture (USDA), Washington DC, USA.

Subramanian, N.K., P.J. White, M.R. Broadley, and G. Ramsay. 2011. The three-

dimensional distribution of minerals in potato tubers. Ann. Bot. 107(4), 681-691. Doi:

10.1093/aob/mcr009

Page 106: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

84 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Tekalign, T. and P.S. Hammes. 2005. Growth and productivity of potato as influenced by

cultivar and reproductive growth: II. Growth analysis, tuber yield and quality. Sci. Hortic.

105(1), 29-44. Doi: 10.1016/j.scienta.2005.01.021

Villamil, H. 2005. Fisiología de la nutrición en papa. CEVIPAPA, Consejo Nacional de la

Papa. Bogota, Colombia.

Wekesa, M., M. Okoth, G. Abong, J. Muthoni, and J. Kabira. 2014. Effect of soil

characteristics on potato tuber minerals composition of selected Kenyan varieties. J. Agr.

Sci. 6(12), 163-171. Doi: 10.5539/jas.v6n12p163

Westermann, D. 2005. Nutritional requirements of potatoes. Am. J. Pot. Res. 82, 301-307.

Doi: 10.1007/BF02871960

White, P.J., J.E Bradshaw, M. Finlay, B. Dale, G. Ramsay, J.P. Hammond, and M.R.

Broadley. 2009. Relationships between yield and mineral concentrations in potato tubers.

HortScience 44, 6-11.

Page 107: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

4. Potential yield and efficiency of N and K uptake in tubers of cvs. Diacol Capiro and

Pastusa Suprema (Solanum tuberosum subsp. andigena)1

Potencial de rendimiento y eficiencia en la demanda de N y K en tubérculos de cv. Capiro y Suprema (Solanum tuberosum subsp. andigena)

Manuel Iván Gómez, Stanislav Magnitskiy, Luis Ernesto Rodríguez

4.1 Abstract The expression of yield in potato cultivation depends on the genotype-environment

interaction, where edaphic nutrient supply and fertilization play an important role for the

optimum growth and development of the tuber. The total tuber yield (FWt), dry weight of

tubers (DWt), harvest index (HI) and nutrient use efficiency in tubers (NUEt) were

evaluated in Andean region in Colombia under different stages of tuber growth (75-100-

125-150 days after sowing) using two cultivars (Diacol Capiro and Pastusa Suprema),

three locations with contrasting soils (Subachoque, Facatativá and Chocontá) and two

levels of fertilization varied by soil type, F0 (unfertilized) and F1 (fertilized). Humic

Dystrudept soils with fertilization (Chocontá) presented a late tuber filling with increases of

48% and 64% DWt in the cvs. Pastusa Suprema and Diacol Capiro, respectively. In

‘Pastusa Suprema’, the highest production potentials were obtained in fertilized soils of

low fertility with increases of 60.9% DWt and 75% HI, while ‘Diacol Capiro’ is better

adapted to soils of medium to high fertility with increases up to 86.7% FWt with respect to

1 Sometido a la revista Agronomía Colombiana

Page 108: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

86 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

unfertilized soils and related to higher rates of nutrient recovery efficiency (RFt),

accumulated nutrients per tuber yield (EPt) and better NUEt for N. ‘Pastusa Suprema’

presented EPt and negative RFt with HI<45% and the lower NUE of N and K in high

fertility soils, which represents a null response to fertilization and possible mechanisms of

luxury consumption of the evaluated elements.

Key words: nutrient use efficiency, productive potential, luxury consumption,

macronutrients.

4.2 Resumen Obtener el máximo rendimiento en el cultivo de papa depende de la interacción genotipo

x ambiente, donde el suministro edáfico de nutrientes y la fertilización desempeñan un

papel importante para el óptimo crecimiento y desarrollo del tubérculo. Se evaluó el

rendimiento total de tubérculos (PFt), el peso seco de tubérculos (PSt), el índice de

cosecha (IC) y la eficiencia de uso de nutrientes en tubérculos (UENt) en la región Andina

de Colombia en diferentes etapas de crecimiento de tubérculos (75-100-125- 150 días

después de la siembra) utilizando dos cultivares (Diacol Capiro y Pastusa Suprema), tres

localidades con suelos contrastantes (Subachoque, Facatativá y Chocontá) y dos niveles

de fertilización variable por tipo de suelo, F0 (no fertilizado) y F1 (fertilizado). Suelos

Humic Dystrudepts con fertilización (Chocontá) presentaron un llenado tardío con un

incremento PSt de 48% y 64% en los cvs. Pastusa Suprema y Diacol Capiro,

respectivamente. En ‘Pastusa Suprema’ se obtuvieron los mayores potenciales de

producción en suelos de baja fertilidad con incrementos en rendimiento del 60,9% y con

IC de 75%, mientras que ‘Diacol Capiro’ se adapta mejor a suelos de media a alta

fertilidad con incrementos hasta 86,7% en rendimiento (PFt) con respecto a suelos no

fertilizados, además se encuentra relacionada con la mayor recuperación de nutrientes

del fertilizante por el tubérculo (RFt) y mayor eficiencia de nutrientes para la producción

de tubérculos (EPt) . ‘Pastusa Suprema’ presentaron EPt y RFt negativo con IC <45% y

la menor UENt de N y de K en suelos de alta fertilidad, lo que representa una respuesta

nula a la fertilización y posibles mecanismos de consumo de lujo de los elementos

evaluados.

Page 109: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

4. Potential yield and efficiency of N and K uptake in tubers of cvs. Diacol Capiro and Pastusa Suprema (Solanum tuberosum subsp. andigena)

87

Palabras clave: uso eficiente de nutrientes, potencial productivo, consumo de lujo,

macronutrientes

4.3 Introduction For 2016 in Colombia, an estimated production of 2,623,700 t ha-1 was achieved on

126,100 ha, with Cundinamarca and Boyacá provinces generating 76% of potato

production (Riascos, 2016). Diacol Capiro and Pastusa Suprema are considered the

cultivars of high economic importance and represent 80% of the area cultivated in the

country for fresh consumption and industrial processing (Ñústez, 2011).

In the Andean region of Colombia, yields of 50-60 t ha-1 have been reported for ‘Diacol

Capiro’ (Gómez and Torres, 2012) and 40-50 t ha-1 for ‘Pastusa Suprema’ (Pérez, 2015)

but vary considerably by location or soil type, with an increase in the potential yield in the

last decade due to the technological improvements in certified seed management,

irrigation, mechanization, and balanced fertilization.

In these cultivars, high application of nitrogen and potassium fertilizers facilitates

significant yields (Ríos et al., 2010; Saravia et al., 2016), but there is low absorption

efficiency of mineral nutrients by the plants, probably due to the shallow root systems

(Poljak et al., 2011). This implies a low nutrient recovery of up to 50% for N (Vos, 2009)

and 70% for K (Gómez and Torres, 2012), a result of the low influx of potassium used by

the roots (Rengel and Damon, 2008). On the other hand, it should be considered that the

availability of water and nutrients in soil (Saravia et al., 2016) as well as the plant genetics

with respect to source-sink efficiency, which is variable for cultivars (Trehan and Singh,

2013), directly affects the efficiency of nutrient transport to the tubers (Poljak et al., 2011;

Giletto and Echeverria, 2015; Fernandes and Soratto, 2016). Nutrient Use Efficency

(NUE) in potato tuber recently has been investigated mainly for N, by Poljak (2011),

Saravia et al. (2016), and Marouani and Harbeoui (2016) and for K by Trehan and Singh

(2013), Wang and Wu (2015); in subsp. tuberosum, while the studies on the efficient use

of nutrients in subsp. andigena are less frequent (Zebarth et al., 2012).

Potato of the subsp. andigena cultivated in the Andean region respond favorably to

fertilization mainly in soils with low nutrient supply (Ríos et al., 2010) and nutrient uptake

Page 110: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

88 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

rates of about 0.2-0.3 kg m2 are measured (Ríos et al., 2010; Gómez and Torres, 2012),

which can reduce the efficient use of fertilizers and negatively impact the profitability and

environmental sustainability of potato production in the country. The efficiency of nutrient

use for Diacol Capiro and Pastusa Suprema cultivars has not been quantified. The

present research evaluated the production potential, accumulation of dry matter, harvest

index (HI) and NUEt for N and K in tubers in response to the balanced fertilization under

three soils contrasting in their fertility; the study aimed to establish an optimal

management of these mineral nutrients according to the cultivar and soil type.

4.4 Materials and methods

4.4.1 Location and soils The experiments were conducted between 2013 and 2014 in three potato producing

locations under contrasting soils of Cundiboyacense plains in the Andean region of

Colombia as shown in the Table 4-1. In each location, a randomized complete block

design was established using an incomplete factorial arrangement in divided subplots-

mixed model with three replicates, where the main plot corresponded to the cultivars

(Capiro and Suprema) and the subplots corresponded to two levels of fertilization (F0 and

F1). The amount of mineral nutrient applied, the sources of fertilizers, and the dose

fractioning for F1 level are shown in Table 4-2.

Twelve combinations among factors were evaluated through a repeated measures design

with three factors: two cultivars (Diacol Capiro and Pastusa Suprema), three locations

(Subachoque, Facatativá, and Chocontá) and two levels of fertilization, Fer0 (unfertilized

plots, initial soil fertility conditions) and F1 (fertilized plots). The design was of an

incomplete nature by the differential fertilization done by soil type (Table 4-2), with an

intra-subject factor in time associated with four phenological stages of tuber growth

adapted from Valbuena et al. (2010): Stage II, 70-75 days after sowing (das) (start of

tuberization); Stage III, 90-100 das (flowering, maximum tuberization and start of tuber

filling); Stage IV, 120-125 das (end of flowering, filling of tuber); stage V, 150-160 das

(maximum tuber filling and ripening). Sowing was done in experimental units of 50 m2

(135 plants parcela-1), with the distances of 1 m between rows and 0.37 m between the

plants, a useful area of 36 m2 (three central rows) and a density of 27.000 plants ha-1.

Page 111: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

4. Potential yield and efficiency of N and K uptake in tubers of cvs. Diacol Capiro and Pastusa Suprema (Solanum tuberosum subsp. andigena)

89

The agronomic practices of irrigation, weed and phytosanitary management were carried

out according to the needs of the locations, in such a way that effects of external factors

were minimized. For Subachoque and Chocontá, dolomite type amendments in pre-

sowing were incorporated in soil at rates of 1.5 and 1.0 t ha-1, respectively.

Table 4-1. Environmental and soil fertility characteristics at the study sites.

Environment conditions†† Subachoque Chocontá Facatativá Altitude, m a.s.l. 2,680 2,780 2,520

North latitude 4°57’50.1” 5°5’30.37” 4°49’26.9”

West longitude 74°09’28.1” 73°43’2.04” 74° 22’29.7”

Annual precipitation, mm 870 1,295 951

Max air temperature, ºC 18.7 16.9 18.1

Min air temperature, ºC 6.3 4.4 7.0

Average air temperature, ºC 12.5 10.6 12.6

Soil properties † Typic

Hapludand Humic

Dystrudept Andic

Eutrudept Soil fertility ††† Low Medium High

pH 4.95 5.5 6.4

Al, cmolc kg-1 0.59 0.1 0.0

Soil organic matter, g kg-1 171 67.7 166.7

CIC, cmolc kg-1 8.3 9.5 31.9

Texture Loam Clay loam Loam

N, g kg-1 8.5 3.3 8.3

P, mg kg-1 24.8 28.2 39.6

K, cmolc kg-1 0.1 0.7 3.1

Saturation K, g 100g-1 1.2 7.1 9.8 †Physical-chemical characterization of soils in arable layer (0-30 cm) according to IGAC (2006). Soils classified according to the USDA classification system (Soil Staff, 2010). ††Environmental data obtained from IDEAM (2013-2014). †††Potential chemical fertility evaluated in the arable layer 0-30 cm (Castro and Gómez, 2013).

Page 112: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

90 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Table 4-2. Doses of mineral nutrients applied with fertilizers in the study sites.

Nutrient†, kg ha-1 Subachoque (F1s)

Facatativá (F1f)

Chocontá (F1ch)

N 198 171 192

P2O5 374 261 340

K2O 380 180 348

CaO 40 110 45

Mg 55 60 56

S 37 74 120

B 2.8 3.4 1.2

Zn 5.6 5.6 2.4

Mn 7.0 7.0 3.0

Cu 1.4 1.4 0.6

Fe 2.8 2.8 1.2

† Recommended fertilization rates derived from the soil-plant balance method (Castro and Gómez, 2013) and fractioning of fertilizer dose according to historical references in the areas, where the high yields have been obtained (> 50 t ha-1): N, 60% at sowing and 40% at 45-50 days after sowing (das); P, 70% at sowing and 30% at 45-50 dds; K, 30% at sowing and 70% at 45-50 dds. Granulated fertilizer sources were: N-P, DAP; K, KCl (0-0-60), potassium sulfate (0-0-50); Ca, calcium nitrate (25% CaO); Mg, kieserite; Nutricomplet, complex source of micronutrients B, Zn, Cu, Mn and Fe, based on sulfates.

4.4.2 Plant sampling and analysis At the four stages of tuber growth, four plants per experimental unit were evaluated.

Destructive analysis of leaves, stems and tubers was done. All parts of the plants were

rinsed with deionized water. For each sampling, fresh leaves, aerial stems and tubers

were weighed separately, a sample of 200 g (fresh weight) in each organ was placed in

paper bag and dried in the oven at 70 °C for 72 h. The dry matter (DW) of each sample

was then weighed and DW accumulation in each organ was evaluated per plant and per

stage. All organs of the dried plants were ground using a 40 stainless steel mesh for the

subsequent chemical analysis. The harvest index (HI) was evaluated at the phenological

stage V, HI = (DWt / DWs) * 100, according to Giletto and Echeverria (2015), where DWt

is tuber dry weight and DWs – shoot dry weight. In dry samples, the nutrient

concentrations in tubers were determined according to the methodology of IGAC (2006).

The amounts of N and K extracted by the tubers were calculated by multiplying the

Page 113: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

4. Potential yield and efficiency of N and K uptake in tubers of cvs. Diacol Capiro and Pastusa Suprema (Solanum tuberosum subsp. andigena)

91

concentration of the nutrients by the DW accumulated by the tubers at each stage of

growth.

4.4.3 Efficiency use and recovery of mineral nutrients by tubers

Considering the treatments without fertilizer application (F0) with respect to the balanced

fertilization in each location (F1), the indices of NUE were estimated. The N and K

recovery efficiency by the tuber from fertilization or acquisition efficiency (RFt) was

calculated using equation RFt = (Et1-Et0 / amount of mineral nutrient supplied in the

fertilizer) * 100 (Table 4-2), where Et1 is the nutrient extraction by tubers in fertilized soils

(kg ha-1) and Et0 is the nutrient extraction by tubers in unfertilized soils (kg ha-1). This

equation has been adapted from Fernandes and Soratto (2016). The efficiency use of N

and K by the tubers (NUEt) was estimated as the accumulated dry matter in the tuber /

nutrient accumulation in the tuber, as reported in potato by Poljak et al. (2011) and

Rengel and Damon (2008) for N and K, respectively. In addition, we evaluated the

efficiency of the production of tuber obtained per unit of nutrient accumulated (EPt),

according to the equation adapted from Prochnow et al. (2009): EPt = (FWT1-FWT0) /

(Et1-Et0), where FWT1 is the tuber yield in the fertilized treatment and FWT0 is the tuber

yield in the control treatment.

4.4.4 Statistical analysis Multivariate analysis of variance was performed assessing differences in factor interaction

with a confidence level of P<0.01. The Pearson correlation matrix for the qualitative

variables was analyzed and the efficiency indices were adjusted. The statistical program

SAS version 2014 was used and, for the figures, the program Statgraphics version 2010

was employed.

Page 114: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

92 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

4.5 Results and discussion

4.5.1 Yield, harvest index, and dry weight of tubers The DWt and FWt presented highly significant differences (P≤0.01) in response to the

interaction phenology*fertilization (location*cultivar), with a higher yield obtained for

‘Pastusa Suprema’ in fertilized treatments (F1) in Subachoque (70.5 t ha-1) and Chocontá

(73.7 t ha-1) associated with soils of medium to low fertility (Figure 4-1) and related to a

higher accumulation of DWt between 17.1 and 19.98 t ha-1, respectively (Figure 4-2). For

‘Diacol Capiro’, the highest yield was registered in fertilized soils with the higher

availability of K (Table 4-1), Humic Dystrudepts and Andic Eutrudepts in Chocontá (67.3 t

ha-1) and Facatativá (73.1 t ha-1), respectively (Figure 4-1), and directly related to the

accumulation of DWt.

Figure 4-1. Yield (FWt) of cvs. Capiro and Suprema at the phenological stage V (maximum tuber filling and maturation) in the absence of fertilization F0, with respect to the balanced fertilization by location: F1s, Typic Hapludands (Subachoque); F1ch, Humic Dystrudepts (Chocontá), and F1f, Andic Eutrudepts (Facatativá). P<0.001 for fertilization (location * cultivar)

The yields of 70 t ha-1 obtained in both cultivars proved the high genetic potential of these

Andean potatoes under optimal environmental and fertilization conditions; these yields

0

10000

20000

30000

40000

50000

60000

70000

80000

F0 F1 F0 F1 F0 F1

SUBACHOQUE FACATATIVÁ CHOCONTÁ

Tube

r Yi

eld,

FW

t (k

g ha

-1)

Suprema Capiro

Page 115: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

4. Potential yield and efficiency of N and K uptake in tubers of cvs. Diacol Capiro and Pastusa Suprema (Solanum tuberosum subsp. andigena)

93

were dependent on the soil-plant conditions, where a greater number of tubers and a

better translocation of assimilates were promoted, exceeding the yields of 45 t ha-1

observed by Ríos et al. (2010), Ñústez (2011), and Pérez (2015) in the same cultivars.

For fertilized soils in Humic Dystrupets (Chocontá) (Fer1ch), an increase in yield of 36.4%

and 69.9% was observed for ‘Pastusa Suprema’ and ‘Diacol Capiro’, respectively, with

respect to the initial soil conditions. These values were lower than the ones found in Typic

Hapludands in Subachoque but with higher increases in FWt for 60.9% (‘Pastusa

Suprema’) and 87.1% (‘Diacol Capiro’), which shows the importance of fertilization for

both cultivars in low fertility soils (Table 4-1) and coincides with the report by Ríos et al. (2010), who found positive responses to fertilization of up to 95% YFt in ‘Diacol Capiro’ in

low fertility andisoles in Antioquia province (Colombia). The lowest response to

fertilization was found in Andic Eutrudepts (Facatativá) with 20.1% for ‘Pastusa Suprema’

and a marginal and non-significant increase with respect to the control treatment (Figure

4-1); in addition, there was a 30.3% increase in yield in ‘Diacol Capiro’, which

corroborates a higher availability of nutrients in this soil with respect to other evaluated

soils.

