5g new radio technology and...

31
1 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs July 20 th , 2017

Upload: vankhue

Post on 06-Feb-2018

249 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

1

5G New Radio –Technology and Performance

Amitava Ghosh

Nokia Bell Labs

July 20th, 2017

Page 2: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

2

Performance : NR @ sub 6 GHz

Page 3: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

3

© Nokia 2017

Motivation: Why 5G New Radio @ sub 6GHz

Access to new spectrum

Lean carrier

Massive MIMO with minimum 64 Tx

Higher Bandwidth

Dynamic TDD in small cells

Enhanced Control Channel Coverage

Higher Energy Efficiency

Ubiquitous coverage for mMTC and URLLC

Page 4: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

4

© Nokia 2017

5G Technology Components for Enhancing S.E. Compared to LTE

Technology component

Lean carrier

Enhanced inter-cell cancellation

Enhanced beamforming

Gain

+20%

+20%

+0..60%

Total gain +50..150%

Dynamic TDD in small cells +30%

Improved spectral usage +10%

Non-orthogonal transmission ?

Gain values

preliminary

Page 5: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

5

© Nokia 2017

5G vs. 4G Capacity per Cell

100 MHz

3.5 GHz

4-8 bps / Hz

400-800 Mbps

cell throughput

5G 3500 with

massive MIMO

beamforming

2.6 GHz

20 MHz

2 bps / Hz

40 Mbps

cell throughputLTE2600 with

2x2 MIMO

10-20 x

5x More Spectrum with 2 – 4x More Efficiency

Page 6: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

6

SE and Coverage Comparison (LTE vs. NR @ sub 6 GHz)

Page 7: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

7

© Nokia 2017

MIMO in 3GPP

Page 8: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

8

© Nokia 2017

Logical Array: 16-ports (1,8,2)

• Physical construction:

- Eight-column array with 128 physical elements:

- 8 rows, 8 columns, 2 polarizations

- Half wavelength-spaced columns, 0.8-wavelength spacing between rows

• 16-TXRU implementation:

- Within each column: co-pol elements are aggregated at RF for an ISD-dependent electrical downtilt.

• ISD=750m: downtilt=8 degrees

• ISD=1500m: downtilt=6 degrees

- 16 transceivers, 1 per polarization per column

Antenna Array Configurations

2

8

1

Physical Array: (8,8,2)

8

Page 9: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

9

© Nokia 2017

Physical Array

(8,4,2)

• Physical construction:

- Four-column array with 64 physical elements:

- 8 rows, 4 columns, 2 polarizations

- Half wavelength-spaced columns, 0.8-wavelength spacing between rows

• 16-TXRU implementation:

- Within each column: The top four co-pol elements are driven by one transceiver, the bottom four co-pol elements are driven by a second transceiver: ISD-dependent downtilt

• ISD=750m: downtilt=8 degrees

• ISD=1500m: downtilt=6 degrees

- 16 transceivers, 2 per polarization per column

Antenna Array Configurations

2

Logical Array

16-ports (2,4,2)

4

2

4

Page 10: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

10

© Nokia 2017

Logical Array

16-ports (4,2,2)

Physical Array

(8,2,2)

• Physical construction:

- Two-column array with 32 physical elements:

- 8 rows, 2 columns, 2 polarizations

- Half wavelength-spaced columns, 0.8-wavelength spacing between rows

• 16-TXRU implementation:

- Within each column: pairs of co-pol elements are driven by one transceiver, no downtilt

- 16 transceivers, 4 per polarization per column

Antenna Array Configurations

2

2

4

2

8

Page 11: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

11

© Nokia 2017

• Transmission Schemes:

- SU-MIMO

• Rank adaptation

- MU-MIMO

• Rank adaptation: Rank 1 per UE preferred over max Rank 2 per UE

• Scenarios: 3D-UMa

- 2GHz: 750m, 1500m ISD

- (Performance in B66 and B25 should be similar)

