麻省理工大学固体物理课件

530
1分子-简单固体(PDF) Lecture 1: Molecules–the Simple Solid (PDF) 2氢分子中的振动和旋转态(PDF) Lecture 2: Vibrational and Rotational States in Hydrogen 3金属中的自由电子气(PDF) Lecture 3: Metal as a Free Electron Gas (PDF) 4固体中的振动(PDF) Lecture 4: Vibrations in Solids (PDF) 5格波的比热(PDF - 1.4 MB) Lecture 5: Specific Heat of Lattice Waves (PDF - 1.4 MB) 8一维单原子晶体中的格波(PDF) Lecture 8: Lattice Waves in 1D Monatomic Crystals (PDF) 9一维双原子链中的格波(PDF) Lecture 9: Lattice Waves in 1D with Diatmomic Basis (PDF 10 &11离散晶格的比热(PDF - 1.1 MB) Lecture 10 & 11: Specific Heat of Discrete Lattice (PDF 12周期结构的固体中的电子(PDF) Lecture 12: Electrons in a Periodic Solid (PDF) 13周期结构的固体中的电子(PDF) Lecture 13: Electrons in a Periodic Solid (PDF) 14周期结构的固体中的电子(PDF - 3.2 MB) Lecture 14: Electrons in a Periodic Solid (PDF - 3.2 MB) 15周期结构的固体中的电子(PDF - 3.1 MB) Lecture 15: Electrons in a Periodic Solid (PDF - 3.1 MB) 16近自由电子能带(PDF - 1.2 MB) Lecture 16: Nearly Free Electron Bands (PDF - 1.2 MB)

Upload: su-jin

Post on 14-Nov-2014

200 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 麻省理工大学固体物理课件

1分子-简单固体(PDF)

Lecture 1: Molecules–the Simple Solid (PDF)

2氢分子中的振动和旋转态(PDF)

Lecture 2: Vibrational and Rotational States in Hydrogen (PDF)

3金属中的自由电子气(PDF)

Lecture 3: Metal as a Free Electron Gas (PDF)

4固体中的振动(PDF)

Lecture 4: Vibrations in Solids (PDF)

5格波的比热(PDF - 1.4 MB)

Lecture 5: Specific Heat of Lattice Waves (PDF - 1.4 MB)

8一维单原子晶体中的格波(PDF)

Lecture 8: Lattice Waves in 1D Monatomic Crystals (PDF)

9一维双原子链中的格波(PDF)

Lecture 9: Lattice Waves in 1D with Diatmomic Basis (PDF)

10 &11离散晶格的比热(PDF - 1.1 MB)

Lecture 10 & 11: Specific Heat of Discrete Lattice (PDF - 1.1 MB)

12周期结构的固体中的电子(PDF)

Lecture 12: Electrons in a Periodic Solid (PDF)

13周期结构的固体中的电子(PDF)

Lecture 13: Electrons in a Periodic Solid (PDF)

14周期结构的固体中的电子(PDF - 3.2 MB)

Lecture 14: Electrons in a Periodic Solid (PDF - 3.2 MB)

15周期结构的固体中的电子(PDF - 3.1 MB)

Lecture 15: Electrons in a Periodic Solid (PDF - 3.1 MB)

16近自由电子能带(PDF - 1.2 MB)

Lecture 16: Nearly Free Electron Bands (PDF - 1.2 MB)

17近自由电子能带(part III)(PDF)

Lecture 17: Nearly Free Electron Bands (Part III) (PDF)

18 Bloch函数的属性(PDF)

Lecture 18: Properties of Bloch Functions (PDF)

19电子波包的运动(PDF)

Lecture 19: Motion of Electronic Wavepackets (PDF)

20杂质态(PDF)

Lecture 20: Impurity States (PDF)

21 & 22电子及空穴运动的半经典方程(PDF - 1.1 MB)

Lecture 21 & 22: Semi Classical Equations of Motions & Electrons and Holes I (PDF - 1.1 MB)

23 有效质量(PDF - 1.1 MB)

Lecture 23: Effective Mass (PDF - 1.1 MB)

24 化学势和平衡态(PDF)

Lecture 24: Chemical Potential and Equilibrium (PDF)

25 化学势和非平衡态(PDF)

Lecture 25: Chemical Potential and Non-equilibrium (PDF)

26 多相固体(PDF)

Lecture 26: Inhomogeneous Solids (PDF)

27 Bloch函数的散射(PDF)

Lecture 27: Scattering of Bloch Functions (PDF)

28 电子-声子散射(PDF)

Lecture 28: Electron-phonon Scattering (PDF)

Page 2: 麻省理工大学固体物理课件

6.730PSSA

6.730 Physics for Solid State Applications

Lecture 1: Molecules – the Simple Solid

Rajeev J. Ram

Page 3: 麻省理工大学固体物理课件

6.730PSSA

• Molecules• Approximate models for molecular bonding• Vibrational and rotational modes

• Continuum Models of Solids• Elasticity Phonons• Free electron gas Electron

• Lattice (‘Atomic’) Models of Solids• Crystal structure• Phonons (lattice waves) on discrete lattice• Bloch electrons

• Single Electron Transport• ‘Electrons’ and ‘holes’• Chemical potential and band bending

• Electron Scattering• Electron-phonon scattering; mobility• Electron-photon scattering; absorption and gain

• Statistical Theory of Electron Transport• Boltzmann transport• Drift-diffusion; hot electron effects

Syllabus

Page 4: 麻省理工大学固体物理课件

6.730PSSA

General Course InformationGeneral Course InformationRequired Text :Fundamentals of Carrier Transport, Second Edition, by Mark Lundstrom, Cambridge University Press, 2000 Notes will be handed out to cover the first two-thirds of the class. This required text be used for the last third of the class.

Suggested Text :Solid State Physics , N.W. Aschroft and M.D. Mermin, Saunders College Publishing, 1976. This text is not required, but if you wish to purchase a textbook that covers some of the material in the first two-thirds of the class I would suggest this text because it is the one used in 6.732.

Problem Sets :All homework sets are due at the beginining of class on the assigned due date. You may work together on the problem sets but you are required to write up your own solution and code. Students will make oral presentations on the homework.

FINAL :There will be a final examination for the class.

GRADES:40% Group Project (30% written report and 10% presentation) 40% Problem Sets (25% written and 15% presentation) 20% Final Examination

Page 5: 麻省理工大学固体物理课件

6.730PSSA

Band Formation in 1Band Formation in 1--D SolidD SolidSimple model for a solid: the one-dimensional solid, which consists of a single, infinitely long

line of atoms, each one having one s orbital available for forming molecular orbitals (MOs).

When the chain is extended:

The range of energies covered by the MOs is spread

This range of energies is filled in with more and more orbitals

The width of the range of energies of the MOs is finite, while the number of molecular orbitals is infinite: This is called a band .

Page 6: 麻省理工大学固体物理课件

6.730PSSA

Band Formation in 1Band Formation in 1--D Solid with s & p D Solid with s & p orbitalsorbitals

Before we can build models for the solid, we need to understand a simple diatomic molecule.

Page 7: 麻省理工大学固体物理课件

6.730PSSA

The Simplest Molecule: HThe Simplest Molecule: H22

, the wavefunction for the entire system of nuclei and electrons

M1 M2

me

r

R2

R1

Page 8: 麻省理工大学固体物理课件

6.730PSSA

Approximate Models: Simplifying HApproximate Models: Simplifying H22

Born-Oppenheimer ApproximationThe electrons are much lighter than the nuclei (me/mH≅1/1836), their

motion is much faster than the vibrational and rotational motions of the nuclei within the molecule.

A good approximation is to neglect the coupling terms between the motion of the electrons and the nuclei: this is the Born-Oppenheimerapproximation. The Schrödinger equation can then be divided into two equations:

Linear Combination of Atomic Orbitals (LCAO)Even the electron part of the problem is too hard to solve exactly

Page 9: 麻省理工大学固体物理课件

6.730PSSA

BornBorn--Oppenheimer Oppenheimer ApproximationApproximation

M1 M2

me

r

R2R1

Electronic Part:

Nuclear Part:

where E is the energy of the entire molecule

Page 10: 麻省理工大学固体物理课件

6.730PSSA

Electronic Part: LCAOElectronic Part: LCAO

For example, if we consider 1s orbitals only…

Page 11: 麻省理工大学固体物理课件

6.730PSSA

Normalization of Electronic Part: LCAO cont.Normalization of Electronic Part: LCAO cont.

Normalize to guarantee the probability of finding an electron anywhere is still 1

where

Page 12: 麻省理工大学固体物理课件

6.730PSSA

Approximate Electronic EnergyApproximate Electronic Energy

Page 13: 麻省理工大学固体物理课件

6.730PSSA

Approximate Electronic EnergyApproximate Electronic Energy

Page 14: 麻省理工大学固体物理课件

6.730PSSA

Nuclear and Electronic Energy TogetherNuclear and Electronic Energy Together(E

nerg

y -I

H) /

I H

Page 15: 麻省理工大学固体物理课件

6.730PSSA

First Excited State Energy: First Excited State Energy: AntibondingAntibonding

Page 16: 麻省理工大学固体物理课件

6.730PSSA

First Excited State Energy: LCAOFirst Excited State Energy: LCAO

(Ene

rgy

-IH) /

I H

Page 17: 麻省理工大学固体物理课件

6.730 Physics for Solid State Applications

Lecture 2: Vibrational and Rotational States in Hydrogen

Rajeev J. Ram

Page 18: 麻省理工大学固体物理课件

Review Lecture 1: HReview Lecture 1: H22

, the wavefunction for the entire system of nuclei and electrons

M1 M2

me

r

R2R1

Page 19: 麻省理工大学固体物理课件

Approximate Models: Simplifying HApproximate Models: Simplifying H22

Born-Oppenheimer ApproximationThe electrons are much lighter than the nuclei (me/mH≅1/1836), their

motion is much faster than the vibrational and rotational motions of the nuclei within the molecule.

Works since vibrational and rotational energy of molecule is typically much less than the binding energy

Linear Combination of Atomic Orbitals (LCAO)Even the electron part of the problem is too hard to solve exactly

Page 20: 麻省理工大学固体物理课件

BornBorn--Oppenheimer Oppenheimer ApproximationApproximation

M1 M2

me

r

R2R1

Electronic Part:

Nuclear Part:

where E is the energy of the entire molecule

Page 21: 麻省理工大学固体物理课件

Approximate Electronic EnergyApproximate Electronic Energy

Page 22: 麻省理工大学固体物理课件

Nuclear and Electronic Energy TogetherNuclear and Electronic Energy Together(E

nerg

y -I

H) /

I H

Page 23: 麻省理工大学固体物理课件

First Excited State Energy: First Excited State Energy: AntibondingAntibonding

Page 24: 麻省理工大学固体物理课件

First Excited State Energy: LCAOFirst Excited State Energy: LCAO

(Ene

rgy

-IH) /

I H

Decrease of electron density

Increase of electron density

Page 25: 麻省理工大学固体物理课件

A Closer Look at Nuclear MotionA Closer Look at Nuclear MotionMolecular Vibration and RotationMolecular Vibration and Rotation

M1 M2

me

r

R2R1

LCAO for electronin Veff

Page 26: 麻省理工大学固体物理课件

Divide and ConquerDivide and Conquer

M1 M2

me

r

R2R1 Born-Oppenheimer

Center-of-mass and Relative nuclear motion

LCAO for electronin Veff

Vibrational and rotational motion

Page 27: 麻省理工大学固体物理课件

CenterCenter--ofof--Mass and Relative Nuclear MotionMass and Relative Nuclear Motion

Relative Center-of-mass

Note that R is the C-of-M coordinate now

Page 28: 麻省理工大学固体物理课件

CenterCenter--ofof--Mass and Relative Nuclear MotionMass and Relative Nuclear Motion

Total energy is the sum of CM motion and relative:

If this is the total energy, where is the electron energy ?

Page 29: 麻省理工大学固体物理课件

CenterCenter--ofof--Mass Nuclear MotionMass Nuclear Motion

Schrodinger equation for center-of-mass is same as free particle:

Eigenstate: Eigenenergy:

center-of-mass

M1 M2

meM1 M2

me

Page 30: 麻省理工大学固体物理课件

Relative Nuclear MotionRelative Nuclear Motion

Schrodinger equation for relative motion is a central potential problem just like the hydrogen atom:

Radial kinetic energy Angular kinetic energy

is the angular momentum operator

Page 31: 麻省理工大学固体物理课件

Relative Nuclear MotionRelative Nuclear MotionSeparation of Radial and Angular ComponentsSeparation of Radial and Angular Components

is the spherical Bessel function

Page 32: 麻省理工大学固体物理课件

Vibrational Vibrational Motion of NucleiMotion of NucleiHarmonic OscillatorHarmonic Oscillator

For no rotation, this simplifies to…(E

nerg

y -I

H) /

I H

Page 33: 麻省理工大学固体物理课件

Vibrational Vibrational Motion of NucleiMotion of NucleiHarmonic OscillatorHarmonic Oscillator

Approximation: Born-Oppenheimer, parabolic effective potential

Page 34: 麻省理工大学固体物理课件

Vibrational Vibrational Motion of NucleiMotion of NucleiRigid RotorRigid Rotor

Assuming that the vibrational motion produces only small displacements…

Page 35: 麻省理工大学固体物理课件

Divide and ConquerDivide and Conquer

M1 M2

me

r

R2R1

Approximations• Born-Oppenheimer

Nuclei inside electron cloud act as if they are embedded in an elastic medium (Veff)

• Effective potential (Veff) is parabolicVibrations of simple harmonic oscillator

• Rigid rotorVibrations only displace nuclei slightly from equilibrium bond length

Page 36: 麻省理工大学固体物理课件

Total Energy of the HTotal Energy of the H22 MoleculeMolecule

0.3-3 THz3-30 THz30 THz

30 l (l +1) meV0.1 (n + ½) eV1.0 eVO2

7.5 l (l+1) meV0.5 (n + ½) eV1.4 eVH2

TranslationalRotationalVibrationalBinding

Page 37: 麻省理工大学固体物理课件

Generalizations from Molecules to SolidsGeneralizations from Molecules to Solids

• The source of the binding energy is primarily the electrostatic potential between the nuclei and the electrons. The localization energy can also play a role (metal).

• Nuclear motions of the ions contribute a very small part to the binding energy.

• Sharing electrons between nuclei lowers the energy of the solid.

• The potential between the nuclei is of the same form as the molecule.

• Exicted states exists.

Page 38: 麻省理工大学固体物理课件

Assumptions for Electronic StatesAssumptions for Electronic States

• One electron energy levels

• No spin or exchange energies

• LCAO a good approximation

• Ignore motion of the nuclei to first order

Page 39: 麻省理工大学固体物理课件

6.730 Physics for Solid State Applications

Lecture 3: Metal as a Free Electron Gas

Rajeev J. Ram

Page 40: 麻省理工大学固体物理课件

Generalizations from Molecules to SolidsGeneralizations from Molecules to Solids

• The source of the binding energy is primarily the electrostatic potential between the nuclei and the electrons. The localization energy can also play a role (metal).

• Nuclear motions of the ions contribute a very small part to the binding energy.

• Sharing electrons between nuclei lowers the energy of the solid.

• The potential between the nuclei is of the same form as the molecule.

• Exicted states exists.

Page 41: 麻省理工大学固体物理课件

Assumptions for Electronic StatesAssumptions for Electronic States

• One electron energy levels

• No spin or exchange energies

• LCAO a good approximation

• Ignore motion of the nuclei to first order

Page 42: 麻省理工大学固体物理课件

Overview of Electron TransportOverview of Electron Transport

Goal: Calculate electrical properties (eg. resistance) for solidsApproach:

• Macroscopic theory: V, I, R

• Microscopic theory: J, E, σ

• Phenomenological model of transport: n, τ, m

• Relate parameters in phenomenological theory to electronic energy levels and wavefunction

Page 43: 麻省理工大学固体物理课件

Overview of Electron TransportOverview of Electron Transport

Goal: Calculate electrical properties (eg. resistance) for solids

Approach:In the end calculating resistance boils down to calculating the electronic energy levels and wavefunctions; to knowing the bandstructure

You will be able to relate a bandstructure to macroscopic parameters for the solid

Why this approach ?:This first principles approach will make assumptions and approximations explicit. The phenomenological theory fails for modern devices – the channel in the MOSFET on the Pentium chip.

