701.114 730 008 00 technology and operation

Upload: mohamedqadi

Post on 09-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    1/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    Technology & OperationTechnology & Operation

    TRAINING

    Davi JanssensProcess Engineer

    Inbev Omsk

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    2/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    Table of contents

    1. Design

    2. Process conditions and parameters

    3. Reporting

    4. Trouble shooting

    5. Cost drivers

    6. Formulas for WWTP process

    7. Technology UASB

    8. Technology Lucas

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    3/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    1.1. Good brewery housekeeping

    Limited water consumption per hl beer producedLimited pollution load per hl beer produced

    No significant spent grains discharge to the WWTPNo significant surplus yeast discharge to the WWTPNo significant kieselguhr discharge to the WWTPNo oil discharge to the WWTPCleaning & disinfecting agents: biodegradable + low concentratedProper waste management

    - Gradual discharge high loaded wastewaters

    - Gradual discharge caustic/acid solutions

    -

    Temperature < 40C

    1.Design

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    4/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    1.2. Design: Influent Characteristics brewery wastewater

    Parameter Units Design

    Maximum flow rate m3/day 8.650

    Peak flow m3

    /h 720Water temperature C 25

    pH - 6-12

    BOD5 mg/l < 2.320

    CODtot mg/l < 4.000

    COD load kg/day 34.600

    Total nitrogen mg N/l 30-50

    Total P mg P/l 10-20

    TSS mg/l 500-700

    Sulphates mg/l < 100

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    5/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    1.2. Design: Influent Characteristics malting wastewater

    Parameter Units Design

    Maximum flow rate m3/day 900

    Peak flow m3

    /batch 90

    pH - 6-12

    BOD5 mg/l < 500

    CODtot mg/l < 850

    COD load kg/day 775

    Total nitrogen mg N/l 40-50

    Total P mg P/l 10-20

    TSS mg/l 200-500

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    6/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    1.2. Design: Influent Characteristics rainwater

    Parameter Units Design

    Maximum flow rate m3/day 198

    Peak flow m3/h 100

    BOD load kg/day 61,6

    COD load kg/day 132

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    7/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    1.3. Expected effluent quality

    Parameter Unit Guaranteed Expected

    TSS mg/l 250 50

    pH 6,5-9 6,5-9

    BOD5 mg/l 150 50

    CODtot mg/l 180 100

    Phosphate mg/l 4,5 4,5

    Ntot mg/l 18 15

    Nnitrate mg/l 9 5

    Sulphite mg/l 0 0

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    8/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    Mesophilic temperature-activity correlation

    0 10 20 30 40 50

    Temperature

    Bio

    degradation

    rate

    1.4. T [C] vs. biodegradation

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    9/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    2.1. Process parameters UASB

    -Flow rate : < 10.000 m/d

    -Min. hydraulic retention time (h):-Buffer tank = 14,4 h-UASB = 9,3 h

    -Upflow velocity :

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    10/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    - COD-load: 17.500 kg COD/d per reactor

    - Organic (or Volumetric) loading: design Vb = 9 kg COD/m.day

    - Amount COD fed per m active volume per day

    Active volume = Reactor volume = 1.944 m

    UASB: 17.500/1.944 = 9 kgCOD/m.day

    Max.Vb = 10 kg COD/m.day (at 36C)

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    11/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    - F/M or Sludge loading

    Avg. sludge concentration:1,5-6 % DS = 15-60 g/l

    Sb = 0,15 0,6 kg COD/kg DS.day

    - Feed to Micro-organisms: amount COD fed/kg DS of biomass.day

    Organic loading/sludge concentration

    UASB: < 1 kg COD/kg DS.day

    - F/Mo Effluent quality q or F/Mq Effluent quality o

    - F/Mo Sludge production o (typically: < 0,05 kg DS/kg CODremoved)

    - Organic load o Biogas production o (typically: 0,3 0,4 Nm

    biogas/kg CODremoved)

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    12/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    2.2. Process conditions UASB

    pH

    - UASB effluent: 6,5 < pH < 7,5

    - Methanogenesis = very pH-sensitive !!!

    Temperature

    - UASB: Range: 25 38 C (mesophilic)

    Optimum: 32 37 C

    - TCo 10C reaction velocity doubles

    Nutrients- UASB: COD/N/P = 400/5/1

    Oxygen- UASB: NO O2 allowed

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    13/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    Good contact between substrate and biomass good mixing !!!

