2013 phd thesis natalijag - diva portal643482/fulltext02.pdf · in*health*and*disease*!!!...

64
Doctoral thesis from the Department of Molecular Biosciences The WennerGren Institute, Stockholm University Stockholm, Sweden Activation, adhesion and motility of B lymphocytes in health and disease Natalija Gerasimčik Stockholm, 2013

Upload: vuongtu

Post on 26-Mar-2018

216 views

Category:

Documents


2 download

TRANSCRIPT

 

 

 

 

 

 

Doctoral  thesis  from  the  Department  of  Molecular  Biosciences  

The  Wenner-­‐Gren  Institute,  Stockholm  University  

Stockholm,  Sweden  

 

 

 

Activation,  adhesion  and  motility  of  B  lymphocytes  

in  health  and  disease  

 

 

 

Natalija  Gerasimčik    

 

 

 

 

 

 

 

 

Stockholm,  2013  

 2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cover:  Scanning  electron  microscopy  of  Cdc42  knockout  B  cells  by  Natalija  Gerasimčik  

 

©  Natalija  Gerasimčik,  Stockholm  2013  

ISBN  978-­‐91-­‐7447-­‐704-­‐7  

Printed  in  Sweden  by  Universitetsservice  AB,  Stockholm  2013  

Distributor:  Stockholm  University  Library  

  3  

“B  cells  means  the  Best”  (PhD, Associate Professor  Mikael  Karlsson)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my Parents

 4  

Summary    

B   cells   can   be   activated   by  T   cell-­‐dependent   stimuli,   such   as   CD40   ligation   and   cytokines,  which  

induce  extensive  proliferation,  class  switch  recombination  and  somatic  hypermutation.  

Epstein-­‐Barr  virus  (EBV)  can  also  induce  B  cell  activation  by  mimicking  T  cell  help  through  its  main  

oncoprotein,  latent  membrane  protein  1  (LMP-­‐1).  It  is  regulated  by  another  EBV-­‐encoded  protein,  

EBV   nuclear   antigen   2   (EBNA-­‐2),   which   is   absent   in   Hodgkin   and   Burkitt   lymphomas.  We   have  

studied   LMP-­‐1   induction   by   cytokines   in   vitro   and   shown   that   LMP-­‐1   is   induced   through   the  

transcription  factor  signal  transducer  and  activator  of   transcription  (STAT6)  and  a  newly  defined  

high-­‐affinity  STAT6-­‐binding  site.  

When   IL-­‐4   is   added   together   with   lipopolysaccharide   (LPS)   or   α-­‐CD40   to   B   cells,   it   induces  

homotypic   round   and   tight   aggregates   in   vitro,   whereas   LPS   alone   does   not   induce   such  

morphological   changes.   I   describe   here   attempts   to   identify   the   molecules   that   regulate   these  

responses.  

I   have   shown   that   the   Rho   GTPase   Cdc42   controls   the   spreading   of   B   cells,   whereas   two   other  

molecules  in  the  same  family,  Rac1  and  Rac2,  control  homotypic  adhesion.  Further,  I  have  shown  by  

conditional   deletion   of   Cdc42   in   B   cells   that   it   is   important   in   the   humoral   immune   response.  

Dock10   is   a   guanosine   nucleotide   exchange   factor   (GEF)   for   Cdc42.   It   is   expressed   through   all  

differentiation  stages  of  B  cell  development.  However,  targeted  deletion  of  Dock10  in  B  cells  does  

not   result   in   an   aberrant   phenotype.   Furthermore,   by   studying   conditional   knockout   mice   for  

Dock10,  Cdc42,  Rac1  and  Rac2,  I  have  elucidated  the  mechanism  of  cytoskeletal  changes  during  B  

cell  activation,  leading  to  adhesion  and  motility.  

My   results  may   lead   to   a   better   understanding   of   normal   B   cell   activation   and   of   EBV   infection,  

which   is  associated  with  many  human  tumours  and  may  help   to  understand  cancer  development  

and  progression  in  B  cells.  

  5  

List  of  Publications    

This  thesis  is  based  on  the  results  presented  in  the  following  paper  and  manuscripts:  

 

I. Kis,   L.L.,   Gerasimcik,   N.,   Salamon,   D.,   Persson,   E.K.,   Nagy,   N.   Klein,   G.,  

Severinson,   E.   and   Klein,   E.   The   STAT6   signaling   pathway   activated   by   the  

cytokines   IL-­‐4  and   IL-­‐13   induces  expression  of   the  Epstein-­‐Barr  virus-­‐encoded  

protein  LMP-­‐1  in  absence  of  EBNA-­‐2:  implications  for  the  type  II  EBV  latent  gene  

expression  in  Hodgkin  lymphoma.  Blood  2011;  117:165-­‐174.  

 

II. Gerasimcik,  N.,   Dahlberg,   C.,   Baptista,  M.,  Westerberg,   L.   and   Severinson,   E.   B  

cells   devoid   of   the   Rho   GTPase   Cdc42   coordinate   the   actin   and   microtubule  

cytoskeleton   less   effectively   and   form   an   extrafollicular   antibody   response.  

Manuscript.  

 

III. Gerasimcik,   N.,   Baptista,   M.,   Westerberg,   L.   and   Severinson,   E.   The   guanine  

nucleotide  exchange   factor  Dock10:  expression  and   function   in  B   lymphocytes.  

Manuscript.  

 

IV. Gerasimcik,   N.   and   Severinson,   E.   Investigation   of   the   role   of   the   small   Rho  

GTPases  Rac1  and  Rac2  in  B  cell  activation.  Preliminary  results.  

 

 

 

 

 

 

 

Publication  not  included  in  this  thesis:  

 

Cernysiov  V.,  Gerasimcik  N.,  Mauricas  M.,  Girkontaite   I.  Regulation  of  T-­‐cell-­‐independent  

and   T-­‐cell-­‐dependent   antibody   production   by   circadian   rhythm   and   melatonin.  

International  Immunology  2010;  22(1):25-­‐34.  

 

 6  

List  of  abbreviations    

APRIL   A  proliferation-­‐inducing  ligand  Arp2/3   Actin-­‐related  proteins  2  and  3  B   Basic  region  BAFF(R)   B  cell  activating  factor  (receptor)  Bcl-­‐6   B  cell  lymphoma  6  BCR   B  cell  receptor  BL   Burkitt  lymphoma  Btk   Bruton  tyrosine  kinase  Cdc42   Cell  division  control  protein  42  CD40L   CD40  ligand  CDM   Ced-­‐5/Dock180/Myoblast  city  CFSE   6-­‐Carboxyfluorescein  succinimidyl  ester  cHL   Classical  Hodgkin  lymphoma  CD   Cluster  of  differentiation  CIP4   Cdc42-­‐interacting  protein  4  CLL   Chronic  lymphocytic  leukaemia  CSR   Class  switch  recombination  CZH   CDM-­‐zizimin  homology  Dbl   Diffuse  B  cell  lymphoma  DC   Dendritic  cell  DH   Dbl-­‐homology  DHR   Dock  homology  region  Dock   Dedicator  of  cytokinesis  DZ   Dark  zone  EBER   EBV-­‐encoded  RNA  Ebi2   EBV-­‐induced  receptor  2  EBNA   EBV-­‐nuclear  antigen  EBV   Epstein  Barr  virus  EMSA   Electrophoretic  mobility  shift  assay  EDL1   EcoRI  D  leftward  1  F-­‐BAR   Fes/CIP4  homology-­‐Bin/Amphyphysin/Rvsp  FCH   Fes/CIP4  homology  FDC   Follicular  dendritic  cell  FOB   Follicular  B  cell  GAP   GTPase  activating  protein  GBD   GTPase-­‐binding  domain  GC   Germinal  centre  γc   Common  gamma  chain  GDI   Rho  GTP  dissociation  inhibitor  GEF   Guanosine  nucleotide  exchange  factor  GL   Germline  transcripts  GTPase   Guanine  triphosphatase  HL   Hodgkin  lymphoma  HRS   Hodgkin  Reed-­‐Sternberg  cells  swIg   Isotype  switched  immunoglobulin  IL   Interleukin  ICAM-­‐1   Intercellular  adhesion  molecule-­‐1  ITAM   Immunoreceptor  tyrosine-­‐based  activation  motif  iNKT   Invariant  natural  killer  cell  JAK   Janus  kinase  JNK   c-­‐Jun  N-­‐terminal  kinase  LCL   Lymphoblastoid  cell  line  

  7  

LFA-­‐1   Leukocyte  function-­‐associated  antigen-­‐1  LMP-­‐1   Latent  membrane  protein  1  LPS   Lipopolysaccharide  LRS   LMP-­‐1  regulatory  sequences  LZ   Light  zone  MAPK   Mitogen-­‐activated  protein  kinase  MZB   Marginal  zone  B  cell  NF-­‐κB   Nuclear  factor  kappa  beta  NK   Natural  killer  cell  NPC   Nasopharyngeal  carcinoma  PC   Plasma  cell  PD-­‐1   Programmed  death-­‐1  PHA   Phytohemagglutinin  PI3K   Phosphatidylinositol  3-­‐kinase    PRD   Proline-­‐rich  domain  Rac   Ras-­‐related  C3  botulinum  toxin  substrate  RICH   Rho  GAP-­‐interacting  with  CIP4  homologues  SEB   Staphylococcus  enterotoxin  B  SHM   Somatic  hypermutation  SH3   Src  homology  3  STAT   Signal  transducer  and  activator  of  transcription  Syk   Spleen  tyrosine  kinase  S1P   Sphingosine  1  phosphate  T1,  T2   Transitional  1  or  2  B  cells  MZP   Marginal  zone  precursor  B  cells  TFR   Follicular  T  regulatory  cell  TFH   Follicular  T  helper  cell  TLR   Toll-­‐like  receptor  TNF   Tumour  necrosis  factor  TR   Terminal  repeat  TRAF   TNF-­‐receptor  associated  factor  VCA   Veprolin-­‐,  central-­‐,  acidic  region  domain  VCAM-­‐1   Vascular  cell  adhesion  mediator-­‐1  V(D)J   Variable,  Diversity,  Joining  VLA-­‐4   Very  late  antigen-­‐4  WASP   Wiskott-­‐Aldrich  syndrome  protein  WH1   WASP  homology  domain  WIP   WH1-­‐interacting  protein    

