a governance-driven solution for a european space weather monitoring system 11th european space...

26
A Governance-Driven Solution for a European Space Weather Monitoring System 11th European Space Weather Week Dr. Alejandro Salado et al. 17.11.2014 Liege, Belgium

Upload: bret-petit

Post on 11-Dec-2015

218 views

Category:

Documents


1 download

TRANSCRIPT

A Governance-Driven Solution for a European Space Weather Monitoring System

11th European Space Weather WeekDr. Alejandro Salado et al.17.11.2014 Liege, Belgium

OHB System AG

Requirements overview and major system drivers

Seite 211th European Space Weather Week 17.11.2014

400+ assets3000+ requirements303 products37 services8 service

domainsSystem

performance

A Governance-Driven Solution for a European Space Weather Monitoring System

S/C designers

S/C operators

Human spaceflight

Launch operators

Satellite com & nav SST Non-space

operators

General data

services

OHB System AG

SWE System Context

Seite 311th European Space Weather Week 17.11.2014

A Governance-Driven Solution for a European Space Weather Monitoring System

OHB System AG

Space Segment

Seite 411th European Space Weather Week 17.11.2014

One mission to a low altitude Earth orbit

Two missions to a LEO sun-synchronous orbit

Two missions on MEO (SSA payloads hosted)

Two missions in GEO (SSA payloads hosted)

One mission at L1 (preferably SSA payloads hosted, however dedicated mission option given as well)

One mission at L5 (preferably SSA payloads hosted, however dedicated mission option given as well)

A Governance-Driven Solution for a European Space Weather Monitoring System

OHB System AG

Space Segment – SSO Mission 1

Seite 511th European Space Weather Week 17.11.2014

SSO Mission 1

Sun-Synchronous Dawn-Dusk orbit (h~974 km):

Allows nearly continuous view of the sun (duration of max 13 min over a yearly three months period)

Orbit altitude vs S/C mass had to be traded

Higher altitude results in less eclipses but more propellant needed for de-orbiting the S/C

Wet mass of 858 kg, including the following paylaods:

Radiation Monitor Soft X-ray solar disk imager

Langmuir probe with VLF spectrometer Doppler imager

Magnetometer Ly-alpha imager

E or B antenna with HFMF-LF receivers/spectrometers

VIS coronograph

EUV solar disk imager Solar radiospectrographer

VIS solar disk imager EUV-ray flux monitor

UV-ray flux monitor

A Governance-Driven Solution for a European Space Weather Monitoring System

OHB System AG

Space Segment – Polar LEO (SSO Mission 2)

Seite 611th European Space Weather Week 17.11.2014

Polar LEOMission very similar to SSO 1

Some payloads require 2 measurement points at same orbit with 180° phasing

Launched with VEGA

Wet mass of 500 kg, including the following paylaods:

GNSS receiver E or B antenna with HFMF-LF receivers/spectrometers

Micro particle detector Magnetometer

Radiaion monitor Langmuir probe with VLF spectrometer

A Governance-Driven Solution for a European Space Weather Monitoring System

OHB System AG

Space Segment – Low Altitude Mission

Seite 711th European Space Weather Week 17.11.2014

Low Altitude Mission

Required for atmospheric density measurements and aurora imaging

SSO (not Dawn-Dusk)

Altitude traded with lifetime

At an altitude of 350 km it is expected to have about 4 mN of drag force, which results in about -29 m/rev change in semi-major axis.

Continuous electric propulsion necessary for drag compensation

S/C mass estimated to 815 kg, including the following payloads:

Accelerometer Wide-field auroral imager

A Governance-Driven Solution for a European Space Weather Monitoring System

OHB System AG

Space Segment – MEO Missions

Seite 811th European Space Weather Week 17.11.2014

MEO Missions

Instruments in MEO can be hosted on navigation satellites – many opportunities

This enables a significant cost reduction

Instruments require to be placed in two different S/C on the same orbit with roughly 180° phasing between each other.

The following payloads should be included:

Radiaion monitor Ion Spectrometer

Magnetometer

A Governance-Driven Solution for a European Space Weather Monitoring System

OHB System AG

Space Segment – GEO Missions

Seite 911th European Space Weather Week 17.11.2014

GEO Missions

GEO

Instruments in GEO can be hosted on Geostationary satellites – also many opportunities

This enables a significant cost reduction

Instruments require to be placed in two different S/C on the same orbit with roughly 180° phasing between each other.