Page 44: 麻省理工大学固体物理课件

Microscopic Variables for Electrical TransportMicroscopic Variables for Electrical TransportDrude Drude TheoryTheory

Balance equation for forces on electrons:

In steady-state when B=0:

Page 45: 麻省理工大学固体物理课件

Microscopic Variables for Electrical TransportMicroscopic Variables for Electrical Transport

Recovering macroscopic variables:

Page 46: 麻省理工大学固体物理课件

Microscopic Variables for Electrical TransportMicroscopic Variables for Electrical Transport

Page 47: 麻省理工大学固体物理课件

Microscopic Variables for Electrical TransportMicroscopic Variables for Electrical Transport

Balance equation for energy of electrons:

In steady-state:

In the continuum models, we assume that electron scattering is sufficiently fast that all the energy pumped into the electrons is randomized; all additional energy heats the electrons

How do we relate ∆E and T ?

Page 48: 麻省理工大学固体物理课件

Equipartition Equipartition TheoremTheorem

Balance equation for energy of electrons:

The theorem of equipartition of energy states that molecules in thermal equilibrium have the same average energy associated with each independent degree of freedom of their motion

So in this simple theory, ∆E and T are proportional to each other…

Page 49: 麻省理工大学固体物理课件

Specific Heat and Heat CapacitySpecific Heat and Heat Capacity

Again assume that the heat and change in internal energy are the same:

(heat capacity)

Take constant volume since this ensures none of the extra energy is going into work(think ideal gas)

(specific heat)

Specific heat is independent of temperature…Law of Dulong and Petit

Page 50: 麻省理工大学固体物理课件

Specific Heat MeasurementsSpecific Heat Measurements

(hyperphysics.phy-astr.gsu.edu)

Specific heat is independent of temperature…NOT TRUE !To get this correct we will need to (a) quantize electron energy levels, (b) introduce discreteness of lattice and (c) the heat capacity of lattice

Page 51: 麻省理工大学固体物理课件

Quantum Free Electron GasQuantum Free Electron GasCrystal as Infinite Well PotentialCrystal as Infinite Well Potential

Electron confined in crystal of size L on a sideno interaction with nucleisingle particle approximationperiodic boundary conditions

not for periodic b.c.

(hyperphysics.phy-astr.gsu.edu)

Page 52: 麻省理工大学固体物理课件

Quantum Free Electron GasQuantum Free Electron GasPeriodic Boundary ConditionsPeriodic Boundary Conditions

Page 53: 麻省理工大学固体物理课件

Estimating Electron NumberEstimating Electron Number

Probability of a particular energy level being occupied by an electron:

Total number of electrons:

spin

Page 54: 麻省理工大学固体物理课件

Limit for Large CrystalsLimit for Large Crystals

Page 55: 麻省理工大学固体物理课件

ZeroZero--Temperature LimitTemperature Limit

Page 56: 麻省理工大学固体物理课件

ZeroZero--Temperature LimitTemperature LimitFermi Fermi Energy and TemperatureEnergy and Temperature

Page 57: 麻省理工大学固体物理课件

ZeroZero--Temperature LimitTemperature LimitElectronic EnergyElectronic Energy

Average energy per electron:

Page 58: 麻省理工大学固体物理课件

Finite TemperaturesFinite Temperatures

Page 59: 麻省理工大学固体物理课件

Ensemble Averages at Finite TemperaturesEnsemble Averages at Finite Temperatures

Where Fk is any property of the electron

where g(E) is number of states at E per unit volume

By comparing the above two expressions…

Page 60: 麻省理工大学固体物理课件

Density of States in Large 3D SolidDensity of States in Large 3D Solid

Page 61: 麻省理工大学固体物理课件

Density of States in Different SolidsDensity of States in Different Solids

Page 62: 麻省理工大学固体物理课件

Low Temperature Specific Heat of the Free Electron GasLow Temperature Specific Heat of the Free Electron GasSommerfeldSommerfeld ApproximationApproximation

Page 63: 麻省理工大学固体物理课件

Specific Heat MeasurementsSpecific Heat Measurements

(hyperphysics.phy-astr.gsu.edu)

To get this correct we will need to (a) quantize electron energy levels, (b) introduce discreteness of lattice and (c) the heat capacity of lattice

Page 64: 麻省理工大学固体物理课件

Conductivity of the Free Electron GasConductivity of the Free Electron GasSommerfeldSommerfeld ApproximationApproximation

Only electrons near EF contribute to current !

Page 65: 麻省理工大学固体物理课件

Conductivity of the Free Electron GasConductivity of the Free Electron GasSommerfeldSommerfeld ApproximationApproximation

Sommerfeld recovers the phenomenological results !

Page 66: 麻省理工大学固体物理课件

SommerfeldSommerfeld ExpansionExpansion

Page 67: 麻省理工大学固体物理课件

SommerfeldSommerfeld Expansion for Electron DensityExpansion for Electron Density

Page 68: 麻省理工大学固体物理课件

SommerfeldSommerfeld Expansion for Electron EnergyExpansion for Electron Energy

Page 69: 麻省理工大学固体物理课件

Density of States is the Central Character in this StoryDensity of States is the Central Character in this Story

Goal: Calculate electrical properties (eg. resistance) for solids

Approach:In the end calculating resistance boils down to calculating the electronic energy levels and wavefunctions; to knowing the bandstructure

You will be able to relate a bandstructure to macroscopic parameters for the solid

Page 70: 麻省理工大学固体物理课件

6.730 Physics for Solid State Applications

Lecture 4: Vibrations in Solids

Outline

• Review Lecture 3

• Sommerfeld Theory of Metals

• 1-D Elastic Continuum

• 1-D Lattice Waves

• 3-D Elastic Continuum

• 3-D Lattice Waves

Page 71: 麻省理工大学固体物理课件

Microscopic Variables for Electrical TransportMicroscopic Variables for Electrical TransportDrude Drude TheoryTheory

Balance equation for forces on electrons:

In steady-state when B=0:

Page 72: 麻省理工大学固体物理课件

Density of StatesDensity of States

Page 73: 麻省理工大学固体物理课件

Microscopic Variables for Electrical TransportMicroscopic Variables for Electrical Transport

Balance equation for energy of electrons:

In steady-state:

In the continuum models, we assume that electron scattering is sufficiently fast that all the energy pumped into the electrons is randomized; all additional energy heats the electrons

How do we relate ∆E and T ?

Page 74: 麻省理工大学固体物理课件

Specific Heat and Heat CapacitySpecific Heat and Heat Capacity

Again assume that the heat and change in internal energy are the same:

(heat capacity)

Take constant volume since this ensures none of the extra energy is going into work(think ideal gas)

(specific heat)

Specific heat is independent of temperature…Law of Dulong and Petit

Page 75: 麻省理工大学固体物理课件

Specific Heat MeasurementsSpecific Heat Measurements

(hyperphysics.phy-astr.gsu.edu)

Specific heat is independent of temperature…NOT TRUE !To get this correct we will need to (a) quantize electron energy levels, (b) introduce discreteness of lattice and (c) the heat capacity of lattice

Page 76: 麻省理工大学固体物理课件

Outline

• Review Lecture 3

• Sommerfeld Theory of Metals

• 1-D Elastic Continuum

• 1-D Lattice Waves

• 3-D Elastic Continuum

• 3-D Lattice Waves

Page 77: 麻省理工大学固体物理课件

Low Temperature Specific Heat of the Free Electron GasLow Temperature Specific Heat of the Free Electron GasSommerfeldSommerfeld ApproximationApproximation

Page 78: 麻省理工大学固体物理课件

Conductivity of the Free Electron GasConductivity of the Free Electron GasSommerfeldSommerfeld ApproximationApproximation

Only electrons near EF contribute to current !

Page 79: 麻省理工大学固体物理课件

Conductivity of the Free Electron GasConductivity of the Free Electron GasSommerfeldSommerfeld ApproximationApproximation

Sommerfeld recovers the phenomenological results !

Page 80: 麻省理工大学固体物理课件

SommerfeldSommerfeld ExpansionExpansion

Page 81: 麻省理工大学固体物理课件

SommerfeldSommerfeld Expansion for Electron DensityExpansion for Electron Density

Page 82: 麻省理工大学固体物理课件

SommerfeldSommerfeld Expansion for Electron EnergyExpansion for Electron Energy

Page 83: 麻省理工大学固体物理课件

Specific Heat MeasurementsSpecific Heat Measurements

(hyperphysics.phy-astr.gsu.edu)

To get this correct we will need to (a) quantize electron energy levels, (b) introduce discreteness of lattice and (c) the heat capacity of lattice

Page 84: 麻省理工大学固体物理课件

Density of States is the Central Character in this StoryDensity of States is the Central Character in this Story

Goal: Calculate electrical properties (eg. resistance) for solids

Approach:In the end calculating resistance boils down to calculating the electronic energy levels and wavefunctions; to knowing the bandstructure

You will be able to relate a bandstructure to macroscopic parameters for the solid

Page 85: 麻省理工大学固体物理课件

Outline

• Review Lecture 3

• Sommerfeld Theory of Metals

• 1-D Elastic Continuum

• 1-D Lattice Waves

• 3-D Elastic Continuum

• 3-D Lattice Waves

Page 86: 麻省理工大学固体物理课件

11--D Elastic ContinuumD Elastic ContinuumStress and StrainStress and Strain

uniaxial loading

Lo

LStress:

Normal strain:Strain:

If ux is uniform there is no strain, just rigid body motion.

Page 87: 麻省理工大学固体物理课件

11--D Elastic ContinuumD Elastic ContinuumYoung’s Modulus METALS :

Tungsten (W) 406Chromium (Cr) 289Berylium (Be) 200 - 289Nickel (Ni) 214Iron (Fe) 196Low Alloy Steels 200 - 207Stainless Steels 190 - 200Cast Irons 170 - 190Copper (Cu) 124Titanium (Ti) 116Brasses and Bronzes 103 - 124Aluminum (Al) 69

PINE WOOD (along grain): 10

POLYMERS :Polyimides 3 - 5Polyesters 1 - 5Nylon 2 - 4Polystryene 3 - 3.4Polyethylene 0.2 -0.7Rubbers / Biological Tissues 0.01-0.1

Young’s Modulus

Young’s Modulus For Various Materials (GPa)from Christina Ortiz

CERAMICS GLASSES AND SEMICONDUCTORSDiamond (C) 1000Tungsten Carbide (WC) 450 -650Silicon Carbide (SiC) 450Aluminum Oxide (Al2O3) 390Berylium Oxide (BeO) 380Magnesium Oxide (MgO) 250Zirconium Oxide (ZrO) 160 - 241Mullite (Al6Si2O13) 145Silicon (Si) 107Silica glass (SiO2) 94Soda-lime glass (Na2O - SiO2) 69

Page 88: 麻省理工大学固体物理课件

Dynamics of 1Dynamics of 1--D ContinuumD Continuum11--D Wave EquationD Wave Equation

Net force on incremental volume element:

Page 89: 麻省理工大学固体物理课件

Dynamics of 1Dynamics of 1--D ContinuumD Continuum11--D Wave EquationD Wave Equation

Velocity of sound, c, is proportional to stiffness and inverse prop. to inertia

Page 90: 麻省理工大学固体物理课件

Dynamics of 1Dynamics of 1--D ContinuumD Continuum11--D Wave Equation SolutionsD Wave Equation Solutions

Clamped Bar: Standing Waves

Page 91: 麻省理工大学固体物理课件

Dynamics of 1Dynamics of 1--D ContinuumD Continuum11--D Wave Equation SolutionsD Wave Equation Solutions

Periodic Boundary Conditions: Traveling Waves

Page 92: 麻省理工大学固体物理课件

33--D Elastic ContinuumD Elastic ContinuumVolume DilatationVolume Dilatation

Lo Lapply load

Volume change is sum of all three normal strains

Page 93: 麻省理工大学固体物理课件

33--D Elastic ContinuumD Elastic ContinuumPoisson’s RatioPoisson’s Ratio

ν is Poisson’s Ratio – ratio of lateral strain to axial strain

Poisson’s ratio can not exceed 0.5, typically 0.3

Page 94: 麻省理工大学固体物理课件

33--D Elastic ContinuumD Elastic ContinuumPoisson’s Ratio ExamplePoisson’s Ratio Example

Aluminum: EY=68.9 GPa, ν = 0.35

20mm75mm5kN

5kN

Page 95: 麻省理工大学固体物理课件

33--D Elastic ContinuumD Elastic ContinuumPoisson’s Ratio ExamplePoisson’s Ratio Example

Aluminum: EY=68.9 GPa, ν = 0.35

20mm75mm5kN

5kN

Page 96: 麻省理工大学固体物理课件

33--D Elastic ContinuumD Elastic ContinuumPoisson’s Ratio ExamplePoisson’s Ratio Example

Aluminum: EY=68.9 GPa, ν = 0.35

20mm75mm5kN

5kN

Page 97: 麻省理工大学固体物理课件

33--D Elastic ContinuumD Elastic ContinuumShear StrainShear Strain

Shear plus rotationφ

φ

Pure shearShear loading

Pure shear strain

Shear stress

G is shear modulus

Page 98: 麻省理工大学固体物理课件

33--D Elastic ContinuumD Elastic ContinuumStress and Strain TensorsStress and Strain Tensors

For most general isotropic medium,

Initially we had three elastic constants: EY, G, e

Now reduced to only two: λ, µ

Page 99: 麻省理工大学固体物理课件

33--D Elastic ContinuumD Elastic ContinuumStress and Strain TensorsStress and Strain Tensors

If we look at just the diagonal elements

Inversion of stress/strain relation:

Page 100: 麻省理工大学固体物理课件

33--D Elastic ContinuumD Elastic ContinuumExample of Example of Uniaxial Uniaxial StressStress

Lo

L

Page 101: 麻省理工大学固体物理课件

Dynamics of 3Dynamics of 3--D ContinuumD Continuum33--D Wave EquationD Wave Equation

Net force on incremental volume element:

Total force is the sum of the forces on all the surfaces

Page 102: 麻省理工大学固体物理课件

Dynamics of 3Dynamics of 3--D ContinuumD Continuum33--D Wave EquationD Wave Equation

Net force in the x-direction:

Page 103: 麻省理工大学固体物理课件

Dynamics of 3Dynamics of 3--D ContinuumD Continuum33--D Wave EquationD Wave Equation

Finally, 3-D wave equation….

Page 104: 麻省理工大学固体物理课件

Dynamics of 3Dynamics of 3--D ContinuumD ContinuumFourier Transform of 3Fourier Transform of 3--D Wave EquationD Wave Equation

Anticipating plane wave solutions, we Fourier Transform the equation….

Three coupled equations for Ux, Uy, and Uz….

Page 105: 麻省理工大学固体物理课件

Dynamics of 3Dynamics of 3--D ContinuumD ContinuumDynamical MatrixDynamical Matrix

Express the system of equations as a matrix….

Turns the problem into an eigenvalue problem for the polarizations of the modes (eigenvectors) andwavevectors q (eigenvalues)….

Page 106: 麻省理工大学固体物理课件

Dynamics of 3Dynamics of 3--D ContinuumD ContinuumSolutions to 3Solutions to 3--D Wave EquationD Wave Equation

Transverse polarization waves:

Longitudinal polarization waves:

Page 107: 麻省理工大学固体物理课件

Dynamics of 3Dynamics of 3--D ContinuumD ContinuumSummarySummary

1. Dynamical Equation can be solved by inspection

2. There are 2 transverse and 1 longitudinal polarizations for each q

3. The dispersion relations are linear

4. The longitudinal sound velocity is always greater than the transverse sound velocity

Page 108: 麻省理工大学固体物理课件

6.730 Physics for Solid State Applications

Lecture 5: Specific Heat of Lattice Waves

Outline

• Review Lecture 4

• 3-D Elastic Continuum

• 3-D Lattice Waves

• Lattice Density of Modes

• Specific Heat of Lattice

Page 109: 麻省理工大学固体物理课件

Specific Heat MeasurementsSpecific Heat Measurements

(hyperphysics.phy-astr.gsu.edu)

Page 110: 麻省理工大学固体物理课件

33--D Elastic ContinuumD Elastic ContinuumPoisson’s Ratio ExamplePoisson’s Ratio Example

A prismatic bar with length L = 200 mm and a circular cross section with a diameter D = 10 mm is subjected to a tensile load P = 16 kN. The length and diameter of the deformed bar are measured and determined to be L’ = 200.60 mm and D’ = 9.99 mm. What are the modulus of elasticity and the Poisson’s ratio for the bar?