 

 8  

Contents  

 

Summary..................................................................................................................................................4  

List  of  publications ...............................................................................................................................5  

List  of  abbreviations ............................................................................................................................6  

Contents ...................................................................................................................................................8  

Introduction............................................................................................................................................9  Early  B  cell  differentiation .......................................................................................................................... 9  Late  B  cell  differentiation ..........................................................................................................................10  B1  and  B2  cells  and  their  localization .................................................................................................................. 10  Transitional  B  cells ....................................................................................................................................................... 11  Chemokine  guidance  of  follicular  and  marginal  zone  B  cells ..................................................................... 12  Marginal  zone  B  cells  and  their  activation ......................................................................................................... 13  Follicular  B  cells  and  their  further  differentiation.......................................................................................... 14  Plasma  cell  decisions ................................................................................................................................................... 15  Memory  B  cells ............................................................................................................................................................... 16  

The  germinal  centre  reaction...................................................................................................................17  T  cell  help:  CD40-­CD40L  interaction......................................................................................................21  When  activation  leads  to  disease:  the  Epstein-­Barr  virus..............................................................22  Signalling  similarity  between  LMP-­1  and  CD40:  Mimicking  T  cell  help.....................................25  Interleukin-­4  and  its  signalling  pathway .............................................................................................26  Other  interleukins........................................................................................................................................28  Regulation  of  B  cell  adhesion  and  motility ..........................................................................................29  Guanine  nucleotide  exchange  factors................................................................................................................... 31  Small  Rho  GTPases,  their  effectors  and  effects................................................................................................. 33  The  F-­‐BAR  protein  CIP4 ............................................................................................................................................. 36  

Regulation  in  vitro ........................................................................................................................................36  

Matherials  and  Methods ..................................................................................................................39  Tamoxifen  preparation  and  administration  for  Mb1-­Cre-­ERT2  induction ..............................39  

Results  and  Discussions...................................................................................................................40  Paper  I ..............................................................................................................................................................40  Paper  II.............................................................................................................................................................42  Paper  III ...........................................................................................................................................................44  Part  IV  (preliminary  results)....................................................................................................................46  

Conclusions  and  perspectives .......................................................................................................48  

Acknowledgements ...........................................................................................................................51  

References............................................................................................................................................53    

  9  

Introduction  

 

Early  B  cell  differentiation    

 

B  lymphocytes  develop  in  the  foetal  liver  during  embryogenesis  and  in  the  bone  marrow  in  

adults  (Hardy  and  Hayakawa,  2001;  Mackay  et  al.,  2010).  During  development  in  the  bone  

marrow,  murine  B  cells  express  the  chemokine  receptor  CXCR4  in  order  to  ensure  that  the  

cells   are  maintained,   and   thus  attracted   to   reticular   stromal   cells   that   express   the   ligand  

CXCL12  (Allende  et  al.,  2010;  Mackay  et  al.,  2010).  

 

In  early  development,  the  murine  common  lymphoid  progenitor  (CLP)  cells  differentiate  to  

pro-­‐B   cells   (Mackay   et   al.,   2010).   Upon   IL-­‐7   stimulation,   pro-­‐B   cells   are   induced   to  

rearrange  the  immunoglobulin  heavy  (IgH)  chain  V(D)J  gene  segments  (Herzog  et  al.,  2009;  

Mackay   et   al.,   2010).   The   recombination-­‐activating   gene   products   1,   2   (Rag1   and   Rag2)  

generate   double-­‐stranded   DNA   breaks   between   recombinational   signal   sequences   (RSS)  

that   flank   the   V,   D   and   J   gene   segments,   and   join   cleaved   ends   by   non-­‐homologous   end  

joining  (NHEJ).  After  rearrangement   is  complete,  cells  become  pre-­‐B  cells,  expressing   the  

Igμ   heavy   (H)   chain.   Igμ   associated   with   surrogate   light   (L)   chains   (VpreB   and   λ5),   Igα  

(CD79a  or  Mb-­‐1)  and  Igβ  subunits,  form  the  pre-­‐B  cell  receptor  (pre-­‐BCR)  complex  (Hardy  

and  Hayakawa,  2001;  Herzog  et  al.,  2009;  Kurosaki  et  al.,  2010;  Gonzalez  et  al.,  2011).  This  

is  one  of  the  checkpoints  for  B  cells  –  only  B  cells  with  a  properly  functioning  pre-­‐BCR  can  

mature  further  (Herzog  et  al.,  2009).  Later,  when  V(D)J  recombination  of  another  IgH  allele  

is   suppressed,   B   cells   start   to   produce   their   surface   receptors   with   a   single   specificity.  

Several  kinases  become  activated  upon  pre-­‐BCR  signalling  –  the  Src-­‐family  protein  kinase  

Lyn  and  the  spleen  tyrosine  kinase  (Syk),  inducing  phosphorylation  of  the  immunoreceptor  

tyrosine-­‐based  activation  motifs  (ITAMs)  on  the  cytoplasmic  parts  of  Igα/Igβ.  Syk  activates  

phosphatidylinositol   3-­‐kinase   (PI3K),   which   regulates   survival,   proliferation   and  

differentiation  (Herzog  et  al.,  2009).  In  addition,  Bruton  tyrosine  kinase  (Btk)  activates  the  

mitogen-­‐activated  protein   kinase   (MAPK)   cascade,   leading   to   activation  of   nuclear   factor  

κB  (NF-­‐κB)  (Pieper  et  al.,  2013).    

 

Signalling  via  pre-­‐BCR  leads  to  λ5  downregulation.  Rag1  and  Rag2  subsequently  induce  Ig  

light  chain  (L)  gene  rearrangement  (Hardy  and  Hayakawa,  2001;  Herzog  et  al.,  2009).  After  

successful   light   chain   rearrangement,   cells   start   to   express   a   functional   B   cell   receptor.  

 10  

After   all   maturation   steps,   cells   that   are   highly   reactive   to   the   self-­‐antigens   die   by  

apoptosis.  However,  B   cells   that  have   low  reactivity   to   self-­‐antigens  are  allowed   to   leave  

the  bone  marrow  and  enter  the  periphery  (Pieper  et  al.,  2013).    

 

Positively   selected   immature   B   cells   downregulate   expression   of   their   receptor   CXCR4,  

resulting   in   disruption   of   CXCR4-­‐CXCL12   interaction,   and   are   released   from   the   bone  

marrow  to  the  blood  (Mackay  et  al.,  2010).  This  process  is  also  regulated  by  a  family  of  G  

protein  coupled  receptors  –  the  sphingosine  1  phosphate  (S1P1)  receptors  (Allende  et  al.,  

2010).  Later,  these  immature  cells  will  differentiate  into  B2  conventional  B  cells,  which  are  

involved  in  the  adaptive  immune  response.  

 

Late  B  cell  differentiation    

 

B1  and  B2  B  cells  and  their  localization  

 

B1  B  cells  arise  from  progenitors  that  differ  from  those  from  which  conventional  B2  B  cells  

arise,   and   migrate   to   the   peritoneal   and   pleural   cavities   (Montecino-­‐Rodriguez   and  

Dorshkind,  2012).  They  can  be  divided  into  two  subsets  –  B1a  (CD5+)  and  B1b  (CD5-­‐).  B1  

cells   are   part   of   the   innate   immune   system,   able   to   recognize   self-­‐antigens   and  

carbohydrates.   They   are   responsible   for   the   early   reaction   to   an   antigen   with   IgM  

responses   (Hardy   and   Hayakawa,   2001;   Montecino-­‐Rodriguez   and   Dorshkind,   2012).  

However,  the  B1b  population  can  switch  to  IgA  production  and  has  a  high  rate  of  somatic  

hypermutations  in  its  VH  regions  (Roy  et  al.,  2009).  

 

B2   B   cells,   in   the   form   of   immature   transitional   B   cells   that   have   left   the   bone  marrow  

migrate  to  the  secondary  lymphoid  organs  such  as  the  spleen  and  lymph  nodes.  The  spleen  

has  a  specialized  structure  that  promotes  the  appropriate  immune  responses  against  many  

different  blood-­‐borne  antigens,  and  consists  of  two  compartments:  red  and  white  pulp.  In  

the  red  pulp  destruction  of  erythrocytes  takes  place.  The  white  pulp  contains  white  blood  

cells:   B   and   T   lymphocytes,   macrophages,   dendritic   cells,   and   other   cells   (Oracki   et   al.,  

2010).    

 

 

 

  11  

Transitional  B  cells    

 

Transitional  B  cells  enter  the  red  pulp  of  the  spleen  from  the  blood  through  the  marginal  

sinus.   They   then   enter   the   follicles,  which   are   surrounded   by   the  marginal   zone.  Here  B  

cells  acquire  IgD  expression  and  complete  their  maturation  (Oracki  et  al.,  2010).  There  are  

different   ways   to   further   sub-­‐divide   transitional   B   cells,   into   two   or   more   distinct  

populations.    