    - UASB: Upflow velocity + gas production

    turbulence mixing

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    14/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    2.3. Process parameters SBR

    -Flow rate : < 10.000 m/d

    -Surface area outer compartments: 3 x 440 m

    - Max. upflow settler compartment: 0,95 m/h

    flow rate/surface area

    = [417 m/h]/[440 m] = 0,95 m/h

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    15/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    - COD-load : < 5000 kg COD/d

    - BOD-load : < 3000 kg BOD/d

    - Active volume : Reactor volume x [% aerobic or anoxic]

    = 7.200 m x 62,5%

    = 4.500 m

    - Design volumetric load Vb : 1,1 kg COD/m/d

    0,68 kg BOD/m/d

    = amount organics fed per m active volume per day

    Influent

    Effluent

    Aerobic Filling

    Accumulation

    Aerobic React

    RegenerationDecanting

    PHASE 1

    PHASE 2PHASE 3

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    16/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    - Design sludge concentration : 6 kg MLSS/m

    - Design sludge load or F/M : 0,185 kg COD/kg MLSS/d

    0,11 kg BOD/kg MLSS/d

    = amount organics fed per kg activated sludge per day

    - F/Mo Effluent quality q or F/Mq Effluent quality o

    - F/Mo Sludge production o (typically: < 0,2-0,3 kg DS/kg CODremoved)

    Sludge growth rate too high

    Slow-growing nitrifying biomass outcompeted!

    F/M < 0,15 kg BOD/kg MLSS/d = OK

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    17/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    2.4. Process conditions SBR

    pH

    - LUCAS effluent: 6,5 < pH < 8,5

    - Nitrification = very pH-sensitive !!!

    Temperature

    - LUCAS: Range: 15 38 C (mesophilic)

    Optimum: 32 37 C

    - TCo 10C reaction velocity doubles

    - Nitrification = very TC-dependent !!!

    Oxygen- SBR: D.O. > 1 mg O2/l

    in aerobic phasesnot in anoxic and sedimentation phases

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    18/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    Good contact between substrate and biomass good mixing !!!

    - SBR: Mechanical mixing by submersible mixers and

    floating aerators

    - Especially important during anoxic phases!!!

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    19/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    3. Reporting

    3.1. Influent & balancing

    Whats coming in ?

    - influent flow rate

    - influent COD & BOD

    - influent pH

    - influent N

    - TSS, P, SO4, of the raw WW

    Whats happening in the equalization tank ?- Do we obtain a stable feed water quality?

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    20/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    3.2. UASB

    Whats happening in the anaerobic reactor ?

    - COD reduction

    - TSS - Settleable solids in effluent

    - VFA & pH

    - Temperature

    - Acid/Caustic consumption

    - DS in reactor (sludge gradient?)

    - Granular sludge

    - Biogas production } 0,3 0,4 m/kgCODrem

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    21/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    Whats happening (continued)

    - Daily Flow Rate (m/day)

    - COD load (kg/day) UASB

    - COD removal efficiency UASB

    - F/M UASB

    - Effluent quality UASB: COD, TSS, BOD, pH,

    - Sludge wasting: yes/no?

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    22/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    3.3. LUCAS

    Whats happening in the aerobic reactors ?

    - COD reduction

    - N-removal: Nitrification/Denitrification- TSS - Settleable solids in effluent

    - pH &Temperature

    - MLSS in reactors (typical 4-7 g/l)

    - Sludge wasting: yes/no?

    - Sludge settleability (target: SV < 800 ml & SVI < 150-200 ml/l)

    - Daily flow rate (m/d) & organic load (kg COD/d)

    - F/M

    - Biological effluent quality: COD, TSS, BOD, NH4, pH, COD-

    removal, N-removal

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    23/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    3.4. Analyses: follow-up

    Analysis Influent AnaerobicEffluent

    FinalEffluent

    Sludge

    Flow Daily Daily Daily Daily (wasted)

    pH Daily Daily Daily

    Oxygen concentration Daily

    CODtotal Daily Daily Daily

    CODfiltered 3 x/week Daily

    VFA 3 x/week 3 x/week

    TSS 3 x/week Daily 3 x/week

    Nitrogen total + NH4+-N

    + NO3

    -N

    3 x/week 3 x/week

    Phosphorus total + PO43--P 3 x/week 3 x/week

    MLSS or DS Daily

    Temperature Daily Daily Daily Daily

    SV/SVI Weekly 2 x/week

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    24/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    4. Troubleshooting

    4.1. Wastewater quality

    -BOD/COD ratio > 65 % ?