Page 111: 麻省理工大学固体物理课件
Page 112: 麻省理工大学固体物理课件

33--D Elastic ContinuumD Elastic ContinuumShear StrainShear Strain

Shear plus rotationφ

φ

Pure shearShear loading

Pure shear strain

Shear stress

G is shear modulus

Page 113: 麻省理工大学固体物理课件

33--D Elastic ContinuumD Elastic ContinuumStress and Strain TensorsStress and Strain Tensors

For most general isotropic medium,

Initially we had three elastic constants: EY, G, e

Now reduced to only two: λ, µ

Page 114: 麻省理工大学固体物理课件

33--D Elastic ContinuumD Elastic ContinuumStress and Strain TensorsStress and Strain Tensors

If we look at just the diagonal elements

Inversion of stress/strain relation:

Page 115: 麻省理工大学固体物理课件

33--D Elastic ContinuumD Elastic ContinuumExample of Example of Uniaxial Uniaxial StressStress

Lo

L

Page 116: 麻省理工大学固体物理课件

Dynamics of 3Dynamics of 3--D ContinuumD Continuum33--D Wave EquationD Wave Equation

Net force on incremental volume element:

Total force is the sum of the forces on all the surfaces

Page 117: 麻省理工大学固体物理课件

Dynamics of 3Dynamics of 3--D ContinuumD Continuum33--D Wave EquationD Wave Equation

Net force in the x-direction:

Page 118: 麻省理工大学固体物理课件

Dynamics of 3Dynamics of 3--D ContinuumD Continuum33--D Wave EquationD Wave Equation

Finally, 3-D wave equation….

Page 119: 麻省理工大学固体物理课件

Dynamics of 3Dynamics of 3--D ContinuumD ContinuumFourier Transform of 3Fourier Transform of 3--D Wave EquationD Wave Equation

Anticipating plane wave solutions, we Fourier Transform the equation….

Three coupled equations for Ux, Uy, and Uz….

Page 120: 麻省理工大学固体物理课件

Dynamics of 3Dynamics of 3--D ContinuumD ContinuumDynamical MatrixDynamical Matrix

Express the system of equations as a matrix….

Turns the problem into an eigenvalue problem for the polarizations of the modes (eigenvectors) andwavevectors q (eigenvalues)….

Page 121: 麻省理工大学固体物理课件

Dynamics of 3Dynamics of 3--D ContinuumD ContinuumSolutions to 3Solutions to 3--D Wave EquationD Wave Equation

Transverse polarization waves:

Longitudinal polarization waves:

Page 122: 麻省理工大学固体物理课件

Direct Measurements of Sound VelocityDirect Measurements of Sound Velocity

Bolo

met

er s

igna

l Ge at 1.9 K

Time (microseconds)

LA phonons are faster, since real solids are not isotropic the TA phonons travel at different velocity

Page 123: 麻省理工大学固体物理课件

Dynamics of 3Dynamics of 3--D ContinuumD ContinuumSummarySummary

1. Dynamical Equation can be solved by inspection

2. There are 2 transverse and 1 longitudinal polarizations for each q

3. The dispersion relations are linear

4. The longitudinal sound velocity is always greater than the transverse sound velocity

Page 124: 麻省理工大学固体物理课件

Counting Counting Vibrational Vibrational ModesModesSolid as an Acoustic CavitySolid as an Acoustic Cavity

For each of three polarizations:

If the plane waves are constrained to the solid with dimension Land we use periodic boundary conditions:

number of states in dω :

Page 125: 麻省理工大学固体物理课件

Specific Heat of SolidSpecific Heat of SolidHow much energy is in each mode ?How much energy is in each mode ?

Need to approximate the amount of energy in each mode at a given temperature…

If we assume equipartition, we will againDulong-Petit which is not consistent with experiment for solids…

Approach:

• Quantize the amplitude of vibration for each mode

• Treat each quanta of vibrational excitation as a bosonic particle, the phonon

• Use Bose-Einstein statistics to determine the number of phonons in each mode

Page 126: 麻省理工大学固体物理课件

Lattice Waves as Harmonic OscillatorLattice Waves as Harmonic Oscillator

Treat each mode and each polarization as an independent harmonic oscillator:

is the quantum number associated with harmonic

Now, we think of each quantum of excitation as a particle…

lattice waves electromagnetic wavesacoustic cavity (solid) optical cavity (metal box)quanta observed quanta observed

by light scattering by photoelectric effectbosons ? bosons (eg. laser)

Page 127: 麻省理工大学固体物理课件

Lattice Waves in Thermal EquilibriumLattice Waves in Thermal Equilibrium

Lattice waves in thermal equilibrium don’t have a single well define amplitude of vibration…

For each mode, there is a distribution of amplitudes…

Bose-Einstein distribution

Page 128: 麻省理工大学固体物理课件

Total Energy of a Lattice in Thermal EquilibriumTotal Energy of a Lattice in Thermal Equilibrium

number of states in dω :

Page 129: 麻省理工大学固体物理课件

Specific Heat of a Crystal LatticeSpecific Heat of a Crystal Lattice

Page 130: 麻省理工大学固体物理课件

Specific Heat MeasurementsSpecific Heat Measurements

(hyperphysics.phy-astr.gsu.edu)

Page 131: 麻省理工大学固体物理课件

Aside: Thermal Energy of PhotonsAside: Thermal Energy of Photons

Energy density of blackbody:

Specific heat :

Page 132: 麻省理工大学固体物理课件

6.730 Physics for Solid State Applications

Lecture 8: Lattice Waves in 1D Monatomic Crystals

Outline

• Overview of Lattice Vibrations so far

• Models for Vibrations in Discrete 1-D Lattice

• Example of Nearest Neighbor Coupling Only

• Relating Microscopic and Macroscopic Quantities

Page 133: 麻省理工大学固体物理课件

Continuum ModelsContinuum Models11--D Wave EquationD Wave Equation

ω

κ

Velocity of sound, c, is proportional to stiffness and inverse prop. to inertia

Periodic Boundary Conditions: Traveling Waves

Page 134: 麻省理工大学固体物理课件

Continuum ModelsContinuum ModelsTT33 Specific HeatSpecific Heat

(hyperphysics.phy-astr.gsu.edu)

Page 135: 麻省理工大学固体物理课件

The Atomistic PerspectiveThe Atomistic PerspectiveArrangement of Atoms and Bond OrientationsArrangement of Atoms and Bond Orientations

Page 136: 麻省理工大学固体物理课件

The Atomistic PerspectiveThe Atomistic PerspectiveArrangement of Atoms and Bond OrientationsArrangement of Atoms and Bond Orientations

Diamond Crystal Structure:Silicon

Bond angle = 109.5º

• Add 4 atoms to a FCC

• Tetrahedral bond arrangement

• Each atom has 4 nearest neighbors and

12 next nearest neighbors

Page 137: 麻省理工大学固体物理课件

The Atomistic PerspectiveThe Atomistic PerspectiveVibrational Vibrational Motion of NucleiMotion of Nuclei

(Ene

rgy

-IH) /

I H

Page 138: 麻省理工大学固体物理课件

Strain in a Discrete LatticeStrain in a Discrete LatticeExample of Nearest Neighbor InteractionsExample of Nearest Neighbor Interactions

n n+1 n+2 n+3n-3 n-2 n-1

a

un-3 un-2 un-1 un un+1 un+2 un+3

strained

equilibrium

is the discrete displacement of an atom from its equilibrium position

Page 139: 麻省理工大学固体物理课件

Strain in a Discrete LatticeStrain in a Discrete LatticeGeneral ExpansionGeneral Expansion

The potential energy associated with the strain is a complex function ofthe displacements.

where

and the force on each lattice atom

Page 140: 麻省理工大学固体物理课件

Harmonic MatrixHarmonic MatrixSpring Constants Between Lattice AtomsSpring Constants Between Lattice Atoms

Harmonic Matrix:

Page 141: 麻省理工大学固体物理课件

Dynamics of Lattice AtomsDynamics of Lattice Atoms

Force on the jth atom (away from equilibrium)…

Page 142: 麻省理工大学固体物理课件

Solutions of Equations of MotionSolutions of Equations of MotionConvert to Difference EquationConvert to Difference Equation

Time harmonic solutions…

Plugging in, converts equation of motion into coupled difference equations:

Page 143: 麻省理工大学固体物理课件

Solutions of Equations of MotionSolutions of Equations of Motion

We can guess solution of the form:

This is equivalent to taking the z-transform…

Page 144: 麻省理工大学固体物理课件

Solutions of Equations of MotionSolutions of Equations of MotionConsider Consider Undamped Undamped Lattice VibrationsLattice Vibrations

We are going to consider the undamped vibrations of the lattice:

Page 145: 麻省理工大学固体物理课件

Solutions of Equations of MotionSolutions of Equations of MotionDynamical MatrixDynamical Matrix

Page 146: 麻省理工大学固体物理课件

Solutions of Equations of MotionSolutions of Equations of MotionDynamical MatrixDynamical Matrix

Page 147: 麻省理工大学固体物理课件

Strain in a Discrete LatticeStrain in a Discrete LatticeExample of Nearest Neighbor InteractionsExample of Nearest Neighbor Interactions

n n+1 n+2 n+3n-3 n-2 n-1

a

un-3 un-2 un-1 un un+1 un+2 un+3

strained

equilibrium

Page 148: 麻省理工大学固体物理课件

Strain in a Discrete LatticeStrain in a Discrete LatticeExample of Nearest Neighbor InteractionsExample of Nearest Neighbor Interactions

Page 149: 麻省理工大学固体物理课件

Strain in a Discrete LatticeStrain in a Discrete LatticeExample of Nearest Neighbor InteractionsExample of Nearest Neighbor Interactions

Harmonic matrix:

Dynamical matrix:

Page 150: 麻省理工大学固体物理课件

Strain in a Discrete LatticeStrain in a Discrete LatticeExample of Nearest Neighbor InteractionsExample of Nearest Neighbor Interactions

ω

kk=π/ak= - π/a

Page 151: 麻省理工大学固体物理课件

Strain in a Discrete LatticeStrain in a Discrete LatticeExample of Nearest Neighbor InteractionsExample of Nearest Neighbor Interactions

ω

kk=π/ak=-π/ak=-2π/a k=2π/a

1st Brillouin zone 2nd Brillouin zone2nd Brillouin zone

A B

From what we know about Brillouin zones the points A and B (related by a reciprocal lattice vector) must be identical

This implies that the wave form of the vibrating atoms must also be identical.

Page 152: 麻省理工大学固体物理课件

Strain in a Discrete LatticeStrain in a Discrete LatticeExample of Nearest Neighbor InteractionsExample of Nearest Neighbor Interactions

n n+1 n+2 n+3 n+4 n+5n-1n-2n-3n-4n-5

κ=-2π/a κ=2π/a

ω

κκ=π/aκ=-π/a A B

A: k=-0.7π/a

B: k=1.3π/a

But: note that point B represents a wave travelling right, and point A one travelling left

Page 153: 麻省理工大学固体物理课件

Strain in a Discrete LatticeStrain in a Discrete LatticeExample of Nearest Neighbor InteractionsExample of Nearest Neighbor Interactions

ω

κκ=π/aκ=-π/aκ=-2π/a κ=2π/a

c Consider point C at the zone boundary

When k=π/a, λ=2a, and motion becomes that of a standing wave (the atoms are bouncing backward and forward against each other

n n+1 n+2 n+3 n+4 n+5n-1n-2n-3n-4n-5

λ=2a

Page 154: 麻省理工大学固体物理课件

Strain in a Discrete LatticeStrain in a Discrete LatticeExample of Nearest Neighbor InteractionsExample of Nearest Neighbor Interactions

In the limit of long-wavelength, we should recover the continuum model…

Linear dispersion, just like the sound waves for the continuum solid

Page 155: 麻省理工大学固体物理课件

6.730 Physics for Solid State Applications

Lecture 9: Lattice Waves in 1D with Diatmomic Basis

Outline

• Review Lecture 8

• 1-D Lattice with Basis

• Example of Nearest Neighbor Coupling

• Optical and Acoustic Phonon Branches

Page 156: 麻省理工大学固体物理课件

Strain in a Discrete 1Strain in a Discrete 1--D Monatomic LatticeD Monatomic LatticeGeneral ExpansionGeneral Expansion

n n+1 n+2 n+3n-3 n-2 n-1

a

un-3 un-2 un-1 un un+1 un+2 un+3

strained

equilibrium

Page 157: 麻省理工大学固体物理课件

Equations of Motion for Lattice AtomsEquations of Motion for Lattice Atoms

Harmonic Matrix:

Force on the jth atom (away from equilibrium)…

Page 158: 麻省理工大学固体物理课件

Solutions of Equations of MotionSolutions of Equations of Motion

Assuming time-harmonic solutions, converts into coupled difference equations:

Page 159: 麻省理工大学固体物理课件

Strain in a Discrete LatticeStrain in a Discrete LatticeExample of Nearest Neighbor InteractionsExample of Nearest Neighbor Interactions

n n+1 n+2 n+3n-3 n-2 n-1

a

un-3 un-2 un-1 un un+1 un+2 un+3

strained

equilibrium

Page 160: 麻省理工大学固体物理课件

Strain in a Discrete LatticeStrain in a Discrete LatticeExample of Nearest Neighbor InteractionsExample of Nearest Neighbor Interactions

Page 161: 麻省理工大学固体物理课件

Strain in a Discrete LatticeStrain in a Discrete LatticeExample of Nearest Neighbor InteractionsExample of Nearest Neighbor Interactions

ω

kk=π/ak=-π/ak=-2π/a k=2π/a

1st Brillouin zone 2nd Brillouin zone2nd Brillouin zone

A B

From what we know about Brillouin zones the points A and B (related by a reciprocal lattice vector) must be identical

Page 162: 麻省理工大学固体物理课件

Summary of Phonon Dispersion CalculationSummary of Phonon Dispersion Calculation

• Taylor series expansion for total potential stored in all bonds• Neglect first order since in equilibrium F=0

• Truncate expansion at second order, assume small amplitudes

• Determine harmonic matrix from potential energy

• Represents bond stiffness

• Assume time harmonic and discrete ‘plane wave’ solutions

• Determine dynamical matrix from harmonic matrix plus phase progression

• Determine dispersion relation

Page 163: 麻省理工大学固体物理课件

Strain in a Discrete Lattice with BasisStrain in a Discrete Lattice with BasisExample of Nearest Neighbor InteractionsExample of Nearest Neighbor Interactions

n n+1n-1

a

uj[n-2] ui[n-1] uj[n-1] ui[n] uj[n] ui[n+1] uj[n+1]strained

α1 α2equilibrium

Page 164: 麻省理工大学固体物理课件

Harmonic Matrix for 1Harmonic Matrix for 1--D Lattice with BasisD Lattice with Basis

Page 165: 麻省理工大学固体物理课件

Equations of MotionEquations of Motion

The force on the l th basis atom in the nth unit cell…

Page 166: 麻省理工大学固体物理课件

Matrix Representation of Equations of MotionMatrix Representation of Equations of Motion

Can collect system of equations for each atom in the basis as a matrix…

Page 167: 麻省理工大学固体物理课件

Plane Wave Solutions & the Dynamical MatrixPlane Wave Solutions & the Dynamical Matrix

Page 168: 麻省理工大学固体物理课件

Strain in a Discrete LatticeStrain in a Discrete LatticeExample of Nearest Neighbor InteractionsExample of Nearest Neighbor Interactions

equilibrium

n n+1n-1

a

u2[n-2] u1[n-1] u2[n-1] u1[n] u2[n] u1[n+1] u2[n+1]strained

α1 α2

Page 169: 麻省理工大学固体物理课件

Dynamical Matrix for 1Dynamical Matrix for 1--D Lattice with BasisD Lattice with BasisExample of Nearest Neighbor CouplingExample of Nearest Neighbor Coupling

Page 170: 麻省理工大学固体物理课件

Dispersion Relation for 1Dispersion Relation for 1--D Lattice with BasisD Lattice with BasisExample of Nearest Neighbor CouplingExample of Nearest Neighbor Coupling

Page 171: 麻省理工大学固体物理课件

Dispersion Relation for 1Dispersion Relation for 1--D Lattice with BasisD Lattice with BasisExample of Nearest Neighbor CouplingExample of Nearest Neighbor Coupling

k

optical branch

acoustic branch

Page 172: 麻省理工大学固体物理课件

Lattice Waves at k=0Lattice Waves at k=0Example of Nearest Neighbor CouplingExample of Nearest Neighbor Coupling

Page 173: 麻省理工大学固体物理课件

Lattice Waves at Small kLattice Waves at Small kExample of Nearest Neighbor CouplingExample of Nearest Neighbor Coupling