 

According   to   one   classification,   there   are   two   types   of   transitional   B   cells,   which   are  

defined  by  their  expressions  of  the  complement  receptor  CD21  and  of  the  low-­‐affinity  Fcε  

receptor   (FcεRII  or  CD23).  Early   immature   (T1)  B  cells  are  defined  as   IgMhighIgDnegCD23-­‐

CD21low,   whereas   late   immature   (T2)   B   cells   are   defined   as   IgMhighIgDnegCD23+CD21high  

(Loder   et   al.,   1999;   Carsetti   et   al.,   2004;   Allman   and   Pillai,   2008).   According   to   another  

classification   there   are   three   transitional   stages   of   immature   B   cells:   T0,   T1   and   T2.   All  

three   stages   express   CD93   and   IgM,   but   differ   in   their   expressions   of   IgD   and   CD23  

(Henderson  et  al.,  2010).  T0  transitional  B  cells  (IgD-­‐CD23-­‐)  migrate  from  the  bone  marrow  

via  the  bloodstream  to  the  red  pulp  of   the  spleen,  but  are  unable  to  enter  the  white  pulp  

before  they  mature  into  the  T1  (IgD+CD23-­‐)  and  T2  (IgD+CD23+)  stages  (Henderson  et  al.,  

2010).  For  transitional  T1  and  T2  B  cells  to  be  able  to  enter  the  white  pulp  of  the  spleen,  

the  GTPases  Rac1  and  Rac2,  as  well   the  integrins   leukocyte  function-­‐associated  antigen-­‐1  

(LFA-­‐1),  very  late  antigen-­‐4  (VLA-­‐4)  and  chemokine  receptors,  are  required  (Henderson  et  

al.,  2010).  In  mice,  whose  B  cells  lack  these  Rac  GTPases,  the  transitional  B  cells  accumulate  

in  the  blood.  In  addition,   in  the  absence  of  the  tyrosine  kinase,  Syk,  B  cell  development  is  

arrested  at  the  same  stage  as  in  the  absence  of  Rac1  and  Rac2  (Henderson  et  al.,  2010),  and  

this   leads  to  the  disappearance  of  the  most  mature  cells  (Schweighoffer  et  al.,  2013).  One  

more  population  of  transitional  B  cells,  T3  (CD23+IgMlo),  has  been  suggested,  but  appears  

to   be   an   anergic   population   in   the   spleen,   and   these   cells   do   not   mature   further  

(Vossenkämper  and  Spenser,  2011).  Eventually,  some  of  the  naïve  transitional  cells  home  

to   the  marginal   zone   (MZ)   and   become  marginal   zone  B   cells   (MZB),  while   the  majority  

differentiate   into   follicular   B   cells   (FOB)   (Radbruch   et   al.,   2006;   Vossenkämper   and  

Spenser,  2011).  

 

All   naïve   B   cells   must   encounter   antigen   and   become   activated   via   the   BCR,   which   is   a  

second   checkpoint   essential   for   their   survival   (Reth,   1994;   Reth   and   Wienands,   1997).  

 12  

Other  signals  are  also  necessary  for  cell  survival.  One  such  signal   is   the  binding  of  B  cell-­‐

activating  factor  (BAFF)  to  its  receptor  (BAFF-­‐R).  Both  receptors  induce  signalling  through  

the  transcription  factor  NF-­‐κB,  although  the  B  cell  receptor  signalling  leads  to  the  classical  

pathway,   while   BAFF   signalling   leads   to   alternate   pathways.   In   addition,   PI3K,   Btk   and  

many  other  molecules  play  important  roles  in  this  signalling  (Mackay  et  al.,  2010;  Pieper  et  

al.,   2013).   The   BCR   signal-­‐strength   model,   which   describes   the   fates   of   follicular   and  

marginal   zone   B   cells,   has   been   proposed:   Intermediate   BCR   signalling   to   self-­‐antigens,  

together  with  Btk  signalling,  results  in  T2  B  cell  development  into  follicular  B  cells.  Weak  

signal  via  BCR  and  poor  Btk  signalling  give  rise   to  T2-­‐marginal  zone  precursor  (T2-­‐MZP)  

cells,  which,   after   Notch2   engagement   by   its   ligand   delta-­‐like   1   (DLL1)   on   the   epithelial  

cells,  leads  to  differentiation  into  marginal  zone  B  cells  (Allman  and  Pillai,  2008;  Pillai  and  

Cariappa,  2009;  Cerutti  et  al.,  2013).    

 

Chemokine  guidance  of  follicular  and  marginal  zone  B  cells  

 

Follicular  B  cells.  Mature  B  cells  express  the  chemokine  receptor  CXCR5  and  high  levels  of  

integrins  LFA-­‐1  and  VLA-­‐4.  After  B  cells  encounter  an  antigen,  they  become  attracted  to  the  

follicles   by   their   response   to   the   chemokine   CXCL13,   which   is   secreted   by   follicular  

dendritic   cells   (FDCs)   (Goodnow   et   al.,   2010;   Pereira   et   al.,   2010;   Cyster,   2010).  

Intercellular  adhesion  molecule-­‐1  (ICAM-­‐1)  and  vascular  cell  adhesion  mediator-­‐1  (VCAM-­‐

1),   the   ligands   for   LFA-­‐1   and   VLA-­‐4,   respectively,   also   play   important   roles   in   this  

interaction  between  B  cells  and  FDCs,  promoting  their  cell-­‐to-­‐cell  contacts  (Harwood  and  

Batista,   2010).   In   addition   to  CXCL13,   the   cellular  Epstein-­‐Barr   virus-­‐induced   receptor  2  

(Ebi2,   also   known   as   GPR183)   and   its   ligand   7α,25-­‐dihydroxycholesterol   (7α,25-­‐OHC)  

guide   naïve   and   activated   B   cells   to   the   outer   follicular   niche(s)   of   secondary   lymphoid  

organs  (Pereira  et  al.,  2009;  Gatto  et  al.,  2009;  Gatto  and  Brink,  2013).  However,  germinal  

centres   (GC)  are   still   formed   in   their  normal   locations  when  Ebi2   is   absent   (Green  et  al.,  

2011).   Moreover,   S1P2   is   important   for   inhibiting   the   response   of   GC   B   cells   to  

chemoattractants,  and  helps  to  confine  these  cells  to  the  middle  of  the  follicle  (Green  et  al.,  

2011).  The  chemokine  receptor  CCR7  is  expressed  by  naïve  T  cells  and  (at  a  low  level)  in  

mature   B   cells,   but   its   expression   is   greatly   upregulated   after   encountering   an   antigen  

(Goodnow  et  al.,  2010;  Pereira  et  al.,  2010).  CCR7  helps  B  cells  to  move  towards  the  T  cell  

zone,  where  Ebi2  helps   to  distribute   them   in   the  border  between   the  T  cell  area  and   the  

midline  of  the  follicular  B  cell  zone.  Here,  after  B  cell  interaction  with  T  cells  through  CD40  

  13  

engagement,  expression  of  Ebi2  is  upregulated,  whereas  CCR7  is  downregulated  (Pereira  et  

al.,  2010;  Kelly  et  al.,  2011;  Gatto  and  Brink,  2013).  The  shuttling  of   the   follicular  B  cells  

between   the   interfollicular   and   outer   follicular   regions   is   very   important   for   FOB  

proliferation  and  GC  formation  (Gatto  and  Brink,  2013).  

 

Marginal  zone  B  cells.  The  cannabinoid  receptor  2  (CR2)  guides  and  positions  MZB  cells  

to  the  marginal  zone  and  prevents  their  elution  to  the  blood  (Basu  et  al.,  2011;  Muppidi  et  

al.,  2011).  Sphingosine  1  phosphate  (S1P),  which  comes  to  the  marginal  zone  via  the  blood  

stream,   binds   to   the   sphingosine   1   phosphate   receptor   1   (S1P1)   or   sphingosine   1  

phosphate   receptor   3   (S1P3)   on   marginal   zone   B   cells.   It   interferes   with   signals   from  

CXCL13,   and   retains  MZB   cells   in   the  marginal   zone   (Cerutti   et   al.,   2013).   The   adhesive  

interactions   between   MZ   B   cells   and   stroma   cells   also   play   an   important   role   in   the  

retention  of   the   former  cells.   In   this   case,  LFA-­‐1  and  VLA-­‐4  expressed  on  B  cells   interact  

with  ICAM-­‐1  and  VCAM-­‐1  on  stromal  cells.  Later,  marginal  zone  macrophages  retain  MZB  

cells  by  the  macrophage  receptor  with  collagenous  structure  (MARCO)  (Pillai  and  Cariappa,  

2009;  Cerutti  et  al.,  2013).  However,  marginal  zone  B  cells  are  highly  motile  and  migrate  

constantly   between   the  MZ   and   follicles   (Cinamon   et   al.,   2008;   Arnon   et   al.,   2012).   The  

chemokine  CXCR5  is  required  for  migration  into  the  follicle.  To  return  to  the  marginal  zone,  

MZB  cells  again  use  S1P1  and  S1P3,  which  are  responsible  for  the  attraction  and  retention  

of  these  cells.  Shuttling  of  marginal  zone  B  cells  between  the  MZ  and  follicles  ensures  that  

they  can  capture  an  antigen  more  efficiently,  and  deliver  more  of  it  to  the  FDCs  (Cinamon  et  

al.,   2008).   In   addition,   Ebi2   is   essential   for   activated   MZB   cell   movements   into   the  

extrafollicullar  areas  during  the  primary  immune  response  (Gatto  et  al.,  2009).    

 

Marginal  zone  B  cells  and  their  activation  

 

Marginal   zone   B   lymphocytes   (MZB)   are   a  minor   population   of   the   conventional   B   cells  

localized   in   the   outer   zone   of   the   splenic   white   pulp.   These   cells   can   be   identified   as  

IgMhiIgDloCD23-­‐CD21hiCD1dhi  and  are  the  first  to  respond  to  blood-­‐borne  pathogens.  High  

levels  of  CD1d  in  marginal  zone  B  cells  make  possible  antigen  (lipid)  presentation  by  these  

cells  to  invariant  natural  killer  cells  (iNKT)  (Pillai  and  Cariappa,  2009;  Cerutti  et  al.,  2013).  

MZ   B   cells   possess   polyreactive   BCR   and   can   therefore   bind   many   microbial   patterns.  

These   cells   are   a   link  between   innate   and   adaptive   immune   systems.  MZ  B   cells   express  

high   levels   of  Toll-­‐like   receptors   (TLRs)   in   the   same  way   as   other   types  of   cells,   such   as  

 14  

dendritic  cells  or  macrophages  (Cerutti  et  al.,  2013).  