Massive MIMO Techniques for the Downlink

• LTE

- 16-port Rel-13 codebook

• (maximum rank is 8)

- 16-port Rel-14 codebook

• (maximum rank is 2)

• NR

- 16-port NR Codebook Type I

• (Maximum rank is 8)

- 16-port NR Codebook Type II

• (maximum rank is 2)

Page 12: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

12

© Nokia 2017

• Acquisition and maintenance of a set of beams for

TX and RX at base and UE

• CoMP is built in

Massive MIMO in 3GPP New Radio – Beam Based Air Interface

Beamformed Control Channels Beam Management

TRP2 (Cell1)

TRP1 (Cell2)

TRP2 (Cell2)

TRP1 (Cell1)

PSS1

SSS1

PCI1

PSS1

SSS1

PCI1

PSS2

SSS2

PCI2

PSS2

SSS2

PCI2

BRS#0

BRS#1

BRS#2

BRS#3

BRS#0

BRS#1

BRS#2

BRS#3

Cell 1

Cell 2

Beam Scanning

Page 13: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

13

© Nokia 2017

Best of NR vs Best of LTE, UEs with 2RX & 4RX – 1500m ISD – Full Buffer

• Gain of NR over LTE is roughly 19-34% in Mean SE, 14%-28% in cell edge in Full Buffer

• Gains in bursty traffic will be higher

2RX

LTE NR LTE NR

4RX2RX 4RX

LTE NR LTE NR

MEAN Cell Edge

16 TXRUs

Page 14: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

14

© Nokia 2017

Best of NR vs Best of LTE (16-port antenna array configurations)

• Full Buffer: Gain of NR over LTE is between 19% and 35% in Mean SE, 14-28% in cell edge.

• Gains in bursty traffic will be higher

2GHz, ISD=1500, UE=4RX, Mean SE (bps/Hz) BS(1,8,2) BS(2,4,2) BS(4,2,2)

Best LTE 3.96 3.32 2.41

Best NR 4.99 4.14 2.88

Gain of NR over LTE 26% 25% 19%

2GHz, ISD=1500, UE=2RX, Mean SE (bps/Hz) BS(1,8,2) BS(2,4,2) BS(4,2,2)

Best LTE 2.93 2.49 1.86

Best NR 3.93 3.24 2.27

Gain of NR over LTE 34% 30% 22%

2GHz, ISD=1500, UE=2RX, Cell Edge SE (bps/Hz) (1,8,2) (2,4,2) (4,2,2)

Best LTE 0.79 0.83 0.63

Best NR 1.01 0.99 0.72

Gain of NR over LTE 28% 19% 14%

2GHz, ISD=1500, UE=4RX, Cell Edge SE (bps/Hz) (1,8,2) (2,4,2) (4,2,2)

Best LTE 1.03 1.10 0.84

Best NR 1.27 1.32 0.96

Gain of NR over LTE 23% 20% 14%

2GHz, ISD=750, UE=2RX, Mean SE (bps/Hz) BS(1,8,2) BS(2,4,2) BS(4,2,2)

Best LTE 3.83 3.29 2.52

Best NR 5.17 4.35 3.17

Gain of NR over LTE 35% 32% 26%

2GHz, ISD=750, UE=2RX, Cell Edge SE (bps/Hz) (1,8,2) (2,4,2) (4,2,2)

Best LTE 1.49 1.26 0.93

Best NR 1.89 1.54 1.10

Gain of NR over LTE 27% 23% 19%

2GHz, ISD=750, UE=4RX, Mean SE (bps/Hz) BS(1,8,2) BS(2,4,2) BS(4,2,2)

Best LTE 5.12 4.29 3.28

Best NR 6.44 5.45 3.99

Gain of NR over LTE 26% 27% 21%

2GHz, ISD=750, UE=4RX, Cell Edge SE (bps/Hz) (1,8,2) (2,4,2) (4,2,2)