    -No toxic compounds ?

    > heavy metals, (mineral) oil, antibiotics, cleaning agents

    -No sand, no kieselguhr (inert!!!)

    -No yeast, no spent grains

    -TC < 40C ?

    -No organic overload ?

    -No pH-shocks ?

    -COD/SO4 > 10

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    25/48

    4.2. Troubleshooting table

    Rosarbrewery Omsk: Follow-up data: roubleshooting

    Analysis Range Actionifoutofrange

    pH pr e-heating/correction tank (BUF06/7.00.00)

    6,5-7,5 Check pH anaerobic effluent tank (BUF10.00.00):6,5-7,5OK Checkdosing units of caustic and acid

    Check pHprobe aftercorrection tank and in anaerobic effluent

    Check pH in the brewery and culling pump pit

    Notify the brewery

    Temperature pre-heating/correction tank(BUF 06/7.00.00)

    25-38C Stop feeding towards UASB (UAB 08/09.00.00) UASB into recirculation

    Check temperature anaerobic effluent tankCheck working external heat exchanger

    Check pump PUM 06.01.00

    Check internal heat exchangerCheck working reintegrated boilerCheck temperature heating agent reintegrated boiler

    Check insulation of the tanks

    Notify the brewery

    Inlet flow 0-8650 m/day Check level in balancing tank (BUF 05.00.00)

    Check level and level switches in all pump pitsCheck COD-load (max. 34,6 ton COD/day)

    Check TSS-load (max. 6055 kg TSS/day)Notify the Brewery

    CODin < 4000 mg/l Check COD-load (max.34,6ton COD/day)Check COD in all pump pitsCheck working rotative sieves

    Notify the brewery

    VFAin 150-750 mg /l Check CODinCheck pH in balancing tankCheck HRT

    TSSin 500 - 700 m g/l Check TSS in all pumppits

    Check function rotative sieve if RS=OK Notify the brewery; Check

    COD/TSS >5

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    26/48

    Rosarbrewery Omsk: Follow-up data: roubleshooting

    Analysis Range Actionifoutofrange

    Recirculation flow (FIT08/09.00.50) < 260 m/h per

    UASB

    Adjust upflow velocity;

    Check inlet flowCheck level balance and pre-heating/correction tank

    Check COD loadSwitch to stand-by pump

    pH anaerobic eff luent tank (BUF 10.00.00) 6,5- 7,5 Adjust pH-setpoint NaOH/HCl-dosing in correction tank

    Check pHprobe anaerobic effluent tankCheck dosing units

    Check granularsludge

    Temperature anaerobic effluent tank (BUF10.00.00)

    25-38C Check T (C) in balance and pre-heating/correction tank

    Check working external heat exchangerCheck pump PUM 06.01.00

    Check internal heat exchangerCheck working reintegrated boiler

    Check temperature heating agent reintegrated boilerCheck temperature reading

    Check insulation of the tanks

    CODanaerobic effluent < 1000 m g/l Check UASB COD-removal: >75% OK

    Check CODinCheck COD-load

    Check biogasproduction

    VFAanaerobic effluent < 200 mg/l Golden rule:

    >250mg/l: decrease feed flow of the UASB

    >500 mg/l: Stop feed flow;

    Check pH of Anaerobic effluent and preheating/correction tank

    TSSanaerobic effluent < 200 mg/l Check TSSinCheck biogas productionCheck granularsludge UASB (DS)

    Check recirculation flow (upflow velocity)Check 3-phase separators and PPS

    Biogas production < 500 Nm/day Check COD-load < 34,6 ton COD/day

    Check influent flowCheck 3-phase separators and PPS

    Check granularsludge UASB

    Forward flush < 10% of initialvalues

    Flush/clean until initial values are reached

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    27/48

    Rosarbrewery Omsk: Follow-up data: roubleshooting

    Analysis Range Actionifoutofrange

    pH SBRs (AER 11/12/13.00.00) 6,5-8,5 Check pH in Anaerobic effluent tank

    Check pH in balancing and pre-heating/correction tank

    Check dosing units

    DO SBRs (AER 11/12/13.00.00) > 0,5 mg/l Check COD load < 34,6 ton COD/day

    Check DO probesCheck working aerators

    Check MLSS in SBR

    MLSS (sludge concentration) SBRs (AER

    11/12/13.00.00)

    3 - 6 g/l

    3000-6000 m g/l

    < 3 g/l:

    Check SV SBR

    Stop sludge wasting

    > 6 g/l:Check TSS/COD final effluent

    Check SV SBR

    Start sludge wasting

    SV SBRs (AER 11/12/13.00.00) < 800 ml/l Check MLSS/SVI in SBR

    Check TSS/COD final effluentCheck sludge microscopically (filaments?; higherorganisms?)

    pH final effluent 6,5-9 Check pH in the SBRs

    Check pH anaerobic effluent tankCheck pH balancing and pre-heating/correction tank

    Check dosing unitsNotify the brewery

    COD final effluent < 180 mg/l Check COD of the influent

    Check loads of anaerobic and aerobic treatmentCheck settlement in the SBRs

    Check pH in pre-heating/correction tankCheck temperature in pre-heating/correction tank

    TSS final effluent < 250 mg/l Check SV in SBRs

    Check TSS influentCheck TSS afterUASB

    Notify the brewery

    Sludge concentration after rotating drum(DED 19.03.00)

    5-7% < 4 %:

    Check polymer preparation/dosing/consum ption

    Check working drumCheck MLSS SBRs/check feedflow of drum

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    28/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    4.3. Influent

    - pH bioreactor out of range

    Acid/Caustic dosing

    Increase anaerobic effluent recycling

    - Overload

    Feed flow rate q

    - Temperature too high (> 38C) Omit hot fluxes from WW

    By-pass heat exchanger

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    29/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    Golden Rule

    VFA > 250 mg/l feed

    VFA > 500 mg/l stop feed4.4. UASB

    Anaerobic Digestion: hydrolysis, acidogenesis, acetogenesis,methanogenesis

    - pH anaerobic effluent out of range Dosing caustic/acid Check for TSS and/or COD-overload

    - increase VFA anaerobic effluent reduce/stop feeding increase of recirculation

    - increase TSS anaerobic effluent check DS in reactor (sludge gradient) reduce upflow velocity reduce TSS in influent organic overload? biogas production o

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    30/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    4.5. Anaerobic effluent

    Increase in effluent-COD and/or -BOD

    - Biodegradability changed?

    - Organic overload?

    - Dead zones in reactor (not enough mixing/turbulence)

    - Nutrient deficit (N, P, micronutrients)

    - TSS wash-out => surface load q

    => sludge wasting

    => overload biogas boost

    => TSS influent

    - Intoxication (pH, H.M., oil, detergent )

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    31/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    4.6. LUCAS

    Respect design load

    - Organic load (kg COD/day): design aeration system

    - Hydraulic load (m/day): design sedimentation tank

    Overload removal efficiency

    - Organic overload Failure aeration odour nuisance

    - Hydraulic overload Insufficient pump capacity Upflow velocity - Sludge wash out

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    32/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    Aerobic Digestion:

    - pH effluent out of range

    Check dosing units Check pH influent and anaerobic effluent

    - Increase COD effluent Check COD load Check efficiency anaerobic treatment

    -Increase TSS effluent Check MLSS in SBR

    Check influent TSS Check efficiency mechanical pre-treatment Check pressurizing system effluent gutters

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    33/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    4.7. Aerobic effluent

    Increase of final effluent-COD and/or -BOD

    - Biodegradability changed?

    - Organic overload (Sb < 0,25-0,5 kgCOD/kgMLSS.d)? O2 deficiency?

    - Dead zones in reactor (not enough mixing)

    - Nutrient deficit (N, P, micronutrients)

    - TSS wash-out => settling phase

    => sludge wasting

    => TSS influent

    => Filamentous bulking

    Chlorination (5-20 g Cl/kgMLSS.d)

    - Intoxication (pH, H.M., oil, detergent, TC )

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    34/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    4.8. Final effluent

    Increase in final effluent-COD and/or -BOD

    - Biodegradability changed?

    - Organic overload?

    - Lack of oxygen (DO < 1 mg/l)?

    - Nutrient deficit (N, P, micronutrients)

    - TSS wash-out => sludge concentration too high

    =>settleability changed

    => sludge wasting

    => TSS influent

    - Intoxication (pH, Heavy metals, oil, detergent, etc.)

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    35/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    5. Cost drivers

    5.1. Cost drivers

    Cost drivers ?