 

After  antigen  encounter,  MZB  cells  migrate  to  the  extra-­‐follicular  areas  between  the  T  cell  

zone  and  the  red  pulp  of  the  spleen,  rapidly  proliferate  and  differentiate  into  plasmablasts  

with  low-­‐affinity  antibodies  (Oracki  et  al.,  2010;  Mackay  et  al.,  2010;  Vinuesa  et  al.,  2010;  

Cerutti  et  al.,  2013).  However,  marginal  zone  B  cells  are  very  diverse  and  can  also  generate  

long-­‐lived   plasma   cells   with   high-­‐affinity   antibodies,   which   can   be   achieved   both   along  

pathways   that   are   T   cell-­‐dependent   and   along   those   that   are   T   cell-­‐independent.   In  

addition,  MZB  cells  can  undergo  class  switch  recombination,  to  produce  IgG  and  some  IgA  

(Chappell  et  al.,  2012;  Puga  et  al.,  2012;  Cerutti  et  al.,  2013).  

 

Follicular  B  cells  and  their  further  differentiation  

 

Follicular   B   cells   (FOB)   are   the  major   population   of   the   B   cell   pool   in   the   spleen,  which  

home  to  the  follicles.  They  can  be  identified  as  IgMloIgDhiCD23+CD21intCD1dlo  (Cerutti  et  al.,  

2013).  Upon  binding  an  antigen   that   is   presented  on  FDCs,   follicular  B   cells  migrate   and  

localize   in   the   interfollicular  zone,  at   the  boundary  between  B  cell   follicles  and   the  T  cell  

zone,   where   ligands   of   CCR7,   CCL21   and   CCL19,   are   expressed   (Oracki   et   al.,   2010;  

Goodnow  et  al.,  2010;  Pereira  et  al.,  2010;  Cyster  2010;  Kerfood  et  al.,  2011).  Here,  B  cells  

receive   the   necessary   stimulation   signals   from   T   helper   cells.   Major   histocompatibility  

complex  (MHC)  class  II-­‐antigen  peptides  on  B  cells  interact  with  the  T  cell  receptor  (TCR)  

on  T   cells,  while  CD40  on  B   cells   interacts  with  CD40L  on  T   cells   and  provide  additional  

stimulation  from  cytokines  secreted  by  T  cells.  After  they  receive  these  signals,  B  cells  can  

undergo   one   of   two   fates.   Either   they   continue   migration   to   the   extra-­‐follicular   areas,  

where   they   differentiate   into   short-­‐lived   plasma   cells   located   in   the   extra-­‐follicular   foci  

where  they  produce  early  IgM  and  IgG,  or  they  re-­‐enter  the  follicles,  proliferate  and  form  

germinal   centres.  This  occurs  as  early  as  Day  4  after   infection,  and   is  discussed  below   in  

more  detail.  In  this  case,  LFA-­‐1  and  ICAM-­‐1  interaction  helps  them  to  survive  by  preventing  

apoptosis  (Allen  et  al.,  2007;  Vinuesa  et  al.,  2010;  Mackay  et  al.,  2010;  Oracki  et  al.,  2010;  

Kurosaki,  2010;  Cyster,  2010;  Gatto  and  Brink,  2010;  Harwood  and  Batista,  2010;  Kerfood  

et  al.,  2011;  Chu  and  Berek,  2012).  However,  B  cells  cannot  enter  the  germinal  centre  and  

differentiate,   until   Ebi2   expression   has   been   downregulated   by   the   transcriptional  

repressor  B  cell  lymphoma  6  (Bcl-­‐6)  (Chan  et  al.,  2010;  Goodnow  et  al.,  2010;  Pereira  et  al.,  

2010;  Victora  and  Nussenzweig,  2012).  While  GC  B  cells  downregulate  Ebi2,  they  maintain  

  15  

expression  of  CXCR5,  which  keeps  them  in  the  follicle,  where  CXCL13  is  expressed  (Chan  et  

al.,  2010;  Gatto  and  Brink,  2010).    

 

The   antibody-­‐producing   GC   B   cells   have   high   specificity   for   an   antigen   and   differentiate  

either  into  long-­‐lived  and  non-­‐dividing  plasma  cells  or  into  memory  B  cells  (Good-­‐Jacobson  

and  Shlomchik,  2010;  Mackay  et  al.,  2010;  Vinuesa  et  al.,  2010;  Yoshida  et  al.,  2010;  Chu  

and  Berek,  2012).    

 

Plasma  cell  decisions  

 

The   location   at   which   cells   receive   activation   signals  will   later   determine   the   ability   of  

plasmablasts   to  migrate  to  specific   locations  (Radbruch  et  al.,  2006;  Mackay  et  al.,  2010).  

There   are   two   ways   for   B   cells   to   become   plasma   cells.   After   activation,   B   cells   either  

differentiate   into   short-­‐lived  plasma   cells,  which   are   found   in   the   extrafollicular   areas  of  

secondary   lymphoid  tissue,  or  go  through  the  germinal  centre  reaction  and  become  long-­‐

lived  plasma  cells,  which  migrate   to   the  bone  marrow  (Shapiro-­‐Shelef  and  Calame,  2005;  

Oracki  et  al.,  2010;  McHeyzer-­‐Williams  et  al.,  2012).  It  has  been  suggested  that  the  affinity  

of   the   BCR   for   an   antigen   regulates   the   capacity   of   the   B   cells   to   present   the   antigen   to  

follicular   T   helper   cells   (McHeyzer-­‐Williams   et   al.,   2012).   With   increased   help   from  

follicular  T  helper  cells,  the  fate  of  B  cells  is  directed  towards  the  germinal  centre  reaction.  

Moreover,  the  follicular  T  helper  cells  direct  B  cell  commitment  towards  either  non-­‐GC  or  

GC   plasma   cells   and   determine   the   class   of   antibody   produced   (Schwickert   et   al.,   2011;  

McHeyzer-­‐Williams  et  al.,  2012).  

 

It  has,  however,  been  suggested  that  the  plasma  cell  pool  in  the  bone  marrow  contains  not  

only   long-­‐lived   cells,   but   also   short-­‐lived   cells   (Bortnick   and   Allman,   2013).   In   addition,  

recent   observations   suggest   that   B   cells   that   have   responded   to   a   T   cell-­‐independent  

antigen,  such  as  lipopolysaccharide  (LPS),  are  also  able  to  generate  long-­‐lived  plasma  cells,  

even   though   they   are   not   able   to   maintain   a   germinal   centre   response   (Bortnick   and  

Allman,  2013).  

 

Due  to  affinity  maturation  in  the  germinal  centres,  the  long-­‐lived  plasma  cells  produce  IgG  

antibodies   with   high   affinity   and   with   hypermutated   variable   regions   (Radbruch   et   al.,  

2006;  Chu  and  Berek,  2012).  Plasma  cells   that  are   terminally  differentiated,  non-­‐dividing  

 16  

and  are  secreting  antibodies  can  be  identified  by  surface  expression  of  CD138  (Syndecan-­‐

1)  (Smith  et  al.,  1996).    

 

For  differentiation  into  long-­‐lived  plasma  cells,  the  transcriptional  repressor  B  lymphocyte-­‐

induced  maturation  protein-­‐1  (Blimp-­‐1),  which  represses  both  Bcl-­‐6  and  Pax5,  is  essential  

(Shapiro-­‐Shelef  and  Calame  et  al.,  2005;  Oracki  et  al.,  2010;  Chu  and  Berek,  2012).  During  

differentiation   into   plasma   cells,   B   cells   downregulate   CXCR5   and   upregulate   Ebi2   and  

CXCR4.  This  allows  plasmablasts  or  plasma  cell  precursors  to  home  to  the  bone  marrow  in  

response  to  CXCL12,  which  is  produced  by  stromal  cells  (Chan  et  al.,  2010;  Gatto  and  Brink,  

2010;  Mackay   et   al.,   2010;   Pereira   et   al.,   2010;   Yoshida   et   al.,   2010).   Additionally,   S1P1  

receptors  are  also   important   for  the  egress  of   lymphocytes   from  the  secondary   lymphoid  

organs   (Allende   et   al.,   2010;   Pereira   et   al.,   2010;   Cyster,   2010).   S1P1   blockage   causes  

plasmablast  accumulation  in  the  spleen,  thereby  inhibiting  the  migration  of  plasmablasts  to  

the  bone  marrow  (Yoshida  et  al.,  2010).    

 

Proper  homing   is  critical   for   the  survival  of   long-­‐lived  plasma  cells,   since   failure   to  enter  

the   bone  marrow  may   compromise   long-­‐lived   humoral   immunity   (Bortnick   and   Allman,  

2013).  In  the  bone  marrow,  the  interaction  of  APRIL  and/or  BAFF,  which  are  produced  by  

stromal  cells,  with  BAFF-­‐R,  which  is  present  on  plasma  cells,  is  essential  for  plasma  cells  to  

be  sustained  as  long-­‐lived  plasma  cells  and  thus  keep  antibody  titres  high  for  a   long  time  

without  the  need  of  the  memory  B  cell  pool  to  be  activated  (Ahuja  et  al.,  2008;  Allman  and  

Pillai,  2008).  

 

Memory  B  cells  

 

Memory   B   cells   play   an   essential   role   in   long-­‐term   immunity  maintenance.   They   can   be  

defined   as   antigen-­‐primed   cells   that   express   high-­‐affinity   antibodies,   which   can   quickly  

differentiate   into   plasma   cells   during   antigen   recall.   Memory   B   cells   may   remain   in   a  

resting   state   long   after   stimulation,   and   do   not   need   antigen   or   T   cell   help   for   survival  

(Klein  and  Dalla-­‐Favera,  2008;  Shlomchik  and  Weisel,  2012).  Memory  B  cells  do  not  secrete  

and  can  be  generated  via   germinal   centres   either  as   IgM+  or   as   isotype-­‐switched   (swIg+)  

types.  The  latter  make  up  more  than  95%  of  the  cells.  They  can  also  be  generated  by  a  GC-­‐

independent  pathway  with  non-­‐mutated  receptors  (Pape  et  al.,  2011;  Taylor  et  al.,  2012).  