Best LTE 1.95 1.70 1.28

Best NR 2.45 2.06 1.47

Gain of NR over LTE 25% 21% 15%

Mean SE Cell Edge

ISD

=750

ISD

=1

500

Page 15: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

15

© Nokia 2017

5G vs. 4G Capacity per Cell at 2GHz – 16x4 MIMO

2GHz

20MHz

5.12 bps/Hz

102 Mbps cell

throughput

2GHz

20MHz

7.73 bps/Hz *

155 Mbps cell

throughput

100 MHz

3.5 GHz

4-8 bps / Hz

400-800 Mbps

cell throughput

5G 3500 with

massive MIMO

beamforming

2.6 GHz

20 MHz

2 bps / Hz

40 Mbps

cell throughputLTE2600 with

2x2 MIMO

10-20 x

5x More Spectrum with 2 – 4x More Efficiency

100 MHz

3.5 GHz

4-8 bps / Hz

400-800 Mbps

cell throughput

5G 3500 with

massive MIMO

beamforming

2.6 GHz

20 MHz

2 bps / Hz

40 Mbps

cell throughputLTE2600 with

2x2 MIMO

10-20 x

5x More Spectrum with 2 – 4x More Efficiency

1.5 x

LTE

2GHz

750m ISD

16x4

eNB=(1,8,2)

NR

2GHz

750m ISD

16x4

gNB = (1,8,2)

• In Full Buffer, NR Codebooks show

significant gains over LTE Codebooks

- Mean UE throughput: 26%

- Cell edge: 25%

* Includes 20%

improvement due to

lean carrier in NR

Page 16: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

16

© Nokia 2017

Parameter Value

Inter-site distances 750m, 1500m

Carrier frequencies 2 GHz

System bandwidth 10MHz

BS Transmit Power 80W over 10MHz channel = 49 dBm per 10MHz channel

Electrical Downtilt (if used) 8 degrees for ISD=750, 6 degrees for ISD=1500

BS Antenna Configuration 182 (16

ports - Azimuth only)

Physical Array: (8,8,2): (8 rows, 8 columns, 2 polarizations [±45°] )

Element spacing: 0.8λ (elevation), 0.5λ (azimuth)

Logical Array: (1,8,2): (1 row, 8 columns, 2 polarizations [±45°] ) with electrical downtilt

16 transmit ports (Rel-13, Rel-14, NR): (1,8,2)

BS Antenna Configuration 242 (16

ports – Azimuth & Elevation)

Physical Array: (8,4,2): (8 rows, 4 columns, 2 polarizations [±45°] )

Element spacing: 0.8λ (elevation), 0.5λ (azimuth)

Logical Array: (2,4,2): (2 rows, 4 columns, 2 polarizations [±45°] ) with electrical downtilt

16 transmit ports (Rel-13, Rel-14, NR): (2,4,2)

BS Antenna Configuration 422 (16

ports – Azimuth & Elevation)

Physical Array: (8,2,2): (8 rows, 2 columns, 2 polarizations [±45°] )

Element spacing: 0.8λ (elevation), 0.5λ (azimuth)

Logical Array: (4,2,2): (4 rows, 2 columns, 2 polarizations [±45°] ) without electrical downtilt

16 transmit ports (Rel-13, Rel-14, NR): (4,2,2)

Simulation Parameters1 of 2

Page 17: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

17

© Nokia 2017

Parameter Value

UE Antenna

Configurations

2 Rx: (1,1,2) (elevation, azimuth, polarization [0°,90°])

4 Rx: (1,2,2) (0.5λ spacing)

Receiver MMSE, non-ideal channel estimation

Traffic Model Full buffer

Users 10 users per sector

Scheduler Proportional fair

Codebooks

Rel-13: 182: Configuration 1 with 8x DFT oversampling

422: Configuration 2 with (8,8) DFT oversampling

242: Configuration 2 with (4,8) DFT oversampling

Rel-14: Advanced CSI linear comb. codebook (2 bits amplitude [WB], 2 bits phase [SB])