Page 174: 麻省理工大学固体物理课件

Lattice Waves Near Zone BoundaryLattice Waves Near Zone BoundaryExample of Nearest Neighbor CouplingExample of Nearest Neighbor Coupling

Page 175: 麻省理工大学固体物理课件

Dispersion Relation for 3Dispersion Relation for 3--D LatticesD Lattices

Page 176: 麻省理工大学固体物理课件

6.730 Physics for Solid State Applications

Lecture 10, 11: Specific Heat of Discrete Lattice

Outline

• 2-D Lattice Waves Solutions

• Review Continuum Specific Heat Calculation

• Density of Modes

• Quantum Theory of Lattice Vibrations

• Specific Heat for Lattice

• Approximate Models

Page 177: 麻省理工大学固体物理课件

Lattice Waves in 3Lattice Waves in 3--D CrystalsD Crystals

Second order Taylor series expansion for total potential energy:

Harmonic Matrix:

Equation of motion for lattice atoms assuming ‘plane wave’ solutions:

Dynamical Matrix:

Page 178: 麻省理工大学固体物理课件

Lattice Waves in 3Lattice Waves in 3--D CrystalsD Crystals

Dimension of system is given by (number of basis atoms) x (dimension of lattice)

Page 179: 麻省理工大学固体物理课件

Bond Stretching and BendingBond Stretching and Bending

Page 180: 麻省理工大学固体物理课件

Example: 1Example: 1--D Diatomic Lattice with Bond Stretching and BendingD Diatomic Lattice with Bond Stretching and BendingPotential EnergyPotential Energy

αsA αsB

M2M1y

x

Page 181: 麻省理工大学固体物理课件

Example: ‘1Example: ‘1--D’ Diatomic Lattice with Bond Stretching and BendingD’ Diatomic Lattice with Bond Stretching and BendingPotential EnergyPotential Energy

αsA αsB

M2M1y

x

Page 182: 麻省理工大学固体物理课件

Example: 2Example: 2--D Lattice with Bond StretchingD Lattice with Bond StretchingPotential EnergyPotential Energy

α2

α1a1a2

Page 183: 麻省理工大学固体物理课件

Example: 2Example: 2--D Lattice with Bond StretchingD Lattice with Bond StretchingElements of the Dynamical MatrixElements of the Dynamical Matrix

Page 184: 麻省理工大学固体物理课件

Example: 2Example: 2--D Lattice with Bond StretchingD Lattice with Bond StretchingDynamical MatrixDynamical Matrix

Page 185: 麻省理工大学固体物理课件

Example: 2Example: 2--D Lattice with Bond StretchingD Lattice with Bond StretchingDispersion RelationDispersion Relation

Longitudinal Waves:

Transverse Waves:

Page 186: 麻省理工大学固体物理课件

Example: 2Example: 2--D Lattice with Bond StretchingD Lattice with Bond StretchingDispersion RelationsDispersion Relations

Page 187: 麻省理工大学固体物理课件

Example: 2Example: 2--D Lattice with Bond StretchingD Lattice with Bond StretchingDispersion RelationsDispersion Relations

Page 188: 麻省理工大学固体物理课件

Specific Heat of SolidSpecific Heat of SolidHow much energy is in each mode ?How much energy is in each mode ?

Approach:

• Quantize the amplitude of vibration for each mode

• Treat each quanta of vibrational excitation as a bosonic particle, the phonon

• Use Bose-Einstein statistics to determine the number of phonons in each mode

Page 189: 麻省理工大学固体物理课件

Simple Harmonic OscillatorSimple Harmonic Oscillator

10 2E ω= h

31 2E ω= h

52 2E ω= h

73 2E ω= h

0n =

1n =

2n =

3n =

( ) 2 212 ω=U x m x( ) 2xψ

x

E

Page 190: 麻省理工大学固体物理课件

Hamiltonian for Discrete LatticeHamiltonian for Discrete Lattice

Potential energy of bonds in 3-D lattice with basis:

For single atom basis in 3-D, µ & ν denote x,y, or z direction:

Page 191: 麻省理工大学固体物理课件

Hamiltonian for Discrete LatticeHamiltonian for Discrete LatticePlane Wave ExpansionPlane Wave Expansion

The lattice wave can be represented as a superposition of plane waves (eigenmodes) with a known dispersion relation (eigenvalues)….

σ denotes polarization

Page 192: 麻省理工大学固体物理课件

Commutation Relation for Plane Wave DisplacementCommutation Relation for Plane Wave Displacement

…commute unless we have same polarization and k-vector

Page 193: 麻省理工大学固体物理课件

Creation and Creation and Annhilation Annhilation Operators for Lattice WavesOperators for Lattice Waves

Page 194: 麻省理工大学固体物理课件

Operators for the Lattice DisplacementOperators for the Lattice Displacement

We will use this for electron-phonon scattering…

Page 195: 麻省理工大学固体物理课件

Specific Heat with Continuum Model for SolidSpecific Heat with Continuum Model for Solid

3-D continuum density of modes in dω :

Page 196: 麻省理工大学固体物理课件

Specific Heat with Discrete LatticeSpecific Heat with Discrete LatticeDensity of Modes from DispersionDensity of Modes from Dispersion

1-D continuum density of modes in dω :

ωωm

k

ωωm

Page 197: 麻省理工大学固体物理课件

Specific Heat with Discrete LatticeSpecific Heat with Discrete LatticeDensity of Modes from DispersionDensity of Modes from Dispersion

3-D continuum density of modes in dω :

Cu

Page 198: 麻省理工大学固体物理课件

Specific Heat of SolidSpecific Heat of SolidHow much energy is in each mode ?How much energy is in each mode ?

Approach:

• Quantize the amplitude of vibration for each mode

• Treat each quanta of vibrational excitation as a bosonic particle, the phonon

• Use Bose-Einstein statistics to determine the number of phonons in each mode

Page 199: 麻省理工大学固体物理课件

Specific Heat of SolidSpecific Heat of SolidHow much energy is in each mode ?How much energy is in each mode ?

And we are done…

Page 200: 麻省理工大学固体物理课件

6.730 Physics for Solid State Applications

Lecture 12: Electrons in a Periodic Solid

Outline

• Review Lattice Waves

• Brillouin-Zone and Dispersion Relations

• Introduce Electronic Bandstructure Calculations

• Example: Tight-Binding Method for 1-D Crystals

Page 201: 麻省理工大学固体物理课件

Solutions of Lattice Equations of MotionSolutions of Lattice Equations of MotionConvert to Difference EquationConvert to Difference Equation

Time harmonic solutions…

Plugging in, converts equation of motion into coupled difference equations:

Page 202: 麻省理工大学固体物理课件

Solutions of Lattice Equations of MotionSolutions of Lattice Equations of Motion

We can guess solution of the form:

This is equivalent to taking the z-transform…

Page 203: 麻省理工大学固体物理课件

Solutions of Lattice Equations of MotionSolutions of Lattice Equations of MotionConsider Consider Undamped Undamped Lattice VibrationsLattice Vibrations

We are going to consider the undamped vibrations of the lattice:

Page 204: 麻省理工大学固体物理课件

Solutions of Lattice Equations of MotionSolutions of Lattice Equations of MotionDynamical MatrixDynamical Matrix

Page 205: 麻省理工大学固体物理课件

Solution of 1Solution of 1--D Lattice Equation of MotionD Lattice Equation of MotionExample of Nearest Neighbor InteractionsExample of Nearest Neighbor Interactions

ω

kk=π/ak=-π/ak=-2π/a k=2π/a

1st Brillouin zone 2nd Brillouin zone2nd Brillouin zone

A B

From what we know about Brillouin zones the points A and B (related by a reciprocal lattice vector) must be identical

This implies that the wave form of the vibrating atoms must also be identical.

Page 206: 麻省理工大学固体物理课件

Solution of 3Solution of 3--D Lattice Equation of MotionD Lattice Equation of Motion

Page 207: 麻省理工大学固体物理课件

Phonon Dispersion in FCC with 2 Atom BasisPhonon Dispersion in FCC with 2 Atom Basis

http://debian.mps.krakow.pl/phonon/Public/phrefer.html

Page 208: 麻省理工大学固体物理课件

Approaches to Calculating Electronic Approaches to Calculating Electronic BandstructureBandstructure

Nearly Free Electron Approximation:

Cellular Methods (Augmented Plane Wave):

• Plane wave between outside rs• Atomic orbital inside rs (core)

• Superposition of a few plane waves

Pseudopotential Approximation:

• Superposition of plane wavescoupled by pseudopotential

k.p:• Superposition of bandedge (k=0) wavefunctions

Tight-binding Approximation (LCAO):

• Superposition of atomic orbitals

Page 209: 麻省理工大学固体物理课件

Band Formation in 1Band Formation in 1--D SolidD SolidSimple model for a solid: the one-dimensional solid, which consists of a single, infinitely long

line of atoms, each one having one s orbital available for forming molecular orbitals (MOs).

“s” band

When the chain is extended:

The range of energies covered by the MOs is spread

This range of energies is filled in with more and more orbitals

The width of the range of energies of the MOs is finite, while the number of molecular orbitals is infinite: This is called a band .

Page 210: 麻省理工大学固体物理课件

TightTight--binding (LCAO) Band Theorybinding (LCAO) Band Theory

Page 211: 麻省理工大学固体物理课件

LCAO LCAO WavefunctionWavefunction

Page 212: 麻省理工大学固体物理课件

Energy for LCAO BandsEnergy for LCAO Bands

Page 213: 麻省理工大学固体物理课件

Energy for LCAO BandsEnergy for LCAO Bands

Reduced Overlap Matrix:Reduced Hamiltonian Matrix:

Page 214: 麻省理工大学固体物理课件

Reduced Overlap Matrix for 1Reduced Overlap Matrix for 1--D LatticeD LatticeSingle orbital, single atom basisSingle orbital, single atom basis

Page 215: 麻省理工大学固体物理课件

Reduced Hamiltonian Matrix for 1Reduced Hamiltonian Matrix for 1--D LatticeD LatticeSingle orbital, single atom basisSingle orbital, single atom basis

Page 216: 麻省理工大学固体物理课件

Energy Band for 1Energy Band for 1--D LatticeD LatticeSingle orbital, single atom basisSingle orbital, single atom basis

Page 217: 麻省理工大学固体物理课件

LCAOLCAO WavefunctionWavefunction for 1for 1--D LatticeD LatticeSingle orbital, single atom basisSingle orbital, single atom basis

Page 218: 麻省理工大学固体物理课件

LCAOLCAO WavefunctionWavefunction for 1for 1--D LatticeD LatticeSingle orbital, single atom basisSingle orbital, single atom basis

kk = 0= 0

kk ≠≠ 00

kk = = ππ / / aa

)/(2 Napk π=

Page 219: 麻省理工大学固体物理课件

LCAOLCAO WavefunctionWavefunction for 1for 1--D LatticeD LatticeSingle orbital, single atom basisSingle orbital, single atom basis

remember H2 ?lowest energy (fewest nodes)

H2

highest energy (most nodes)

Page 220: 麻省理工大学固体物理课件

Bloch’s TheoremBloch’s Theorem

Translation of wavefunction by a lattice constant…

…yields the original wavefunction multiplied by a phase factor

Consistent that the probability density is equal at each lattice site

Page 221: 麻省理工大学固体物理课件

Wavefunction Wavefunction NormalizationNormalization

Using periodic boundary conditione for a crystal with N lattice sites between boundaries…

Page 222: 麻省理工大学固体物理课件

Counting Number of States in a BandCounting Number of States in a Band

Combining periodic boundary condition…

…with Bloch’s theorem…

…yields a discrete set of k-vectors

Within the 1st Brillouin Zone there are N states or 2N electrons

Page 223: 麻省理工大学固体物理课件

TightTight--binding and Lattice Wave Formalismbinding and Lattice Wave Formalism

Electrons (LCAO) Lattice Waves

Page 224: 麻省理工大学固体物理课件

6.730 Physics for Solid State Applications

Lecture 13: Electrons in a Periodic Solid

Outline

• Review Electronic Bandstructure Calculations

• Example: 1-D Crystals with Two Atomic Functions

• Example: 1-D Crystals with Two Atom Basis

Page 225: 麻省理工大学固体物理课件

OverviewOverview

2N electrons each for px,py,pz

2N electrons

Page 226: 麻省理工大学固体物理课件

TightTight--binding and Lattice Wave Formalismbinding and Lattice Wave Formalism

Electrons (LCAO) Lattice Waves

Page 227: 麻省理工大学固体物理课件

Energy for LCAO BandsEnergy for LCAO Bands

Page 228: 麻省理工大学固体物理课件

Energy for LCAO BandsEnergy for LCAO Bands

Reduced Hamiltonian Matrix: Reduced Overlap Matrix:

Page 229: 麻省理工大学固体物理课件

Reduced Overlap Matrix for 1Reduced Overlap Matrix for 1--D LatticeD LatticeSingle orbital, single atom basisSingle orbital, single atom basis

Page 230: 麻省理工大学固体物理课件

Reduced Hamiltonian Matrix for 1Reduced Hamiltonian Matrix for 1--D LatticeD LatticeSingle orbital, single atom basisSingle orbital, single atom basis

Page 231: 麻省理工大学固体物理课件

Energy Band for 1Energy Band for 1--D LatticeD LatticeSingle orbital, single atom basisSingle orbital, single atom basis

Page 232: 麻省理工大学固体物理课件

LCAOLCAO WavefunctionWavefunction for 1for 1--D LatticeD LatticeSingle orbital, single atom basisSingle orbital, single atom basis

kk = 0= 0

kk ≠≠ 00

kk = = ππ / / aa

)/(2 Napk π=

Page 233: 麻省理工大学固体物理课件

Energy Band for 1Energy Band for 1--D LatticeD LatticeTwo orbital, single atom basisTwo orbital, single atom basis

2N electrons each for px,py,pz

2N electrons

Page 234: 麻省理工大学固体物理课件

Energy Band for 1Energy Band for 1--D LatticeD LatticeTwo orbital, single atom basisTwo orbital, single atom basis

Page 235: 麻省理工大学固体物理课件

Energy Band for 1Energy Band for 1--D LatticeD LatticeTwo orbital, single atom basisTwo orbital, single atom basis

Reduced Hamiltonian and Overlap Matrices:

Page 236: 麻省理工大学固体物理课件

Energy Band for 1Energy Band for 1--D LatticeD LatticeTwo orbital, single atom basisTwo orbital, single atom basis

Hamiltonian MatrixHamiltonian Matrix

Page 237: 麻省理工大学固体物理课件

Energy Band for 1Energy Band for 1--D LatticeD LatticeTwo orbital, single atom basisTwo orbital, single atom basis

Overlap MatrixOverlap Matrix

Page 238: 麻省理工大学固体物理课件

Energy Band for 1Energy Band for 1--D LatticeD LatticeTwo orbital, single atom basisTwo orbital, single atom basis

Page 239: 麻省理工大学固体物理课件

Energy Band for 1Energy Band for 1--D LatticeD LatticeTwo orbital, single atom basisTwo orbital, single atom basis

SolutionsSolutions

At k=0:

pure s

pure p

Page 240: 麻省理工大学固体物理课件

Energy Band for 1Energy Band for 1--D LatticeD LatticeTwo orbital, single atom basisTwo orbital, single atom basis

SolutionsSolutions

At k=π/a:

pure s

pure p

For k away from zone center and zone boundary, bands are mixture of s and pbut will have a dominant s-like or p-like character….