The  B   cell   receptors   on   swIg+  memory  B   cells   have   higher   affinity   than   that   of   the   IgM+  

  17  

memory  B  cells  (Pape  et  al.,  2011).  Highly  mutated  GC-­‐derived  memory  B  cells  with  either  

IgM+  and  swIg+  receptors  express  the  surface  receptor  CD73.    

 

Early  memory   B   cells   can   be   detected   even   before   the   formation   of   GCs,   and   they  most  

probably   come   from   the   same   precursors   as   the   cells   of   the   germinal   centre,   since   they  

express  the  memory  B  cell  markers  CD38,  Bcl-­‐2  and  CCR6,   together  with  the  GC  markers  

GL7  and  CD95  (FAS)  (Taylor  et  al.,  2012a;  Taylor  et  al.,  2012b).    

 

A  key  player  that  determines  whether  the  precursors  will  differentiate   into  memory  cells  

or  enter  the  germinal  centre  reaction  is  CD40.  In  mice  treated  with  anti-­‐CD40  antibodies,  

the   germinal   centre   differentiation   was   completely   blocked,   while   generation   of   GC-­‐

independent  memory  B  cells  was  not  affected  (Erickson  et  al.,  2002;  Taylor  et  al.,  2012).    

 

After   antigen   challenge,   IgM+   memory   B   cells   proliferate   and   differentiate   via   the   GC  

reaction,  but  swIg+  can  quickly  generate  large  amounts  of  the  plasma  cells  without  entering  

GCs  (Dogan  et  al.,  2009;  Pape  et  al.,  2011).  This  rapid  expansion  of  plasma  cells   requires  

help  from  T  cells,  most  probably  T  follicular  helper  memory  cells  (Taylor  et  al.,  2012).  The  

function  of   IgM+  memory  B  cells  has  not  been   fully  elucidated  since  they  respond  poorly.  

They  might   be   important   for   re-­‐infection   when   the   pathogen   has   mutated.   In   this   case,  

memory  B   cells   can   enter   germinal   centres,  mutate   their   receptors,   and  produce   a   high-­‐

affinity   response.   This   contrasts   with   swIg+   cells,   which   cannot   re-­‐enter   the   germinal  

centres  (Taylor  et  al.,  2012).    

 

Comparing  the  long-­‐lived  plasma  cell  response  with  the  memory  B  cell  response,  Purtha  et  

al.  (2011)  have  shown  by  studying  virus  infections  in  mice  that  the  polyclonal  pool  of  swIg  

memory  B  cells  can  recognize  and  neutralize  mutated  pathogens  equally  well  as  wild-­‐type  

pathogens.  Long-­‐lived  plasma  cells,  however,  were  specific  only  for  the  original  pathogen.  

 

The  Germinal  Centre  reaction  

 

The  germinal  centre  (GC)  (Fig.  1)  is  the  structure  within  the  follicle  in  which  B  cells  rapidly  

proliferate  in  response  to  T  cell-­‐dependent  antigen  stimulation.  Shortly  after  the  germinal  

centre  is  formed,  it  starts  to  resolve  into  two  functionally  distinct  compartments  –  the  dark  

zone  (DZ)  and  the  light  zone  (LZ).  In  the  latter,  B  cells  undergo  class  switch  recombination  

 18  

and  somatic  hypermutation.  Only  B  cells  with  high-­‐affinity  receptors  for  the  antigen  will  be  

selected   (in   the   LZ)   and   differentiate   either   to   long-­‐lived   memory   B   cells   or   antibody-­‐

producing   plasma   cells   (MacLennan,   1994;   Hauser   et   al.,   2007;   Schwickert   et   al.,   2007;  

Kurosaki,  2010;  Vinuesa  et  al.,  2010;  Gatto  and  Brink,  2010;  Gonzalez  et  al.,  2011).    

 

The   germinal   centre   compartmentalisation   into   DZ   and   LZ   is   mediated   by   opposing  

gradients  of  CXCL12  and  CXCL13  (Gatto  and  Brink,  2010;  Victora  and  Nussenzweig,  2012).  

The  DZ   is   densely   packed  with  proliferating  B   cells,  whereas   the   LZ   is   populated  with  B  

cells,   follicular  T  helper  cells   (TFH)  and   follicular  dendritic  cells   (FDC).  The  DZ   is   located  

close  to  the  T  cell  zone,  while  the  LZ  is  located  close  to  the  marginal  sinus,  where  antigens  

enter  the  tissue  (Hauser  et  al,  2007;  Allen  et  al.,  2007;  Gatto  and  Brink,  2010;  Cyster,  2010;  

Victora  and  Nussenzweig,  2012).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1.  The  dynamic  Germinal  Centre  model  (from  Victora  and  Nussenzweig,  2012).  

 

FDCs   are   stromal   cells   that   accumulate   an   antigen   and   form   a   network   in   the   LZ   of   the  

germinal   centre.   Ablation   of   FDCs   from   the   germinal   centre   leads   to   its   disappearance  

(Vinuesa  et  al.,  2010;  Wang  et  al.,  2011).  These  cells  express  high  levels  of  integrin  ligands  

(VCAM-­‐1   and   ICAM-­‐1),   and   they   catch   and   retain   antigens   in   the   form   of   immune  

complexes   through   Fc   and   complement   receptors   (Allen   et   al.,   2007;   Allen   and   Cyster,  

2008;   Hauser   et   al.,   2007;   Gatto   and   Brink,   2010).   FDCs   are   the   source   of   the   CXCL13  

  19  

chemokine,   the   ligand  for  CXCR5  and  which   is  expressed  on  T  and  B  cells  (Vinuesa  et  al.,  

2010).   Immune   complexes,   presented   on   FDCs,   are   strong   stimuli   of   B   cells.   B   cells  

activation  results  in  the  expression  of  activation-­‐induced  cytidine  deaminase  (AID),  and  the  

induction   of   class   switch   recombination   (CSR)   and   somatic   hypermutation   (SHM)   (Allen  

and  Cyster,  2008;  Victora  and  Nussenzweig,  2012).    

 

TFH   cells   are   a   minor   population   (5-­‐20%)   in   the   LZ   of   the   GC,   but   are   crucial   for   the  

induction   of   GC   responses   by   providing   survival   signals   to   GC   B   cells   (Gatto   and   Brink,  

2010).  They  can  be  distinguished  by  their  high  expression  of  programmed  death-­‐1  (PD-­‐1).  

Also,   TFH   cells   express   CD40L   and   produce   high   amounts   of   IL-­‐4   and   IL-­‐21,   which   are  

essential   for   GC   B   cell   survival   and   differentiation.   They   are   thus   essential   for   the   full  

development  and  maintenance  of  mature  germinal  centres  (Goodnow  et  al.,  2010;  Vinuesa  

et  al.,  2010;  Hauser  et  al.,  2010).  Additionally,  follicular  T  regulatory  (TFR)  cells  control  the  

GC  reaction  and  the  humoral  immune  response,  since  the  absence  of  these  cells  leads  to  a  

greater   GC   reaction,   but   with   only   few   antigen-­‐specific   GC   B   cells   (Chung   et   al.,   2011;  

Linterman  et  al.,  2011;  Wollenberg  et  al.,  2011).  

 

The   dark   and   light   zone   compartments   of   the   germinal   centre   have   different   gene  

expression  patterns.  DZ   cells   have   upregulated   expressions   of   genes   involved   in  mitosis,  

whereas  genes  that  control  lymphocyte  activation,  cell  surface  receptors  and  regulators  of  

apoptosis  are  elevated  in  LZ  cells  (Victora  et  al.,  2010).  B  cells   in  both  zones  have  similar  

DNA   synthesis   levels,   but   cell   division   occurs   mainly   in   the   DZ   of   the   germinal   centre  

(Victora   et   al.,   2010).   Several   markers   have   been   identified   that   can   be   used   in   flow  

cytometry   to   distinguish   DZ   and   LZ   B   cells:   CXCR4hiCD83loCD86lo   (DZ   cells)   and  

CXCR4loCD83hiCD86hi  (LZ  cells)  (Victora  et  al.,  2010).  In  addition,  GL7  and  CD95  (FAS)  can  

be  used  as  markers  of  germinal  centres  (Taylor  et  al.,  2012).  

 

During  the  affinity  maturation  process,  germinal  centre  B  cells  move  continuously  within  

the  LZ  zone,  searching  for  FDCs  that  carry  an  antigen,  or  within  the  DZ  during  division  and  

mutation.  They  also  move  between   these  compartments   (Hauser  et  al.,  2007;  Allen  et  al.,  

2007).  It  has  been  shown  that  50%  of  cells  from  the  DZ  can  migrate  to  the  LZ  in  6  hours  in  

vivo,  whereas  cells   from  the  LZ  are   less  motile:  only  15%  migrate   into   the  DZ  during   the  

same  period  (Victora  et  al.,  2010;  Victora  and  Nussenzweig,  2012).    

 

 20  

There  are  several  hypotheses  about  how  cells  move  within  the  GC.  The  dynamic  germinal  

centre  model   (Fig.   1)   has   recently   been   proposed,   in  which   B   cells   in   the   LZ   capture   an  

antigen  and  compete  for  T  cell  help.  Those  B  cells  that  present  peptide-­‐MHC  class  II  to  TFH  

cells  obtain  an  activation  signal  and  migrate  to   the  DZ,  where  they  rapidly  divide.  On  the  

other  hand,  LZ   cells   that   fail   to  be   selected  undergo  apoptosis.   In   addition,   this   selection  

process  is  highly  synchronized  with  the  cycling  between  the  DZ  and  LZ  (Victora  et  al.,  2010;  

Victora  and  Nussenzweig,  2012).  This  agrees  with  the  finding  that  germinal  centre  B  cells  

move  preferentially  from  the  DZ  to  the  LZ  (Beltman  et  al.,  2011).    