The following payloads should be included:

Radiaion monitor Ion Spectrometer

Magnetometer Micro-particle detector

A Governance-Driven Solution for a European Space Weather Monitoring System

OHB System AG

Space Segment – L1 Mission

Seite 1011th European Space Weather Week 17.11.2014

Approach used was to minimise cost of mission by minimizing platform size and dimension.

This was achieved by placing the sun observing payloads in LEO

A drawback of this approach are the eclipses in LEO which can obstruct the FoV, however in SSO they are minimized.

Payloads:

Ion Energy SpectrometerDensity probe3-axis Fluxgate MagnetometerRadiation Monitoring

Sun

Earth

L1

1.5 million km

A Governance-Driven Solution for a European Space Weather Monitoring System

OHB System AG

Space Segment – L5 Mission

Seite 1111th European Space Weather Week 17.11.2014

L5 mission is important for monitoring the Sun-Earth line and to detect anomalies in the sun behaviour before they are visible from the Sun-Earth line.

Payloads:

EUV solar disk imagerHeliospheric imagerCoronograph imager

Sun

EarthL5

1 A

U

1 AU

Sun-E

arth line

A Governance-Driven Solution for a European Space Weather Monitoring System

OHB System AG

Systems versus Systems of systems

Seite 1211th European Space Weather Week 17.11.2014

A Governance-Driven Solution for a European Space Weather Monitoring System

OHB System AG

Analysis approach

Seite 1311th European Space Weather Week 17.11.2014

1. Contribution of instruments to overall SWE capability

2. Contribution of each satellite (or space mission) to overall SWE capability

3. Uncertainties usually faced by space systems

4. Governance approach

5. Redundancy and deployment alternatives

6. Qualitative adaptability assessment

7. Redefinition of SWE (space segment) architecture

8. Deployment strategy

A Governance-Driven Solution for a European Space Weather Monitoring System

OHB System AG

Dependencies M products and derived products

Seite 1411th European Space Weather Week 17.11.2014

SU-005

-M

SU-017

-M

SU-021

-M

SU-024

-M

SU-027

-M

SU-032

-M

L1-0

03-M

L1-0

06-M

L1-0

09-M

IP-0

01-M

MR-0

08-M

MR-0

11-M

MR-0

14-M

IT-0

02-M

IT-0

07-M

IT-0

10-M

AG-005

-M

AG-009

-M

SC-002

-M

SC-005

-M

SC-008

-M0

5

10

15

20

25

30

35

40

45

50

A Governance-Driven Solution for a European Space Weather Monitoring System

OHB System AG

Capability loss analysis

Seite 1511th European Space Weather Week 17.11.2014

SolO/S

TIX

SolO/P

HI

SolO/M

ETIS

SOHO/SUM

ER

CLUSTER/C

IS

NGRM

OCAM

SpöP/m

ag

SolO/M

ETIS

0

5

10

15

20

25

30

35

SW

E C

apab

ilit

y lo

ss

SSO LEO

Polar LEO

Low LEO L1 L50

5

10

15

20

25

30

SW

E c

ap

ab

ility

los

s

A Governance-Driven Solution for a European Space Weather Monitoring System

OHB System AG

Capability contribution analysis

Seite 1611th European Space Weather Week 17.11.2014

SolO/S

TIX

SolO/P

HI

SolO/M

ETIS

SOHO/SUM

ER

CLUSTER/C

IS

NGRM

OCAM

SpöP/m

ag

SolO/M

ETIS

0

2

4

6

8

Infl

uen

ce l

evel

on

SW

E

cap

abil

ity

SSO LEO Polar LEO

Low LEO L1 L50

2

4

6

8

10

12

14

16

Infl

ue

nc

e le

ve

l on

SW

E

ca

pa

bili

ty

A Governance-Driven Solution for a European Space Weather Monitoring System

OHB System AG

Capability for money

Seite 1711th European Space Weather Week 17.11.2014

SSO LEO Polar LEO

Low LEO L1 L50

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Ca

pa

bil

ity

fo

r m

on

ey

...yet SSO LEO maximum absolute capability

A Governance-Driven Solution for a European Space Weather Monitoring System

OHB System AG

Other hosting opportunities?