NR Type 1: L=4 beams

NR Type 2: Linear combination codebook (L=4 beams, 8-PSK phase, WB+SB amplitude

scaling)

Simulation Parameters2 of 2

Page 18: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

18

© Nokia 2017

Control Channel Coverage – LTE vs NRCDF of Downlink Control Channel SINR

LTE

(800MHz

& 3.5GHz)

NR (3.5GHz)

8

1

LTE

8

4

NR Grid-

of-

Beams

10˚

downtilt2-port

SFBC

2-port

SFBC

Coverage performance when deploying a 3.5GHz system on a site grid sized for 800MHz

Page 19: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

19

Performance : NR @ mmWave

Page 20: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

20

© Nokia 2017

• Unique difficulties that a mmWave system must overcome • Increase path loss which is overcome by large arrays (e.g., 4x4 or 8x8)

• Narrow beamwidths, provided by these high dimension arrays

• High penetration loss and diminished diffraction

5G mmWave Challenges & Proof Points

• Two of the main difficulties are:• Acquiring and tracking user devices within the coverage area of base station

using a narrow beam antenna

• Mitigating shadowing with base station diversity and rapidly rerouting around

obstacles when user device is shadowed by an opaque obstacle in its path

• Other 5G aspects a mmWave system will need to address:• High peak rates and cell edge rates ( >10 Gbps peak, >100 Mbps cell edge)

• Low-latency (< 1ms)

Page 21: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

21

© Nokia 2017

FCC mmWave Spectrum Allocation

Page 22: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

22

© Nokia 2017

Early 5G use case: Extreme broadband to the home

The last 200m

vRAN & EPC

Page 23: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

23

© Nokia 2017

• Large gains from Multi-User-MIMO [30GHz / 800MHz bandwidth]

3GPP New Radio at mmWave – Hybrid Array Performance

Single-Panel Array at UE Four-Panel Array at UE

SU-MIMO SU-MIMOMU-MIMO MU-MIMO

47%19%

4 4

4

4

Four-Panel UE/AP,

128/256 elements

8 TXRUs

8

8

Single-Panel UE/AP,

128/256 elements

2 TXRUs

Page 24: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

24

© Nokia 2017

Antenna Array Comparisons - Number of Elements Constant vs. Frequency5dBi ant element gain, 7dBm AP Pout per element, 1dBm UE Pout per element, shown to scale

AP

Max EIRP ≈ 60.2 dBm

8

16

2 TXRUs Max EIRP ≈ 60.2 dBm

52% area relative to 28GHz

Max EIRP ≈ 60.2 dBm

15% area relative to 28GHz

16

8

8

16

4

4

Max EIRP ≈ 36.1 dBm

2 TXRUs

4

4

4

4

Max EIRP ≈ 36.1 dBm

52% area relative to 28GHz

Max EIRP ≈ 36.1 dBm

15% area relative to 28GHz

28 GHz256 elements (8x16x2)

39 GHz256 elements (8x16x2)

73 GHz256 elements (8x16x2)

UE

73 GHz, 32 elements, (4x4x2)39 GHz, 32 elements, (4x4x2)28 GHz, 32 elements, (4x4x2)

Page 25: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

25

© Nokia 2017

System Simulation Results for the Suburban Micro EnvironmentConstant Number Antenna Elements for 28 GHz, 39 GHz and 73 GHz

Mean UE Throughput Cell Edge Throughput

30 40 50 60 70 30 40 50 60 70

30 40 50 60 70 30 40 50 60 70

Downlink

Uplink

561 560 561

554 553

551

543

540

529

525

530

535

540

545

550

555

560

565

25

Thro

ugh

pu

t (M

bp

s)

DOWNLINK - MEAN UE THROUGHPUT (Outdoor, No Foliage, UE=32)