 

Meyer-­‐Hermann   et   al.   have   presented   another,   mathematical   model   (called   LEDA),   in  

which  they  combine  the  previous  theory  with  an  experimental  mathematical  approach  to  

integrate   large  amounts  of  data.  This  model  predicts  a  cyclic  re-­‐entry  path   for  the  B  cells  

that  have  been  positively  selected  on  FDCs  and  can  successfully  compete  for  help  from  TFH  

cells.   The   more   peptide-­‐MHC   B   cells   express,   the   more   they   will   divide,   but   fewer  

mutations  will  be   introduced.  Cells   that  do  not  compete  will  die  by  apoptosis.  The  model  

was   confirmed,   since   B   cells   enter   the   S   phase   when   still   in   the   LZ,   just   after   they   are  

selected,   and   immediately   move   to   the   DZ,   just   before   the   G2/M   cell   cycle   phases.   The  

model  predicts   that   intracellular  antigen   is  distributed   to   the  daughter  cells  unequally   in  

the  dark  zone,  which  is  compatible  with  the  asymmetric  cell  division  described  by  Thaunat  

et  al.  (2012).  LEDA  predicts  that  those  daughter  cells  that  retain  the  antigen  will  enter  final  

differentiation.   In  addition,   the  model  predicts   that   the  plasmablasts  will   exit   via   the  DZ,  

where  they  must  first  divide  and  then  leave  the  GC  towards  the  T  cell  zone.  Daughter  cells  

that  did  not  have  a   sufficient  amount  of  an   intracellular  antigen  will   return   to   the  LZ   for  

more  cycles  (Meyer-­‐Hermann  et  al.,  2012).  The  model  predicts  that  this  is  the  mechanism  

by  which  the  long-­‐lived  plasma  cells  are  generated,  but  not  memory  B  cells.  Generation  of  

memory  B  cells  remains  to  be  investigated  separately,  because  it  has  different  dynamics.  In  

summary,  Meyer-­‐Herman   et   al.   (2012)   have   analysed   previous   results   and   present   new  

details  of  the  B  cell  selection  process.  They  also  propose  new  models  for  division  and  the  

pathway  of  GC  exit.  

 

In  the  majority  of  cases,  GCs  are  formed  in  T  cell-­‐dependent  B  cell  responses,  but  certain  T  

cell-­‐independent  antigens,  such  as  bacterial  polysaccharides,  can  also  induce  GC  formation  

(Sverremark   and   Fernandez,   1998;   Good-­‐Jacobson   and   Shlomchik,   2010;   Oracki   et   al.,  

2010;  Vinuesa  et  al.,  2010).  A  T  cell-­‐independent  GC  response  is  very  poor,  the  structures  

  21  

are  short-­‐lived  and  somatic  hypermutation  of  the  IgV  region  cannot  take  place  (Vinuesa  et  

al.,   2010;  McHeyzer-­‐Williams   et   al.,   2012).   Interestingly,   T   cells   seem   to   be   required,   at  

least   for  the  maintenance  of  the  GCs,  even  when  induced  by  a  T  cell-­‐independent  antigen  

(Sverremark   and  Fernandez,   1998;  Vinuesa   et   al.,   2000).  There   is   growing   evidence   that  

cells  of  the  innate  immune  system  present  antigens  to  B  cells  and  induce  a  fast  and  highly  

diverse   antibody   response,   also   providing   survival   signals   to   plasma   cells   (Cerutti   et   al.,  

2012).  

 

T  cell  help:  CD40-­CD40L  interaction    

 

The   CD40-­‐CD40L   interaction   plays   a   critical   role   in   the   development   of   humoral   and  

cellular  immune  responses.  It  is  involved  in  the  activation  and  proliferation  of  B  cells,  the  

formation   of   germinal   centres,   antibody   production,   isotype   switching,   somatic  

hypermutation,  and  the  generation  of  memory  B  cells  and  plasma  cells  (Elgueta  et  al.,  2009;  

Graham  et  al.,  2010).    

 

CD40L   (also   known   as   CD154)   belongs   to   the   TNF   family,   and   is   mainly   expressed   on  

activated  T  cells  (Elgueta  et  al.,  2009;  Kurosaki  et  al.,  2010;  Vinuesa  et  al.,  2010;  Graham  et  

al.,  2010).  It  is  expressed  also  on  monocytes,  macrophages,  platelets,  mast  cells,  basophils,  

eosinophils,  epithelial  cells  and  NK  cells  (Elgueta  et  al.,  2009;  Graham  et  al.,  2010).  CD40L  

is  a  very  important  co-­‐stimulus  for  the  initiation  of  the  GC  reaction,  and  plays  an  important  

role   in  T   cell-­‐independent  GC   formation.   In   the   latter   case,  CD40L   is  expressed  on  non-­‐T  

cells  (Vinuesa  et  al.,  2010;  Cerutti  et  al.,  2012).  

 

CD40  belongs  to  the  tumour  necrosis  factor  receptor  (TNF-­‐R)  family.  It  was  first  found  as  a  

cell  surface  antigen,  restricted  to  human  urinary  bladder  carcinomas  and  B  cells  (Paulie  et  

al.,  1985).  CD40  is  constitutively  expressed  on  almost  all  B  cells  (not  in  plasma  cells),  DCs,  

platelets,  monocytes  and  macrophages  (Kurosaki  et  al.,  2010;  Vinuesa  et  al.,  2010;  Graham  

et  al.,  2010).  It   is  expressed  also  on  non-­‐hematopoietic  cells  such  as  fibroblasts,  epithelial  

and   endothelial   cells   (Elgueta   et   al.,   2009).   CD40   is   associated   with   TNF   receptor-­‐

associated   factors  (TRAFs),  and   it   initiates  NF-­‐κB,  c-­‐Jun  N-­‐terminal  kinase  (JNK)  and  p38  

signalling  pathways  (Kurosaki  et  al.,  2010;  Graham  et  al.,  2010).  B  cell  activation  via  BCR  

and   CD40   leads   to   inhibition   of   the   transcription   factor   Bcl-­‐6,   a   critical   regulator   of   GCs  

(Klein   and  Dalla-­‐Favera,   2008;   Kurosaki   et   al.,   2010).   In   T   helper   cells,   Bcl-­‐6   expression  

 22  

induced  by  IL-­‐21  leads  to  differentiation  to  TFH  cells,  which  are,  in  turn,  are  very  important  

for  GC  B  cell  formation  (Vinuesa  et  al.,  2010).    

 

CD40   signalling   upregulates   activation   markers,   such   as   MHC   class   II   and   adhesion  

molecules  on  B  cells.  It  can  also  induce  the  production  of  chemokines  and  cytokines,  which  

enhance   B   cell-­‐mediated   T   cell   activation   (Elgueta   et   al.,   2009;   Graham   et   al.,   2010).   In  

addition,  B  cells  cultured   in  vitro  with  anti-­‐CD40  antibodies  escape  apoptosis  (Graham  et  

al.,  2010).  

 

Interestingly,   signalling   through   both   BCR   and   CD40   is   necessary   not   only   for   GC  

development,  but  also  for  termination  of  the  GC  reaction  to  become  either  plasma  cells  or  

memory  B  cells  (Elgueta  et  al.,  2009;  Bolduc  et  al.,  2010;  Kishi  et  al.,  2010;  Kurosaki  et  al.,  

2010;  Vinuesa  et  al.,  2010).    

 

Mice   deficient   in   either   CD40   or   CD40L   do   not   have   a   sufficient   response   to   T   cell-­‐

dependent   antigens,   do   not   form   GCs,   and   cannot   undergo   class   switch   recombination  

(Kurosaki   et   al.,   2010;   Good-­‐Jacobson   and   Shlomchik,   2010).   Humans   deficient   in   either  

CD40   or   CD40L   develop   hyper-­‐IgM   syndrome.   Their   B   cells   cannot   form   GCs   and   have  

impaired  productions  of  IgG,  IgA  and  IgE,  whereas  the  level  of  IgM  antibodies  is  normally  

elevated.  Upon  in  vitro  stimulation  with  CD40  agonists  and  cytokines,  B  cells  from  patients  

who   lack  CD40L  can  proliferate  and  switch   their   Ig   class.  However,  B   cells   from  patients  

who   lack   CD40   cannot   respond   (Kracker   et   al.,   2010;   Davies   and   Thrasher,   2010),  

providing  evidence  that  the  CD40  deficiency  is  intrinsic  to  B  cells.  

 

When  activation  leads  to  disease:  the  Epstein-­Barr  virus  

 

About   95%  of   all   lymphomas   are   of   B   cell   origin,   coming   from  different   stages   of   B   cell  

development  (Küppers  et  al.,  1999;  Küppers,  2005;  Klein  and  Favera,  2008).  Even  though  

the  majority  of  B  cell   lymphomas  originate  either  from  the  germinal  centre  itself  or  from  

post-­‐germinal   centre   B   cells,   they   need   very   different   clinical   treatments   (Teitell   and  

Pandolfi,   2004;   Küppers,   2005;   Natkunam,   2007).   Hodgkin,   Burkitt   and   follicular  

lymphomas,   for   example,   originate   from   the   germinal   centre,   where   IL-­‐4   signalling   and  

CD40   ligation   are   very   important   for   B   cells.   CD40   signalling   is   essential   for   the  

development  of   a  normal   immune   response,  but   is   also  needed   for   the  proliferation  and  

  23  

survival  of   the  majority  of  B  cell   lymphomas  (Teitell  and  Pandolfi,  2004;  Küppers,  2005;  

Graham  et  al.,  2010).  B   lymphocytes  are  the  main  target  of   the  Epstein-­‐Barr  virus  (EBV),  

which  is  strongly  associated  with  certain  B  cell  malignancies.  In  Burkitt  lymphoma,  98%  of  

the  B  cells  carry  EBV  (Thorley-­‐Lawson,  2005).  In  approximately  40%  of  classical  Hodgkin  

lymphoma  (HL)  cases,  the  Hodgkin  Reed-­‐Sternberg  (HRS)  cells  are  infected  with  this  virus.  