Seite 1811th European Space Weather Week 17.11.2014

SolO/S

TIX

SDO/H

MI

SoplO

/RPW

SolO/M

ETIS

CLUSTER/C

IS

NGRM

CLUSTER/C

ISM

DD

SWARM

GPS

OCAM

SolO/S

WA

NGRM

SolO/M

ETIS0

1

2

3

4

5

6

7

8

Infl

uen

ce l

evel

on

SW

E c

apab

il-

ity

A Governance-Driven Solution for a European Space Weather Monitoring System

OHB System AG

Impact of NGRM (in-situ) not driving capability analysis

Seite 1911th European Space Weather Week 17.11.2014

SSO LEO Polar LEO Low LEO L1 L50

1

2

3

4

5

6

7

8

9

10

Infl

uen

ce o

n S

WE

cap

abil

ity

SSO LEO Polar LEO Low LEO L1 L50

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Cap

abil

ity

for

mo

ney

A Governance-Driven Solution for a European Space Weather Monitoring System

OHB System AG

Governance approach

Seite 2011th European Space Weather Week 17.11.2014

Limited to European assets – What is the cost of ownership?

Product Asset European

NOAA source

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

L1-001-M Magnetospheric Particle Sensor no yes 1 1 1 1 1

L1-001-M High energy particle spectrometer no yes 1 1 1 1 1 1 1 1 1 1 1

L1-003-M High energy particle spectrometer no yes 1 1 1 1 1

L1-003-M High energy particle spectrometer no yes 1 1 1 1 1 1 1 1 1 1 1

L1-003-M High energy particle spectrometer no yes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-003-M High energy particle spectrometer shared no 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L1-003-M High energy particle spectrometer no no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-004-M High energy ion radiation monitor no yes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-004-M High energy ion radiation monitor no no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-004-M High energy ion radiation monitor no yes 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L1-004-M High energy ion radiation monitor shared no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-004-M High energy ion radiation monitor shared no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-004-M High energy ion radiation monitor yes no 1 1 1

L1-005-M Medium ion energy detector shared no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-005-M Medium ion energy detector shared no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-005-M Medium ion energy detector no no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-005-M Medium ion energy detector shared no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-005-M Medium ion energy detector shared no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-005-M Medium ion energy detector no no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-005-M Medium ion energy detector no yes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-005-M Medium ion energy detector no yes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L1-005-M Medium ion energy detector no yes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L1-005-M Medium ion energy detector yes no 1 1 1

L1-006-M Medium electron energy detector shared no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-006-M Medium electron energy detector shared no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-006-M Medium electron energy detector no yes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-006-M Medium electron energy detector no yes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L1-006-M Medium electron energy detector yes no 1 1 1

L1-007-M Medium electron energy detector no yes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-007-M Medium electron energy detector no yes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L1-007-M Medium electron energy detector no yes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L1-007-M Medium electron energy detector shared no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-007-M Medium electron energy detector yes no 1 1 1

L1-007-M Medium electron energy detector no no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-008-M 3-axis Fluxgate-magnetometer no yes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-008-M 3-axis Fluxgate-magnetometer yes no 1 1 1

L1-008-M 3-axis Fluxgate-magnetometer no no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-009-M Ion energy spectrometer no yes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-009-M Ion energy spectrometer no no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-009-M Ion energy spectrometer no no 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L1-009-M Ion energy spectrometer yes no 1 1 1

L1-009-M Ion energy spectrometer no no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-010-M Langmuir probe yes no 1 1 1 1 1

L1-010-M Langmuir probe no yes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-010-M Langmuir probe no no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-010-M Langmuir probe no no 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L1-010-M Langmuir probe yes no 1 1 1

L1-010-M Langmuir probe no no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-011-M Langmuir probe no yes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-011-M Langmuir probe no no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-011-M Langmuir probe no no 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L1-011-M Langmuir probe yes no 1 1 1

L1-011-M Langmuir probe no no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L1-011-M Langmuir probe no no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SU-021-M EUV solar disk imager yes no 1 1 1

SU-021-M EUV solar disk imager no yes 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SU-021-M EUV solar disk imager shared no 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SU-022-M WA coronagraph no yes 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SU-022-M WA coronagraph no yes 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SU-022-M WA coronagraph yes no 1 1 1

SU-022-M Wide Angle Coronagraph shared yes 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SU-032-M WA coronagraph yes no 1 1 1

SU-032-M WA coronagraph yes no 1 1 1

SU-032-M WA coronagraph no yes 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SU-032-M WA coronagraph no yes 1 1 1 1 1 1 1 1 1 1 1 1 1 1

IP-001-M High energy particle spectrometer no no 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IP-001-M High energy particle spectrometer no yes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

IP-001-M High energy particle spectrometer no no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SU-005-M Solar disk magnetograph no yes 1 1 1 1 1 1 1 1 1 1 1

SU-005-M Solar disk magnetograph no no 0 0 0 0 0 0 0 0 0 0 0 0 0

SU-005-M Solar disk magnetograph shared no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SU-005-M Solar disk magnetograph yes no 1 1 1