For two cultivars in the three locations, there were observed positive and significant

responses in yield, having a better response to fertilization in ‘Diacol Capiro’ than in

‘Pastusa Suprema’, with ‘Diacol Capiro’ being better adapted to soils with higher fertility.

‘Diacol Capiro’ performed the best way as a response to a higher edaphic K supply, better

base ratio (Ca/K, Ca+Mg/K) (Table 4-1) and balanced fertilization (Figure 4-1). The

differential response of two cultivars in favor of Humic Dystrudepts (Chocontá) could be

explained by the better balance in the edaphic supply of K (0.68 cmol kg-1) with lower P

fixation, higher average contents of soil organic matter and absence of interchangeable

Al+3 (Table 4-1). This was observed with respect to Typic Hapludands (Subachoque) that

are P fixing soils associated with a low mineralization and presence of Al+3, where lower

levels of available N might be present. Additionally, K deficient levels were observed

below the critical levels (0.1 cmol kg-1) reported by Castro and Gómez (2013) for similar

soils.

Page 116: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

94 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

The cvs. Pastusa Suprema and Diacol Capiro showed a greater conversion of assimilates

in fertilized Humic Dystrudept soils (Chocontá), with 27.03 and 28.2% of DWt at harvest,

respectively, a value higher than the one reported by Ñústez (2011) in these cultivars

(24% DWt). The greater contribution of % DWt favors their industrial use. In contrast, in

high fertility soils of Andic Eutrudepts (Facatativá), lower yields and a lower accumulation

of assimilates were obtained in tubers with 22.01% DWt and 19.8% DWt in ‘Diacol Capiro’

and ‘Pastusa Suprema’, respectively. The best DWt in ‘Pastusa Suprema’ related to lower

fertility soils fertilized both in Subachoque and Chocontá (Figure 4-2 and Figure 4-3) with

total DWt of 634 to 740 g/plant, respectively. The DWt was higher than those reported by

Ñústez et al. (2009) of 450 g/plant for this cultivar at low fertility soils in the Colombian

potato producing zone of Zipaquirá (2580 m a.s.l.).

Figure 4-2. Harvest index (HI) in cvs. Diacol Capiro and Pastusa Suprema in the absence of fertilization Fer0, with respect to balanced fertilization by location: F1s, Typic Hapludands (Subachoque); F1ch, Humic Dystrudepts (Chocontá), and F1f, Andic Eutrudepts (Facatativá). P<0.001 for location*cultivar.

‘Diacol Capiro’ in low to high fertility soils presented a HI between 75 and 85% when

compared to ‘Pastusa Suprema’ that presented HI between 75 and 83% only on low

fertility soils in the locations of Subachoque and Chocontá, respectively. ‘Pastusa

Suprema’ limited its assimilate partition at high fertility soils in Facatativá with a lower than

45% HI due to its more indeterminate growth habit and a later growth cycle with less

Fer0 Fer1s Fer0 Fer1f Fer0 Fer1ch

SUBACHOQUE FACATATIVÁ CHOCONTÁ

Suprema 75.0 75.9 42.5 36.7 83.2 83.1

Capiro 84.0 85.0 75.6 75.1 77.5 79.5

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Har

vest

inde

x ( g

/100

g)

Page 117: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

4. Potential yield and efficiency of N and K uptake in tubers of cvs. Diacol Capiro and Pastusa Suprema (Solanum tuberosum subsp. andigena)

95

accumulation of DWt (21.2%); the similar results were obtained by Giletto and Echeverria

(2015) for late-cycle and indeterminate-type cultivars, such as Markies Russet.

The lower HI in ‘Pastusa Suprema’ were related to the lower adaptation of the genotype

because, in Facatativá, it was cultivated at marginal altitudes close 2,500 m a.s.l. and

average air temperatures higher than 13 ºC when compared with environmental

parameters defined by Ñústez (2011). Additionally, there was an availability of soil

nutrients (Table 4-1) which may have generated an excess of N which could inhibit

tuberization and tuber growth, confirming what was reported by Ruza et al. (2013). On the

other hand, ‘Diacol Capiro’ was more adapted to high levels of N and K due to its better

ability to partition assimilate to the tuber characterized by its genotype of a determinate

habit and better relation of aerial shoots/tubers. This makes it a more efficient crop;

coinciding with research conducted by Kleinkopf et al. (1981) and Trehan and Singh

(2013) for subsp. tuberosum.

The HI in ‘Diacol Capiro’ and ‘Pastusa Suprema’ did not show significant differences in

response to fertilization but did present differences in the cultivar x location interaction

(Figure 4-2). The non-significance of HI in response to fertilization is consistent with

results obtained by Zelalem et al. (2009) and Burga et al. (2014), who reported that

increasing doses of N and K, respectively, had no influence on this parameter. The above

can be explained more by adaptation mechanisms and characteristics of the genotype

and also coincides with reports made by Rengel and Damon (2008) and Gileto and

Echevarria (2015).

Page 118: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

96 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Figure 4-3. Tuber dry weight (DWt) in cvs. Diacol Capiro and Pastusa Suprema at four phenological stages (II, start of tuberization; III, maximum tuberization-start of filling; IV, filling of tuber; V, maximum filling and maturation) in the absence of fertilization F0, with respect to balanced fertilization by location for soils Typic Hapludands (Subachoque), F1s; Humic Dystrudepts (Chocontá), F1ch and Andic Eutrudepts (Facatativá), Fer1f; P<0.001 for fertilization (location * cultivar).

As for the accumulation of DWt for ‘Pastusa Suprema’ at 125 das (stage IV) and for

Capiro at 100 das (stage III), an earlier filling of tubers was observed with the Typic

hapludands (Subachoque) soil than in the other locations. This is probably because there

were grown in soils of lower fertility and low contribution of K (0.1 cmolc kg-1) compared to

Chocontá and Facatativá soils (Figure 4-3, Table 4-1), where tuber filling in both cultivars

was concentrated towards the end of the cycle, possibly, due to the best availability of

nutrients, mainly K, during all the phenological stages, which presents a gradual and

linear extraction of these elements (Figure 4-3). The greater accumulation of DWt at

stages IV and V in evaluated cultivars could be associated with phenological stages of

higher photosynthetic demands and coincided with stages of high translocation and

assimilation partition verifying that reported by Valbuena et al. (2010) for these cultivars.

0

5000

10000

15000

20000

25000

Fer0 Fer 1s Fer0 Fer1f Fer0 Fer1ch

SUBACHOQUE FACATATIVÁ CHOCONTÁ

Tube

r dry

wei

ght,

DW

t (k

g ha

-1)

Suprema II Suprema III Suprema IV Suprema V

Capiro II Capiro III Capiro IV Capiro V

Page 119: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

4. Potential yield and efficiency of N and K uptake in tubers of cvs. Diacol Capiro and Pastusa Suprema (Solanum tuberosum subsp. andigena)

97

4.5.2 Efficiency in the nutrient use by tubers

‘Pastusa Suprema’ in Andic Eutrudepts of high fertility (Facatativá) presented a negative

response in the recovery of N (-10.8 RFNt) and K (-9.6 RFKt) of the balanced fertilizer

applied (Figure 4-4) and a negative physiological response of N (-267.9 EPt N) and K (-

250 EPt K) for tuber production when compared to positive indexes of NUE for ‘Diacol

Capiro’ (Figure 4-5) indicating significant differences between location and cultivar. The

highest RFt of N and K of the applied fertilizer was observed for ‘Diacol Capiro’ in

Facatativá in high fertility soils in basin zone, with RFNt of 70.2% and RFKt of 79.8%;

these indexes were higher than those found in Chocontá with RFNt of 44.8% and RFKt of

42.3% and in Subachoque (38,1% RFNt y 46,9% RFKt) probably because they are soils

that present greater losses of these nutrients by runoff to be located in mountain

landscapes. The location of Chocontá and Subachoque also presented high yield

potential to ‘Diacol Capiro’ and lower than 60% RFNt reported by Vos (2009) for nitrogen

applications between 150-200 kg ha-1 and had similar indices in the acquisition of K as

reported by Gómez and Torres (2012) in cv. Diacol Capiro.

Figure 4-4. Efficiency of recovery of N and K in tubers (RFt), kg nutrient extracted per 100 kg nutrient applied in balanced fertilization, cvs. Diacol Capiro and Pastusa Suprema on contrasting soils of the Andean region-Colombia. P<0.001 in N and K for location * cultivar.

RFNt RFKt RFNt RFKt RFNt RFKt

SUBACHOQUE FACATATIVA CHOCONTA

CAPIRO 38.1 46.9 70.2 79.8 44.8 42.3

SUPREMA 45.8 35.0 -10.8 -9.6 34.2 28.1

-50-40-30-20-10

0102030405060708090

100

RFt

(kg

DW

t/ k

g N

utri

ent)

CAPIRO

SUPREMA

Page 120: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

98 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Figure 4-5. EPt of N and K (kg of tuber harvested per kg of nutrient extracted) in ‘Diacol Capiro’ and ‘Pastusa Suprema’ in contrasting soils of the Andean region-Colombia. P<0.001 in N and K for location * cultivar.

‘Pastusa Suprema’ presented low recovery efficiency (<45%) of nitrogen (RFNt) and

potassium (RFKt) with lower rates than ‘Diacol Capiro’ for K in low fertility soils (Figure

4-4). This is a characteristic of high yield and indeterminate cultivars as reported by

Kleinkopf et al. (1981) for cvs. Russet Burbank and Centennial Russet. In addition, the

low K efficiency was, probably, due to a low supply of unexchangeable K to the roots with

low K extraction in these soils associated with a low root/shoot ratio. Similar results were

reported by Trehan and Singh (2013) for the cultivars subsp. tuberosum: Kufri Jyoti and

Kufri Badshah. Therefore, it is necessary for soils with low availability of K to increase the

diffusion and mass flow of this element by means of an adequate contribution and

fractionation of K in the mineral and/or organic fertilizers starting from sowing. This helps

to counteract the effect of antagonistic elements, such as Al+3, maintaining a balance in

the Ca+2 and Mg+2 ratio, thus, improving the rhizosphere environment and root growth. In

Humic Dystrudepts soils of lower fertility in Chocontá, where the best yields were

obtained, a better physiological efficiency in the production of tubers by nutrient extracted

(EPt) was observed, with significant differences in the interaction between the location

and the cultivar (Figure 4-5). Under these conditions, ‘Diacol Capiro’ and ‘Pastusa

EPt N EPt K EPt N EPt K EPt N EPt K

SUBACHOQUE FACATATIVA CHOCONTA

CAPIRO 365.6 174.4 200.2 172.8 347.1 361.2

SUPREMA 291.1 238.3 -267.9 -250.0 307.9 283.9

-400.0

-300.0

-200.0

-100.0

0.0

100.0

200.0

300.0

400.0

500.0EP

t(kg

/ k

g N

utri

ente

)

CAPIRO

SUPREMA

Page 121: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

4. Potential yield and efficiency of N and K uptake in tubers of cvs. Diacol Capiro and Pastusa Suprema (Solanum tuberosum subsp. andigena)

99

Suprema’ produced EPt of N 347 and 308 kg FWt / kg N, respectively, and EPtK of 361

and 283 kg FWt/ kg K. These were higher results for N and similar for K to those reported

by Trehan and Singh (2013), with EPtN between 250 and 318 kg FWt/kg N and EPtK

between 256-360 kg FWt/kg K for efficient subsp. tuberosum cultivars Kufri and a hybrid

JX 576.

The above relates to the higher response in FWt and DWt from ‘Diacol Capiro’ and

‘Pastusa Suprema’ to fertilization in this location and coincides with the greater Use

Efficiency of N and K in the tubers (Figure 4-6), which can be explained by the better

partition and conversion of the N, K and assimilates to the tubers with a better sink

strength of the tubers at the times of filling for both cultivars under the edaphic-

environmental conditions of this location. In addition, the greater efficiency in cv. Diacol

Capiro under contrasting soils coincides with the better adaptation of this cultivar in a

wider range of altitudes (1,800-3,200 m) and soils, similar to optimal environmental

conditions reported by Ñústez (2011).

‘Diacol Capiro’ responded better to fertile soils, which coincides with HI> 75% (Figure 4-2)

and where lower soil loss factors were observed due to the location in lacustrine basins

areas and the high native K and N content (Table 4-1). Again, this confirms that the best

adaptation for ‘Diacol Capiro’ is in flat areas and in the high fertility soild of the Plateau of

Bogota. This provides a better efficiency in the translocation of nutrients which are

assimilated to the tuber and a high removal of N and K from the plant (Figure 4-4), which

needs to be replenished in fertilization plans. The better adaptation of this cultivar can be

explained by possible differential absorption mechanisms with a greater flow of K and N to

the root and into the tuber. In addition, the presence of specialized channels that also

favor the assimilate translocation together with a lower ratio of aerial shoots/tuber are

mechanisms that have been explained for K by Trehan and Singh (2013) and Wang and

Wu (2015) and for N by Vos (2009) that verified the differences between the genotypes.

Under conditions of high availability of K (3.14 cmolc kg-1) in Andic Eutrudepts (Facatativá)

‘Pastusa Suprema’ responded negatively to the fertilization of this nutrient with EPt K of -

250 and presented the lowest K EPt for ‘Diacol Capiro’ of 172.8 (Figure 4-5). Additionally,

the tuber production response for ‘Pastusa Suprema’ was marginal for high potassium

saturation soils (> 9%) in Andic Eutrudepts (Facatativá) as shown in Figure 4-1. The

Page 122: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

100 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

above data suggest a possible luxury uptake for K for ‘Pastusa Suprema’ and marginal

uptake for ‘Diacol Capiro’, the phenomena that have been explained for subsp. tuberosum

by Kang et al. (2014). On the other hand, Karam et al. (2009) for cvs. Derby and Umatilla

Russet found less efficiency in the use of K with K2O levels higher than 289 kg ha-1. In

addition, Burga et al. (2014) verified in tretaploid cultivars that high levels of K affected the

development of tubers to the detriment or marginal of yield, where the excess of this

element might limit the transport of other assimilates or hormones.

On the other hand, Facatativá soils had the lowest physiological efficiency of N (NUEt of

18 kg kg-1 for ‘Diacol Capiro’ and 36 kg kg-1 for ‘Pastusa Suprema’) and K (NUEt of 36 kg

kg-1 ‘Pastusa Suprema’ and 30 kg kg-1 ‘Diacol Capiro’) with contributions of 171 kg ha-1 of

N and 180 kg ha-1 of K, respectively, under high availability of N and K (Table 4-2). This

coincides with findings by Zebarth et al. (2012) and Saravia et al. (2016), who found for

potato low values in the NUE between 40 and 10 kg kg-1 respectively increasing the

availability of N in crops with doses between 200 and 300 kg ha-1 of N can help with

positive plant responses.

Figure 4-6. Efficient use of N and K in tubers of balanced fertilization, NUEt (kg of dry matter of the tuber per kg of nutrient extracted) in cvs. Diacol Capiro and Pastusa Suprema in Typic Hapludands, Subachoque, Andic Eutrudepts, Facatativá, and Humic Dystrudepts, Chocontá in Andean region-Colombia.

The highest physiological efficiency in the use of nutrients in tubers was obtained in

‘Diacol Capiro’ with NUEt of 97.3 kg kg-1 for N and 106.7 kg kg-1 for K in fertilized soils of

NUEt N NUEt K NUEt N NUEt K NUEt N NUEt K

SUBACHOQUE FACATATIVA CHOCONTA

CAPIRO 73.2 37.2 36.0 30.5 97.3 106.7

SUPREMA 49.3 40.1 18.2 18.2 26.8 29.8

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

NU

Et(k

g D

Wt/

kg

Nut

rien

t)

CAPIRO SUPREMA

Page 123: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

4. Potential yield and efficiency of N and K uptake in tubers of cvs. Diacol Capiro and Pastusa Suprema (Solanum tuberosum subsp. andigena)

101

the lower fertility in Choconta. This corroborates the better efficiency of ‘Diacol Capiro’ as

a characteristic of the genotype already mentioned and verifies that the best NUE is

significantly different to that in ‘Pastusa Suprema’. ‘Diacol Capiro’ appears to be a

genotype of a determinate type that agrees with results by Kleinkopf et al. (1981) for

cultivars of similar type. These indices for soils of lower fertility were superior than those

reported by Poljak et al. (2011) with NUEt of 71 to 76 kg kg-1 for N in subsp. tuberosum

and N fertilizer contribution between 150-200 kg ha-1, probably, due to the positive

interaction of nutrients in the balanced fertilization of macro and micronutrients in

unsaturated soils with an improvement in the efficient use of nutrients in tropical soils

corroborating that discussed by Prochow et al. (2009).

The low physiological efficiency of N and K in the tubers for cv. Pastusa Suprema in soils

with excesses of N might suggest a luxury consumption of these elements that could be

due to a lower growth of tubers by the low transport of assimilates to organs associated

with low HI (Figure 4-2). With a higher average temperature than in the other locations,

this could result in a high ratio of aerial shoots/tubers, thus, limiting the flow of carbon and

nutrients to tubers similar to that reported by Fandika (2012) and Saravia et al. (2016) for

N and Wang and Wu (2015) for K. These authors suggested agronomic and genetic

strategies to decrease the air shoot/tuber ratio and to improve the translocation of

assimilates into the tubers. According to Roumeliotis (2012) excesses of N and high

temperatures limit tuber formation and growth. Conversely, Fandika (2012) also reported

a less efficient use of N by lower partition of assimilates into the tubers, with a low number

of physiological sources at the start of tuberization under high doses of N.

The imbalance due to excess of N available in soil during tuber filling at the start of

tuberization could also cause a reversal of tubers into stolons affecting the productive

potential, a phenomenon that should be evaluated in these cultivars in future research.

Similar results were proposed by Güller (2009) in potato subsp. tuberosum cv. Ana,

where it was found that at doses higher than 200 kg ha-1, a smaller number of tubers were

present at the tuberization stage with higher generation of source structures. In addition,

Zelalem et al. (2009) reported that doses higher than 140 kg N ha-1 increased the number

of stems and delayed flowering that according to Roumeliotis (2012) affected the

Page 124: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

102 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

synthesis and transport of the FT-like protein tuberigen that favors tuberization in this

species.