HRS   cells   attract   T   helper   cells   by   secreting   T   cell-­‐attracting   cytokines   that   are   usually  

restricted   to  DCs.   Even   though   the  HRS   cells   have  downregulated  many   genes,   they   still  

express  molecules  important  for  interaction  with  T  cells,  including  CD40.  This  shows  that  

T  cell  help  is  important  of  for  HRS  survival  (Küppers,  2005).  

 

The  Epstein-­‐Barr  virus  is  a  γ-­‐herpes  virus  (also  known  as  human  herpes  virus  4  or  HHV4),  

which  preferentially   infects   resting  B   lymphocytes.   It   can   infect   also  epithelial,  T  and  NK  

cells.   During   infection,   EBV  binds   to   the   CD21   (also   known   as   the   CR2)  molecule   on   the  

surface   of   B   lymphocytes,   using   its  major   envelope   glycoprotein   gp350.   It   binds   also   to  

human   leukocyte   antigen   (HLA)   class   II   as   a   co-­‐receptor,   using   the   glycoprotein   gp42  

(Cohen,  1999;  Young  and  Rickinson,  2004).    

 

More   than   90%   of   the   human   population   is   infected  with   EBV.   Infection   usually   occurs  

during  childhood  and  is  asymptomatic.  If  the  primary  infection  is  delayed  until  adulthood,  

about  50%  of  patients  develop  infectious  mononucleosis.  The  virus  is  carried  for  lifetime  

by  an  infected  person  (Thorley-­‐Lawson,  2001;  Young  and  Rickinson,  2004;  Kis  et  al.,  2006;  

Hislop  et  al.,  2007;  Luzuriaga  and  Sullivan,  2010).  To  escape  an  immune  response  in  vivo,  

EBV   remains   latent   in   the   resting   memory   B   cells   (Cohen,   1999;   Faulkner   et   al.,   2000;  

Babcock  et  al.,  2000;  Young  and  Rickinson,  2004),  using  a  highly  restricted   transcription  

program  without  the  expression  of  any  immunogenic  viral  proteins  (Faulkner  et  al.,  2000;  

Babcock  et  al.,  2000).  EBV  can  be  reactivated  during  immunosupression  or  autoimmunity  

(Young  and  Rickinson,  2004).    

 

In   vitro   EBV   infection   of   resting   B   lymphocytes   results   in   their   transformation   and  

immortalization   into   continuously   proliferating   lymphoblastoid   cell   lines   (LCLs)   (Young  

and  Rickinson,  2004,  Kis  et  al.,  2006).  Moreover,  EBV-­‐infected  B  cells  show  high  levels  of  

expression  of  several  activation  markers,  such  as  CD23,  CD30,  CD39,  and  CD70,  and  high  

levels   of   expression   of   various   adhesion   molecules,   such   as   LFA-­‐1,   LFA-­‐3   and   ICAM-­‐1  

(Young  and  Rickinson,  2004).   Interestingly,  LCLs  have  a   typical  growing  pattern  of   large  

 24  

and   tight   aggregates   (Rowe   et   al.,   1987;   Gregory   et   al.,   1990),   which   resembles   the  

morphology  of  anti-­‐CD40+IL-­‐4  stimulated  primary  B  cells.      

The  Epstein-­‐Barr  virus  is  associated  with  both  non-­‐malignant  diseases,  such  as  infectious  

mononucleosis   (IM),   and   malignant   diseases,   such   as   Burkitt   lymphoma   (BL),   Hodgkin  

lymphoma   (HL),   nasopharyngeal   carcinoma   (NPC),   post-­‐transplant   lymphoproliferative  

disorders  (PTLD),  and  many  others  (Faulkner  et  al.,  2000;  Thorley-­‐Lawson,  2001;  Hislop  et  

al.,  2007).   In  various   tumours,  EBV  expresses  a  different  set  of   latent  genes  (Table  1  and  

Fig.  2)  (Young  et  al.,  2000;  Thorley-­‐Lawson,  2001;  Young  and  Rickinson,  2004;  Klein  et  al.,  

2007).      

Table  1.  Examples  of  EBV  latent  gene  expression  patterns  

EBV-­associated  tumours   EBV  gene  expression*   Type  of  latency    

BL,  NPC,  PTLD   EBNA-­‐1  (Qp)   Type  I  

cHL,  NPC,  PTLD   EBNA-­‐1  (Qp),  LMP-­‐1,  LMP-­‐2A,  LMP-­‐2B   Type  II  

PTLD   EBNA-­‐1  (Cp),  -­‐2,  -­‐3,  -­‐4,  -­‐5,  -­‐6,  LMP-­‐1,  LMP-­‐2A,  LMP-­‐2B  

Type  III  

BL  -­‐  Burkitt  lymphoma,  NPC  –  nasopharyngeal  carcinoma,  PTLD  –  post-­‐transplant  lymphoproliferative  disorders,  cHL  –  classical  Hodgkin  lymphoma    *EBERs  are  expressed  in  all  types  of  latency    

 

 

 

 

 

 

 

 

 Figure  2.  The  EBV  genome  is  a  double-­stranded  DNA  episome  (note  that  the  EBNAs  also  have  an  alternative  nomenclature:  here  EBNA-­‐3A  =  EBNA-­‐3,  EBNA-­‐3B  =  EBNA-­‐4,  EBNA-­‐LP  =  EBNA-­‐5  and  EBNA-­‐3C  =  EBNA-­‐6)  (from  Young  et  al.,  2000)    

All  cells  that  are  latently  infected  with  EBV  constitutively  express  small,  non-­‐coding  RNAs  

known  as  EBERs  (EBER-­‐1  and  EBER-­‐2)  (Fig.  2)  and  miRNAs.  Every  EBV-­‐transformed  LCL  

cell   carries   multiple   extra-­‐chromosomal   copies   of   the   viral   episome   and   constitutively  

  25  

expresses  viral  latent  proteins  (Young  et  al.,  2000;  Young  and  Rickinson,  2004).  One  of  the  

EBV-­‐encoded   nuclear   antigens   (EBNAs),   EBNA-­‐1   is   required   for   the  maintenance   of   the  

viral   episome   in   proliferating   cells.   LCLs  maintain   the   viral   genome   as   an   episome   and  

express   a   full   set   of   EBV   latent   genes   (nine   virally   encoded   proteins):   six   EBV   nuclear  

antigens   (EBNA1-­‐6)   and   three   latent  membrane   proteins   (LMP-­‐1,   LMP-­‐2A   and   LMP-­‐2B)  

(Fig.  2)  (Young  et  al.,  2000;  Babcock  et  al.,  2000;  Klein  et  al.,  2007).  This  gene  expression  

pattern  in  LCLs  corresponds  to  what  is  known  as  “Type  III”  latency  (Table  1).  It  correlates  

with   the   primary   infection   in   humans,  when   a   very   strong   immune   response   is   induced  

(Kurth  et  al.,  2000;  Hislop  et  al.,  2007).  Burkitt   lymphomas  express  only  EBNA-­‐1  (Type  I  

latency),  whereas  classical  Hodgkin   lymphomas  express  EBNA-­‐1  and  LMPs:  LMP-­‐1,  LMP-­‐

2A   and   LMP-­‐2B   (Type   II   latency)   (Table   1)   (Klein   et   al.,   2007).   In   addition,   under   the  

influence  of  LMP-­‐1  and  LMP-­‐2,  EBV-­‐infected  B   cells  undergo  a   germinal   centre   reaction.  

Whereas  LMP-­‐2  forces  B  cells  to  start  such  a  reaction,  LMP-­‐2  and  LMP-­‐1  can  induce  class  

switching  and  mutations  of  the  Ig  genes,  respectively.  Moreover,  LMP-­‐1  can  downregulate  

Bcl-­‐6   expression,   and  memory   B   cells   that   carry   EBV   leave   the   germinal   centre.   In   the  

periphery,   latently   infected  memory  B   cells   immediately   switch   to   the  Type   I   latency,   in  

which  only  EBNA-­‐1  is  expressed  (Thorley-­‐Lawson,  2005).  

 

Signalling  similarity  between  LMP-­1  and  CD40:  Mimicking  T  cell  help  

 

The   main   EBV-­‐encoded   transforming   oncoprotein   LMP-­‐1   contains   six   transmembrane  

sequences  (of  length  162  aa)  with  a  short  (24  aa)  cytoplasmic  amino  terminal  domain  and  

a   large   (200   aa)   carboxy   terminal   domain   (Busch   and   Bishop,   1999;   Young   et   al.,   2000;  

Thorley-­‐Lawson,   2001).   LMP-­‐1   acts   as   a   constitutively   active   pseudo-­‐receptor   and   is  

critical   for   the   in   vitro   transformation   and   proliferation   of   EBV-­‐infected   human   B   cells  

(Dirmeier  et  al.,  2003).   It  has  a  pleiotropic  effect   in  B  cells,  by   inducing  the  expression  of  

cell-­‐surface   adhesion   and   activation   molecules,   and   by   upregulating   the   expression   of  

several  anti-­‐apoptotic  proteins  (Thorley-­‐Lawson,  2001;  Young  and  Rickinson,  2004).  

 

LMP-­‐1   mimics   T   helper   cell   signals   in   a   ligand-­‐independent   manner   and   has   functional  

homology  with  CD40,  although  their  structures  are  different  (Young  et  al.,  2000;  Thorley-­‐

Lawson,   2001).   In   addition,  when  LMP-­‐1  needs   to   amplify   and  maintain   its   signal,   CD40  

signalling   is   tightly   regulated   (Graham   et   al.,   2010).   Interestingly,   LMP-­‐1   can   partially  

restore   the   defects   when   expressed   in   B   cells   of   CD40-­‐/-­‐   mice   (Uchida   et   al.,   1999).  