SU-015-M EUV solar disk imager shared no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SU-015-M EUV solar disk imager no yes 1 1 1 1 1 1 1 1 1 1 1

SU-015-M EUV solar disk imager yes no 1 1 1

SU-015-M EUV solar disk imager yes no 1 1 1 1 1 1 1 1 1 1

SU-015-M EUV solar disk imager yes no 1 1 1 1 1 1 1 1 1 1

SU-015-M EUV solar disk imager no no 1 1 1 1 1 1 1 1 1 1 1 1 1

SU-015-M EUV solar disk imager no yes 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SU-015-M EUV solar disk imager no yes 1 1 1 1 1

SU-015-M EUV solar disk imager no no 1 1 1 1 1 1 1 1

year

A Governance-Driven Solution for a European Space Weather Monitoring System

OHB System AG

Adaptability assessment – Approach

Seite 2111th European Space Weather Week 17.11.2014

UNCERTAINTIES DESIGN OPTIONS

Launch delay

New user requirements

In-orbit failure

Budget fluctuation

Satellite duplication

Satellite duplication & phased deployment

Instrument duplication within satellite

Instrument duplication in different orbit

Qualititative – Not probabilistic based due to time limitations

A Governance-Driven Solution for a European Space Weather Monitoring System

OHB System AG

Adaptability assessment – Schedule delay example

Seite 2211th European Space Weather Week 17.11.2014

Year 4 5 6 7 8 9 10 11

Satellite 1n X X X X Satellite 1r X X X X Satellite 2n DELAY X X X Satellite 2r DELAY X X X Capability

Year 4 5 6 7 8 9 10 11

Satellite 1n X X X X Satellite 1r X X X X X X X Satellite 2n DELAY X X X Satellite 2r Capability

Nominal

Year 4 5 6 7 8 9 10 11

Satellite 1 X X X X Satellite 2 X X X X Capability

Redundant satellites

Redundant satellites &

Phased deployment

A Governance-Driven Solution for a European Space Weather Monitoring System

OHB System AG

Adaptability assessment – Results

Seite 2311th European Space Weather Week 17.11.2014

Case Sch delay

New user reqs

Budget delay

In-orbit failure

Investment Investment profile

0. Baseline 0 3 0 0 5 01. Satellite duplication

0 3 0 5 0 0

2. Satellite duplication & phased deployment

4 4.5 4 5 0 5

3. Overlapping replenishment

4 4.5 4 4 3.5 3

4. Instrument duplication with each satellite

0 3 0 2 2 5

5. Instrument duplication in different orbits

2.5 2 2.5 3 1 5

A Governance-Driven Solution for a European Space Weather Monitoring System

OHB System AG

Deployment strategy – New insights from adaptability

Seite 2411th European Space Weather Week 17.11.2014

SSO LEO

Polar L

EO

Low L

EO L1 L5

L1 O

ption

a

L1 O

ption

b0

2

4

6

8

10

12

Infl

uen

ce o

n S

WE

cap

abil

ity

SSO LEO

Polar L

EO

Low L

EO L1 L5

L1 O

ption

a

L1 O

ption

b0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

SW

E C

apab

ilit

y fo

r m

on

ey

Option a) GOES/EXIS moves from SSO to L1

Option b) SWAP+SolO/PRW move from SSO to L1

So... Why Option a) not baseline for L1?

Because of ADAPTABILITY!

A Governance-Driven Solution for a European Space Weather Monitoring System

OHB System AG

Deployment strategy – Results

Seite 2511th European Space Weather Week 17.11.2014

SSO LEO

Polar L

EO

Low L

EO L1 L5

L1 O

ption

a

L1 O

ption

b0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

SW

E C

apab

ilit

y fo

r m

on

ey

Objective: maximize cumulated capability

1. L1 satellite option a)

2. SSO satellite

3. Polar LEO satellite

4. L5 satellite

5. Low altitude LEO

But L1 replenishment with BASELINE L1 satellite!

A Governance-Driven Solution for a European Space Weather Monitoring System

OHB System AG

Conclusions and future work

Seite 2611th European Space Weather Week 17.11.2014

A cost-effective solution for a SWE has been presented

The value of governance, capability and adaptability analyses was proven by showcasing their application on the space segment of the proposed architecture

Future work is proposed to expand such activities to the full SWE and to:

Model quantitatively all types of uncertaintiesValidate capability/value models of SWE servicesAutomate generation of design alternativesAutomate generation of uncertain future scenariosPerform Monte Carlo analyses with optimization to identify best-value design

alternatives and deployment strategies

A Governance-Driven Solution for a European Space Weather Monitoring System