The lower physiological indexes found in the use of K obtained in ‘Pastusa Suprema’ in

high fertility soils (Figure 4-4, Figure 4-5 and Figure 4-6) coincided with a rapid vegetative

growth, a later tuberization and a lower growth of the source organ. This coincides with

the lower accumulation of K and dry matter and the presence of smaller tubers despite

the presence of the same number of tubers as in ‘Diacol Capiro’. This can be explained

through an excess of K, which can generate an imbalance by allowing nitrate

accumulation with a lower assimilation in the aerial part and a decrease in the transport of

carbohydrates and proteins towards the tubers. Similar effects by excesses of K were

found by Kang et al. (2014).

4.6 Conclusions ‘Diacol Capiro’ is more efficient in the use of N and K than ‘Pastusa Suprema’

independent of the soil type and location, although ‘Pastusa Suprema’ presented the best

responses and physiological indexes in soils of lower fertility in higher altitude and lower

ambient temperature with response to balanced fertilization. This suggests the use of

integrated management of fertilization aimed to improve the availability of N and K in the

rhizosphere (acidity and nutrient balance) and a specific fertilization in both cultivars,

considering the environmental supply per site and the soil supply given by soil

pedogenesis.

Acknowledgments

The authors express their gratitude to Ingeplant SAS, Fedepapa and Universidad

Nacional de Colombia for funding and technical support of the agronomists of Ingeplant

SAS Paola Torres, Liliana Arévalo, Elías Silva, and Andrea Barragán. We also thank

growers Walter Guzmán - Biogenética, Yovanny Pulido, Ricardo Rojas and Carlos Acero

for their support in the development of research.

Page 125: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

4. Potential yield and efficiency of N and K uptake in tubers of cvs. Diacol Capiro and Pastusa Suprema (Solanum tuberosum subsp. andigena)

103

4.7 Literature cited Burga, S., N. Dechassa, and T. Tsegaw. 2014. Influence of mineral nitrogen and

potassium fertilizers on ware and seed potato production on alluvial soil in Eastern

Ethiopia. East Afr. J. Sci. 8(2), 155-164.

Castro, H. and M.I Gómez. 2013. Fertilidad y fertilizantes. pp. 231-304. En: Burbano-

Orjuela, H., F. Silva-Mojica, and H. Burbano-Orjuela (eds.). Ciencia del suelo - principios

básicos. 2a ed. Sociedad Colombiana de la Ciencia del Suelo, Bogotá, Colombia.

Fandika, I.R. 2012. Comparison of heritage and modern crop cultivars in response to

irrigation and nitrogen management: PhD thesis. Institute of Natural Resources, Massey

University, Palmerston North, New Zealand.

Fernandes, A.M., R.P. Soratto, L.A. Moreno, and R.M. Evangelista. 2015. Effect of

phosphorus nutrition on quality of fresh tuber of potato cultivars. Bragantia 74, 102-109.

Doi: 10.1590/1678-4499.0330

Giletto, C.M. and H.E. Echeverría. 2015. Critical nitrogen dilution curve in processing

potato cultivars. Am. J. Plant Sci. 6(19), 3144.

Gómez, M.I. and P. Torres. 2012. Absorción, extracción y manejo nutricional del cultivo

de papa. Rev. Papa (Fedepapa) 26, 20-25.

Güler, S. 2009. Effects of nitrogen on yield and chlorophyll of potato (Solanum tuberosum L.) cultivars. Bangl. J. Bot. 38(2), 163-169.

IDEAM. 2015. Reportes meteorológicos y climáticos estación Villa Inés, Subachoque y

Chocontá 2012-2015. Instituto de Hidrología, Meteorología y Estudios Ambientales,

Bogotá, Colombia.

IGAC. 2006. Métodos analíticos de laboratorios de suelo. 6th ed. Subdirección de

Agrología, Instituto Geográfico Agustín Codazzi, Bogotá, Colombia.

Page 126: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

104 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Kang, W., M. Fan, Z. Ma, X. Shi, and H. Zheng. 2014. Luxury absorption of potassium by

potato plants. Am. J. Potato Res. 91(5), 573-578.

Karam, F., Y. Rouphael, R. Lahoud, J. Breidi, and G. Colla. 2009. Influence of genotypes

and potassium application rates on yield and potassium use efficiency of potato. J. Agron.

8(1), 27-32.

Kleinkopf, E, D. Westermann, and R. Dwelle. 1981. Dry matter production and nitrogen

utilization by six potato cultivars. Agron. J. 73(5), 799-802.

Marouani, A. and Y. Harbeoui. 2016. Eficiencia de uso de nitrógeno en el cultivo de papa

(Solanum tuberosum L.). Acta Agron. 65(2), 164-169.

Ñústez, C. 2011. Variedades colombianas de papa. Universidad Nacional de Colombia,

Bogotá.

Pérez, J.A. 2015. Efecto de diferentes dosis de N y K sobre el rendimiento y fritura en

papa (S. tuberosum L.) variedad Pastusa Suprema. Undergraduate thesis. Facultad de

Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia.

Poljak, M, B. Lazarević, T. Horvat, and Z. Karažija. 2011. Influence of nitrogen fertilization

and plant density on yield and nitrogen use efficiency of the potato (Solanum tuberosum L.). pp. 667- 671. In: Proceedings 46th Croatian and 6th International Symposium on

Agriculture. Opatija, Croatia,

Prochnow, L., V. Casarin, N.K. Fageria, and M.F. Moraes. 2009. Eficiencia de nutrientes

en Brasil. pp 26-36. In: Memorias Simposio uso eficiente de nutrientes. XVIII Congreso

Latinoamericano de la Ciencia del Suelo. Sociedad Latinoamericana de la Ciencia del

Suelo. Costa Rica.

Rengel, Z. and P. Damon. 2008. Crops and genotypes differ in efficiency of potassium

uptake and use. Physiol. Plant. 133(4), 624-636.

Page 127: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

4. Potential yield and efficiency of N and K uptake in tubers of cvs. Diacol Capiro and Pastusa Suprema (Solanum tuberosum subsp. andigena)

105

Ríos Q., J.Y., S.D.C. Jaramillo V., L.H. González S., and J.M. Cotes T. 2010.

Determinación del efecto de diferentes niveles de fertilización en papa (Solanum tuberosum ssp. andigena) Diacol Capiro en un suelo con propiedades ándicas de Santa

Rosa de Osos, Colombia. Rev. Fac. Nal. Agr. Medellin 63(1), 5225-5237.

Riascos, S. 2016. Hechos y realidades de la papa en Colombia. Rev. Papa (Fedepapa).

39, 44-48.

Roumeliotis, E. 2012. Physiology of tuber development and stolon architecture. PhD

thesis. Wageningen University, Wageningen.

Ruza, A., I. Skrabule, and A. Vaivode. 2013. Influence of nitrogen on potato productivity

and nutrient use efficiency. Proc. Latvian. Acad. Sci. 67(3), 247-253.

Saravia, D., E. Farfán-Vignolo, R. Gutiérrez, F. De Mendiburu, R. Schafleitner, M.

Bonierbale, and M. Khan. 2016. Yield and physiological response of potatoes indicate

different strategies to cope with drought stress and nitrogen fertilization. Am. J. Potato

Res. 93(3), 288-295.

Soil Survey Staff. 2010. Keys to soil taxonomy. 9th ed. Soil Conservation Service, United

States Deparment of Agriculture (USDA), Washington, USA.

Trehan S. and P. Singh. 2013. Nutrient efficiency of different crop species and potato

varieties-in retrospect and prospect. Potato J. 40(1), 1-21.

Valbuena, R., G. Roveda, A. Bolaños, J. Zapata. C. Medina, P. Almanza, and D. Porras.

2010. Escalas fenológicas de las variedades de papa Parda Pastusa, Diacol Capiro y

Criolla “Yema de Huevo” en las zonas productoras de Cundinamarca, Boyacá, Nariño y

Antioquia. Corpoica, Bogotá, Colombia.

Vos, J. 2009. Nitrogen responses and nitrogen management in potato. Potato Res. 52(4),

305-317.

Page 128: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

106 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Wang, Y. and W. Wu. 2015. Genetic approaches for improvement of the crop potassium

acquisition and utilization efficiency. Curr. Opin. Plant Biol. 25(1), 46-52.

Zebarth, B., G. Bélanger, A. Cambouris, and N. Ziadi. 2012. Nitrogen fertilization

strategies in relation to potato tuber yield, quality, and crop N recovery. pp 165-186. In:

He, Z., R. Larkin, and W. Honeycutt (eds.). Sustainable potato production: global case

studies. Springer, Netherlands.

Zelalem, A., T. Tekalign, and D. Nigussie. 2009. Response of potato (Solanum tuberosum

L.) to different rates of nitrogen and phosphorus fertilization on vertisols at Debre Berhan,

in the central highlands of Ethiopia. Afr. J. Plant Sci. 3(2), 16-24.

Page 129: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

5. Diagnóstico de K+ y NO3ˉ en savia para determinar el estado nutricional en papa

(Solanum tuberosum L. subsp. andigena)1

Diagnosis of K+ and NO3ˉ in sap to determine nutritional status in potato (Solanum tuberosum L. subsp. andigena)

Manuel I. Gómez-S., Stanislav Magnitskiy, Luis Ernesto Rodríguez

5.1 Resumen El análisis de savia es una herramienta de diagnóstico nutricional para realizar ajustes

oportunos de fertilización en cultivos hortícolas. El objetivo de este estudio fue determinar

los niveles de referencia de NO3ˉ y K+ en savia por etapa fenológica y conocer el uso

adecuado de esta herramienta de diagnóstico nutricional de N y K en cultivares Diacol

Capiro y Pastusa Suprema en la Sabana de Bogotá a los 55, 75, 100, 125 y 150 días

después de siembra (dds) en respuesta a cuatro niveles de fertilizante (0, 1.450, 1.900 y

2.375 kg ha-1) y su efecto sobre rendimiento, materia seca (PS) e índice de cosecha (IC).

La mayor concentración de K+ en savia de tallos para los dos cultivares se presentó en

etapa vegetativa con 4.800 a 5.000 mg L-1, disminuyendo hasta tuberización con 2.725

mg L-1 sin diferencias significativas entre cultivares; contrario al comportamiento de N-

NO3ˉ, donde se presentó diferencias entre cultivares con una máxima concentración en

tuberización con 2.466 mg L-1 en ‘Diacol Capiro’ y 2.200 mg L-1 en ‘Pastusa Suprema’

con disminución en madurez fisiológica. Se obtuvieron niveles de referencia en etapa de

1 Publicado en Revista Colombiana de Ciencias Hortícolas 11(1), 133-142, 2017. Doi: 10.17584/rcch.2017v11i1.6132

Page 130: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

108 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

floración para ‘Diacol Capiro’ mediante ajuste cuadrático de N-NO3

ˉ y K+ en savia con

3.280 mg K L-1 y de 1.231 mg, respectivamente y relacionan con la respuesta a la

fertilización, rendimiento, materia seca y área foliar. En contraste para ‘Pastusa Suprema’

el N evaluado en savia supone un consumo de lujo con niveles superiores a 1,250 mg L-1

de N-NO3ˉ. Con esta técnica diagnóstica en campo se puede establecer ajustes

oportunos en el manejo de la nutrición vegetal nitrogenada y potásica de estos cultivares.

Palabras clave: análisis en savia, indicadores nutricionales, uso eficiente de K y N.

5.2 Abstract Sap analysis is a nutritional diagnostic tool to make timely fertilization adjustments in

crops. The objective of this study was to determine the reference levels of NO3ˉ and K+ in

sap per phenological stage. The sudy evaluated the proper use of this nutritional

diagnostic tool for N and K in Diacol Capiro and Pastusa Suprema on the Bogota Plateau

at 55, 75, 100, 125 and 150 days after sowing (das) in response to fertilizer levels

balanced (0; 1,450; 1,900 and 2,375 kg ha-1) on the yield, dry matter and harvest index to

determine levels for cultivation and phenology. The highest concentration of K+ in sap in

stems occurred in vegetative stage with 4,800-5,000 mg L-1, decreasing in tuberización

with 2,725 mg L-1 , without significant differences between cultivars; contrary to the

behavior of N-NO3ˉ in the stems, where maximum concentration in tuberización was 2,466

mg L-1 ‘Diacol Capiro’ and 2,200 mg L-1 ‘Pastusa Supreme’, with decreased physiological

maturity. The reference levels were obtained at flowering stage for ‘Diacol Capiro’ by

quadratic adjustment of N-NO3ˉ and K+ in sap with 3,280 mg L-1 K and 1,231 mg L -1 N -

NO3ˉ, respectively, and related with the response to fertilization, yield, dry matter, and leaf

area. In contrast for ‘Pastusa Suprema’, the evaluated N, with levels higher than 1,231 mg

L -1 N -NO3ˉ in sap, supposed luxury consumption. Using this diagnostic tool in the field,

adjustments can be made to the management of nitrogen and potassium nutrition of these

cultivars.

Key words: sap analysis, nutrient indicators, efficient use of K and N.

Page 131: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

5. Diagnóstico de K+ y NO3ˉ en savia para determinar el estado nutricional en papa (Solanum tuberosum L. subsp. andigena)

109

5.3 Introducción La papa (Solanum tuberosum L.) es el tercer producto cultivable para alimento más

importante del mundo (De Jong, 2016). En Colombia constituye uno de los productos

agrícolas de mayor demanda de fertilizantes con el 17 al 20% de los costos totales de

producción para los cultivares Diacol Capiro y Pastusa Suprema usados frecuentemente

para consumo fresco e industrial (Gómez y Torres, 2012), además, es una de las

especies de mayor exigencia nutricional por kg de biomasa seca producida (Kumar et al., 2013)

Los nutrientes minerales que más extrae la papa bajo condiciones de los Andes son

potasio, (K+) y nitrógeno (N) (Gómez y Torres, 2012). Así el diagnóstico vegetal temprano

de estos elementos esenciales permite ajustar planes de fertilización con el fin de

incrementar producción, reducir costos y disminuir el impacto ambiental (Lefevré et al., 2012; Vijay et al., 2013).

La savia corresponde a un líquido extraído de tejidos conductores tanto del xilema como

del floema de la planta (Cadahía et al., 2008; Gangaiah et al., 2016). Su uso como

herramienta de análisis nutricional es usado para diagnosticar de manera rápida y

económica deficiencias o excesos de nutrientes (Errebhi et al., 1998; Aquilera et al, 2013). Los reportes para N-NO3

ˉ en savia de papa son más frecuentes (Badillo-Tovar et al., 2001; Moulin et al., 2012; Aguilera et al., 2014) que evaluaciones para K+ (Hochmuth,

1994; Kelling et al., 2002) (Tabla 5-1), debido al mayor impacto ambiental y de

sostenibilidad que representa las pérdidas de N en el ecosistema (Goffart et al., 2008;

Ziadi et al., 2012).

Generalmente, el contenido de NO3ˉ y K+ en savia se realiza en peciolos o tallos de papa

en base seca o fresca porque son estructuras más sensibles a cambios en la

disponibilidad de N y K del suelo o sustrato (Vitosh, 1998; Rogozińska et al., 2005; Moulin

et al., 2012). Adicionalmente, es necesario la calibración de índices por fenología desde

etapas tempranas (Brink et al, 2002; Moulin et al., 2012) para relacionarlos con

componentes de rendimiento y establecer niveles de suficiencia (Badillo-Tovar et al., 2001; Moreira et al., 2011; Ziadi et al., 2012; Mohr y Tomasiewicz, 2012) con el fin de

Page 132: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

110 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

realizar ajustes tempranos en los programas de fertilización para optimizar la

productividad del cultivo (Cadahía et al., 2008; Moulin et al., 2012).

Tabla 5-1. Niveles de NO3ˉ y K+ en savia de peciolo de papa en diferentes estados

fenológicos evaluados con medidores de ion selectivo.

Etapa Subespecie NO3ˉ -N savia

(mg L-1)

K+ savia

(mg L-1)

Referencias

(I) Vegetativa

(II) Tuberización

(III) Máxima Floración

(IV) Llenado de tubérculo

(V) Maduración

Tuberosum

Tuberosum

Tuberosum

Tuberosum

Tuberosum

Tuberosum

Tuberosum

Tuberosum

Tuberosum

Tuberosum

Tuberosum

Tuberosum

Tuberosum

Tuberosum

Tuberosum

Andigena

Tuberosum

Tuberosum

1.200-1.400

1.400-1.450

1.250-1.500

1.000-1.400

1.400-2.000

1.300-1.350

1.400-2.750

1.500-2.000

1.000-1.200

1.100-1.150

500-1.000

900-1.200

850-900

900-1.550

600-900

800-900

500-600

600-850

4.500-5.000

4.000-4.500

3.000-6.000

4.000-4.500

3.000-4.000

3.500-4.000

2.500-3.000

Homusht (1994)

Errebhi et al. (1998)

Badillo-Tovar (2001)

Homusht (1994)

Moreiro et al. (2011)

Errebhi et al. (1998)

Badillo-Tovar (2001)

Cadahia (2008)

Homusht (1994)

Errebhi et al. (1998)

Cadahia (2008)

Homusht (1994)

Errebhi et al. (1998)

Badillo-Tovar (2001)

Homusht (1994)

Aguilera et al. (2014)

Errebhi et al. (1998)

Badillo-Tovar (2001)

Las diferencias en la acumulación de nutrientes en savia entre cultivares y subespecies

de papa han sido reportados por diferentes autores como se muestra en la Tabla 5-1,

para la mayoría de los casos estos resultados han sido obtenidos por etapa fenológica

Page 133: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

5. Diagnóstico de K+ y NO3ˉ en savia para determinar el estado nutricional en papa (Solanum tuberosum L. subsp. andigena)

111

como respuesta a diferentes niveles de fertilización o variación por tipo de suelo. Otros

factores que influyen sobre la concentración de nitratos en savia son: (i) hora del día

(Vitosh y Silva, 1996; Rogozińska et al., 2005), (ii) partición y formas de nitrógeno en la

planta (Kolbe, 1997; Mäck y Schjoerring, 2002); (iii) época de siembra (Aguilera et al, 2014), (iv) cultivar y material de propagación (Moreira et al., 2011); (v) disponibilidad de

agua en el suelo y (vi) fuente de fertilizante (Cadahía et al., 2008; Ziadi et al., 2012).