    - Energy

    - Chemicals

    - Sludge production

    - Labour (fixed cost)

    - Maintenance (fixed cost)

    The better the anaerobic WWTP is working, the less energy is

    consumed, the more biogas/energy is produced, the less sludge is

    produced

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    36/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    Anaerobic WWTP:

    - Low energy consumption (0,3 kWh/kgCOD)

    - Produces biogas = green energy

    - Low sludge production (+/- 0,05 kg DS/kgCOD)

    Aerobic WWTP:

    - High energy consumption (1,1 kWh/kgCOD)

    - High sludge production (+/- 0,2 kg DS/kgCOD)

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    37/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    Chemicals: depends on the pH of the incoming WW.

    Consumption of caustic can be reduced by

    recycling anaerobic effluent.

    Sludge:

    - Low sludge growth

    - Anaerobic excess sludge is pumped in small quantities to a

    storage tank in anticipation of dewatering or transport

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    38/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    5.2. Advantages aerobic treatment

    -Possibility of nutrient removal (N & P)

    - Bio-N and P-removal

    - Higher COD-removal efficiency

    Necessary to remove last 20 % ofCOD

    Low effluent COD

    - Heat-range: 0 - 40C

    - Short start-up

    - Very robust process

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    39/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    6. Formulas for WWTP processes

    - Active Volume

    - HRT = hours

    - Volumetric Load: Vb = kg COD/m*day

    - Sludge Load: Sb = kg COD/kg MLSS*day

    - Removal Efficiency in % (COD, BOD, N, P, )

    - Sludge Age = days

    -Surface Load = m/h

    -Biogas production

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    40/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    Active Volume [m]:

    Active Volume = Total Volume Sedimentation Volume

    Sedimentation Volume = Passive Volume

    HRT [hours]:.

    Time span H2O-molecule present in reactor

    hourmQinmVtotal

    hoursHRT /

    !

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    41/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    /

    /__*)(/

    mkgDSmVactive

    daykgCODLoadDayOrganicdaySSVkgMLkgCODSb

    v

    /__*/

    mVactive

    daykgCODLoadDayOrganicdaymkgCODVb !

    Sb or F/M (kg COD/kg DS*day)

    Vb (kg COD/m*day)

    Organic day load (kg COD/day) = Qin (m/day) x CODin (kg COD/m)

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    42/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    /_/__

    /

    mkgsludgeDSwasteddaymFlowWasteSludge

    mkgDSreactormVtotaldaysMCRT

    v

    v

    !

    Removal efficiency [%]

    - COD, BOD, N, P,

    - Correlation amount X Enters WWTP vs. amount X Discharged

    - X-removal efficiency (%) = (Xinfluent - Xeffluent)/Xinfluent

    Sludge age or MCRT [days]- Residence time sludge in bioreactor

    .

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    43/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    _

    //

    mSurfaceSettling

    hmQfeedhmVs !

    Surface load = Upflow velocity [m/h]

    - Design outer compartments for settling & discharge

    - Minimum settling velocity sludge floc

    .

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    44/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    _

    //

    mSurfaceSettling

    hmQrecirchmVs !

    Surface load = Upflow velocity [m/h]

    - Design UASB surface

    - Minimum settling velocity sludge granule

    .

    Biogas production [Nm/h]

    - 0,3-0,4 Nm/kg bCOD; 25 MJ/Nm- CH4 (65-85%);CO2 (15-35%); H2S (1000-9000 ppm); H2;

    NH3;N2 and VOCs

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    45/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    UASB

    SeparationbafflesEffluent weir

    Gasdome

    Feed Loops

    Reci cul i l

    Reactor urface

    m

    U

    P

    F

    L

    O

    W

    Upflow Velocity

    (m/h)/m =m/h

    UASB

    SeparationbafflesEffluent weir

    Gasdome

    Feed Loops

    Recirculation Flow

    m/h

    Reactor urface

    m

    U

    P

    F

    L

    O

    W

    U

    P

    F

    L

    O

    W

    Upflow Velocity

    (m/h)/m =m/h

    7. TechnologyUA B

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    46/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    8. Technology SBR

    I fl t

    ffl t

    Aero ic illi g

    Acc m latio

    Aero ic eact

    ege eratioeca ti g

    PHASE1

    PHASE2PHASE3

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    47/48

    PROTECTING THEPROTECTING THE BLUEBLUE PLANETPLANET

    4 steps occurring in SBR:

    - Accumulation (feeding + aeration)

    - Regeneration (only aeration)

    - Settling

    - Discharge

    Sludge wasting always during discharge phase

  • 8/8/2019 701.114 730 008 00 Technology and Operation

    48/48