At high symmetry points tight-binding returns pure orbitals…

Page 241: 麻省理工大学固体物理课件

Energy Band for 1Energy Band for 1--D LatticeD LatticeTwo orbital, single atom basisTwo orbital, single atom basis

SolutionsSolutions

Page 242: 麻省理工大学固体物理课件

Energy Band for 1Energy Band for 1--D LatticeD LatticeSingle orbital, two atom basisSingle orbital, two atom basis

Page 243: 麻省理工大学固体物理课件

Energy Band for 1Energy Band for 1--D LatticeD LatticeSingle orbital, two atom basisSingle orbital, two atom basis

Page 244: 麻省理工大学固体物理课件

Energy Band for 1Energy Band for 1--D LatticeD LatticeSingle orbital, two atom basisSingle orbital, two atom basis

At k=0:

Page 245: 麻省理工大学固体物理课件

Energy Band for 1Energy Band for 1--D LatticeD LatticeSingle orbital, two atom basisSingle orbital, two atom basis

At k=π/a:

Page 246: 麻省理工大学固体物理课件

6.730 Physics for Solid State Applications

Lecture 14: Electrons in a Periodic Solid

Outline

• Review LCAO for 1-D Crystals

• Preview Problem for 2-D Crystal

• 2-D and 3-D Tight-binding

• Example: 2-D Crystal, single atom basis, 4 orbitals

Page 247: 麻省理工大学固体物理课件

Energy Band for 1Energy Band for 1--D LatticeD LatticeSingle orbital, single atom basisSingle orbital, single atom basis

lowest energy (fewest nodes)

highest energy (most nodes)

Page 248: 麻省理工大学固体物理课件

Energy Band for 1Energy Band for 1--D LatticeD LatticeTwo orbital, single atom basisTwo orbital, single atom basis

Es= - 12 eV, Ep= - 6 eV, Vssσ= - 1 eV, Vppσ = Vppπ = + 1 eV

Page 249: 麻省理工大学固体物理课件

Energy Band for 1Energy Band for 1--D LatticeD LatticeSingle orbital, two atom basisSingle orbital, two atom basis

Es= - 0.9 eV, Vs,a= - 0.4 eV, Vs,a-d = - 0.2 eV

Page 250: 麻省理工大学固体物理课件

Energy Band for 1Energy Band for 1--D LatticeD LatticeTwo orbital, single atom basisTwo orbital, single atom basis

Hamiltonian MatrixHamiltonian Matrix

Page 251: 麻省理工大学固体物理课件

Preview Problem: 2D Monatomic Square Crystals Preview Problem: 2D Monatomic Square Crystals

Page 252: 麻省理工大学固体物理课件

LCAO Basis for FCC CrystalsLCAO Basis for FCC Crystals

Ga: [Ar]3d10 4s2 4p1

As: [Ar]3d10 4s2 4p3

Page 253: 麻省理工大学固体物理课件

TightTight--binding for 3binding for 3--D Crystals D Crystals

Best estimate for energy with LCAO basis….

Hamiltonian matrix….

Overlap matrix….

Page 254: 麻省理工大学固体物理课件

TightTight--binding for 3binding for 3--D Crystals D Crystals

Since the probability of finding electrons at each lattice site is equal…

Consequently…

Page 255: 麻省理工大学固体物理课件

Orbital Overlaps for 3Orbital Overlaps for 3--D Crystals D Crystals

distance from positive to negative lobe of p-orbital

Page 256: 麻省理工大学固体物理课件

Orbital Overlaps for 3Orbital Overlaps for 3--D Crystals D Crystals

Page 257: 麻省理工大学固体物理课件

Orbital Overlaps for 3Orbital Overlaps for 3--D CrystalsD CrystalsDiamond and Diamond and ZincblendeZincblende

Page 258: 麻省理工大学固体物理课件

2D Monatomic Square Crystals 2D Monatomic Square Crystals

Page 259: 麻省理工大学固体物理课件

2D Monatomic Square Crystals2D Monatomic Square CrystalsDispersion RelationsDispersion Relations

Es= - 10.11 eV

Ep= - 4.86 eV

a = 5.5 A

Page 260: 麻省理工大学固体物理课件

2D Monatomic Square Crystals2D Monatomic Square CrystalsDispersion RelationsDispersion Relations

WΓX

X

W

Γ

Page 261: 麻省理工大学固体物理课件

2D Monatomic Square Crystals2D Monatomic Square CrystalsDispersion Relations at Dispersion Relations at ΓΓ=0=0

Page 262: 麻省理工大学固体物理课件

2D Monatomic Square Crystals2D Monatomic Square CrystalsDispersion Relations at Dispersion Relations at ΓΓ=0=0

Page 263: 麻省理工大学固体物理课件

2D Monatomic Square Crystals2D Monatomic Square CrystalsVariations with Lattice ConstantVariations with Lattice Constant

X WΓ

X WΓX

W

Γ

a = 8.3 A

Page 264: 麻省理工大学固体物理课件

2D Monatomic Square Crystals2D Monatomic Square CrystalsDispersion RelationsDispersion Relations

X WΓ

X WΓ

a = 5.5 A

X

W

Γ

a = 2.8 A

Page 265: 麻省理工大学固体物理课件

2D Monatomic Square Crystals2D Monatomic Square CrystalsFermi Fermi EnergyEnergy

How many states per band ?

where n is the areal density of atoms

To estimate Fermi energy we need to know the number of outermost valence electrons each atom has…

11Na

12Mg

13Al

14Si

15P

16S

17Cl

18Ar

I II III IV V VI VII VIII

Page 266: 麻省理工大学固体物理课件

2D Monatomic Square Crystals2D Monatomic Square CrystalsDispersion RelationsDispersion Relations

11Na

12Mg

13Al

14Si

15P

16S

17Cl

18Ar

I II III IV V VI VII VIII

conductor

insulator

conductor

a = 5.5 A

Al

Mg

X

W

Γ Na

Reducing a, makes Mg a conductor !

Page 267: 麻省理工大学固体物理课件

Name: __________________

Matrix element (s-px) _________________________

Matrix element (s-py) _________________________

Matrix element (px -px) _________________________

Matrix element (px - py) _________________________

Page 268: 麻省理工大学固体物理课件

6.730 Physics for Solid State Applications

Lecture 15: Electrons in a Periodic Solid

Outline

• Review 2-D Tight-binding

• 3-D Tight-binding

• Semiconductor Fermi Energy

• Silicon Bandstructure

Page 269: 麻省理工大学固体物理课件

2D Monatomic Square Crystals 2D Monatomic Square Crystals

Page 270: 麻省理工大学固体物理课件

2D Monatomic Square Crystals2D Monatomic Square CrystalsDispersion RelationsDispersion Relations

Es= - 10.11 eV

Ep= - 4.86 eV

a = 5.5 A

Page 271: 麻省理工大学固体物理课件

2D Monatomic Square Crystals2D Monatomic Square CrystalsDispersion RelationsDispersion Relations

WΓX

X

W

Γ

Page 272: 麻省理工大学固体物理课件

2D Monatomic Square Crystals2D Monatomic Square CrystalsVariations with Lattice ConstantVariations with Lattice Constant

X WΓ

X WΓX

W

Γ

a = 8.3 A

Page 273: 麻省理工大学固体物理课件

2D Monatomic Square Crystals2D Monatomic Square CrystalsDispersion RelationsDispersion Relations

X WΓ

X WΓ

a = 5.5 A

X

W

Γ

a = 2.8 A

Page 274: 麻省理工大学固体物理课件

2D Monatomic Square Crystals2D Monatomic Square CrystalsFermi Fermi EnergyEnergy

How many states per band ?

where n is the areal density of atoms

To estimate Fermi energy we need to know the number of outermost valence electrons each atom has…

11Na

12Mg

13Al

14Si

15P

16S

17Cl

18Ar

I II III IV V VI VII VIII

Page 275: 麻省理工大学固体物理课件

2D Monatomic Square Crystals2D Monatomic Square CrystalsDispersion RelationsDispersion Relations

11Na

12Mg

13Al

14Si

15P

16S

17Cl

18Ar

I II III IV V VI VII VIII

conductor

insulator

conductor

a = 5.5 A

Al

Mg

X

W

Γ Na

Reducing a, makes Mg a conductor (semimetal) !

Page 276: 麻省理工大学固体物理课件

LCAO Basis for FCC CrystalsLCAO Basis for FCC Crystals

Ga: [Ar]3d10 4s2 4p1

As: [Ar]3d10 4s2 4p3

Page 277: 麻省理工大学固体物理课件

TightTight--binding for 3binding for 3--D Crystals D Crystals

Best estimate for energy with LCAO basis….

Hamiltonian matrix….

Overlap matrix….

Page 278: 麻省理工大学固体物理课件

TightTight--binding for 3binding for 3--D Crystals D Crystals

Since the probability of finding electrons at each lattice site is equal…

Consequently…

Page 279: 麻省理工大学固体物理课件

Energy Band for 1Energy Band for 1--D LatticeD LatticeTwo orbital, single atom basisTwo orbital, single atom basis

Hamiltonian MatrixHamiltonian Matrix

Page 280: 麻省理工大学固体物理课件

Orbital Overlaps for 3Orbital Overlaps for 3--D CrystalsD CrystalsDiamond and Diamond and ZincblendeZincblende

Page 281: 麻省理工大学固体物理课件

Orbital Overlaps for 3Orbital Overlaps for 3--D Crystals D Crystals

+-+-

+-

= +

+=

Page 282: 麻省理工大学固体物理课件

Orbital Overlaps for 3Orbital Overlaps for 3--D Crystals D Crystals

+-

+-

+-

+-+-

+- = +

+=

Page 283: 麻省理工大学固体物理课件

Orbital Overlaps for 3Orbital Overlaps for 3--D CrystalsD CrystalsDiamond and Diamond and ZincblendeZincblende

109o

Page 284: 麻省理工大学固体物理课件

Zincblende Zincblende LCAO BandsLCAO BandsReduced Hamiltonian MatrixReduced Hamiltonian Matrix

Page 285: 麻省理工大学固体物理课件

Zincblende Zincblende LCAO BandsLCAO BandsNearest NeighborsNearest Neighbors

Page 286: 麻省理工大学固体物理课件

Zincblende Zincblende LCAO BandsLCAO BandsReduced Hamiltonian MatrixReduced Hamiltonian Matrix

Page 287: 麻省理工大学固体物理课件

Silicon Silicon Bandstructure Bandstructure

Si: [Ne] 3s2 3p2

4 e- per silicon atom2 silicon atoms per lattice site

total: 8 electrons at each site

Page 288: 麻省理工大学固体物理课件

Silicon and GermaniumSilicon and Germanium Bandstructure Bandstructure

Si: [Ne] 3s2 3p2 Ge: [Ar]3d10 4s2 4p2

Page 289: 麻省理工大学固体物理课件

LCAO and Nearly Free Electron LCAO and Nearly Free Electron Bandstructure Bandstructure

Page 290: 麻省理工大学固体物理课件

6.730 Physics for Solid State Applications

Lecture 16: Nearly Free Electron Bands

Outline

• Fun: Application of 1-D Tight Binding

• Free Electron in Reduced Zone Representation

• Nearly Free Electron Bands

• Labeling Eigenvectors

Page 291: 麻省理工大学固体物理课件

B. Ethene and frontier orbitals Ethene: CH2=CH2Within the Hückel approximation, the secular determinant becomes:

022EE

E

E- = - energy of the Lowest Unoccupied Molecular Orbital (LUMO)

E+ = + energy of the Highest Occupied Molecular Orbital (HOMO)

LUMO= 2 *

HOMO= 1

HOMO and LUMO are the frontier orbitals of a molecule.

those are important orbitals because they are largely responsible for many chemical andoptical properties of the molecule.

Note: The orbitals together give rise to an cylindricaldistribution of charge. Electrons can circulate around this toruscan create magnetic effect detected in NMR

2| |+ +

- -

+ -

+-

Sketch Calculated (Hartree-Fock level)

Courtesy of

Page 292: 麻省理工大学固体物理课件
Page 293: 麻省理工大学固体物理课件
Page 294: 麻省理工大学固体物理课件

LCAO and Nearly Free Electron LCAO and Nearly Free Electron BandstructureBandstructure

Page 295: 麻省理工大学固体物理课件

Free Electron Dispersion RelationFree Electron Dispersion Relation

E

/a/a /a/ak

Page 296: 麻省理工大学固体物理课件

Nearly Free Electron Dispersion RelationNearly Free Electron Dispersion RelationFor weak lattice potentials, E vs k is still approximately correct…

Dispersion relation must be periodic….

E

/a/a /a/ak

Page 297: 麻省理工大学固体物理课件

Nearly Free Electron Dispersion RelationNearly Free Electron Dispersion Relation

Dispersion relation must be periodic….

Expect all solutions to be represented within the Brillouin Zone (reduced zone)

E

/a/a /a/ak

Page 298: 麻省理工大学固体物理课件

Nearly Free Electron Dispersion RelationNearly Free Electron Dispersion Relation

Dispersion relation must be periodic….

Expect all solutions to be represented within the Brillouin Zone (reduced zone)

/a/a /a/a

E

k

Page 299: 麻省理工大学固体物理课件

Nearly Free Electron Dispersion RelationNearly Free Electron Dispersion Relation

Dispersion relation must be periodic….

Expect all solutions to be represented within the Brillouin Zone (reduced zone)

/a/ak

/a/a

E

Page 300: 麻省理工大学固体物理课件

Nearly Free Electron Dispersion RelationNearly Free Electron Dispersion RelationExtension to 3-D requires, translation by reciprocal lattice vectors

in all directions…

Ge

/a/ak

/a/a

E

Page 301: 麻省理工大学固体物理课件

Nearly Free Electron Dispersion RelationNearly Free Electron Dispersion RelationExtension to 3-D requires, translation by reciprocal lattice vectors

in all directions…

/a/ak

/a/a

EGe

Page 302: 麻省理工大学固体物理课件

LCAO and Nearly Free Electron LCAO and Nearly Free Electron BandstructureBandstructure

Page 303: 麻省理工大学固体物理课件

Finite Basis Set Expansion with Plane Waves Finite Basis Set Expansion with Plane Waves

Fourier series expansion of Bloch function

Basis functions in expansion are…

Page 304: 麻省理工大学固体物理课件

Finite Basis Set Expansion with Plane Waves Finite Basis Set Expansion with Plane Waves Hamiltonian MatrixHamiltonian Matrix

Basis functions are exactly orthogonal…overlaps are all zero.

Page 305: 麻省理工大学固体物理课件

Finite Basis Set Expansion with Plane Waves Finite Basis Set Expansion with Plane Waves Hamiltonian MatrixHamiltonian Matrix

Fourier Series coefficients for the lattice potential…

Page 306: 麻省理工大学固体物理课件

Finite Basis Set Expansion with Plane Waves Finite Basis Set Expansion with Plane Waves Hamiltonian MatrixHamiltonian Matrix

Page 307: 麻省理工大学固体物理课件

InfiniteInfinite Basis Set Expansion with Plane Waves Basis Set Expansion with Plane Waves Hamiltonian MatrixHamiltonian Matrix

Page 308: 麻省理工大学固体物理课件

InfiniteInfinite Basis Set Expansion with Plane Waves Basis Set Expansion with Plane Waves Hamiltonian MatrixHamiltonian Matrix

Page 309: 麻省理工大学固体物理课件

Eigenvectors for Nearly Free Electron BandsEigenvectors for Nearly Free Electron Bands

Fourier transform

Sample eigenvector…

Page 310: 麻省理工大学固体物理课件

Eigenvectors for Nearly Free Electron BandsEigenvectors for Nearly Free Electron Bands

Page 311: 麻省理工大学固体物理课件

Eigenvectors for Nearly Free Electron BandsEigenvectors for Nearly Free Electron Bands

Page 312: 麻省理工大学固体物理课件

Eigenvectors for Nearly Free Electron BandsEigenvectors for Nearly Free Electron Bands

Page 313: 麻省理工大学固体物理课件

6.730 Physics for Solid State Applications

Lecture 17: Nearly Free Electron Bands (Part III)

Outline

• Free Electron Bands

• Nearly Free Electron Bands

• Approximate Solution of Nearly Free Electron Bands

• Bloch’s Theorem

• Properties of Bloch Functions

Page 314: 麻省理工大学固体物理课件

Free Electron Dispersion RelationFree Electron Dispersion Relation

E

π/a−π/a 3π/a−3π/ak

Page 315: 麻省理工大学固体物理课件

Nearly Free Electron Dispersion RelationNearly Free Electron Dispersion RelationFor weak lattice potentials, E vs k is still approximately correct…

Dispersion relation must be periodic….

E

π/a−π/a 3π/a−3π/ak

Page 316: 麻省理工大学固体物理课件

Nearly Free Electron Dispersion RelationNearly Free Electron Dispersion Relation

Dispersion relation must be periodic….

Expect all solutions to be represented within the Brillouin Zone (reduced zone)

E

π/a−π/a 3π/a−3π/ak

Page 317: 麻省理工大学固体物理课件

Nearly Free Electron Dispersion RelationNearly Free Electron Dispersion Relation

Dispersion relation must be periodic….

Expect all solutions to be represented within the Brillouin Zone (reduced zone)

3π/a−3π/a π/a−π/a

E

k

Page 318: 麻省理工大学固体物理课件

Nearly Free Electron Dispersion RelationNearly Free Electron Dispersion Relation

Dispersion relation must be periodic….