El objetivo de este estudio fue determinar los niveles de referencia de NO3ˉ y K+ en savia

por etapa fenológica y conocer el uso adecuado de esta herramienta de diagnóstico

nutricional para N y K en cultivares Diacol Capiro y Pastusa Suprema cultivados en

suelos de alta fertilidad en la Sabana de Bogotá.

5.4 Materiales y métodos El estudio se realizó en el año 2015 en el Centro de Investigación en Nutrición en Plantas

del Trópico (CENIPLANT), ubicado en Facatativá al occidente de la Sabana de Bogotá-

Colombia (4° 49’ 26,9” N, 74° 22’ 29,7” O, 2520 msnm). Las condiciones ambientales

presentaron clima frío seco con precipitación anual promedio de 850 mm; temperatura

media máxima de 18,5ºC; temperatura media mínima de 7ºC y temperaturas medias de

12,6 º C y humedad relativa de 85% (IDEAM, 2015). El suelo de estudio se clasificó como

Andic Eutrudept de acuerdo a la Soil Survey Staff (2010). Se caracterizó como un suelo

fluvio lacustres de alta fertilidad y de textura franco arcillosa y altos niveles de N y K

disponible (Tabla 5-2).

Se utilizó un diseño estadístico en medidas repetidas (DMR) con dos factores entre

sujetos: dos cultivares (Diacol Capiro y Pastusa Suprema) y cuatro dosis de fertilizantes

(0, 1.450, 1.900 y 2.375 kg ha-1 de fertilizante) mediante un arreglo en parcelas divididas

con tres réplicas. La serie en el tiempo como factor intra sujetos fue adaptada de

Valbuena et al. (2010) y se asoció a cinco etapas fenológicas críticas de crecimiento del

tubérculo: etapa I (50-55 dds), desarrollo de tallos principales e inicio de crecimiento

vegetativo, etapa II (70-75 dds), formación de tallos secundarios-inicio de tuberización;

etapa III (90-100 dds), floración, máxima tuberización e inicio de llenado; etapa IV (120-

Page 134: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

112 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

125 dds), final de floración-llenado de tubérculo; etapa V (150-160 dds), senescencia,

máximo llenado y maduración del tubérculo.

Tabla 5-2. Propiedades químicas del suelo en el sitio de evaluación.

Propiedades del suelo Valores

pH 5,82

Al, cmolc kg-1, Metodo Yuang, AA* <0,001

MO, g kg-1, Walkey-Black 12,71

CICE, cmolc kg-1 19,14

N total, g kg-1, Walkey-Black 6,4

P, mg kg-1 , Bray II-Colorimetría 70,16

K, cmolc kg-1, acetato de amonio, AA* 0,87

Ca, cmolc kg-1 , acetato de amonio, AA* 15,95

Mg, cmolc kg-1, acetato de amonio, AA* 2,14

Na, cmolc kg-1, acetato de amonio, AA* 0,18

S, mg kg-1, fosfato monobásico-Colorimetría 30,01

Saturación de K (%) 4,53

Saturación de Ca (%) 87,35

Saturación de Mg (%) 11,18

Ca/K 18,4

(Ca+Mg)/K 20,87

* Determinación por absorción atómica.

Se comparó un tratamiento control con la oferta edáfica del suelo sin aplicación de

fertilizante (Nivel 0) y tres niveles de fertilizante (Tabla 5-3): nivel 1, 75% de la dosis de

fertilizante óptima balanceada; nivel 2, 100 % como dosis de fertilizante óptimo

balanceado y el nivel 3 con el 125 % de la dosis de fertilizante óptima. La recomendación

de fertilización propuesta se realizó teniendo en cuenta el balance en la relación suelo-

planta. Se fraccionó el 55% del N en siembra y el 45% a los 45 dds; el 80% del P a la

Page 135: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

5. Diagnóstico de K+ y NO3ˉ en savia para determinar el estado nutricional en papa (Solanum tuberosum L. subsp. andigena)

113

siembra y el 20% a los 45 dds; el 12% del K a la siembra y el 88% a los 45 dds. Para el

Mg y menores se aplicó el 63% a la siembra y el 37% a los 45 dds; se usaron la

siguientes fuentes granuladas: N-P, DAP (18-46-0), Nitrax-S (28-4-0); K, KCl (0-0-60);

Mg, kieserita (25% MgO), Nutricomplet; B, Zn, Cu, Mn y Fe, fuente compleja de

micronutrientes con base en sulfatos.

Tabla 5-3. Aporte de nutrientes minerales en los tratamientos con fertilización edáfica (dosis en kg ha-1).

Nutriente

Nivel 1 1.450

Nivel 2 1.900

Nivel 3 2.375

N 123 164 205 P2O5 216 288 360 K2O 176 235 294 Mg 60 80 99 S 113 150 188 B 1,7 2,3 2,9 Zn 3,5 4,6 5,8 Mn 4,2 5,6 7,0

La siembra se realizó en parcelas de 50 m2 (135 plantas), con una distancia entre surcos

de 1,00 y 0,37 m entre plantas, un área útil de cosecha de 36 m2 con un área

experimental de 1.200 m2, para una densidad de 27.000 plantas/ha. Las prácticas

culturales de riego, manejo de arvenses y manejo fitosanitario se realizaron de manera

uniforme y comparables con el manejo comercial. Para cada etapa fenológica y unidad

experimental se evaluó cinco plantas mediante análisis destructivo en hojas, tallos y

tubérculos materia fresca (Pf), materia seca (Ps). El Ps se determinó pesando muestras

de 200 g de material vegetal fresco a peso constante en una estufa de secado a 70 °C

durante 72 horas, adaptado de Moreira et al. (2011).

Se extrajo en campo el jugo celular de los tallos y de los tubérculos en las diferentes

etapas fenológicas para cinco plantas por unidad experimental, se tomó una alícuota de

extracto de savia de 0,5 ml en tres tallos principales de la quinta a sexta hoja verdadera

del ápice y se evaluaron cuatro tubérculos por planta de calidad “primera” con diametro

entre 6-9 cm. La medición del N-NO3ˉ y K+ en savia se realizó de forma directa en campo

entre las 8 y 10 am (Vitosh y Silva, 1996), usando el método de electrodo selectivo de

iones-ISE evaluado por Goffart et al. (2008), Carson et al. (2016) mediante equipos

Page 136: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

114 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

portátiles Horiba LAQUA twin � (Horiba Europe, Leichlingen, Alemania) Ión-K+ y Ión N-

NO3ˉ.

Los datos reportados fueron valores promedios de tres réplicas con el error estándar de

la media. Los datos de las variables fueron analizados mediante análisis de varianza

donde se evaluaron las interacciones de los factores fenología x dosis de fertilizante x

cultivares, y para las medias de las variables se aplicó la prueba de comparación múltiple

de Tukey (P<0,005), además, se ajustaron las curvas de regresión utilizando el programa

estadístico INFOSTAT versión 2014.

5.5 Resultados y discusión

5.5.1 K+ y N-NO3ˉ en savia por etapa fenológica y cultivar

Se encontraron diferencias altamente significativas (P<0,0002) en la concentración de K+

en savia de tallos en ‘Diacol Capiro’ con 4.750 mg L-1, mientras para ‘Pastusa Suprema’

fue de 5.037 mg L-1, siendo mayor en etapas iniciales a los 55 dds y para los tratamientos

fertilizados con interacciones entre el cultivar y fenología tanto para K+ (P<0,0004) como

para NO3ˉ (P<0,0001). ‘Diacol Capiro’ mostró una mayor sensibilidad a las variaciones de

K+ (Figura 5-1A) en comparación a ‘Pastusa Suprema’ (Figura 5-1B), esta última no

presentó diferencias significativas de K+ en savia al incremento de la fertilización debido

probablemente a la baja traslocación a los órganos vertederos y menor requerimientos de

fertilización potásica en suelos fértiles. Las concentraciones en etapas iniciales fueron

similares a las reportadas por Hochmut et al. (1994) y Rosen et al. (1996) e inferiores a

6.000 mg L-1 en savia fresca de peciolo, si se compara con lo reportado por Cadahia

(2008) para la subsp. tuberosum.

Page 137: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

5. Diagnóstico de K+ y NO3ˉ en savia para determinar el estado nutricional en papa (Solanum tuberosum L. subsp. andigena)

115

Figura 5-1. Variación de K+ en savia fresca de tallo medida en campo en el ciclo del cultivo de ‘Diacol Capiro’ (A) y ‘Pastusa Suprema’ (B) en respuesta a la fertilización en suelos de alta fertilidad de la Sabana de Bogotá. Letras diferentes entre tratamientos para cada etapa fenológica presenta diferencias estadísticas significativas (Tukey, P<0,05).

A partir de los 55 dds para ‘Diacol Capiro’ y ‘Pastusa Suprema’ hasta los 100 dds en

floración se observó una disminución drástica en las concentraciones de K+ en savia de

tallo con valores de 2.316 y 2.516 mg L-1, respectivamente. Disminución en las

concentraciones de K se pueden relacionar con procesos de translocación el inicio de la

etapa de llenado, máxima tuberización y floración; periodos importantes para el

diagnóstico nutricional de estos cultivares, coincidiendo con las etapas fenológicas

críticas para la toma de análisis de savia en papa como lo referencia Hochmut et al. (1994) y Cadahía (2008). Las mayores concentraciones de K+ en savia en las primeras

etapas del cultivo se debe probablemente a una acumulación inicial de asimilados en

estructuras vegetativas de hojas y tallos, necesarias para el crecimiento e inicio de

tuberización, donde la concentración de K+ fue menor a medida que se desarrolla el

cultivo, posiblemente como consecuencia de un efecto de dilución por crecimiento y

transporte a órganos vertederos confirmando lo planteado por Kelling et al. (2002).

‘Diacol Capiro’ incrementó la concentración de K+ en savia desde los 100 dds hasta los

150 dds alcanzando valores de 3.300 mg L-1 con diferencias significativas por variación

en la dosis del fertilizante (Figura 5-1A), mientras para ‘Pastusa Suprema’ la

concentración de K+ fue similar y tiende a incrementarse a partir de los 125 dds hasta los

150 dds lo cual relaciona con el llenado más tardío dada a su tuberización continua y una

b a

b a

b

a

a

a a

a

2000

2500

3000

3500

4000

4500

5000

5500

50 75 100 125 150

K+

savi

a de

tallo

(mg

L -1

)

Días después de la siembra

0Kg/ha 1450Kg/ha

1900Kg/ha 2375Kg/ha

A

a

a

a a

a

a

a

a a

a

2000

2500

3000

3500

4000

4500

5000

5500

50 75 100 125 150Días después de la siembra B

Page 138: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

116 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

acumulación de K+ más al final del ciclo respecto a ‘Diacol Capiro’ que presenta una

tuberización más temprana debido a su hábito de crecimiento determinado. ‘Pastusa

Suprema’ no evidenció cambios de K+ en savia respecto a niveles de fertilización (Figura

5-1B) probablemente por una menor eficiencia y baja traslocación con alta disponibilidad

de N y K (Tabla 5-2) asociado posiblemente a un crecimiento vegetativo indeterminado

limitando la tuberización y el crecimiento del tubérculo.

El incremento en la acumulación de K+ en la etapa de maduración en ambos cultivares

coincide con el máximo crecimiento del tubérculo, mayor acumulación materia seca y

conversión de almidón, los cuales como órganos vertederos demandan mayor

translocación de asimilados de la parte aérea; contrario al comportamiento de algunos

cultivares de subsp. tuberosum que presentan ciclo más corto y menos tubérculos,

favoreciendo un mayor crecimiento de los vertederos y una disminución gradual de K en

savia de peciolos con niveles hasta de 2.500 mg L-1 en maduración como lo reportó

Homusht (1994). La dinámica en la concentración de N- NO3ˉ en savia de tallo por

fenología en ambos cultivares fue contrario al K+, incrementándose desde los 55 dds en

etapa vegetativa con 1.812 mg L-1 en ‘Diacol Capiro’ y con diferencias significativas por

variación de los niveles de fertilización (Figura 5-2A), mientras en ‘Pastusa Suprema’ los

N-NO3ˉ aumentó desde 1.450 mg L- sin cambios por efecto de la fertilización (Figura

5-2B).

Figura 5-2. Variación de NO3ˉ en savia fresca de tallo medida en campo en el ciclo de

cultivo de ‘Diacol Capiro’ (A) y ‘Pastusa Suprema’ (B) en respuesta a la fertilización en suelos de alta fertilidad de la Sabana de Bogotá. Letras diferentes entre tratamientos para cada época presenta diferencias estadísticas significativas, Tukey, P<0,05.

c

b

b

ab a

a

c

ab a

a a a

a

0

500

1000

1500

2000

2500

3000

50 75 100 125 150

N-N

O3

savi

a ta

llo (m

g L-1

)

Días después de la siembra

0Kg/ha 1450Kg/ha1900Kg/ha 2375Kg/ha

A

a

a a

a

a a

a a

a

a

0

500

1000

1500

2000

2500

3000

50 75 100 125 150Días después de la siembra

0Kg/ha 1450Kg/ha

1900Kg/ha 2375Kg/ha

B

Page 139: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

5. Diagnóstico de K+ y NO3ˉ en savia para determinar el estado nutricional en papa (Solanum tuberosum L. subsp. andigena)

117

A los 100 dds se presentaron los máximos niveles de nitratos en savia de 2.467 mg L-1 y

2.200 mg L-1 (Figura 5-3A) y relaciona con los menores valores de K en savia para ‘Diacol

Capiro’ (Figura 5-3B) y ‘Pastusa Suprema’, respectivamente (Figura 5-2B), este máximo

crecimiento vegetativo coincide con el inicio de la etapa de llenado en la etapa fenológica

III de floración, máxima tuberización, y correlaciona con la mayor area foliar alcanzada

(19.690 cm2) para ‘Diacol Capiro’ que presentó una alta significancia en este modelo

(Figura 5-3), similar a lo encontrado por Valbuena et al. (2010) para el cv. Diacol Capiro

donde el área foliar aumentó rápidamente desde la emergencia y alcanzó su punto

máximo a los 100 dds.

Después de los 100 y 125 dds para ‘Diacol Capiro’ y ‘Pastusa Suprema’, respectivamente

se presentó un descenso en los niveles de nitratos hasta 1.185 mg L-1 para ‘Diacol

Capiro’ por efecto de la traslocación y hasta 1.433 mg L-1 para ‘Pastusa Suprema’ (Figura

5-2) que coincide con un mayor crecimiento vegetativo por su hábito indeterminado en

condiciones de alta disponibilidad de NO3ˉ debido posiblemente a la reducción y

asimilación primaria del N en aminoacidos. Mäck y Schjoerring (2002) demostraron en

subsp. tuberosum que la actividad en la reducción del nitrato vía nitrato reductasa (NR) y

asimilación del NH4+ vía glutamato sintasa (GS) se presenta mayormente en tallos y

favorece un mayor acumulación de proteínas con crecimiento vegetativo en detrimento

de la crecimiento y desarrollo de tubérculos.

Las menores concentraciones de N- NO3ˉ en savia de tallo para los cultivares evaluados

en etapas iniciales (Figura 5-2) pueden sugerir acumulación de formas orgánicas de N

necesarias para el crecimiento vegetativo de hojas y tallos, diferenciación de estolones a

tubérculos o partición de N a sitios de crecimiento como nuevos brotes. La disminución

de nitratos y conversión a formas proteicas a medida que incrementa el crecimiento del

tubérculo en etapas finales ha sido explicado por Kolbe (1997), Goffart et al. (2008) y

Ruza et al. (2013).

‘Diacol Capiro’ presentó en etapa de máximo llenado y maduración diferencias

significativas como respuesta a los niveles de fertilización con disminuciones drásticas en

las concentraciones de N en savia hasta 800 mg L-1 (sin fertilización) y hasta 1.200 mg L-

1 (1900 kg ha-1 de fertilizante), debido al efecto de la fertilización sobre el incremento en

PS y PF de la planta, lo cual puede también generar un fenómeno de dilución o efectos

Page 140: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

118 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

por la partición de formas de N hacia tubérculos (Figura 5-3). Este comportamiento fue

similar al encontrado en savia de peciolos por Vitosh (1998) y por Badillo y Tovar (2001)

en etapas de llenado para subsp. tuberosum y por Aguilera et al. (2014) en subsp. andigena con rangos entre 900 y 1.500 mg L-1 y entre 800-900 mg L-1, respectivamente.

Figura 5-3. Relación entre área foliar y el contenido de NO3ˉ (A) y K+ (B) en savia fresca

de tallo medida en campo hasta etapa III (90-100 dds), floración, máxima tuberización e inicio de llenado en papa ‘Diacol Capiro’ en respuesta a la fertilización en suelos de alta fertilidad de la Sabana de Bogotá. ** Modelo altamente significativo (P<0,01); * Modelo significativo (P<0,05).

y = -5E-06x2 + 0,1969x + 505,99 R² = 0,82989**

0

500

1000

1500

2000

2500

3000

0 5000 10000 15000 20000 25000 30000

NO

3- en

savi

a (m

g L-1

)

y = 1E-05x2 - 0,4587x + 7310,7 R² = 0,61298*

0

1000

2000

3000

4000

5000

6000

0 5000 10000 15000 20000 25000 30000

K+ en

savi

a (m

g L-1

)

Área foliar, AF (cm 2)

A

B

Page 141: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

5. Diagnóstico de K+ y NO3ˉ en savia para determinar el estado nutricional en papa (Solanum tuberosum L. subsp. andigena)

119

La mejor respuesta de ‘Diacol Capiro’ a la fertilización puede mostrar una adecuada

eficiencia en la conversión y uso del N que en ‘Pastusa Suprema’, porque ‘Diacol Capiro’

a medida que aumentó la acumulación de asimilados disminuyó los niveles de N

inorgánico en savia y fue la que presentó un mayor crecimiento de tubérculo, lo cual

genera el efecto de dilución y mayor traslocación de K. ‘Pastusa Suprema’ no presentó

cambios del N en savia cuando se incrementó el nivel de fertilización con mayor

acumulación de nitrato en la parte aérea, probamente por la menor demanda nutricional

de N y excesos de N disponible en el suelo, lo que puede favorecer un consumo de lujo

inhibiendo la movilidad del K al tubérculo por un excesivo crecimiento vegetativo en

detrimento de un menor formación y llenado de tubérculos.