ISD=100m ISD=200m ISD=300m

250

256

250

222227

224

216

205

189

150

170

190

210

230

250

270

25

Thro

ugh

pu

t (M

bp

s)

DOWNLINK - CELL EDGE THROUGHPUT (Outdoor, No Foliage, UE=32)

ISD=100m ISD=200m ISD=300m

554 553549547

540

513509

488

430420

440

460

480

500

520

540

560

25

Thro

ugh

pu

t (M

bp

s)

UPLINK - MEAN UE THROUGHPUT (Outdoor, No Foliage, UE=32)

ISD=100m ISD=200m ISD=300m

265262

256

216

205

184183

162

124

100

120

140

160

180

200

220

240

260

25Th

rou

ghp

ut (

Mb

ps)

UPLINK - CELL EDGE THROUGHPUT (Outdoor, No Foliage, UE=32)

ISD=100m ISD=200m ISD=300m

Page 26: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

26

© Nokia 2017

System Simulation Results for the Suburban Micro Environment (Heavy Foliage)Constant Number Antenna Elements for 28 GHz, 39 GHz and 73 GHz

Mean UE Throughput Cell Edge Throughput

30 40 50 60 70 30 40 50 60 70

30 40 50 60 70 30 40 50 60 70

Downlink

Uplink

555 554 548

444

417

366

269

241

199180

230

280

330

380

430

480

530

580

25

Thro

ugh

pu

t (M

bp

s)

DOWNLINK - MEAN UE THROUGHPUT (Outdoor, Heavy Foliage, UE=32)

ISD=100m ISD=200m ISD=300m

199193

176

62

49

21

7 4 0

0

50

100

150

200

250

25

Thro

ugh

pu

t (M

bp

s)

DOWNLINK - CELL EDGE THROUGHPUT (Outdoor, Heavy Foliage, UE=32)

ISD=100m ISD=200m ISD=300m

526518

493

337

311

270

215205

187160

210

260

310

360

410

460

510

25

Thro

ugh

pu

t (M

bp

s)

UPLINK - MEAN UE THROUGHPUT (Outdoor, Heavy Foliage, UE=32)

ISD=100m ISD=200m ISD=300m

170

155

114

83 10 0 0

0

20

40

60

80

100

120

140

160

180

25Th

rou

ghp

ut (

Mb

ps)

UPLINK - CELL EDGE THROUGHPUT (Outdoor, Heavy Foliage, UE=32)

ISD=100m ISD=200m ISD=300m

Page 27: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

27

© Nokia 2017

Antenna Array Comparisons - AP Antenna Aperture Constant vs. Frequency5dBi ant element gain, 7dBm AP Pout per element, 1dBm UE Pout per element, shown to scale

AP

Max EIRP ≈ 60.2 dBm

8

16

2 TXRUs

Max EIRP ≈ 66.2 dBm

103% area relative to 28GHz

Max EIRP ≈ 72.2 dBm

59% area relative to 28GHzRoom to grow…normalized array

size is ~4.5dBm more than above

16

16

16

32

4

4

Max EIRP ≈ 36.1 dBm

2 TXRUs

4

4

4

4

Max EIRP ≈ 36.1 dBm

52% area relative to 28GHz

Max EIRP ≈ 36.1 dBm

15% area relative to 28GHz

28 GHz256 elements (8x16x2)

39 GHz512 elements (16x16x2)

73 GHz1024 elements (16x32x2)

UE

73 GHz, 32 elements, (4x4x2)39 GHz, 32 elements, (4x4x2)28 GHz, 32 elements, (4x4x2)

Page 28: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

28

© Nokia 2017

System Simulation Results for the Suburban Micro EnvironmentConstant Antenna Aperture for 28 GHz, 39 GHz and 73 GHz