Expect all solutions to be represented within the Brillouin Zone (reduced zone)

3π/a−3π/ak

π/a−π/a

E

Page 319: 麻省理工大学固体物理课件

Nearly Free Electron Dispersion RelationNearly Free Electron Dispersion RelationExtension to 3-D requires, translation by reciprocal lattice vectors

in all directions…

Ge

3π/a−3π/ak

π/a−π/a

E

Page 320: 麻省理工大学固体物理课件

Nearly Free Electron Dispersion RelationNearly Free Electron Dispersion RelationExtension to 3-D requires, translation by reciprocal lattice vectors

in all directions…

3π/a−3π/ak

π/a−π/a

EGe

Page 321: 麻省理工大学固体物理课件

Finite Basis Set Expansion with Plane Waves Finite Basis Set Expansion with Plane Waves

Fourier series expansion of Bloch function

Basis functions in expansion are…

Page 322: 麻省理工大学固体物理课件

Finite Basis Set Expansion with Plane Waves Finite Basis Set Expansion with Plane Waves Hamiltonian MatrixHamiltonian Matrix

Fourier Series coefficients for the lattice potential…

Page 323: 麻省理工大学固体物理课件

InfiniteInfinite Basis Set Expansion with Plane Waves Basis Set Expansion with Plane Waves Hamiltonian MatrixHamiltonian Matrix

Page 324: 麻省理工大学固体物理课件

LCAO and Nearly Free Electron LCAO and Nearly Free Electron Bandstructure Bandstructure

Page 325: 麻省理工大学固体物理课件

Why Is Lattice Potential Important Near Crossing Points ? Why Is Lattice Potential Important Near Crossing Points ? Let’s consider lattice potential to be a perturbation on free electrons….

Page 326: 麻省理工大学固体物理课件

Periodic Perturbation of Free Electron Bands Periodic Perturbation of Free Electron Bands

Energy up to second-order in perturbation expansion….

Matrix elements for periodic potential…

Page 327: 麻省理工大学固体物理课件

Periodic Perturbation of Free Electron Bands Periodic Perturbation of Free Electron Bands

If the potential is sufficiently weak, this is a small perturbation on the

free electron bands, unless

Since these are free electron energies, we can relate this easily to the wave vectors…

, when k is at edge of B-Z

Page 328: 麻省理工大学固体物理课件

Periodic Perturbation of Free Electron Bands Periodic Perturbation of Free Electron Bands

If only two bands cross…

Page 329: 麻省理工大学固体物理课件

Periodic Perturbation of Free Electron BandsPeriodic Perturbation of Free Electron BandsSolutionsSolutions

Eigen-values…

Eigen-vectors…

Page 330: 麻省理工大学固体物理课件

Periodic Perturbation of Free Electron BandsPeriodic Perturbation of Free Electron BandsSolutionsSolutions

high energy solutionlow energy solution

Plots are for a potential of the form…

Page 331: 麻省理工大学固体物理课件

Bloch’s TheoremBloch’s Theorem

‘When I started to think about it, I felt that the main problem was to explain how the electrons could sneak by all the ions in a metal….By straight Fourier analysis I found to my delight that the wave differed from the plane wave of free electrons only by a periodic modulation’

F. BLOCH

For wavefunctions that are eigenenergy states in a periodic potential…

or

Page 332: 麻省理工大学固体物理课件

Proof of Bloch’s TheoremProof of Bloch’s Theorem

Step 1: Translation operator commutes with Hamiltonain…so they share the same eigenstates.

Translation and periodic Hamiltonian commute…

Therefore,

Step 2: Translations along different vectors add…so the eigenvalues of translation operator are exponentials

Page 333: 麻省理工大学固体物理课件

Normalization of Bloch FunctionsNormalization of Bloch Functions

Conventional (A&M) choice of Bloch amplitude…

6.730 choice of Bloch amplitude…

Normalization of Bloch amplitude…

Page 334: 麻省理工大学固体物理课件

Momentum and Crystal MomentumMomentum and Crystal Momentum

where the Bloch amplitude is normalized…

Physical momentum is not equal to crystal momentum

So how do we figure out the velocity and trajectory in real space of electrons ?

Page 335: 麻省理工大学固体物理课件

6.730 Physics for Solid State Applications

Lecture 18: Properties of Bloch Functions

Outline

• Momentum and Crystal Momentum

• k.p Hamiltonian

• Velocity of Electrons in Bloch States

Page 336: 麻省理工大学固体物理课件

Bloch’s TheoremBloch’s Theorem

‘When I started to think about it, I felt that the main problem was to explain how the electrons could sneak by all the ions in a metal….By straight Fourier analysis I found to my delight that the wave differed from the plane wave of free electrons only by a periodic modulation’

F. BLOCH

For wavefunctions that are eigenenergy states in a periodic potential…

or

Page 337: 麻省理工大学固体物理课件

Proof of Bloch’s TheoremProof of Bloch’s Theorem

Step 1: Translation operator commutes with Hamiltonain…so they share the same eigenstates.

Translation and periodic Hamiltonian commute…

Therefore,

Step 2: Translations along different vectors add…so the eigenvalues of translation operator are exponentials

Page 338: 麻省理工大学固体物理课件

Normalization of Bloch FunctionsNormalization of Bloch Functions

Conventional (A&M) choice of Bloch amplitude…

6.730 choice of Bloch amplitude…

Normalization of Bloch amplitude…

Page 339: 麻省理工大学固体物理课件

Momentum and Crystal MomentumMomentum and Crystal Momentum

where the Bloch amplitude is normalized…

Physical momentum is not equal to crystal momentum

So how do we figure out the velocity and trajectory in real space of electrons ?

Page 340: 麻省理工大学固体物理课件

Momentum and Crystal MomentumMomentum and Crystal Momentum

Page 341: 麻省理工大学固体物理课件

Momentum and Crystal MomentumMomentum and Crystal Momentum

canceling exponentials from both sides

A useful identity, for the action of the momentum operator on the Bloch amplitude….

Leads us to, the action of the Hamiltonian on the Bloch amplitude….

Page 342: 麻省理工大学固体物理课件

k.p Hamiltoniank.p Hamiltonian(in our case q.p)(in our case q.p)

If we know energies as k we can extend this to calculate energies at k+qfor small q…

Page 343: 麻省理工大学固体物理课件

k.p Hamiltoniank.p Hamiltonian

Taylor Series expansion of energies…

Matching terms to first order in q…

Page 344: 麻省理工大学固体物理课件

Velocity of an Electron in a Bloch Velocity of an Electron in a Bloch EigenstateEigenstate

Page 345: 麻省理工大学固体物理课件

Electron Electron Wavepacket Wavepacket in Periodic Potentialin Periodic Potential

Wavepacket in a dispersive media…

So long as the wavefunction has the same short range periodicity as the underlying potential, the electron can experience smooth uniform motion at a constant velocity.

Page 346: 麻省理工大学固体物理课件

Energy Surface for 2Energy Surface for 2--D Crystal D Crystal

In 2-D, circular energy contours result in parallel to

Page 347: 麻省理工大学固体物理课件

Energy Surface for 2Energy Surface for 2--D Crystal D Crystal

In general, for higher lying energies is not parallel to

Page 348: 麻省理工大学固体物理课件

Silicon Silicon Bandstructure Bandstructure

4 valence bands4 conduction bands

Page 349: 麻省理工大学固体物理课件

4 valence bands4 conduction bands

Silicon Silicon Bandstructure Bandstructure

Page 350: 麻省理工大学固体物理课件

4 valence bands4 conduction bands

Silicon Silicon Bandstructure Bandstructure

Page 351: 麻省理工大学固体物理课件

4 valence bands4 conduction bands

Silicon Silicon Bandstructure Bandstructure

Page 352: 麻省理工大学固体物理课件

Semiclassical Semiclassical Equation of MotionEquation of Motion

Ehrenfest’s Theorem:

Consider some external force that perturbs the electron in the lattice…

An elegant derivation can be made if we consider the equation of motion for the lattice translation operator

Since the lattice translation and Hamiltonian commute with each other…

Page 353: 麻省理工大学固体物理课件

Semiclassical Semiclassical Equation of MotionEquation of Motion

Lets consider a specific external force…an external uniform electric field…

Equation of motion for translation operator becomes…

Can evaluate the commutation relation in the position basis…

Page 354: 麻省理工大学固体物理课件

Semiclassical Semiclassical Equation of MotionEquation of Motion

Plugging in this commutation relation into the equation of motion…

Solving the simple differential equation…

From Bloch’s Thm. We know the eigenvalues of TR…

Page 355: 麻省理工大学固体物理课件

Electron Motion in a Uniform Electric FieldElectron Motion in a Uniform Electric Field22--D CrystalD Crystal

http://www.physics.cornell.edu/sss/ziman/ziman.html

Page 356: 麻省理工大学固体物理课件

6.730 Physics for Solid State Applications

Lecture 19: Motion of Electronic Wavepackets

Outline

• Review of Last Time

• Detailed Look at the Translation Operator

• Electronic Wavepackets

• Effective Mass Theorem

Page 357: 麻省理工大学固体物理课件

Proof of Bloch’s TheoremProof of Bloch’s Theorem

Step 1: Translation operator commutes with Hamiltonain…so they share the same eigenstates.

Translation and periodic Hamiltonian commute…

Therefore,

Step 2: Translations along different vectors add…so the eigenvalues of translation operator are exponentials

Page 358: 麻省理工大学固体物理课件

Momentum and Crystal MomentumMomentum and Crystal Momentum

Leads us to, the action of the Hamiltonian on the Bloch amplitude….

Page 359: 麻省理工大学固体物理课件

k.p Hamiltoniank.p Hamiltonian(in our case q.p)(in our case q.p)

If we know energies as k we can extend this to calculate energies at k+qfor small q…

Page 360: 麻省理工大学固体物理课件

k.p Hamiltoniank.p Hamiltonian

Taylor Series expansion of energies…

Matching terms to first order in q…

Page 361: 麻省理工大学固体物理课件

Energy Surface for 2Energy Surface for 2--D Crystal D Crystal

In 2-D, circular energy contours result in parallel to

Page 362: 麻省理工大学固体物理课件

Energy Surface for 2Energy Surface for 2--D Crystal D Crystal

In general, for higher lying energies is not parallel to

Page 363: 麻省理工大学固体物理课件

Semiclassical Semiclassical Equation of MotionEquation of Motion

Plugging in this commutation relation into the equation of motion…

Solving the simple differential equation…

From Bloch’s Thm. We know the eigenvalues of TR…

Page 364: 麻省理工大学固体物理课件

Electron Motion in a Uniform Electric FieldElectron Motion in a Uniform Electric Field22--D CrystalD Crystal

http://www.physics.cornell.edu/sss/ziman/ziman.html

Page 365: 麻省理工大学固体物理课件

Properties of the Translation OperatorProperties of the Translation Operator

Definition of the translation operator…

Bloch functions are eigenfunctions of the lattice translation operator…

Lattice translation operator commutes with the lattice Hamiltonian (Vext=0)

The translation operator commutes with other translation operators…

Page 366: 麻省理工大学固体物理课件

Properties of the Translation OperatorProperties of the Translation Operator

Lets see what the action of the following operator is…

This is just the translation operator…

Page 367: 麻省理工大学固体物理课件

Another Look at Electronic Another Look at Electronic BandstructureBandstructure

π/a−π/a 3π/a−3π/ak

E

As we will see, it is often convenient to represent the bandstructure by its inverse Fourier series expansion…

Page 368: 麻省理工大学固体物理课件

Translation Operator and Lattice HamiltonianTranslation Operator and Lattice Hamiltonian

From before, the eigenvalue equation for the translation operator is….

If we multiply this by the Fourier coefficients of the bandstructure…

…and sum over all possible lattice translations…

…we see that the eigenvalue on the left is just the bandstructure (energy)

This suggests the operator on the left is just the crystal Hamiltonian !

No wonder

Page 369: 麻省理工大学固体物理课件

Electron Electron Wavepacket Wavepacket in Periodic Potentialin Periodic Potential

Wavepacket in a dispersive media…

So long as the wavefunction has the same short range periodicity as the underlying potential, the electron can experience smooth uniform motion at a constant velocity.

Page 370: 麻省理工大学固体物理课件

Wavefunction Wavefunction of Electronic of Electronic WavepacketWavepacketThe eigenfunction for k~k0 are approximately…

A wavepacket can therefore be constructed from Bloch states as follows…

G is a slowly varying function…

Page 371: 麻省理工大学固体物理课件

Wavefunction Wavefunction of Electronic of Electronic WavepacketWavepacket

Since we construct wavepacket from a small set of k’s…

…the envelope function must vary slowly…wavepacket must be large…

Page 372: 麻省理工大学固体物理课件

Action of Crystal Hamiltonian on Action of Crystal Hamiltonian on WavepacketWavepacket

It appears that the Hamiltonian only acts on the slowly varying amplitude…

Page 373: 麻省理工大学固体物理课件

Effective Mass TheoremEffective Mass TheoremIf we can consider an external potential (eg. electric field) on the crystal…

The influence of the external field on the wavepacket…

We can solve Schrodinger’s equation just for the envelope functions…

Page 374: 麻省理工大学固体物理课件

Normalization of the Envelope FunctionNormalization of the Envelope Function

Since the envelope is slowly varying…it is nearly constant over the volume of one primitive cell…

Page 375: 麻省理工大学固体物理课件

What is the Position of What is the Position of Wavepacket Wavepacket ??

Proof that…

Page 376: 麻省理工大学固体物理课件

What is the Momentum of What is the Momentum of WavepacketWavepacket

Page 377: 麻省理工大学固体物理课件

SummarySummary

Without explicitly knowing the Bloch functions, we can solve for the envelope functions…

Bandstructure shows up in here…

The envelope functions are sufficient to determine the expectation of position and crystal momentum for the system…

Page 378: 麻省理工大学固体物理课件

6.730 Physics for Solid State Applications

Lecture 20: Impurity States

Outline

• Semiclassical Equations of Motion

• Review of Last Time: Effective Mass Hamiltonian

• Example: Impurity States

Page 379: 麻省理工大学固体物理课件

k.p Hamiltoniank.p Hamiltonian

Taylor Series expansion of energies…

Matching terms to first order in q…

Page 380: 麻省理工大学固体物理课件

Semiclassical Semiclassical Equation of MotionEquation of Motion

Plugging in this commutation relation into the equation of motion…

Solving the simple differential equation…

From Bloch’s Thm. We know the eigenvalues of TR…

Page 381: 麻省理工大学固体物理课件

Electron Motion in a Uniform Electric FieldElectron Motion in a Uniform Electric Field22--D CrystalD Crystal

http://www.physics.cornell.edu/sss/ziman/ziman.html

Page 382: 麻省理工大学固体物理课件

Properties of the Translation OperatorProperties of the Translation Operator

Definition of the translation operator…

Bloch functions are eigenfunctions of the lattice translation operator…

Lattice translation operator commutes with the lattice Hamiltonian (Vext=0)

The translation operator commutes with other translation operators…

Page 383: 麻省理工大学固体物理课件

Properties of the Translation OperatorProperties of the Translation Operator

Lets see what the action of the following operator is…

This is just the translation operator…

Page 384: 麻省理工大学固体物理课件

Another Look at Electronic Another Look at Electronic BandstructureBandstructure

π/a−π/a 3π/a−3π/ak

E

As we will see, it is often convenient to represent the bandstructure by its inverse Fourier series expansion…

Page 385: 麻省理工大学固体物理课件

Wavefunction Wavefunction of Electronic of Electronic WavepacketWavepacketThe eigenfunction for k~k0 are approximately…

A wavepacket can therefore be constructed from Bloch states as follows…

Since we construct wavepacket from a small set of k’s…

…the envelope function must vary slowly…wavepacket must be large…

Page 386: 麻省理工大学固体物理课件

Summary of Last TimeSummary of Last Time

Without explicitly knowing the Bloch functions, we can solve for the envelope functions…

Bandstructure shows up in here…

The envelope functions are sufficient to determine the expectation of position and crystal momentum for the system…

Page 387: 麻省理工大学固体物理课件

Using Using Bandstructure Bandstructure in Effective Mass Hamiltonianin Effective Mass Hamiltonian

where

Bandstructure shows up in here…

For example…

Page 388: 麻省理工大学固体物理课件

Donor Impurity States Donor Impurity States Example of Effective Mass ApproximationExample of Effective Mass Approximation

Replace silicon (IV) with group V atom…

Page 389: 麻省理工大学固体物理课件

Donor Impurity States Donor Impurity States Example of Effective Mass ApproximationExample of Effective Mass Approximation

This is a central potential problem, like the hydrogen atom…

Page 390: 麻省理工大学固体物理课件

Donor Impurity States Donor Impurity States Example of Effective Mass ApproximationExample of Effective Mass Approximation

Hydrogenic wavefunction with an equivalent Bohr radius..