Diferencias entre cultivares y fenología en la concentración de N en savia fueron

reportados también por Waterer (1997) y Ziadi et al. (2012). Waterer (1997) reportó que

la concentración de N-NO3ˉ en cuatro cultivares de papa fue menor hacia el final de ciclo

en comparación con plantas jóvenes, sin embargo en la etapas fenológicas iníciales los

cultivares se comportaron de manera diferente, siendo los cultivares Nordona Ranger y

Norkotah los que presentaron un incremento a inicio de floración, en cambio el cv. Alpha

tiende a disminuir la concentración de N-NO3ˉ desde etapas vegetativas.

Mantener bajas las concentraciones N-NO3ˉ hacia el final de ciclo es necesario debido a

que un exceso de nitrógeno, provoca una disminución de la materia seca en tubérculos

por la baja potencia fuente vertedero que puede restringir la acumulación de

carbohidratos en tubérculo y disminuir la calidad para uso industrial. Los problemas

fisiológicos por acumulación de N en la planta han sido discutidos ampliamente por Mäck

y Schjoerring (2002), Ziadi et al. (2012) y Ruza et al. (2013).

El efecto del fertilizante desde etapas tempranas y la sensibilidad en el cambio de N o K

en savia mediante el método de “Cardy meter” encontrado en este estudio fue

comparable a lo reportado por Rosen et al. (1996) y por Mohr y Tomasiewicz (2012) para

el cv. Russet Burbank subsp. tuberosum y por Aguilera et al. (2014) en el cv. Waycha en

subsp. andigena, además ha correlacionado el método Cardy Meter con el de análisis de

tejido en otras especies como en Brassica rapa (Gangaiah et al., 2016) y en tomate por

Carson et al. (2016). Lo anterior convierte a este método de campo en una herramienta

Page 142: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

120 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

importante para conocer la eficiencia de la fertilización en el cultivo y realizar ajustes

tempranos de estos nutrientes en etapa vegetativa.

5.5.2 N-NO3ˉ y K+ savia y su relación con peso seco y rendimiento

Se presentó una correlación positiva entre el peso seco y fresco de los tubérculos

(r2=0,98 para ‘Diacol Capiro’ y r2=0,95 para ‘Pastusa Suprema’) y la concentración de

NO3ˉ y K+ en savia de tallos, por lo cual, para fines de pronóstico se analizó únicamente

el rendimiento. Por otro lado, evaluaciones de K+ y N-NO3ˉ en savia de tubérculos no

presentó una relación significativa con respecto al Pft para ambos cultivares, lo cual

muestra que para este estudio el órgano fuente no fue el mejor indicador de las

condiciones nutricionales para realizar ajustes de la fertilización debido probablemente a

que el tubérculo no es sensible a cambios en fertilización porque la parte aérea presenta

mayor dinámica metabólica de K y N en procesos fotosíntesis, respiración y actividad

enzimática, posiblemente esto explica la relación directa del N y K en savia de tallo con el

rendimiento que presentó ‘Diacol Capiro’ (Figura 5-4A), coincidiendo con reportes hechos

por Vitosh et al. (1998).

En ‘Diacol Capiro’ el K+ en savia de tallo para los diferentes tratamientos presentó un

modelo cuadrático positivo (r2 =0,77) respecto al rendimiento y un nivel óptimo de K+ de

3.280 mg L-1 con un rango de suficiencia de 3.000 a 3.300 mg L-1 en la etapa de llenado,

el cual relaciona con los máximos rendimientos (Figura 5-4A). Lo anterior sugiere que el

K+ en savia de tallo puede ayudar a diagnosticar en campo el estado nutricional de este

elemento y proyectar la producción de manera oportuna mediante ajustes en el manejo

de la fertilización potásica, cuando se encuentren en rangos de 2.600 a 3.000 mg L-1

(Figura 5-4A). En contraste ‘Pastusa Suprema’ no presentó una variación significativa de

K respecto al rendimiento por la alta disponibilidad de K en estos suelos de alta fertilidad

(Figura 5-4B), de tal manera que se requieren otros estudios en ambientes con un mayor

potencial productivo para este cultivar para determinar niveles óptimos de referencia .

Page 143: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

5. Diagnóstico de K+ y NO3ˉ en savia para determinar el estado nutricional en papa (Solanum tuberosum L. subsp. andigena)

121

Figura 5-4. Relación entre las concentraciones K+ (A) y N-NO3ˉ (B) en savia de tallo

medida en campo y el rendimiento, Pft medido desde etapa de floración a maduración para ‘Diacol Capiro’ (cuadro) y ‘Pastusa Suprema’ (rombo) en suelos de alta fertilidad de la Sabana de Bogotá.

La relación directa entre K+ en savia y rendimiento se explica por ser el elemento de

mayor extracción que funcionalmente favorece de manera directa el transporte y

conversión se asimilados para el crecimiento del tubérculo, similar a lo reportado por

Gómez y Torres (2012) y Lefèvre et al. (2012) para subsp. andigena en Sabana de

Bogotá y Huancayo-Perú, respectivamente. Estos rangos de suficiencia de K+ en savia de

tallo encontrados en ‘Diacol Capiro’ fueron inferiores a los citados por Homush (1994) y

Kelling et al. (2002) con reportes entre 3.500 a 4.500 mg L-1 de K en savia para el final de

floración y llenado para cultivares de la subsp. tuberosum.

Por otro lado, los contenidos de N- NO3ˉ en savia de tallo disminuyeron a medida que se

incrementaron los Pft en ambos cultivares a partir de un modelo cuadrático negativo

(P<0,001). Los mayores rendimientos se relacionan con un rango entre 800 a 1.231 mg

L-1 de N-NO3ˉ en etapa de llenado, valores superiores a este rango, disminuyen de

manera importante el crecimiento del tubérculo sugiriendo una toxicidad por exceso de

nitrato en detrimento del rendimiento (Figura 5-4B), coincidiendo con lo reportado por

Brink et al (2002) para subsp. tuberosum. Por esto, es necesario mejorar la conversión

de formas inorgánicas a orgánicas que promueven la asimilación de N a proteínas en

estos cultivares de tipo andigena mediante el ajuste de la dosis balanceadas de

y = -0,0034x2 + 22,328x - 33667, R² = 0,769 Nivel óptimo de K+ Capiro : 3280

mg kg-1

y = -0.0001x2 + 1.3042x - 1608.7 R² = 0.7114

0

500

1000

1500

2000

2500

3000

3500

4000

2250 2500 2750 3000 3250 3500

Ren

dim

ient

o (g

/pl

anta

)

K+ en savia de tallo (mg L-1) A

y = 1E+07x-1.271 R² = 0.8465

y = -0,0014x2 + 3,4468x + 1281, R² = 0,97041

Nivél óptimo de N-NO3- Capiro: 1231 mg

kg-1

0

500

1000

1500

2000

2500

3000

3500

4000

500 1000 1500 2000 2500 3000

N- NO3- en savia de tallo (mg L-1)

Suprema

Capiro

B

Page 144: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

122 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

nutrientes y así evitar consumos de lujo o toxicidades. Los efectos negativos por

consumos de lujo en papa, exceso de nitratos y su manejo son discutidos por Ziadi et al. (2012) y Ruza et al. (2013).

Existe una respuesta diferencial entre los cultivares a la fertilización, donde el mayor

potencial de rendimiento lo expresó ‘Diacol Capiro’ con dosis óptima de 1.633 kg ha-1 de

fertilizante y un incremento en rendimiento del 20% (Figura 5-5A), posiblemente por su

mejor eficiencia en suelos de alta disponibilidad de N y K que favorece una mejor

potencia fuente -vertedero; además, de posibles mecanismos para mejor asimilación de

N aún no estudiados en estos cultivares.

Figura 5-5. Respuesta en rendimiento en ‘Diacol Capiro’ (A) y ‘Pastusa Suprema’ (B) a la fertilización y su relación con concentración de K+ y N-NO3

ˉ en savia de tallo en suelos de alta fertilidad de la Sabana de Bogotá.

Para ‘Diacol Capiro’ la variación en las dosis de fertilización se relacionó directamente

con el cambio en la concentración de N-NO3ˉ (r2=0,69) y K+ (r2=0,98) con niveles de 3.200

mg L-1 para K+ y de 1.188 mg L-1 para N-NO3ˉ (Figura 5-5A), donde el incremento de

fertilización es proporcional al aumento en la concentración de K+ etapa de llenado e

igual manera el incremento de N-NO3ˉ en savia por efecto de fertilización nitrogenada y

potásica. Lo anterior coincide con resultados presentados por Kelling et al. (2002) y

Rogozińska et al. (2005) para subsp. tuberosum.

y = -0,0002x2 + 0,6532x + 2896,5 R² = 0,9744; dosis óptima: 1633 kg

y = 0.1665x + 2895.8 R² = 0.9817

y = 0.2366x + 715.94 R² = 0.6996

0

500

1000

1500

2000

2500

3000

3500

4000

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500

ióne

s en

sav

ia d

e ta

llo (m

g L-1

)

Rend

imie

nto

Capi

ro (g

pla

nta

-1)

Dosis de fertilizante (kg ha-1) A

y = 0.2332x + 1423.2 R² = 0.9976

0

500

1000

1500

2000

2500

3000

3500

4000

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500

ióne

s en

sav

ia d

e ta

llo (m

g L-1

)

Rend

imie

nto

Supr

ema

(g p

lant

a -1

)

Dosis de fertilizante (kg ha-1)

Rendimiento, PFt K savia N-NO3 savia

B

Page 145: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

5. Diagnóstico de K+ y NO3ˉ en savia para determinar el estado nutricional en papa (Solanum tuberosum L. subsp. andigena)

123

En contraste ‘Pastusa Suprema’ presenta una respuesta nula en rendimiento a la

fertilización en suelos de alta fertilidad, pero fue sensible al incremento de nitratos de N-

NO3ˉ hasta 1.400 mg L-1 por aumento de las dosis de fertilizante (r2 = 0, 99) (Figura 5-5B)

que evidencia el consumo de lujo y la acumulación afectando el metabolismo traslocación

y almacenamiento de carbohidratos en el tubérculo en detrimento del potencial de

rendimiento. Dosis altas de N a la fertilización aplicada de 123 hasta 205 kg ha-1,

posiblemente favorece la brotación de tallos secundarios, condición que puede inhibir la

tuberización y disminuir el crecimiento y desarrollo de tubérculos, efectos similares

coinciden con los reportados por Pérez (2015).

Se comprobó en este estudio que los contenidos de nitratos y potasio en savia son

afectados por diversos factores como la fertilización y el tipo de cultivar en suelos de alta

fertilidad, estas variaciones también han sido discutidas ampliamente para esta especie

por Cadahía (2008) y Rogozińska et al. (2005).

5.6 Conclusiones Se determinó que el análisis de savia en tallos en los cultivares evaluados es una

herramienta de diagnóstico temprano del estatus nutricional y puede usarse como

pronóstico para el manejo de la producción con ajustes en la fertilización principalmente

para ‘Diacol Capiro’ en suelos de alta fertilidad con niveles de referencia óptimos entre

4.500 a 4.700 mg kg-1 para K y entre 1.500-1.700 mg kg-1 para N evaluado desde etapas

vegetativas a los 55 dds, donde niveles superiores a 5.000 mg kg-1 de N y mayores a

1.900 mg kg-1 de K pueden representar consumos de lujo en ambos cultivares. Para el

cv. Diacol Capiro, después de máxima floración, los niveles óptimos en savia que

relacionan con los mayores rendimientos fueron 3.280 mg kg-1 para K+ y 1.281 mg kg-1

para NO3ˉ. Esta técnica en campo puede ser utilizada para identificar aplicaciones

excesivas de fertilizantes nitrogenados, por ello de acuerdo a los niveles encontrados, se

debe mantener una relación K+/NO3ˉ de 2:1 en etapas iniciales y de 3:1 en etapas de

producción para favorecer altos rendimientos con una dosis óptima de fertilizante

balanceado de 1.633 kg para ‘Diacol Capiro’, mientras ‘Pastusa Suprema’ presentó

respuesta nula a la fertilidad en suelos con excesos de N, por ello es importante el

Page 146: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

124 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

diagnóstico y manejo diferencial de la fertilización por cultivar de acuerdo al hábito de

crecimiento. Agradecimientos Los autores expresan su agradecimiento a INGEPLANT SAS por la financiación al

soporte técnico de los Ingenieros Agrónomos Elías Silva y Andrea Barragán. Además

agradecemos al agricultor Ricardo Rojas por su apoyo en el desarrollo de la investigación

5.7 Referencias bibliográficas Aguilera, J., P. Motavalli, M. Gonzales y C. Valdivia. 2014. Evaluation of a rapid field test

method for assessing nitrogen status in potato plant tissue in rural communities in the

Bolivian Andean highlands. Comm. Soil Sci. Plant Anal. 45, 347-361.

Brink, P., P. Combrink y F. Knight. 2002. Evaluation of petiole nitrate measurement as an

aid for N fertilization of potatoes (Solanum tuberosum L.) on sandy soils. S. Afr. J. Plant

Soil. 19, 1-7.

Cadahía C. 2008. La savia como índice de fertilización, cultivos agroenergéticos,

hortícolas, ornamentales y frutales. Mundi-Prensa, Madrid.

Carson, L., M. Ozores-Hampton y K. Morgan. 2016. Correlation of petiole sap nitrate-

nitrogen concentration measured by ion selective electrode, leaf tissue nitrogen

concentration, and tomato yield in Florida. J. Plant Nutr. 39(12), 1809-1819.

De Jong, H. 2016. Impact of the potato on society. Am. J. Potato Res. 93(5), 415-429.

Errebhi, M., C. Rosen y D.E. Birong. 1998. Calibration of a petiole sap nitrate test for

irrigated ‘Russet Burbank’ potato. Comm. Soil Sci. Plant Anal. 29(1-2), 23-35.

Gangaiah, C., A. Ahmad, H. Nguyen y T. Radovich. 2016. A Correlation of rapid cardy

meter sap test and icp spectrometry of dry tissue for measuring potassium (K+)

concentrations in pak choi (Brassica rapa Chinensis Group). Comm. Soil Sci. Plant Anal.

47(17), 2046-2052.

Page 147: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

5. Diagnóstico de K+ y NO3ˉ en savia para determinar el estado nutricional en papa (Solanum tuberosum L. subsp. andigena)

125

Goffart, J.P., M. Olivier y M. Frankinet. 2008. Potato crop nitrogen status assessment to

improve N fertilization management and efficiency: Past–present–future. Potato Res.

51(3-4), 355-383.

Gómez, M.I. y P. Torres. 2012. Absorción, extracción y manejo nutricional del cultivo de

papa. Rev. Papa (Fedepapa) 26(1), 20-25.

Hochmuth, G.J. 1994. Plant petiole sap-testing for vegetable crops. Cooperative

Extension Service, Institute of Food and Agriculture Sciences, University of Florida,

Gainesville, FL.

Kelling, K., E. Panique, P.E. Speth y W. Stevenson. 2002. Effect of potassium rate,

source and application timing on potato yield and quality. pp. 139-152. En: Idaho Potato

Conference. 23 de enero de 2002. Boise, ID.

Kolbe, H. y S. Stephan-Beckmann, 1997. Development, growth and chemical composition

of the potato crop (Solanum tuberosum L.). I. Leaf and stem. Potato Res. 40, 111-129.

Lefèvre, I., J. Ziebel, C. Guignard, J. Hausman, R. Gutiérrez Rosales, M. Bonierbale y D.

Evers. 2012. Drought impacts mineral contents in Andean potato cultivars. J. Agron. Crop

Sci. 198(3), 196-206.

Mäck, G. y J. Schjoerring. 2002. Effect of NO3ˉ supply on N metabolism of potato plants

(Solanum tuberosum L.) with special focus on the tubers. Plant Cell Environ. 25, 999-

1009.

Mohr, R.M. y D.J. Tomasiewicz. 2012. Effect of rate and timing of potassium chloride

application on the yield and quality of potato (Solanum tuberosum L. ‘Russet Burbank’).

Can. J. Plant Sci. 92(4), 783-794.

Moreira, M.A., P.C. Rezende, P.R. Cecon y R.F. Araújo. 2011. Seleção de índices para o

diagnóstico do estado de nitrogênio de batata-semente básica. Acta Sci., Agron. 33(2),

335-340.

Page 148: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

126 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Moulin, A.P., Y. Cohen, V. Alchanatis, N. Tremblay y K. Volkmar. 2012. Yield response of

potatoes to variable nitrogen management by landform element and in relation to petiole

nitrogen a case study. Can. J. Plant Sci. 92(1), 771-781.

Pérez, J. 2015. Efecto de diferentes dosis de N y K sobre el rendimiento y fritura en papa

(Solanum tuberosum L.) variedad pastusa suprema. Tesis de pregrado. Facultad de

Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá.

Rogozińska, I., E. Pawelzik, J. Poberezny y E. Delgado. 2005. The effect of different

factors on the content of nitrate in some potato varieties. Potato Res. 48, 167-180.

Rosen, C.J., M. Errebhi, y W. Wang. 1996. Testing petiole sap for nitrate and potassium:

a comparison of several analytical procedures. HortScience 31(7), 1173-1176.

Ruža, A., I. Skrabule y A. Vaivode. 2013. Influence of nitrogen on potato productivity and

nutrient use efficiency. Proc. Latv. Acad. Sci., Sect. B, Nat. Exact Appl. Sci. 247-253

Soil Survey Staff. 2010. Keys to soil taxonomy. 9a ed. Soil Conservation Service, United

States Department of Agriculture (USDA), Washington, DC.

Valbuena, R., G. Roveda, A. Bolaños, J. Zapata. C. Medina, P. Almanza y D. Porras.

2010. Escalas fenológicas de las variedades de papa Parda Pastusa, Diacol Capiro y

Criolla “Yema de Huevo” en las zonas productoras de Cundinamarca, Boyacá, Nariño y

Antioquia. Corpoica, Bogotá, Colombia.

Vijay, C., S. Prakash, G. Prashantha, M. Mahendra, S. Lohith y T. Chikkaramappa. 2013.

Dry matter production and yield of potato as influenced by different sources and time of

fertilizer application and soil chemical properties under rained conditions. Res. J. Agric.

Sci. 4(2), 155-159.