Mean UE Throughput Cell Edge Throughput

30 40 50 60 70 30 40 50 60 70

30 40 50 60 70 30 40 50 60 70

Downlink

Uplink

561

562

566

554

560

564

543

550

554

540

545

550

555

560

565

570

25

Thro

ugh

pu

t (M

bp

s)

DOWNLINK - MEAN UE THROUGHPUT (Outdoor, No Foliage, UE=32)

ISD=100m ISD=200m ISD=300m

250 250

267

222

244

261

216

237

249

210

220

230

240

250

260

270

280

25

Thro

ugh

pu

t (M

bp

s)

DOWNLINK - CELL EDGE THROUGHPUT (Outdoor, No Foliage, UE=32)

ISD=100m ISD=200m ISD=300m

554 555 555

547550

546

509

513

495

485

495

505

515

525

535

545

555

565

25

Thro

ugh

pu

t (M

bp

s)

UPLINK - MEAN UE THROUGHPUT (Outdoor, No Foliage, UE=32)

ISD=100m ISD=200m ISD=300m

265267 267

216

233

227

183

190

183

170

180

190

200

210

220

230

240

250

260

270

25Th

rou

ghp

ut (

Mb

ps)

UPLINK - CELL EDGE THROUGHPUT (Outdoor, No Foliage, UE=32)

ISD=100m ISD=200m ISD=300m

Page 29: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

29

© Nokia 2017

System Simulation Results for the Suburban Micro Environment (Heavy Foliage)Constant Antenna Aperture for 28 GHz, 39 GHz and 73 GHz

Mean UE Throughput Cell Edge Throughput

30 40 50 60 70 30 40 50 60 70

30 40 50 60 70 30 40 50 60 70

Downlink

Uplink

555 559 561

444

469 475

269

301 304

230

280

330

380

430

480

530

580

25

Thro

ugh

pu

t (M

bp

s)

DOWNLINK - MEAN UE THROUGHPUT (Outdoor, Heavy Foliage, UE=32)

ISD=100m ISD=200m ISD=300m

199210

220

62

77 75

717 190

50

100

150

200

250

25

Thro

ugh

pu

t (M

bp

s)

DOWNLINK - CELL EDGE THROUGHPUT (Outdoor, Heavy Foliage, UE=32)

ISD=100m ISD=200m ISD=300m

526 529518

337328

300

215 208197170

220

270

320

370

420

470

520

570

25

Thro

ugh

pu

t (M

bp

s)

UPLINK - MEAN UE THROUGHPUT (Outdoor, Heavy Foliage, UE=32)

ISD=100m ISD=200m ISD=300m

170177

160

8 730 0 0

0

20

40

60

80

100

120

140

160

180

25Th

rou

ghp

ut (

Mb

ps)

UPLINK - CELL EDGE THROUGHPUT (Outdoor, Heavy Foliage, UE=32)

ISD=100m ISD=200m ISD=300m

Page 30: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

30

Summary

Page 31: 5G New Radio Technology and Performancemmwrcn.ece.wisc.edu/wp-uploads/2017/05/5G-NR-Ghosh-Nokia-Keyn… · 5G New Radio –Technology and Performance Amitava Ghosh Nokia Bell Labs

31

© Nokia 2017

• Spectral Efficiency can be doubled with 5G NR (16x4) compared to LTE @ sub 6 GHz

(4x4)

• Antenna array size will decrease for given array configuration and number of elements

- Reduced antenna aperture is the primary reason for decreasing performance with higher frequency

- Little degradation is seen at 100m ISDs as systems are not path loss limited

- Some degradation is seen for larger ISDs as systems become more noise limited

• Keeping antenna aperture constant can mitigate differences at higher frequencies

- Increasing the number elements as frequency increases will keep the physical array size and

antenna aperture constant

- Performance is nearly identical at all frequencies and ISDs with constant physical array size (antenna

aperture)

• Foliage poses challenges at all mmWave frequencies and is not dramatically higher at 70

GHz as compared to 28 GHz or 39 GHz

Overall Summary