EC

EV

ED

Egap~ 1 eV

n-type SiDonor ionization energy…

Page 391: 麻省理工大学固体物理课件

Donor Impurity States Donor Impurity States Example of Effective Mass ApproximationExample of Effective Mass Approximation

When there are Nd donor impurities…

E

Page 392: 麻省理工大学固体物理课件

Acceptor Impurity States Acceptor Impurity States Example of Effective Mass ApproximationExample of Effective Mass Approximation

Replace silicon (IV) with group III atom…

Page 393: 麻省理工大学固体物理课件

Acceptor Impurity States Acceptor Impurity States Example of Effective Mass ApproximationExample of Effective Mass Approximation

Another central potential problem…

Page 394: 麻省理工大学固体物理课件

Acceptor Impurity States Acceptor Impurity States Example of Effective Mass ApproximationExample of Effective Mass Approximation

Hydrogenic wavefunction with an equivalent Bohr radius..

EA

EC

EVp-type Si

Acceptor ionization energy…

Page 395: 麻省理工大学固体物理课件

6.730 Physics for Solid State Applications

Lecture 21:

Outline

• Dynamical Effective Mass

• Fermi Surfaces

• Electrons and Holes

Page 396: 麻省理工大学固体物理课件

Semiclassical Semiclassical Equations of MotionEquations of Motion

http://www.physics.cornell.edu/sss/ziman/ziman.html

Page 397: 麻省理工大学固体物理课件

Semiclassical Semiclassical Equations of MotionEquations of Motion

Lets try to put these equations together….

Looks like Newton’s Law if we define the mass as follows…

dynamical effective mass

mass changes with k…so it changes with time according to k

Page 398: 麻省理工大学固体物理课件

Dynamical Effective Mass (3D)Dynamical Effective Mass (3D)

Extension to 3-D requires some care, F and a don’t necessarily point in the same direction

where

Page 399: 麻省理工大学固体物理课件

Dynamical Effective Mass (3D)Dynamical Effective Mass (3D)Ellipsoidal Energy SurfacesEllipsoidal Energy Surfaces

Fortunately, energy surfaces can often be approximate as…

Page 400: 麻省理工大学固体物理课件

2D Monatomic Square Crystals2D Monatomic Square CrystalsDispersion RelationsDispersion Relations

11Na

12Mg

13Al

14Si

15P

16S

17Cl

18Ar

I II III IV V VI VII VIII

conductor

insulator

conductor

a = 5.5 A

Al

‘Mg’

X

W

Γ Na

Page 401: 麻省理工大学固体物理课件

Silicon Silicon Bandstructure Bandstructure

4 valence bands4 conduction bands

Si: [Ne] 3s2 3p2

4 e- per silicon atom2 silicon atoms per lattice site

total: 8 electrons at each site

Page 402: 麻省理工大学固体物理课件

Finite TemperaturesFinite Temperatures

Page 403: 麻省理工大学固体物理课件

Free Electron Free Electron Fermi Fermi Surfaces (2D)Surfaces (2D)T=0T=0

For free electrons energy surfaces are simple spheres (circles)…Valence (# of electrons) determines radius of energy surface… 1st zone

2nd zone

3rd zone

Page 404: 麻省理工大学固体物理课件

FermiFermi Surfaces (3D)Surfaces (3D)

When k near to BZ boundary:When k near to BZ boundary:E contours become distortedE contours become distorted

2D2D

Page 405: 麻省理工大学固体物理课件

FermiFermi Surfaces (3D)Surfaces (3D)

NNee = 1= 1 monovalentmonovalent metals, e.g. Na, Cu, with values ~ f.e. theorymetals, e.g. Na, Cu, with values ~ f.e. theory

other cases, e.g. Be (other cases, e.g. Be (NNee=2), Al (=2), Al (NNee=3), there are serious differences=3), there are serious differences

Page 406: 麻省理工大学固体物理课件

Finite TemperaturesFinite Temperatures

Page 407: 麻省理工大学固体物理课件

Overview of Electron DistributionsOverview of Electron Distributions

Metal Insulatoror

Semiconductor T=0

n-DopedSemi-

Conductor

Semi-Conductor

T=0

Page 408: 麻省理工大学固体物理课件

Electron Distributions in Doped SemiconductorsElectron Distributions in Doped Semiconductors

+1 e -

n-DopedSemi-

Conductor

Semi-Conductor

T=0

EC

EV

ED

Egap~ 1 eV

n-type Si

Page 409: 麻省理工大学固体物理课件

Electron and HolesElectron and Holes

Semi-Conductor

T=0

Electrons in conduction bandElectrons in conduction band

Holes in valence bandHoles in valence band

Page 410: 麻省理工大学固体物理课件

Motion of Valence ElectronsMotion of Valence Electrons

electrons have negative chargeelectrons have negative charge

kk--spacespace

Valence electrons (and vacancy) all move in the positive Valence electrons (and vacancy) all move in the positive kkxx direction…direction…

Page 411: 麻省理工大学固体物理课件

Motion of Valence ElectronsMotion of Valence Electrons

electrons have negative chargeelectrons have negative charge

valence electrons have negative mass !valence electrons have negative mass !

Real spaceReal space

Vacancy ends up moving in the direction of the Vacancy ends up moving in the direction of the electric field as if it had a positive chargeelectric field as if it had a positive charge

Hole is a quasiHole is a quasi--particle with positive charge and positive mass…particle with positive charge and positive mass…

Page 412: 麻省理工大学固体物理课件

Motion of Valence ElectronsMotion of Valence Electrons

Hole is a quasiHole is a quasi--particle with particle with positive charge and positive positive charge and positive mass…mass…

kk--spacespace

hole dispersionhole dispersion

Page 413: 麻省理工大学固体物理课件

6.730 Physics for Solid State Applications

Lecture 23: Effective Mass

Outline

• Review of Last Time

• A Closer Look at Valence Bands

• k.p and Effective Mass

Page 414: 麻省理工大学固体物理课件

Semiclassical Semiclassical Equations of MotionEquations of Motion

Lets try to put these equations together….

Looks like Newton’s Law if we define the mass as follows…

dynamical effective mass

mass changes with k…so it changes with time according to k

Page 415: 麻省理工大学固体物理课件

Dynamical Effective Mass (3D)Dynamical Effective Mass (3D)

Extension to 3-D requires some care, F and a don’t necessarily point in the same direction

where

Page 416: 麻省理工大学固体物理课件

Dynamical Effective Mass (3D)Dynamical Effective Mass (3D)Ellipsoidal Energy SurfacesEllipsoidal Energy Surfaces

Fortunately, energy surfaces can often be approximate as…

Page 417: 麻省理工大学固体物理课件

Motion of Valence Electrons (and Holes)Motion of Valence Electrons (and Holes)

electrons have negative chargeelectrons have negative charge

valence electrons have negative mass !valence electrons have negative mass !

Real spaceReal space

Vacancy ends up moving in the direction of the Vacancy ends up moving in the direction of the electric field as if it had a positive chargeelectric field as if it had a positive charge

Hole is a quasiHole is a quasi--particle with positive charge and positive mass…particle with positive charge and positive mass…

Page 418: 麻省理工大学固体物理课件

Energy Band for 1Energy Band for 1--D LatticeD LatticeSingle orbital, single atom basisSingle orbital, single atom basis

Increasing the orbital overlap, reduces the effective mass…

Page 419: 麻省理工大学固体物理课件

2D Monatomic Square Crystals2D Monatomic Square CrystalsVariations with Lattice ConstantVariations with Lattice Constant

X WΓ

X WΓX

W

Γ

a = 8.3 A

Increasing the orbital overlap, reduces the effective mass…

Page 420: 麻省理工大学固体物理课件

2D Monatomic Square Crystals2D Monatomic Square CrystalsDispersion RelationsDispersion Relations

X WΓ

X WΓ

a = 5.5 A

X

W

Γ

a = 2.8 A

Increasing the orbital overlap, reduces the effective mass…

Page 421: 麻省理工大学固体物理课件

3D Band Structures3D Band StructuresDispersion RelationsDispersion Relations

Page 422: 麻省理工大学固体物理课件

Lighter effective mass Larger overlap between orbitals

basisorbital

lightmass

heavymass

heavymass

a a a

Page 423: 麻省理工大学固体物理课件

Bandstructure Bandstructure of of GaAsGaAs

(k)

s like -orbital

p-like orbital

What is this split-off band ?

Page 424: 麻省理工大学固体物理课件

SpinSpin--orbit Coupling orbit Coupling WavefunctionsWavefunctions

heavy hole charge distribution light hole charge distribution

Page 425: 麻省理工大学固体物理课件

Orbital Angular MomentumOrbital Angular Momentum

Angular momentum for quantum state with l = 2:

z

24ºm = 1

m = 0

m = −1

55ºm = 2

m = −2

l = 2

Page 426: 麻省理工大学固体物理课件

SpinSpin--Orbit CouplingOrbit Coupling

-q +Zq

L, Bl

-q

+Zq

The effective current from the motion of a nucleus in a circular orbit…

…generates an effective magnetic field…

Page 427: 麻省理工大学固体物理课件

SpinSpin--Orbit Splitting

-q +ZqS

Spin up:High Energy

µs

L, Bl

-q +ZqS

Spin down:Low Energy

µs L, Bl

2P3/2L S2P

1S

2P1/2

B

Orbit Splitting

J = L + S = 3/2

J = L + S = 1/2L SB

Page 428: 麻省理工大学固体物理课件

SpinSpin--Orbit Splitting in HydrogenOrbit Splitting in Hydrogen

-q +ZqS

Spin up:High Energy

µs

L, Bl

-q +ZqS

Spin down:Low Energy

µs L, Bl

Page 429: 麻省理工大学固体物理课件

Angular Momentum Addition RulesAngular Momentum Addition Rules

Quantum NumbersVectors

j = 3/2 j = 1/2

Example: l = 1, s = ½

Page 430: 麻省理工大学固体物理课件

SpinSpin--orbit Coupling orbit Coupling WavefunctionsWavefunctions

heavy hole charge distribution light hole charge distribution

heavy mass (along kz) light mass (along kz)

Page 431: 麻省理工大学固体物理课件

Bandstructure Bandstructure of of GaAsGaAs

Spin-orbit splitting

Page 432: 麻省理工大学固体物理课件

Another Approach to Another Approach to BandstructureBandstructure: k.p: k.p

Often it is easier to know the energies at a particular point (ex. Bandgap) than it is to measure the effecitve mass

k.p is a way to relate your knowledge of energy levels at k to the effective mass…using perturbation theory

Page 433: 麻省理工大学固体物理课件

Momentum and Crystal MomentumMomentum and Crystal Momentum

Leads us to, the action of the Hamiltonian on the Bloch amplitude….

Page 434: 麻省理工大学固体物理课件

k.p Hamiltoniank.p Hamiltonian(in our case q.p)(in our case q.p)

If we know energies as k we can extend this to calculate energies at k+qfor small q…

Page 435: 麻省理工大学固体物理课件

k.p Effective Massk.p Effective Mass

Second-order perturbation theory…

Taylor Series expansion of energies…

Page 436: 麻省理工大学固体物理课件

k.p Effective Massk.p Effective Mass

Page 437: 麻省理工大学固体物理课件

k.p Effective Massk.p Effective MassExampleExample

Lets only consider two bands (valence and conduction) and assumethey are spherical…

Page 438: 麻省理工大学固体物理课件

k.p Effective Massk.p Effective MassExampleExample

Level repulsion causes bands to curve as bandgap is reduceed…

Page 439: 麻省理工大学固体物理课件

Effective Mass and Effective Mass and BandgapBandgap

Experimental Data

Courtesy of Jasprit Singh; Used with Permission http://www.eecs.umich.edu/~singh/semi.html

farnaz
(see "Semiconductor Bandstructure")
Page 440: 麻省理工大学固体物理课件

6.730 Physics for Solid State Applications

Lecture 24: Chemical Potential and Equilibrium

Outline

• Microstates and Counting

• System and Reservoir Microstates

• Constants in Equilibrium

Temperature & Chemical Potential

• Fermi Integrals and Approximations

Page 441: 麻省理工大学固体物理课件

Microstates and CountingMicrostates and CountingEnsemble of 3 ‘2Ensemble of 3 ‘2--level’ Systemslevel’ Systems

Total Energy # of Microstates

E=0 g=1E=1 g=3E=2 g=3E=3 g=1

As we shall see, g is related to the entropy of the system…

Page 442: 麻省理工大学固体物理课件

Microstates and CountingMicrostates and CountingEnsemble of 4 ‘2Ensemble of 4 ‘2--level’ Systems

E=2level’ Systems

Total Energy # of Microstates

E=0 g=1E=1 g=4E=2 g=6E=3 g=4E=4 g=1

E=2

Page 443: 麻省理工大学固体物理课件

Microstates and CountingMicrostates and Counting

The larger the systems, the stronger the dependence on E

For most mesoscopic and macroscopic systems, g is a monotonically increasing function of E

Page 444: 麻省理工大学固体物理课件

System + Reservoir MicrostatesSystem + Reservoir Microstates

Gibb’s Postulate = all microstates are equally likely

reservoirsystem

Example

Consider a system of 3 ‘2-levels’ + a reservoir of 10 ‘2-levels’

Probability of finding: Es = 0 45/78Es = 1 30/78Es = 2 3/78

Most electrons are in the ground state so reservoir entropy is maximized !

Page 445: 麻省理工大学固体物理课件

System + Reservoir MicrostatesSystem + Reservoir Microstates

reservoirsystem

For sufficiently large reservoirs….

…we only care about the most likely microstate for S+R

Now we have a tool to look at equilibrium…

Page 446: 麻省理工大学固体物理课件

System + Reservoir in EquilibriumSystem + Reservoir in Equilibrium

reservoirsystem

Equilibrium is when we are sitting in this max entropy (g) state…

is the same for two systems in equilibrium

Page 447: 麻省理工大学固体物理课件

System + Reservoir in EquilibriumSystem + Reservoir in Equilibrium

reservoirsystem

We observe that two systems in equilibrium have the same temperature, so we hypothesize that…

This microscopic definition of temperature is a central result of stat. mech.

Page 448: 麻省理工大学固体物理课件

Boltzmann Boltzmann DistributionsDistributions

S is the thermodynamic entropy of a system

Boltzmann observed that…

and

…so he hypothesized that

Page 449: 麻省理工大学固体物理课件

Boltzmann Boltzmann DistributionsDistributions

reservoir controls system distribution

Page 450: 麻省理工大学固体物理课件

System + Reservoir in EquilibriumSystem + Reservoir in Equilibrium

Now we allow system and reservoir to exchange particles as well as energy… reservoir

system

Page 451: 麻省理工大学固体物理课件

System + Reservoir in EquilibriumSystem + Reservoir in Equilibrium

reservoir

system

Entropy of reservoir can be expanded for each case…

Difference in entropy of the two configurations is…

..where µ is the electrochemical potential

Page 452: 麻省理工大学固体物理课件

System + Reservoir in EquilibriumSystem + Reservoir in Equilibrium

Chemical potential is change in energy of system if one particle is added without changing entropy

Page 453: 麻省理工大学固体物理课件

System + Reservoir in EquilibriumSystem + Reservoir in EquilibriumExample: Example: FermiFermi--Dirac Dirac StatisticsStatistics

Consider that the system is a single energy level which can either be…occupied:unoccupied:

Normalized probability…

Page 454: 麻省理工大学固体物理课件

Two Systems in EquilibriumTwo Systems in Equilibrium

reservoir

system 1 system 2

Particles flow from 1 to 2…

Particles flow from 2 to 1…

In equilibrium…

Page 455: 麻省理工大学固体物理课件

Counting and Counting and Fermi Fermi IntegralsIntegrals33--D Conduction Electron DensityD Conduction Electron Density

Page 456: 麻省理工大学固体物理课件

Counting and Counting and Fermi Fermi IntegralsIntegrals33--D Hole DensityD Hole Density

Page 457: 麻省理工大学固体物理课件

Counting and Counting and Fermi Fermi IntegralsIntegrals22--D Conduction Electron DensityD Conduction Electron Density

Exact solution !