Vitosh, M.L., J.T. Ritchie, B. Basso y S. Stornaiuolo. 1998. Nitrate-N and nitrogen

partitioning in potatoes under different fertilizer management. En: Department of Crop and

Soil Sciences. Michigan State University,

Page 149: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

5. Diagnóstico de K+ y NO3ˉ en savia para determinar el estado nutricional en papa (Solanum tuberosum L. subsp. andigena)

127

http://fieldcrop.msu.edu/uploads/documents/Nitrate%20and%20N%20partitioning%20in%

20potatoes.pdf; consultado: febrero de 2017

Vitosh, M. L. y G.H. Silva. 1996. Factors affecting potato petiole sap nitrate tests. Comm.

Soil Sci. Plant Anal. 27(5-8), 1137-1152.

Waterer, D. (1997). Petiole sap NO3-N testing as a method for monitoring nitrogen

nutrition of potato crops. Can. J. Plant Sci. 77(2), 273-278.

Ziadi, N., B.J. Zebarth, G. Bélanger, y A.N. Cambouris. 2012. Soil and plant tests to

optimize fertilizer nitrogen management of potatoes. pp. 187-207. En: He, Z., R. Larkin, y

H. Wayne (eds.). Sustainable potato production: Global case studies. Springer,

Netherlands.

Page 150: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis
Page 151: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

6. Conclusiones

Se determinaron las relaciones alométricas mediante curvas de dilución de Nc, Pc y Kc

para la subsp. andigena en los cultivares Diacol Capiro y Pastusa Suprema, bajo

condiciones contrastantes de suelos en la zona andina de Colombia. Por primera vez se

obtuvo la curva de dilución crítica de Nc, Pc y Kc para papa de subsp. andigena y es una

de las primeras referencias del Kc para papa.

Las Nc, Pc y Kc que mejor se ajustaron a los cultivares evaluados, Capiro y Suprema,

fueron las que se obtuvieron a partir de la biomasa seca total (W) en comparación a las

obtenidas con el índice de área foliar (IAF) que presentó mayor variación debido a la

rápida translocación de asimilados hacia los tubérculos. Los cultivares evaluados

presentaron diferencias en Kc, donde Capiro presentó un mayor requerimiento en las

etapas iniciales con respecto a Suprema, demostrado en el coeficiente a y con un menor

coeficiente b, lo que muestra una mejor eficiencia en el uso de K para la acumulación de

biomasa seca. Las curvas de dilución crítica fueron similares al modelo propuesto para

subsp. tuberosum, pero con menor dilución en los coeficientes a y b para N y P, lo cual

representa un mayor requerimiento de estos elementos pero con menor eficiencia.

El índice de nutrición (INN) se ajustó a las zonas de estudio mostrando que el N es el

elemento más limitante en la obtención de altos rendimientos principalmente en Capiro,

adicionalmente, se comprobó que Suprema fue más propensa a un consumo de lujo y

que las dosis en suelos de baja fertilidad pueden llegar a un 70% de la dosis óptima de

Capiro. La posibilidad de diagnosticar en etapas tempranas el estado nutricional de N, P

y K, a partir de las curvas de dilución, permite realizar ajustes oportunos en el manejo de

estos elementos para etapas como la tuberización y llenado de turbérculo, y así

potencializar los rendimientos.

Page 152: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

130 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

Los efectos de la interacción genotipo x localidad para las curvas de consumo de

nutrientes se observó en suelos de baja fertilidad con el cultivar Suprema, donde se

expresa el mayor potencial productivo y una correlación en el índice de cosecha de

nutrientes (ICN, ICP, ICK); mientras que Capiro alcanzo el mayor nivel de adaptación

porque los modelos de consumo de Nr, Pr y Kr fueron significativos en los suelos

estudiados.

El modelo logarítmico positivo fue el que mejor se ajusto a la eficiencia de traslocación

siendo mejor en Capiro con mayor partición de asimilados y nutrientes en el uso de N, P

y K. Además, los requerimientos nutricionales por cultivar y etapa fenológica indicaron un

35% de mayor extracción de P en Capiro que en Suprema y similares para N y K, con

diferenciación en el consumo por etapa fenológica lo cual permite realizar ajustes más

precisos en los planes de fertilización.

Como se ha mencionado y en concordancia con otras investigaciones, Capiro es más

eficiente en el uso de N y K que Suprema independientemente del tipo de suelo, aunque

Suprema presenta las mejores respuestas e índices fisiológicos en suelos de baja

fertilidad a mayor altitud y menor temperatura ambiental con una fertilización balanceada.

De ahí la importancia de un adecuado manejo integrado de la fertilización teniendo en

cuenta la disponibilidad de N y K en la rizosfera (acidez y equilibrio de nutrientes) y una

fertilización específica por cultivar, considerando el suministro ambiental y pedogénetico

del suelo.

El análisis de savia en tallos es una herramienta de diagnóstico temprana del estatus

nutricional y su empleo ayuda a pronósticar el manejo de la producción con correcciones

de fertilización. Los niveles óptimos de referencia para Capiro en suelos de alta fertilidad

son 4.500-4.700 mg kg-1 para K y 1.500 a 1.700 mg kg-1 para N medidos desde etapas

vegetativas de los 55 dds, donde niveles superiores a los 5.000 mg kg-1 de N y 1.900 mg

kg-1 de K representan un riesgo en el consumo de lujo en los cultivares Capiro y

Suprema. En el caso de Capiro, desde la máxima floración los niveles óptimos de 3.280

mg kg-1 para K+ y 1.281 mg kg-1 para NO3- se relacionan con mayores rendimientos.

Page 153: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

7. Recomendaciones

Se recomienda en futuras investigaciones relacionar la actividad enzimática junto con la

acumulación de sustancias de tipo fitatos, ésteres de fosfato, almidón sintasa y nitrato

reductasa para conocer aun más la adaptación del cultivar y evaluar su dinámica con los

nutrientes y la calidad del tubérculo.

Con las relaciones NPK y el porcentaje de distribución de estos nutrientes, son el insumo

necesario para el establecimiento de las fórmulas de nutrición en la ferilización

convencional por etapa y puede hacerse de forma precisa en condiciones de fertirriego.

Se sugiere realizar mayor fraccionamiento de la fertilización desde el inicio de la

tuberización hasta la máxima floración ya que actualmente se maneja toda la fertilización

edáfica antes del inicio de la tuberización cuando el potencial de consumo de P y K es

más limitado, principalmente.

Se sugiere para el manejo de la fertilización de Suprema bajo suelos de baja fertilidad, un

aporte del 30% del total extraido de NPK antes de la etapa II cuando inicia la tuberización

(75 dds) en una proporción de 10-2-12. En el caso de Capiro se recomienda un 15% de

la extracción total de NPK en una relación de 10-2-18. En las etapas previas al llenado

antes de la etapa III cuando se presenta la máxima tuberización e inicio de llenado, se

deben fraccionar 70% en Suprema y 85% para Capiro del total NPK requerido con una

relación 8-1-20 para Suprema y 12-2-25 para Capiro, estas recomendaciones pueden

mejorar la eficiencia fisiológica de estos nutrientes al tener en cuenta la sincronización

entre dosis, relación NPK y época. Actualmente se fracciona en dos aplicaciones antes

de los 50 dds y con grados de fertilizante que no se ajustan a la extracción y partición

nutricional.

Las herramientas de diagnóstico nutricional evaluados permiten identificar las

aplicaciones excesivas de fertilizanción nitrogenada. Se recomienda mantener una

Page 154: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

132 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-boyacense

relación K+/NO3

- de 2:1 para etapas iniciales y 3:1 en etapas de producción con la dosis

balanceada óptima de 1633 kg para Capiro para favorecer altos rendimientos, mientras

Suprema presentó respuesta nula a la fertilidad en suelos con excesos de N, por ello es

importante el diagnóstico y manejo diferencial de la fertilización por cultivar de acuerdo al

hábito de crecimiento.

Page 155: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

8. Anexo A: Anovas de rendimiento, eficiencia de traslocación, índices de cosecha y

covariables

Tabla 8-1. Anovas e interacciones de factores para consumo y eficiencia de traslocación de N, P y K en cuatro etapas del cultivo e índice de cosecha de nutrientes 150 dds.

Nitrógeno

N.I. 75 dds 100 dds 125 dds 150 dds

CICLO 1 <.0001 <.0001 <.0001 0,0638 LOCALIDAD 1 <.0001 <.0001 <.0001 <.0001 CICLO*LOCALIDAD 2 <.0001 <.0001 <.0001 0,1567 Cultivar 1 0,0229 <.0001 <.0001 0,0009 CICLO*Cultivar 2 0,0029 0,2236 <.0001 0,2813 LOCALIDAD*Cultivar 2 <.0001 0,0099 <.0001 <.0001 CICLO*LOCALI*Cultiva 3 <.0001 0,0138 0,1817 0,9369 Ferti 1 <.0001 0,0364 0,0002 0,8232 CICLO*Ferti 2 0,0011 0,5445 0,4253 0,1735 LOCALIDAD*Ferti 2 0,0098 0,6721 0,0057 0,1289 CICLO*LOCALIDA*Ferti 3 0,0006 0,1009 0,006 0,5006 Cultivar*Ferti 2 0,003 0,7896 0,3048 0,5674 CICLO*Cultivar*Ferti 3 0,0074 0,5489 0,0144 0,508 LOCALI*Cultiva*Ferti 3 0,7726 0,1982 0,0005 0,2923 CICL*LOCA*Cult*Ferti 4 0,0025 0,0464 0,0106 0,9511 Rep 1 0,6542 0,3954 0,709 0,025

Potasio

75 100 125 150

CICLO 1 <.0001 <.0001 <.0001 <.0001 LOCALIDAD 1 <.0001 <.0001 <.0001 <.0001 CICLO*LOCALIDAD 2 <.0001 0,1263 <.0001 0,0619 Cultivar 1 0,0448 <.0001 <.0001 <.0001 CICLO*Cultivar 2 <.0001 0,0253 <.0001 0,3055 LOCALIDAD*Cultivar 2 <.0001 0,0005 <.0001 <.0001 CICLO*LOCALI*Cultiva 3 <.0001 0,0907 0,0063 0,0081 Ferti 1 0,0009 <.0001 <.0001 0,1507

Page 156: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

134 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-

boyacense

CICLO*Ferti 2 0,0416 0,0544 0,3108 0,7634 LOCALIDAD*Ferti 2 0,0085 <.0001 0,0123 0,779 CICLO*LOCALIDA*Ferti 3 0,0005 0,0252 0,0028 0,8763 Cultivar*Ferti 2 0,4753 0,3298 0,8136 0,1745 CICLO*Cultivar*Ferti 3 0,8763 0,4178 0,3089 0,4289 LOCALI*Cultiva*Ferti 3 0,1714 0,4892 0,0002 0,0329 CICL*LOCA*Cult*Ferti 4 0,0771 0,7278 0,9152 0,8408 Rep 1 0,59 0,3988 0,8434 0,025

Fósforo

75 100 125 150

CICLO 1 <.0001 0,0018 <.0001 0,6279 LOCALIDAD 1 <.0001 <.0001 <.0001 <.0001 CICLO*LOCALIDAD 2 <.0001 0,0006 <.0001 0,0213 Cultivar 1 0,024 <.0001 <.0001 <.0001 CICLO*Cultivar 2 0,0132 0,4404 <.0001 0,1061 LOCALIDAD*Cultivar 2 <.0001 <.0001 <.0001 <.0001 CICLO*LOCALI*Cultiva 3 <.0001 0,0254 0,0238 0,0531 Ferti 1 0,002 <.0001 <.0001 0,0946 CICLO*Ferti 2 0,1321 0,6747 0,0558 0,007 LOCALIDAD*Ferti 2 0,0018 0,3976 0,2288 0,0948 CICLO*LOCALIDA*Ferti 3 0,0001 0,7962 <.0001 0,5846 Cultivar*Ferti 2 0,0985 0,047 0,0046 0,1392 CICLO*Cultivar*Ferti 3 0,0553 0,7155 <.0001 0,1256 LOCALI*Cultiva*Ferti 3 0,3555 0,0088 <.0001 0,1096 CICL*LOCA*Cult*Ferti 4 0,0175 0,1783 <.0001 0,3304 Rep 1 0,6804 0,3942 0,9054 0,0353

Page 157: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

Anexo A: Anovas de rendimiento, eficiencia de traslocación, índices de cosecha y covariables

135

Tabla 8-2. Análisis de regresión de covariables de suelo y clima respecto a las variables evaluadas.

W ~Env+Gen+Rep%in%Env+Gen*Env

AIC general model 141.759570752765

* Sum Sq Df F value Pr(>F)

Env 37,17057 3 0,79151 0,53193 Gen 16,7688 1 1,07123 0,33094 Env:Rep 141,55946 8 1,13039 0,43331 Env:Gen 340,88844 3 7,25888 0,01136 Residuals 125,23086 8 NA NA

SELECTED MODEL

YLD ~Env+Rep%in%Env+Gen +Gen* CaMgK

AIC selected model 142.34977049551

* Sum Sq Df F value Pr(>F) %GxE %AcumGxE Env 252,96464 3 5,56115 0,01658 * * Gen 16,7688 1 1,10593 0,31772 * * Env:Rep 141,55946 8 1,16701 0,40143 * * Gen:CaMgK 314,49326 1 20,74138 0,00105 92,25694482 * Residuals 151,62604 10 NA NA * *

STEPS FOR FACTORIAL

REGRESSION Effect name Sum Sq Df Fvalue AIC Pr>F TorF

Gen* CaMgK 314,4932617 1 20,74137593 142,3497705 0,001051366

effect entered

Page 158: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

136 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-

boyacense

GENERAL MODEL

rent ~Env+Gen+Rep%in%Env+Gen*Env

AIC general model 206.535315344362

* Sum Sq Df F value Pr(>F) Env 1016,78573 3 1,45657 0,29744 Gen 4879,27296 1 20,96899 0,0018 Env:Rep 1890,23919 8 1,01543 0,49163 Env:Gen 5320,34046 3 7,6215 0,00989 Residuals 1861,51925 8 NA NA

SELECTED MODEL

YLD ~Env+Rep%in%Env+Gen +Gen* P

AIC selected model 203.604180435597

* Sum Sq Df F value Pr(>F) %GxE %AcumGxE Env 3224,51293 3 5,52247 0,01693 * * Gen 4879,27296 1 25,06951 0,00053 * * Env:Rep 1890,23919 8 1,214 0,37938 * * Gen:P 5235,56191 1 26,90011 0,00041 98,40652021 * Residuals 1946,2978 10 NA NA * *

STEPS FOR FACTORIAL REGRESSION

Effect name Sum Sq Df Fvalue AIC Pr>F TorF

Gen* P 5235,561915 1 26,90010706 203,6041804 0,00040919 effect entered

Page 159: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

Anexo A: Anovas de rendimiento, eficiencia de traslocación, índices de cosecha y covariables

137

Tabla 8-3. Anovas e interacciones de factores en las variables rendimiento.

Fuente DF Tipo III SS Cuadrado de la media F-Valor Pr > F CICLO 1 76,5913 76,5913 0,36 0,5479 LOCALIDAD 1 66,63806 66,63806 0,32 0,5751 CICLO*LOCALIDAD 1 2711,10677 2711,10677 12,91 0,0006 Cultivar 1 8535,40918 8535,40918 40,64 <.0001 CICLO*Cultivar 1 7964,45766 7964,45766 37,92 <.0001 LOCALIDAD*Cultivar 1 12019,66028 12019,66028 57,22 <.0001 CICLO*LOCALI*Cultiva 1 25,19876 25,19876 0,12 0,7301 fert 3 5360,78163 1786,92721 8,51 <.0001 CICLO*fert 3 424,14651 141,38217 0,67 0,5714 LOCALIDAD*fert 3 191,96241 63,98747 0,3 0,8219 CICLO*LOCALIDAD*fert 3 91,04808 30,34936 0,14 0,9329 Cultivar*fert 3 1327,75133 442,58378 2,11 0,1072 CICLO*Cultivar*fert 3 405,04707 135,01569 0,64 0,5901 LOCALID*Cultiva*fert 3 1542,52623 514,17541 2,45 0,071 CICL*LOCA*Culti*fert 3 436,32866 145,44289 0,69 0,5598 Rep 3 636,30811 212,1027 1,01 0,3938 Error 69 14493,19906

Tabla 8-4. Anovas e interacciones de factores en las variables rendimiento por cultivar.

Fuente DF Capiro Suprema

Tipo I SS CM F-

Valor Pr > F Tipo I SS CM F-

Valor Pr > F Ciclo 1 2391,11568 2391 28,0 <.0001 4392,9 4393 15,9 0,0003 Localidad 1 7330,94649 7331 85,9 <.0001 4934,4 4934 17,86 0,0002 Ciclo* Localidad 1 1664,69091 1665 19,5 0,0001 1135,8 1136 4,11 0,0508 Fertilización 3 5979,89218 1993 23,3 <.0001 994,7 332 1,2 0,3251 Ciclo*Fertilización 3 434,792268 145 1,7 0,1861 470,7 157 0,57 0,6402 Localidad*Ferti 3 964,308289 321 3,77 0,0197 725,9 242 0,88 0,4636 Ciclo*Loc*Ferti 3 433,263256 144 1,69 0,1874 94,1 31 0,11 0,9516 Bloque 3 883,87331 295 3,46 0,0274 2312,8 771 2,79 0,0558 Error 33 2813,87114

9119,00167

Page 160: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

138 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-

boyacense

Tabla 8-5. Anovas e interacciones de factores para índice de cosecha por cultivar.

Fuente DF Tipo I SS Cuadrado de la media F-Valor Pr > F

Ferti 1 0.03073787 0,031 25.93 <.0001 Cultivar 1 0.35995915 0,360 303.64 <.0001 Cultivar*Ferti 1 0.00963250 0,010 8.13 0.0077 LOCALIDAD 1 0.45611488 0,456 384.75 <.0001 Ferti*LOCALIDAD 1 0.00017119 0,000 0.14 0.7065 Cultivar*LOCALIDAD 1 0.30063509 0,301 253.60 <.0001 Cultiv*Ferti*LOCALIDAD 1 0.00007801 0,000 0.07 0.7992 CICLO 1 0.00754653 0,008 6.37 0.0170 Ferti*CICLO 1 0.01833896 0,018 15.47 0.0004 Cultivar*CICLO 1 0.00162872 0,002 1.37 0.2501 Cultivar*Ferti*CICLO 1 0.00125584 0,001 1.06 0.3113 CICLO*LOCALIDAD 1 0.01612147 0,016 13.60 0.0009 Ferti*CICLO*LOCALIDA 1 0.00306552 0,003 2.59 0.1180 Cultiv*CICLO*LOCALID 1 0.02510554 0,025 21.18 <.0001 Cult*Fert*CICL*LOCAL 1 0.00167723 0,002 1.41 0.2433 Rep 3 0.00499937 0,002 1.41 0.2597

Page 161: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

9. Anexo B: Coeficientes de consumo, coeficientes de traslocación e índice de

cosecha de nutriente

Tabla 9-1. Coeficientes de consumo crítico de N, P y K a partir de la biomasa total para Capiro y Suprema.

Cultivar Suelos Rango W a b IC a 95% IC b 95% SEa SEb R2

N

Capiro

Chotá 1-25,6 56,38 0,584 52,52-97,46 0,358-0,585 11,0469 0,0549 0,9033**

Faca 1-31,0 73,59 0,658 43,65-128,6 0,457-0,794 20,6712 0,082 0,8246**

Suprema

Chotá 1-28,9 68,13 0,504 62,81-113,8 0,2829-0,497 12,4318 0,0524 0,8682**

Faca 1-35,1 78,02 0,692 8,687-89,49 0,6526-1,236 19,4834 8,6872 0,6778*

P

Capiro

Chotá 1-25,6 4,267 0,786 4,260-7,810 0,547-0,744 0,8233 0,0484 0,9690**

Faca 1-31,0 6,504 0,753 6,970-11,999 0,5259-0,706 1,2276 0,0442 0,9181**

Suprema

Chotá 1-28,9 4,765 0,662 4,8216-11,67 0,2924-0,666 1,678 0,0754 0,8775**

Faca 1-35,1 6,724 0,779 4,2468-11,76 0,5665-0,884 1,834 0,0776 0,8942**

K

Capiro

Chotá 1-25,6 77,64 0,671 33,505-157,9 0,3877-0,858 30,568 0,1157 0,7595*

Faca 1-31,0 79,52 0,854 73,216-186,7 0,4715-0,774 27,659 0,0739 0,8535*

Suprema

Chotá 1-28,9 63,93 0,776 23,211-93,19 0,6252-1,035 17,15 0,1005 0,9103**

Faca 1-35,1 42,77 0,772 216.7-40,02 0,1076-1,098 62,67 0,2418 0,3932 ns

IC, intervalo de confianza de los coeficientes al 95%. EE, error estándar de los coeficientes.** Diferencias significativas p<0,05 de los coeficientes a y b entre los cultivares de estudio; ns, no existen diferencias significativas. Chtá, suelo en Chocontá de baja fertilidad; Faca, suelo en Facatativá de alta fertilidad.

Page 162: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

140 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-

boyacense

Tabla 9-2. Coeficientes a y b de eficiencia de traslocación de N, P y K para Capiro y Suprema sin fertilización (0) y bajo condiciones optimas de fertilización (1).

Cultivar Intervalo de confianza a 95%

Intervalo de confianza b 95% SEa Seb

P

Capiro-0 -197.5--22.2311 0.5024-4.2063 20,4 0,430 Suprema-0 -66.4785-54.2487 1.1262-1.3846 1,4 0,030 Capiro-1 -121.6--12.7855 0.1762-2.4749 12,6 0,267 Suprema-1 -70.4182-34.8561 0.7124-1.4638 4,1 0,087

N

Capiro-0 -34.7418-0.0823 -0.0929-0.6429 4,0 0,086 Suprema-0 -74.5129-17.4003 0.3066-1.5134 6,6 0,140 Capiro-1 -74.7187-25.1067 -0.6864-1.4229 11,6 0,245 Suprema-1 -35.6707-21.2737 -0.5646-0.6386 6,6 0,140

K

Capiro-0 -173.8-1.473 -0.0165-3.6859 20,4 0,430 Suprema-0 -77,025 0.0191-1.6467 9,0 0,189 Capiro-1 -121.8-13.8001 -0.3839-2.4815 15,8 0,333 Suprema-1 -39.6282-18.9836 0.348-0.7842 2,4 0,051

Page 163: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

10. Anexo C: Componentes principales y análisis de diseño en medidas repetidas de acumulación de biomasa, nutrientes y uso

eficiente de nutrientes en el tubérculo

Figura 10-1. Componentes principales de variable y acumulación de nutrientes en tubérculos.

Gráfica de Pesos del Componente

0 0,05 0,1 0,15 0,2 0,25 0,3Componente 1

-0,8-0,6-0,4-0,2 0 0,20,4

Componente 2-0,4-0,2

00,20,40,60,8

Co

mp

on

ente

3

ps%

psren

NP

KMg

Ca

NaS

Fe

BCuMn

Zn

Page 164: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

142 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-

boyacense

Tabla 10-1. Algoritmo de componentes principales de variables fisiológicas de crecimiento, consumo y concentración de nutrientes para análisis exploratorio y reducir la dimensionalidad del conjunto de variables.

OPTIONS LINESIZE=72 NODATE PAGENO=1; DATA ACP; INPUT ps psKha rend N P K Mg Ca Na AZ Fe B Cu Mn Zn ; DATALINES; 15.1 1660.8 10974.0 24.1 3.5 46.5 1.661 0.830 0.415 1.993 0.158 0.022 0.020 0.017 0.031 21.7 5782.2 26600.0 45.7 6.9 137.0 5.204 1.156 1.440 5.782 0.293 0.082 0.023 0.023 0.114 25.8 12174.0 47250.0 108.3 15.8 264.2 12.174 2.435 3.031 15.826 0.722 0.110 0.049 0.090 0.238 25.2 13120.3 52080.0 122.0 17.1 282.1 13.120 2.624 3.267 15.744 0.718 0.102 0.052 0.093 0.220 15.9 839.7 5272.5 7.3 1.4 20.2 0.672 0.420 0.210 1.008 0.034 0.013 0.004 0.007 0.011 23.4 2996.6 12780.0 19.5 3.6 62.0 2.397 0.599 0.746 3.596 0.131 0.012 0.012 0.012 0.030 25.9 5029.5 19440.0 29.7 7.0 102.6 4.024 1.006 1.252 7.041 0.229 0.050 0.020 0.020 0.093 24.7 6268.7 25400.0 41.4 7.5 126.6 5.642 1.254 1.561 7.522 0.316 0.133 0.025 0.025 0.081 18.8 2190.5 11650.0 24.1 5.5 65.1 2.410 1.095 0.548 2.410 0.164 0.033 0.015 0.012 0.043 20.9 6866.2 32900.0 55.6 13.0 155.9 4.806 1.373 1.710 6.180 0.398 0.056 0.027 0.027 0.115 20.6 8100.0 33185.0 65.6 15.4 183.9 5.670 1.620 2.017 7.290 0.469 0.066 0.032 0.032 0.135 24.6 16357.3 66500.0 135.8 27.8 320.6 11.450 4.907 4.073 13.086 1.493 0.274 0.065 0.092 0.272 21.0 1515.6 7230.0 10.5 3.5 39.0 1.364 0.606 0.379 1.516 0.092 0.014 0.008 0.008 0.018 24.3 4952.1 20400.0 19.8 9.4 109.9 3.466 0.990 1.233 4.952 0.208 0.055 0.025 0.020 0.048 26.7 7830.4 29300.0 31.3 14.1 165.2 5.481 1.566 1.950 8.613 0.438 0.059 0.031 0.031 0.108 28.2 11509.2 40860.0 46.0 17.3 203.7 8.056 2.302 2.866 11.509 0.536 0.200 0.046 0.046 0.117 14.6 1661.3 11400.0 29.1 7.1 63.8 2.326 1.495 0.414 2.492 0.301 0.042 0.010 0.025 0.067 15.8 5762.2 36360.0 83.0 19.6 189.0 6.338 1.729 1.435 8.643 0.538 0.118 0.033 0.064 0.192 18.1 8964.2 49560.0 93.2 30.5 278.8 6.275 2.600 2.232 8.964 0.482 0.165 0.047 0.044 0.157 20.0 12765.9 63750.0 159.6 34.5 321.7 12.766 3.702 3.179 14.043 0.772 0.063 0.063 0.083 0.304 13.6 1547.6 11400.0 25.1 6.2 56.6 1.702 0.619 0.385 2.321 0.141 0.020 0.012 0.014 0.047 16.3 3608.9 22100.0 42.6 12.3 118.7 3.970 0.722 0.899 4.692 0.350 0.061 0.027 0.034 0.097 18.1 6820.8 37710.0 70.9 23.2 212.1 6.821 1.978 1.698 8.185 0.720 0.211 0.060 0.062 0.207 20.9 11387.4 54407.1 100.2 30.7 267.6 11.387 3.302 2.835 14.804 0.752 0.056 0.061 0.093 0.219 15.9 668.6 4200.0 10.2 2.9 25.7 0.936 0.669 0.166 1.070 0.083 0.022 0.005 0.010 0.031 18.2 2893.8 15900.0 27.8 6.9 69.5 2.026 1.158 0.721 2.026 0.212 0.051 0.014 0.014 0.049 20.6 6047.6 29400.0 55.6 16.3 148.8 5.443 2.419 1.506 6.048 0.448 0.154 0.040 0.048 0.160 22.9 10889.4 47500.0 102.4 25.0 239.6 8.712 2.178 2.711 9.800 0.551 0.053 0.053 0.053 0.197 16.0 464.8 2902.7 8.4 2.1 16.2 0.604 0.279 0.116 0.837 0.058 0.006 0.005 0.004 0.018

Page 165: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

Anexo C: Componentes principales y análisis de diseño en medidas repetidas de acumulación de biomasa, nutrientes y uso eficiente de nutrientes en el tubérculo

143

20.3 2496.6 12300.0 24.5 7.5 62.7 2.497 0.999 0.622 2.996 0.212 0.048 0.016 0.018 0.062 23.3 5039.8 21630.0 59.0 16.1 149.2 5.544 1.512 1.255 6.048 0.644 0.137 0.037 0.075 0.157 29.5 11444.7 38838.5 133.9 21.7 240.3 8.011 3.433 2.850 10.300 0.449 0.056 0.056 0.058 0.145 15.8 1892.2 12002.0 27.4 4.0 53.0 1.892 0.946 0.473 2.271 0.180 0.025 0.022 0.020 0.035 20.4 5055.6 24740.0 39.9 6.1 119.8 4.550 1.011 1.259 5.056 0.256 0.072 0.020 0.020 0.099 26.5 12831.9 48500.0 114.2 16.7 278.5 12.832 2.566 3.195 16.681 0.761 0.115 0.051 0.095 0.250 22.0 13101.0 59550.0 121.8 17.0 281.7 13.101 2.620 3.262 15.721 0.717 0.102 0.052 0.093 0.220 15.4 576.6 3735.0 5.0 1.0 13.9 0.461 0.288 0.144 0.692 0.023 0.009 0.003 0.005 0.007 24.4 3523.6 14435.0 22.9 4.2 72.9 2.819 0.705 0.877 4.228 0.154 0.014 0.014 0.014 0.036 25.4 5138.9 20200.0 30.3 7.2 104.8 4.111 1.028 1.280 7.194 0.234 0.051 0.021 0.021 0.095 26.4 7686.8 29100.0 50.7 9.2 155.3 6.918 1.537 1.914 9.224 0.387 0.163 0.031 0.031 0.099 17.5 1979.4 11335.0 21.8 4.9 58.8 2.177 0.990 0.495 2.177 0.148 0.030 0.013 0.011 0.039 20.3 6612.1 32500.0 53.6 12.6 150.1 4.628 1.322 1.646 5.951 0.383 0.054 0.026 0.026 0.110 21.2 8250.0 44600.0 66.8 15.7 187.3 5.775 1.650 2.054 7.425 0.478 0.067 0.033 0.033 0.138 25.4 17730.9 69800.0 147.2 30.1 347.5 12.412 5.319 4.415 14.185 1.618 0.297 0.071 0.100 0.295 20.5 1468.1 7170.0 10.1 3.4 37.7 1.321 0.587 0.367 1.468 0.090 0.013 0.007 0.007 0.017 22.4 5110.6 22800.0 20.4 9.7 113.5 3.577 1.022 1.273 5.111 0.215 0.057 0.026 0.020 0.050 25.2 7246.8 28800.0 29.0 13.0 152.9 5.073 1.449 1.804 7.971 0.405 0.054 0.029 0.029 0.100 28.4 13090.0 46120.0 52.4 19.6 231.7 9.163 2.618 3.259 13.090 0.610 0.228 0.052 0.052 0.133 14.6 1503.9 10320.0 26.3 6.5 57.7 2.105 1.353 0.374 2.256 0.272 0.038 0.009 0.022 0.061 13.7 4664.8 34012.5 67.2 15.9 153.0 5.131 1.399 1.162 6.997 0.435 0.095 0.027 0.052 0.155 17.6 9002.4 51150.0 93.6 30.6 280.0 6.302 2.611 2.242 9.002 0.484 0.166 0.047 0.044 0.158 20.2 16067.3 79462.5 200.8 43.4 404.9 16.067 4.660 4.001 17.674 0.971 0.079 0.079 0.105 0.383 12.1 1164.5 9600.0 18.9 4.7 42.6 1.281 0.466 0.290 1.747 0.106 0.015 0.009 0.010 0.036 15.0 3610.4 24033.3 42.6 12.3 118.8 3.971 0.722 0.899 4.694 0.350 0.061 0.027 0.034 0.097 17.6 6020.3 39150.0 62.6 20.5 187.2 6.020 1.746 1.499 7.224 0.635 0.186 0.053 0.055 0.183 20.3 11873.8 58607.1 104.5 32.1 279.0 11.874 3.443 2.957 15.436 0.784 0.058 0.064 0.097 0.228 15.9 402.4 2535.2 6.1 1.8 15.5 0.563 0.402 0.100 0.644 0.050 0.013 0.003 0.006 0.019 17.7 2862.9 16200.0 27.5 6.9 68.7 2.004 1.145 0.713 2.004 0.209 0.050 0.014 0.014 0.049 20.7 6147.9 29700.0 56.6 16.6 151.2 5.533 2.459 1.531 6.148 0.455 0.156 0.041 0.049 0.162 21.1 9257.8 43975.0 87.0 21.3 203.7 7.406 1.852 2.305 8.332 0.469 0.045 0.045 0.045 0.167 15.9 457.4 2873.3 8.2 2.1 16.0 0.595 0.274 0.114 0.823 0.057 0.006 0.005 0.004 0.018

Page 166: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

144 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-

boyacense

19.4 2420.6 12450.0 23.7 7.3 60.8 2.421 0.968 0.603 2.905 0.205 0.047 0.016 0.018 0.060 23.5 5146.5 21900.0 60.2 16.5 152.3 5.661 1.544 1.281 6.176 0.657 0.140 0.038 0.077 0.160 26.5 9771.8 36840.0 114.3 18.6 205.2 6.840 2.932 2.433 8.795 0.383 0.048 0.048 0.050 0.124 15.8 2054.3 13030.0 29.8 4.3 57.5 2.054 1.027 0.514 2.465 0.195 0.027 0.024 0.021 0.038 22.5 7015.2 31210.0 55.4 8.4 166.3 6.314 1.403 1.747 7.015 0.356 0.100 0.028 0.028 0.138 26.9 13644.9 50800.0 113.0 16.0 262.0 12.200 2.400 3.000 14.400 0.670 0.100 0.055 0.090 0.210 23.0 12217.0 53100.0 121.0 17.7 296.0 13.600 2.700 3.400 17.700 0.810 0.120 0.049 0.100 0.270 15.7 824.3 5250.0 7.2 1.4 19.9 0.659 0.412 0.206 0.989 0.033 0.013 0.004 0.007 0.011 23.5 3190.9 13600.0 20.7 3.8 66.1 2.553 0.638 0.795 3.829 0.140 0.013 0.013 0.013 0.032 26.8 5300.0 19800.0 31.3 7.4 108.1 4.240 1.060 1.320 7.420 0.241 0.053 0.021 0.021 0.098 24.7 8355.4 33800.0 55.1 10.0 168.8 7.520 1.671 2.080 10.026 0.421 0.178 0.033 0.033 0.108 17.5 2142.8 12220.0 23.6 5.4 63.6 2.357 1.071 0.536 2.357 0.161 0.032 0.015 0.012 0.042 22.8 7351.5 32300.0 59.5 14.0 166.9 5.146 1.470 1.831 6.616 0.426 0.060 0.029 0.029 0.123 22.8 8383.2 36700.0 67.9 15.9 190.3 5.868 1.677 2.087 7.545 0.486 0.068 0.034 0.034 0.140 23.0 17334.4 75220.0 143.9 29.5 339.8 12.134 5.200 4.316 13.868 1.582 0.290 0.069 0.098 0.288 20.0 1720.9 8610.0 11.9 4.0 44.2 1.549 0.688 0.430 1.721 0.105 0.015 0.009 0.009 0.020 23.6 4851.4 20520.0 19.4 9.2 107.7 3.396 0.970 1.208 4.851 0.204 0.054 0.025 0.019 0.047 26.8 6809.7 25440.0 27.2 12.3 143.7 4.767 1.362 1.696 7.491 0.381 0.051 0.027 0.027 0.094 29.7 13240.2 44520.0 53.0 19.9 234.4 9.268 2.648 3.297 13.240 0.617 0.230 0.053 0.053 0.135 11.9 1287.2 10860.0 22.5 5.5 49.4 1.802 1.158 0.321 1.931 0.233 0.033 0.008 0.019 0.052 14.4 5020.8 34800.0 72.3 17.1 164.7 5.523 1.506 1.250 7.531 0.469 0.103 0.029 0.056 0.167 16.1 7722.0 48000.0 80.3 26.3 240.2 5.405 2.239 1.923 7.722 0.415 0.142 0.041 0.038 0.136 20.4 15553.7 76225.0 194.4 42.0 392.0 15.554 4.511 3.873 17.109 0.940 0.076 0.076 0.102 0.370 13.6 1425.4 10500.0 23.1 5.7 52.2 1.568 0.570 0.355 2.138 0.130 0.018 0.011 0.013 0.044 15.4 3990.5 25950.0 47.1 13.6 131.3 4.390 0.798 0.994 5.188 0.387 0.067 0.030 0.038 0.107 18.1 6565.8 36300.0 68.3 22.3 204.2 6.566 1.904 1.635 7.879 0.693 0.203 0.058 0.060 0.200 21.2 11841.8 55778.6 104.2 32.0 278.3 11.842 3.434 2.949 15.394 0.782 0.058 0.063 0.097 0.227 15.9 467.2 2943.3 7.1 2.1 18.0 0.654 0.467 0.116 0.748 0.058 0.015 0.003 0.007 0.022 16.9 2863.3 16950.0 27.5 6.9 68.7 2.004 1.145 0.713 2.004 0.210 0.050 0.014 0.014 0.049 20.4 5967.0 29250.0 54.9 16.1 146.8 5.370 2.387 1.486 5.967 0.442 0.152 0.040 0.047 0.157 22.9 11549.8 50425.0 108.6 26.6 254.1 9.240 2.310 2.876 10.395 0.585 0.057 0.057 0.057 0.208 15.4 444.9 2888.0 8.0 2.0 15.5 0.578 0.267 0.111 0.801 0.056 0.006 0.005 0.004 0.017 19.7 2398.4 12150.0 23.5 7.2 60.2 2.398 0.959 0.597 2.878 0.203 0.046 0.016 0.018 0.059