Page 458: 麻省理工大学固体物理课件

6.730 Physics for Solid State Applications

Lecture 25: Chemical Potential and Non-equilibrium

Outline

• Fermi Integrals and Approximations

• Rate Equations for Non-equilibrium Electrons

• Quasi-Fermi Levels

Page 459: 麻省理工大学固体物理课件

Counting and Counting and Fermi Fermi IntegralsIntegrals33--D Conduction Electron DensityD Conduction Electron Density

Page 460: 麻省理工大学固体物理课件

Counting and Counting and Fermi Fermi IntegralsIntegrals33--D Hole DensityD Hole Density

Page 461: 麻省理工大学固体物理课件

Boltzmann Boltzmann ApproximationApproximation

Boltzmann Approximation:

Page 462: 麻省理工大学固体物理课件

Approximations for Approximations for Fermi Fermi IntegralsIntegrals33--D Carrier DensitiesD Carrier Densities

Sommerfeld Approximation:

Unger Approximation:

where

Page 463: 麻省理工大学固体物理课件

Approximations for Approximations for Fermi Fermi IntegralsIntegrals33--D Carrier DensitiesD Carrier Densities

Page 464: 麻省理工大学固体物理课件

Approximations for InverseApproximations for Inverse FermiFermi IntegralsIntegrals

Inverse First-order Sommerfeld Approximation:

for 0.04 error

Inverse Second-order Unger Approximation:

for 0.04 error

Page 465: 麻省理工大学固体物理课件

Near Equilibrium Electron DistributionsNear Equilibrium Electron DistributionsOptical ExcitationOptical Excitation

E3

E2E1

E3

E2E1

Intraband scattering: electron-electronelectron-acoustic phonon

Interband scattering: electron-holeelectron-phonon with defects

What are f1, f2, & f3 under illumination (non-equilibrium) ?

Page 466: 麻省理工大学固体物理课件

Rate Equation FormalismRate Equation Formalismnumber of electrons = number of states x probability of occupancy

assume total number of electrons in N1, N2, & N3 is contant

Page 467: 麻省理工大学固体物理课件

Rate Constants in EquilibriumRate Constants in EquilibriumDetailed BalanceDetailed Balance

In equilibrium:

Detailed balance:In equilibrium, each scattering process balances with its inverse

Page 468: 麻省理工大学固体物理课件

Rate EquationsRate Equations

Assume the rate constants don’t change out of equilibrium…

Page 469: 麻省理工大学固体物理课件

SteadySteady--State SolutionsState SolutionsNonNon--equilibriumequilibrium

For example when intraband scattering is much faster than interbandscattering…

Page 470: 麻省理工大学固体物理课件

SteadySteady--State SolutionsState SolutionsNonNon--equilibriumequilibrium

Non-equilibrium Quasi-Fermi-Diracdistribution:

Equilibrium Fermi-Dirac distribution:

Intraband states have same chemical potentialin ‘equilibrium’ with each other because of fast intraband scattering

Page 471: 麻省理工大学固体物理课件

SteadySteady--State SolutionsState SolutionsNonNon--equilibriumequilibrium

Interband states have different chemical potentialsunless

Page 472: 麻省理工大学固体物理课件

Counting in NonCounting in Non--equilibrium Semiconductorsequilibrium Semiconductors

Equilibrium Quasi-equilibrium

Page 473: 麻省理工大学固体物理课件

6.730 Physics for Solid State Applications

Lecture 26: Inhomogeneous Solids

Outline

• Last Time: Quasi-Fermi Levels

• Inhomogenous Solids in Equilibrium

• Quasi-equilibrium Transport

• Heterostructures

Page 474: 麻省理工大学固体物理课件

Near Equilibrium Electron DistributionsNear Equilibrium Electron DistributionsOptical ExcitationOptical Excitation

E3

E2E1

E3

E2E1

Intraband scattering: electron-electronelectron-acoustic phonon

Interband scattering: electron-holeelectron-phonon with defects

What are f1, f2, & f3 under illumination (non-equilibrium) ?

Page 475: 麻省理工大学固体物理课件

SteadySteady--State SolutionsState SolutionsNonNon--equilibriumequilibrium

For example when intraband scattering is much faster than interbandscattering…

Page 476: 麻省理工大学固体物理课件

SteadySteady--State SolutionsState SolutionsNonNon--equilibriumequilibrium

Non-equilibrium Quasi-Fermi-Diracdistribution:

Equilibrium Fermi-Dirac distribution:

Intraband states have same chemical potentialin ‘equilibrium’ with each other because of fast intraband scattering

Page 477: 麻省理工大学固体物理课件

SteadySteady--State SolutionsState SolutionsNonNon--equilibriumequilibrium

Interband states have different chemical potentialsunless

Page 478: 麻省理工大学固体物理课件

Counting in NonCounting in Non--equilibrium Semiconductorsequilibrium Semiconductors

Equilibrium Quasi-equilibrium

Page 479: 麻省理工大学固体物理课件

Inhomogeneous Semiconductors in EquilibriumInhomogeneous Semiconductors in Equilibrium

Consider a solid with a spatially varying impurity concentration…

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.5 1 1.5 2El

ectro

stat

ic P

oten

tial (

V)Microns

0

2 1016

4 1016

6 1016

8 1016

1 1017

0 0.5 1 1.5 2

Elec

tron

Con

cent

ratio

n (c

m-3

)

Microns

In equilibrium, the carrier concentration is balanced by an internal electrostatic potential…

Page 480: 麻省理工大学固体物理课件

Inhomogeneous Semiconductors in EquilibriumInhomogeneous Semiconductors in EquilibriumIf electrostatic potential varies slowly compared to wavepacket…

Dividing solid into slices where φi is uniform…

…the envelope function has solutions of the form…

…therefore the eigenenergies are…

Page 481: 麻省理工大学固体物理课件

Inhomogeneous Semiconductors in EquilibriumInhomogeneous Semiconductors in Equilibrium

Given the modified energy levels, the 3-D DOS becomes….

…in equilibrium the carrier concentration is…

Boltzmann approx.

Page 482: 麻省理工大学固体物理课件

Inhomogeneous Semiconductors in EquilibriumInhomogeneous Semiconductors in Equilibrium

The slowly varying electrostatic potential can be incorporated in

Page 483: 麻省理工大学固体物理课件

QuasiQuasi--equilibrium Transportequilibrium Transport

Page 484: 麻省理工大学固体物理课件

Species of Species of HeterjunctionsHeterjunctions

Type IType II

Type III

Type I

Type III

http://www.utdallas.edu/~frensley/technical/hetphys

Page 485: 麻省理工大学固体物理课件

TightTight--binding Calculation of Band Alignmentsbinding Calculation of Band Alignments

LCAO internally references bandstructures to each other…

InAsGaAs

Unfortunately, this doesn’t take into account the details of thecharges and bonding at the interface…

…need a self-consistent LCAO theory…still a research topic !

Page 486: 麻省理工大学固体物理课件

TightTight--binding Calculation of Band Alignmentsbinding Calculation of Band Alignments

Example GaAs/InAs

Ga: As: In:

InAs:GaAs:

InAsGaAsGaAs/InAs: (LCAO)

(experiment)

Page 487: 麻省理工大学固体物理课件

Experimentally Determined Band AlignmentExperimentally Determined Band Alignment

Ener

gy (e

V)

Valence Band Alignment

Courtesy of Sandip Tiwari, Cornell University; Used with Permission

Page 488: 麻省理工大学固体物理课件

Experimentally Determined Band AlignmentExperimentally Determined Band Alignment

Ener

gy (e

V)

InAs

Conduction Band Alignment

Courtesy of Sandip Tiwari, Cornell University; Used with Permission

Page 489: 麻省理工大学固体物理课件

Experimentally Determined Band AlignmentExperimentally Determined Band Alignment

Ener

gy (e

V)

Courtesy of Sandip Tiwari, Cornell University; Used with Permission

Page 490: 麻省理工大学固体物理课件

SimWindows SimWindows SoftwareSoftware

Self-consistent solution of modified drift-diffusion & Poisson’s Equation…

http://www-ocs.colorado.edu/SimWindows/simwin.html

Page 491: 麻省理工大学固体物理课件

6.730 Physics for Solid State Applications

Lecture 27: Scattering of Bloch Functions

Outline

• Review of Quasi-equilibrium

• Occupancy Functions

• Fermi’s Golden Rule

• Bloch electron scattering

Page 492: 麻省理工大学固体物理课件

Occupancy Functions and QuasiOccupancy Functions and Quasi--Fermi Fermi FunctionsFunctions

E2E1

E3

Equilibrium occupancy function…

Quasi-equilibrium occupancy function…

Page 493: 麻省理工大学固体物理课件

Properties of the Occupancy FunctionProperties of the Occupancy FunctionMoments of Moments of ff ((r,k,tr,k,t))

Carrier density…

Current density…

Energy density…

All the classical information about the carriers is contained in f (r,k,t)

Page 494: 麻省理工大学固体物理课件

Rate Equations for Occupancy FunctionRate Equations for Occupancy Function

Previously we developed rate equation for model 3-level system…

E2E1

E3

Now, generalize for the whole occupancy function…

Page 495: 麻省理工大学固体物理课件

Rate Equations for Occupancy FunctionRate Equations for Occupancy Function

rate of scattering from k’ to k

rate of scattering from k to k’

Perturbations that cause scattering….• Impurities or defects• Electron-phonon scattering• Electron-photon scattering

Use Fermi’s Golden Rule to calculate scattering between Bloch functions…

Page 496: 麻省理工大学固体物理课件

Fermi’s Fermi’s Golden RuleGolden Rule

Scattering rate from k to k ’

• For weak collisions to continuum of nearby states…

where…

• Energy conservation holds for infrequent collisions …

Page 497: 麻省理工大学固体物理课件

General Scattering PotentialGeneral Scattering Potential

We will only consider scattering potentials of the form…

We can consider each potential term separately…

…Fermi…

Page 498: 麻省理工大学固体物理课件

General Scattering PotentialGeneral Scattering Potential

final state energy is greater than initial absorption

final state energy is less than initial emission

Page 499: 麻省理工大学固体物理课件

Initial and Final States for ScatteringInitial and Final States for Scattering

Envelope (effective mass) approximation…

∆ is volume of primitive cellN is numer of primitive cells in solid

are slowly varying over ∆

Page 500: 麻省理工大学固体物理课件

Normalization of Envelope FunctionsNormalization of Envelope Functions

Since envelope functions are slowly varying…

Normalization of envelope functions…

Page 501: 麻省理工大学固体物理课件

Matrix Elements for Bloch StatesMatrix Elements for Bloch States

Approximation for periodic scattering potential…

Approximation for slowly varying scattering potential…

Page 502: 麻省理工大学固体物理课件

Scattering from a Slowly Varying PotentialScattering from a Slowly Varying Potential

Matrix element is just the Fourier component of the scattering

potential at

Page 503: 麻省理工大学固体物理课件

Scattering Rate CalculationsScattering Rate CalculationsExample: 1Example: 1--D Scattering from DefectD Scattering from Defect

• Sharply peaked potential scatters isotropically

• Static potential scatters elastically

Page 504: 麻省理工大学固体物理课件

Scattering Rate CalculationsScattering Rate CalculationsExample: 1Example: 1--D Scattering from Traveling WaveD Scattering from Traveling Wave

• Periodic potentials conserve total momentum..

Page 505: 麻省理工大学固体物理课件

Scattering TimesScattering Times

Scattering time out of state k …

…at low densities…

…relaxation time is a function of state k

We usually measure some ensemble averaged relaxation time…

…which means we have to know

Page 506: 麻省理工大学固体物理课件

Scattering TimesScattering Times

Relaxation time for z-directed momentum…

Relaxation time for energy…

Page 507: 麻省理工大学固体物理课件

6.730 Physics for Solid State Applications

Lecture 28: Electron-phonon Scattering

Outline

• Bloch Electron Scattering

• Deformation Potential Scattering

• LCAO Estimation of Deformation Potential

• Matrix Element for Electron-Phonon Scattering

• Energy and Momentum Conservation

Page 508: 麻省理工大学固体物理课件

General Scattering PotentialGeneral Scattering Potential

final state energy is greater than initial absorption

final state energy is less than initial emission

Page 509: 麻省理工大学固体物理课件

Scattering from a Slowly Varying PotentialScattering from a Slowly Varying Potential

Matrix element is just the Fourier component of the scattering

potential at

Page 510: 麻省理工大学固体物理课件

Scattering Rate CalculationsScattering Rate CalculationsExample: 1Example: 1--D Scattering from Traveling WaveD Scattering from Traveling Wave

• Periodic potentials conserve total momentum..

Page 511: 麻省理工大学固体物理课件

Scattering Rate CalculationsScattering Rate CalculationsOverviewOverview

Step 1: Determine Scattering Potential

Step 2: Calculate Matrix Elements

Step 3: Calculate State-State Transition Rates

Step 4: Calculate State Lifetime

Step 5: Calculate Ensemble Lifetime

Page 512: 麻省理工大学固体物理课件

ElectronElectron--Phonon Scattering PotentialPhonon Scattering PotentialBeyond the Born-Oppenheimer Approximation…

• Phonons change the electron energies by changing the bond displacement• Both shear strain and local volume changes alter the electron energy

…change in the bandstructure due to a dilatation of solid by sound wave…

Relate the phonons to local changes in the volume (lattice constant)….

Page 513: 麻省理工大学固体物理课件

ElectronElectron--Phonon Scattering PotentialPhonon Scattering Potential

Only LA phonons cause local changes in the volume (lattice constant)….

Page 514: 麻省理工大学固体物理课件

ElectronElectron--Phonon Scattering PotentialPhonon Scattering Potential

Conduction band (diamond):

Valence band (diamond):

Page 515: 麻省理工大学固体物理课件

ElectronElectron--Phonon Scattering PotentialPhonon Scattering Potential

Page 516: 麻省理工大学固体物理课件

ElectronElectron--Phonon Scattering PotentialPhonon Scattering PotentialSilicon ExampleSilicon Example

Page 517: 麻省理工大学固体物理课件

Phonon Displacement OperatorPhonon Displacement Operator

See Lecture 11…phonon displacement operator

relating mass for continuum solid and discrete lattice

Page 518: 麻省理工大学固体物理课件

Scattering Rate CalculationsScattering Rate CalculationsOverviewOverview

Step 1: Determine Scattering Potential

Step 2: Calculate Matrix Elements

Step 3: Calculate State-State Transition Rates

Step 4: Calculate State Lifetime

Step 5: Calculate Ensemble Lifetime

Page 519: 麻省理工大学固体物理课件

ElectronElectron--Phonon Matrix ElementPhonon Matrix Element

Phonon absorption…

Page 520: 麻省理工大学固体物理课件

ElectronElectron--Phonon Matrix ElementPhonon Matrix Element

For long wavelength phonons, can make slowly-varying approx…

Page 521: 麻省理工大学固体物理课件

Scattering Rate CalculationsScattering Rate CalculationsOverviewOverview

Step 1: Determine Scattering Potential

Step 2: Calculate Matrix Elements

Step 3: Calculate State-State Transition Rates

Step 4: Calculate State Lifetime

Step 5: Calculate Ensemble Lifetime

Page 522: 麻省理工大学固体物理课件

ElectronElectron--Phonon Scattering RatePhonon Scattering Rate

Page 523: 麻省理工大学固体物理课件

Scattering Rate CalculationsScattering Rate CalculationsOverviewOverview

Step 1: Determine Scattering Potential

Step 2: Calculate Matrix Elements

Step 3: Calculate State-State Transition Rates

Step 4: Calculate State Lifetime

Step 5: Calculate Ensemble Lifetime

Page 524: 麻省理工大学固体物理课件

Energy and Momentum ConservationEnergy and Momentum Conservation

Page 525: 麻省理工大学固体物理课件

Energy and Momentum ConservationEnergy and Momentum Conservation

For acoustic phonons…

Page 526: 麻省理工大学固体物理课件

Energy and Momentum ConservationEnergy and Momentum Conservation

Typical acoustic phonon velocity…

Velocity of typical electron (300 K)…

final inital

Page 527: 麻省理工大学固体物理课件

Energy and Momentum ConservationEnergy and Momentum Conservation

Maximum momentum exchange…

Maximum energy exchange…

Acoustic phonon scattering is essentially elastic for 300K electrons…

Page 528: 麻省理工大学固体物理课件

Scattering Rate CalculationsScattering Rate CalculationsOverviewOverview

Step 1: Determine Scattering Potential

Step 2: Calculate Matrix Elements

Step 3: Calculate State-State Transition Rates

Step 4: Calculate State Lifetime

Step 5: Calculate Ensemble Lifetime

Page 529: 麻省理工大学固体物理课件

Energy and Momentum ConservationEnergy and Momentum Conservation

Page 530: 麻省理工大学固体物理课件

ElectronElectron--Phonon Scattering TimePhonon Scattering TimePreviewPreview