Page 167: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

Anexo C: Componentes principales y análisis de diseño en medidas repetidas de acumulación de biomasa, nutrientes y uso eficiente de nutrientes en el tubérculo

145

23.4 4998.2 21360.0 58.5 16.0 147.9 5.498 1.499 1.245 5.998 0.638 0.136 0.037 0.075 0.155 24.6 9324.5 37839.2 109.1 17.7 195.8 6.527 2.797 2.322 8.392 0.366 0.046 0.046 0.047 0.119 22.6 2294.1 10168.8 25.2 5.7 68.1 2.523 1.147 0.574 2.523 0.172 0.034 0.016 0.013 0.045 24.6 7843.0 31896.4 74.9 17.3 205.5 7.059 2.745 1.957 7.843 0.521 0.091 0.042 0.037 0.142 25.7 12520.9 48795.6 101.4 23.8 284.2 8.765 2.504 3.118 11.269 0.725 0.102 0.050 0.050 0.209 27.4 21099.2 77100.0 175.1 35.9 413.5 14.769 6.330 5.254 16.879 1.504 0.353 0.084 0.119 0.350 22.4 4574.8 20455.8 31.6 10.5 117.6 4.117 1.830 1.144 4.575 0.279 0.041 0.023 0.023 0.053 25.2 6495.6 25735.4 42.5 14.5 163.2 5.684 2.436 1.623 6.577 0.392 0.057 0.032 0.032 0.077 28.5 8514.9 29841.7 52.6 18.5 209.0 7.238 2.980 2.127 8.728 0.509 0.073 0.040 0.040 0.104 28.8 12337.9 42840.0 80.7 27.6 310.0 10.796 4.627 3.083 12.492 0.745 0.109 0.060 0.060 0.120 23.4 3528.3 15065.2 51.2 7.4 98.8 3.528 1.764 0.882 4.234 1.408 0.046 0.042 0.037 0.065 24.2 7859.8 32438.1 92.0 13.4 195.3 7.860 2.751 1.961 9.825 1.801 0.086 0.062 0.070 0.149 25.6 13245.8 51741.4 117.9 17.2 287.4 13.246 2.649 3.298 17.220 0.785 0.119 0.053 0.098 0.258 28.8 21682.2 75390.0 201.6 23.9 466.2 21.682 4.336 5.399 26.019 1.187 0.169 0.087 0.153 0.364 22.0 4092.0 18597.8 35.6 7.0 98.6 3.274 2.046 1.023 4.910 1.649 0.065 0.020 0.037 0.052 24.4 7697.2 31558.9 56.2 11.9 171.3 6.158 2.694 1.920 10.006 1.726 0.100 0.035 0.050 0.120 26.8 12304.6 45960.2 72.6 17.2 251.0 9.844 2.461 3.064 17.226 0.560 0.122 0.049 0.049 0.226 30.2 19587.6 64965.0 129.3 23.5 395.7 17.629 3.918 4.877 23.505 0.986 0.416 0.078 0.078 0.252 19.9 3872.4 19471.1 42.6 9.7 115.0 4.260 1.936 0.968 4.260 0.290 0.058 0.026 0.021 0.075 22.3 7163.1 32164.7 62.3 10.7 158.3 6.089 1.433 1.784 7.521 0.404 0.057 0.029 0.040 0.120 24.6 10328.4 42037.6 83.7 19.6 234.5 7.230 2.066 2.572 9.296 0.598 0.084 0.041 0.041 0.173 30.0 18095.2 60337.5 150.2 30.8 354.7 12.667 5.429 4.506 14.476 1.290 0.303 0.072 0.102 0.301 22.4 4574.8 20455.8 31.6 10.5 117.6 4.117 1.830 1.144 4.575 0.279 0.041 0.023 0.023 0.053 25.2 6495.6 25735.4 42.5 14.5 163.2 5.684 2.436 1.623 6.577 0.392 0.057 0.032 0.032 0.077 28.5 8514.9 29841.7 52.6 18.5 209.0 7.238 2.980 2.127 8.728 0.509 0.073 0.040 0.040 0.104 28.8 12337.9 42840.0 80.7 27.6 310.0 10.796 4.627 3.083 12.492 0.745 0.109 0.060 0.060 0.120 23.5 4068.2 17341.0 35.4 6.9 98.0 3.255 2.034 1.017 4.882 1.639 0.065 0.020 0.036 0.052 24.3 7443.0 30591.9 54.3 11.5 165.6 5.954 2.605 1.857 9.676 1.669 0.096 0.033 0.048 0.116 26.6 12035.7 45315.0 71.0 16.8 245.5 9.629 2.407 2.997 16.850 0.548 0.120 0.048 0.048 0.221 25.3 24677.8 97695.0 162.9 29.6 498.5 22.210 4.936 6.145 29.613 1.243 0.525 0.099 0.099 0.318 23.4 3528.3 15065.2 51.2 7.4 98.8 3.528 1.764 0.882 4.234 1.408 0.046 0.042 0.037 0.065 24.2 7859.8 32438.1 92.0 13.4 195.3 7.860 2.751 1.961 9.825 1.801 0.086 0.062 0.070 0.149

Page 168: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

146 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-

boyacense

25.6 13245.8 51741.4 117.9 17.2 287.4 13.246 2.649 3.298 17.220 0.785 0.119 0.053 0.098 0.258 28.8 21682.2 75390.0 201.6 23.9 466.2 21.682 4.336 5.399 26.019 1.187 0.169 0.087 0.153 0.364 18.5 2331.9 12617.4 25.7 5.8 69.3 2.565 1.166 0.583 2.565 0.175 0.035 0.016 0.013 0.045 22.1 6562.7 29668.7 48.2 10.2 140.8 5.250 1.313 1.634 6.891 0.355 0.096 0.026 0.026 0.097 27.5 11820.1 42930.8 95.7 22.5 268.3 8.274 2.364 2.943 10.638 0.685 0.096 0.047 0.047 0.198 27.7 17868.8 64500.0 148.3 30.4 350.2 12.508 5.361 4.449 14.295 1.274 0.299 0.071 0.101 0.297 21.1 3816.2 18103.4 26.3 8.8 98.1 3.435 1.526 0.954 3.816 0.233 0.034 0.019 0.019 0.044 23.6 5261.8 22267.5 34.4 11.8 132.2 4.604 1.973 1.315 5.328 0.318 0.046 0.026 0.026 0.063 27.3 6970.9 25506.3 43.0 15.2 171.1 5.925 2.440 1.741 7.145 0.416 0.060 0.033 0.033 0.085 24.9 8295.4 33315.0 54.2 18.6 208.4 7.259 3.111 2.073 8.399 0.501 0.073 0.040 0.040 0.100 26.1 3130.5 11979.8 45.4 6.6 87.7 3.130 1.565 0.783 3.757 1.249 0.041 0.037 0.032 0.058 28.7 8646.2 30178.8 101.2 14.7 214.9 8.646 3.026 2.157 10.808 1.981 0.095 0.069 0.077 0.164 27.5 13883.4 50400.0 123.6 18.0 301.3 13.883 2.777 3.457 18.048 0.823 0.125 0.056 0.103 0.271 25.4 18279.8 72000.0 170.0 20.1 393.0 18.280 3.656 4.552 21.936 1.001 0.142 0.073 0.129 0.307 25.6 2974.4 11599.9 25.9 5.1 71.7 2.379 1.487 0.744 3.569 1.199 0.048 0.015 0.027 0.038 25.7 6957.9 27072.1 50.8 10.8 154.8 5.566 2.435 1.736 9.045 1.560 0.090 0.031 0.045 0.109 27.9 12363.6 44263.4 72.9 17.3 252.2 9.891 2.473 3.079 17.309 0.563 0.123 0.049 0.049 0.227 25.6 16827.2 65775.0 111.1 20.2 339.9 15.145 3.365 4.190 20.193 0.847 0.358 0.067 0.067 0.217 ; PROC PRINCOMP DATA=ACP OUT=pcstuff N=4 standard; VAR ps psKha rend N P K Mg Ca Na AZ Fe B Cu Mn Zn; RUN; PROC CORR DATA=pcstuff; VAR ps psKha rend N P K Mg Ca Na AZ Fe B Cu Mn Zn; WITH prin1 prin2 ; RUN; PROC FACTOR DATA=stuff SCREE; VAR ps psKha rend N P K Mg Ca Na AZ Fe B Cu Mn Zn; RUN; proc print; VAR prin1 prin2 ; run;

Tabla 10-2. Algoritmo para las variables fisiológicas de crecimiento (biomasa seca, área foliar, consumo de nutrientes, uso eficiente de nutrientes) diseño en medidas repetidas factorial incompleto en parcelas subdivididas-modelo mixto. Los factores entre sujetos son anidados, pues la naturaleza de la matriz es incompleta.

DATA DMR; INPUT LOCALIDAD $ CULTIVAR $ FERT $ REP p75 p100 p125 p150 @@; DATALINES;

Page 169: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

Anexo C: Componentes principales y análisis de diseño en medidas repetidas de acumulación de biomasa, nutrientes y uso eficiente de nutrientes en el tubérculo

147

SUBACHOQUE CAPIRO CON 1 -1.13785 -0.46483 0.87791 0.98790 SUBACHOQUE CAPIRO SIN 1 -1.41514 -1.02719 -0.60019 -0.37204 SUBACHOQUE SUPREMA CON 1 -1.2605 -0.30748 -0.10947 1.65284 SUBACHOQUE SUPREMA SIN 1 -1.23481 -0.66493 -0.17358 0.41534 FACATATIVA CAPIRO CON 1 -0.99081 0.05344 0.45485 1.29750 FACATATIVA CAPIRO SIN 1 -1.15979 -0.62750 0.35562 0.95927 FACATATIVA SUPREMA CON 1 -1.34376 -0.95720 -0.04522 0.53148 FACATATIVA SUPREMA SIN 1 -1.44174 -0.92939 -0.06431 0.65126 SUBACHOQUE CAPIRO CON 2 -1.06780 -0.60884 1.00557 0.97930 SUBACHOQUE CAPIRO SIN 2 -1.47789 -0.93219 -0.58131 -0.10330 SUBACHOQUE SUPREMA CON 2 -1.09168 -0.35672 -0.03050 1.92038 SUBACHOQUE SUPREMA SIN 2 -1.25473 -0.65193 -0.28004 0.67275 FACATATIVA CAPIRO CON 2 -1.05123 -0.26630 0.46260 2.03499 FACATATIVA CAPIRO SIN 2 -1.28876 -0.63401 0.14738 1.06888 FACATATIVA SUPREMA CON 2 -1.44657 -0.96608 -0.01888 0.21719 FACATATIVA SUPREMA SIN 2 -1.44442 -0.95290 -0.03022 0.32781 SUBACHOQUE CAPIRO CON 3 -1.02349 -0.23015 0.89657 1.08567 SUBACHOQUE CAPIRO SIN 3 -1.41937 -0.99279 -0.54504 0.00373 SUBACHOQUE SUPREMA CON 3 -1.04724 -0.20945 -0.02044 1.84423 SUBACHOQUE SUPREMA SIN 3 -1.20334 -0.68714 -0.34305 0.70618 FACATATIVA CAPIRO CON 3 -1.15326 -0.16141 0.17493 1.91770 FACATATIVA CAPIRO SIN 3 -1.19646 -0.52779 0.28534 1.05839 FACATATIVA SUPREMA CON 3 -1.42307 -0.97179 -0.06591 0.66164 FACATATIVA SUPREMA SIN 3 -1.45369 -0.95615 -0.07345 0.23400 CHOCONTA CAPIRO CON 1 -0.96543 0.14505 0.72708 2.51486 CHOCONTA CAPIRO SIN 1 -0.60440 -0.22267 0.15680 0.91650

Page 170: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

148 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-

boyacense

CHOCONTA SUPREMA CON 1 -0.41776 0.48075 1.08363 2.57793 CHOCONTA SUPREMA SIN 1 -0.45914 0.18625 0.69411 2.03994 CHOCONTA CAPIRO CON 2 -0.60368 -0.20507 0.33177 1.95313 CHOCONTA CAPIRO SIN 2 -0.60440 -0.22267 0.15680 0.91650 CHOCONTA SUPREMA CON 2 -0.45483 0.12484 0.64641 2.96014 CHOCONTA SUPREMA SIN 2 -0.41776 0.48075 1.08363 2.57793 CHOCONTA CAPIRO CON 3 -0.99376 -0.34586 0.60951 1.90445 CHOCONTA CAPIRO SIN 3 -0.76955 -0.47609 -0.14430 0.12684 CHOCONTA SUPREMA CON 3 -0.52010 0.71076 1.21645 1.93838 CHOCONTA SUPREMA SIN 3 -0.71832 0.02954 0.70800 1.53854 ; *PROC PRINT; *RUN; title2 'DISEÑO EN MEDIDAS REPETIDAS(FACTORIAL INCOMPLETO EN PARCELAS SUBDIVIDIDAS)'; proc glm data = DMR; class LOCALIDAD CULTIVAR FERT REP ; model p75 p100 p125 p150 = REP LOCALIDAD CULTIVAR LOCALIDAD*CULTIVAR FERT(LOCALIDAD*CULTIVAR) / nouni ; repeated time 4 profile/printe ; TEST H=LOCALIDAD E=REP*LOCALIDAD; TEST H=CULTIVAR E=REP*LOCALIDAD*CULTIVAR; TEST H=FERT E=REP*LOCALIDAD*CULTIVAR; run;

Tabla 10-3. Análisis estadístico MANOVA diseño en medidas repetidas (factorial incompleto en parcelas subdivididas-modelo mixto inter sujetos para los componentes que reunía la variables de mayor significancia .

Fuente DF Tipo III SS Cuadrado de la media F-Valor Pr > F

REP 2 0.11874366 0.05937183 1.00 0.3827 LOCALIDAD 2 1.579.091.282 789.545.641 133.48 <.0001 CULTIVAR 1 0.17788501 0.17788501 3.01 0.0969 LOCALIDAD*CULTIVAR 2 781.140.666 390.570.333 66.03 <.0001 FERT(LOCALI*CULTIVA) 6 866.295.486 144.382.581 24.41 <.0001 Error 22 130.132.949 0.05915134

Page 171: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

Anexo C: Componentes principales y análisis de diseño en medidas repetidas de acumulación de biomasa, nutrientes y uso eficiente de nutrientes en el tubérculo

149

Tabla 10-4. Análisis estadístico MANOVA diseño en medidas repetidas (factorial incompleto en parcelas subdivididas-modelo mixto intrasujetos para los componentes que reunía la variables de mayor significancia.

Fuente DF Tipo III SS Cuadrado de la media F-Valor Pr > F Adj Pr > F

G - G H - F Fenología 3 9.781.097.008 3.260.365.669 1006.22 <.0001 <.0001 <.0001 Fenología*Rep 6 0.21564404 0.03594067 1.11 0.3666 0.3615 0.3666 Fenol*Localid 6 101.281.480 0.16880247 5.21 0.0002 0.0032 0.0003 Fenología*Cult 3 0.36505300 0.12168433 3.76 0.0149 0.0399 0.0165

Fenol*Local*Cult 6 291.564.200 0.48594033 15.00 <.0001 <.0001 <.0001

Fenol*fert (Local*Cult) 18 521.395.502 0.28966417 8.94 <.0001 <.0001 <.0001

Error(time) 66 213.852.948 0.03240196

Tabla 10-5. Matriz de correlación de Pearson de los componentes de alta significancia.

% PSt PSt PFt N P K Mg Ca Na S

% PSt 1 0.6519 0.4861 0.4490 0.3808 0.5767 0.5823 0.5810 0.6506 0.6167

PSt 0.6519 1 0.9648 0.9124 0.8259 0.9768 0.9653 0.8923 0.9994 0.9559

PFt 0.4861 0.9648 1 0.9360 0.8967 0.9787 0.9457 0.8693 0.9649 0.9266

N 0.4490 0.9124 0.9360 1 0.8538 0.9425 0.9271 0.8657 0.9126 0.8763

P 0.3808 0.8259 0.8967 0.8538 1 0.8936 0.7910 0.8589 0.8264 0.7501

K 0.5767 0.9768 0.9787 0.9425 0.8936 1 0.9675 0.8993 0.9775 0.9471

Mg 0.5823 0.9653 0.9457 0.9271 0.7910 0.9675 1 0.8464 0.9658 0.9812

Ca 0.5810 0.8923 0.8693 0.8657 0.8589 0.8993 0.8464 1 0.8933 0.8029

Na 0.6506 0.9994 0.9649 0.9126 0.8264 0.9775 0.9658 0.8933 1 0.9569

S 0.6167 0.9559 0.9266 0.8763 0.7501 0.9471 0.9812 0.8029 0.9569 1

Page 172: Acumulación y distribución de macronutrientes minerales en ...bdigital.unal.edu.co/64219/2/ManuelI.GómezS.2018.pdfacadémicos para la construcción de la investigación de la tesis

150 Acumulación y distribución de macronutrientes minerales en dos cultivares de Solanum tuberosum L. en diferentes ambientes del altiplano Cundi-

boyacense

Tabla 10-6. Coeficiente b del modelo lineal de la extracción de nutrientes N, P y K ( kg/ha) respecto al rendimiento.

Cultivar Intervalo de confianza b 95% Seb

N Capiro (0,00221;0,00248) 6,71362E-05

Suprema (0,00189;0,00233) 0,000110095

P Capiro (0,00046;0,00056) 2,57036E-05

Suprema (0,00029;0,00036) 1,6226E-05

K Capiro (0,00506;0,00563) 0,000143191

Suprema (0,00509;0,00557) 0,000120026