 26  

Deregulation   of   this   signalling   pathway   is   sufficient   to   induce  B   cell   transformation,   and  

can   lead   to   tumour   formation   (Hömig-­‐Hölzel   et   al.,   2008;   Klein   and   Dalla-­‐Favera,   2008;  

Kishi  et  al.,  2010).  

 

LMP-­‐1   acts   as   a   constitutively   active   TNFR   and   can   induce   several   signalling   pathways.  

CD40   and   LPM-­‐1   both   signal   via   TRAFs,   and   induce   similar   early   pathways   with   the  

activation   of   different   kinase   cascades   (Graham   et   al.,   2010).   As   a   CD40,   LMP-­‐1   signals  

through  a  TRAF-­‐binding  domain  and  induces  the  NF-­‐κB  pathway.  This  is  followed  by  B  cell  

proliferation  and  survival  (Young  et  al.,  2000;  Thorley-­‐Lawson,  2001;  Graham  et  al.,  2010).  

Even  though  both  CD40  and  LMP-­‐1  act  through  the  same  adaptor  proteins,   the  pathways  

are   regulated   in   different  ways.   TRAF3,   for   example,   regulates   CD40   negatively,  while   it  

induces  LMP-­‐1  signals  (Graham  et  al.,  2010).  Interestingly,  LMP-­‐1  itself  can  also  induce  the  

JAK/STAT   pathway,   when   ectopically   expressed   in   an   embryonic   kidney   cell   line.   It  

interacts   with   Janus-­‐activated   kinase   3   (JAK3),   induces   its   autophosphorylation,   and  

thereafter  activates  the  signal  transducer  and  activator  of  transcription  1  (STAT1)  (Gires  et  

al.,  1999;  Young  et  al.,  2000).  In  addition,  LMP-­‐1  can  activate  the  small  Rho  GTPase  Cdc42  

when   expressed   in   fibroblasts,   and   it   can   induce   filopodia   formation   (Puls   et   al.,   1999;  

Young  et  al.,  2000).  

 

Activation  of   the  LMP-­‐1  promoter  and  expression  of   the  LMP-­‐1  protein  are  needed  for   in  

vitro  proliferation  of  EBV-­‐infected  B  cells,   and  are  regulated  by   the  EBV-­‐encoded  protein  

EBNA-­‐2  (Klein  et  al.,  2007).  However,  LMP-­‐1  is  still  expressed  in  the  absence  of  EBNA-­‐2  in  

Hodgkin  lymphomas.  Goormachtigh  et  al.  (2006)  proposed  that  EBV  has  at  least  one  more  

way  to  express  LMP-­‐1  in  the  absence  of  EBNA-­‐2,  and  discovered  an  alternative  mechanism  

of   JNK-­‐dependent  LMP-­‐1  auto-­‐activation.  Furthermore,  Kis  et  al.  (2005)  showed  that  IL-­‐4  

and  CD40  ligation  in  EBV-­‐infected  Hodgkin   lymphoma  cell   lines  can  induce  LMP-­‐1  and  in  

this  way  replace  EBNA-­‐2.  However,  Chen  et  al.  had  proposed  as  early  as  2001,  that  STATs  

are  responsible  for  EBNA-­‐2-­‐independent  LMP-­‐1  expression  (Chen  et  al.,  2001).    

 

Interleukin-­4  and  its  signalling  pathways    

There  are  many  different  signal  molecules,  such  as  cytokines,  that  transmit  signals  from  the  

outside   of   the   cell   to   the   inside   and   induce   specific   gene   transcription.   One   such   that   is  

relevant   to   the   work   described   here   is   the   pleiotropic   Type   I   cytokine   IL-­‐4,   which   is  

  27  

produced  mainly  by  CD4+  T  helper  cells.    It  is  produced  also  by  basophils,  mast  cells,  NK-­‐T  

cells  and  γ/δ  T  cells  (Nelms  et  al.,  1999).  IL-­‐4  plays  a  critical  role   in  the  regulation  of  the  

immune  responses,  and  it  controls  lymphocyte  differentiation,  proliferation  and  apoptosis  

(Boothby  et  al.,  2001;  Lu  et  al.,  2005).  It  regulates  the  differentiation  of  antigen-­‐stimulated  

naïve  T  cells.    

 

In  proliferating  B  cells,  it  acts  as  a  differentiation  factor  by  regulating  class  switching  to  IgE  

and  IgG1  (in  mice)  or  to  IgE  and  IgG4  (in  humans)  (Snapper  et  al.,  1988;  Lundgren  et  al.,  

1994;  Nelms  et  al.,  1999;  Stavnezer  et  al.,  2008).  It  has  been  shown  that  IL-­‐4  causes  large  

changes  in  B  cell  morphology  and  induces  B  cell  polarization.  It  causes  also  B  cell  spreading  

with  long  protrusions,  and  microvilli  adhesion  and  motility  (Davey  et  al.,  1998  and  2000).    

 

IL-­‐4   increases  MHC   class   II   expression   in   B   cells   and   enhances   CD23   expression.   It   also  

upregulates  the  expression  of  its  own  receptor  (IL-­‐4R)  and  acts  as  a  co-­‐mitogen  for  B  cell  

proliferation   (Howard  et  al.,   1982;  Vitetta  et   al.,   1985;  Nelms  et  al.,   1999;  Boothby  et  al.,  

2001).  It  is  also  important  for  tissue  adhesion  and  inflammation.  Together  with  TNF,  IL-­‐4  

induces   the   expression   of   VCAM-­‐1,   and   downregulates   the   expression   of   E-­‐selectin   on  

endothelial  cells  (Nelms  et  al.,  1999;  Boothby  et  al.,  2001).    

 

 

 

 

 

 

 

 

 Figure  3.  JAK-­STAT6  pathway  activation  (adapted  from  Kis,  2009)  

 

IL-­‐4  binds  to  its  surface  receptor,  which  consists  of  the  high-­‐affinity  binding  chain  IL-­‐4Rα  

and   the   common   γ   chain   (γc)   (Type   I   receptor   complex).   In   the   cytoplasm,   IL-­‐4Rα  

associates  with  the  tyrosine  kinase  JAK1,  while  γc  associates  with  JAK3  (Nelms  et  al.,  1999;  

Wills-­‐Karp  and  Finkelman,  2008).  IL-­‐4  binding  to  its  receptor  causes  heterodimerization  of  

the   receptor   components   and   activation   of   the   JAKs,  which   are   constitutively   associated  

 28  

with  the  IL-­‐4  receptor  (Boothby  et  al.,  2001;  Murray,  2007).  Activated  JAKs  phosphorylate  

specific   tyrosine   residues   of   the   intracellular   part   of   the   IL-­‐4   receptor,   which   creates  

binding   sites   for   the  Src-­‐homology  2   (SH2)  domains  of   STAT6  and  allows   recruitment  of  

the   latter   (Lu   et   al.,   2005;  Wills-­‐Karp   and   Finkelman,   2008).   JAKs   phosphorylate   STAT6  

(Y641),  which  leads  to  its  homodimerization  and  translocation  to  the  nucleus,  where  it  binds  

to   the   specific   DNA   sequence   TTC(N)4GAA   in   various   promoters   and   activates   the  

transcription  of  target  genes  (Fig.  3)  (Nelms  et  al.,  1999;  Ehret  et  al.,  2001;  Wills-­‐Karp  and  

Finkelman,  2008;  Chen  and  Reich,  2010).    

 

The  JAK-­‐STAT  signalling  pathway  is  essential  for  the  signal  transduction  of  many  cytokines.  

There  are  approximately  38  cytokines  and  36  cytokine  receptor  combinations  that  use  this  

pathway  (Bromberg  and  Darnell,  2000;  Murray,  2007).  STATs  are  negatively  regulated  by  

the   dephosphorylation   of   signalling   components   by   protein   tyrosine   phosphatases  

(suppressor   of   cytokine   signalling   -­‐   SOCS)   or   by   the   induction   of   a   protein   inhibitor   of  

activated  STAT   (PIAS)   (Chen  et   al.,   2001;  Murray,  2007).  The   transcription   factor  STAT6  

itself  is  crucial  for  the  development  of  protective  immunity,  but  an  imbalance  in  its  activity  

or   in   any   downstream   component   of   the   JAK-­‐STAT   pathway   is   associated   with  

pathogenesis  of  different  human  diseases  (Bromberg  and  Darnell,  2000;  Chen  et  al.,  2001;  

Lu  et  al.,  2005;  Chen  and  Reich,  2010).    

 

Other  Interleukins  

 

The  common  gamma-­‐chain  (γc)  is  a  subunit  of  the  functional  receptor  complexes  not  only  

of   IL-­‐4,  but  also  of   IL-­‐2,   IL-­‐7,   IL-­‐9,   IL-­‐15  and   IL-­‐21   (Spolski  and  Leonard,  2008;  Kovanen  

and  Leonard,  2009).  Mutations   in  γc   lead   to  X-­‐linked  severe  combined   immunodeficiency  

(XSCID)  (Spolski  and  Leonard,  2008).  

 

Interleukin-­2  (IL-­‐2)  was  one  of  the  first  cytokines  to  be  described,  and  plays  an  important  

role  in  the  immune  system  as  a  growth,  differentiation  and  survival  factor  (Nelson,  2002).  

It  was  discovered  as  a  T  cell  factor,  promoting  T  cell-­‐dependent  immune  responses.  More  

recent  studies  have  shown  a  crucial  role  of  this  cytokine  in  the  maintenance  of  T  regulatory  

cells,   which   suggests   an   important   role   of   IL-­‐2   in   the   control   of   the   immune   responses  

(Malek,   2008;   Dooms   and   Abbas,   2010).   It   has   also   been   suggested   that   IL-­‐2   plays   an  

essential  role  in  immune  memory  (Malek,  2008).  

  29  

 

Interleukin-­5  (IL-­‐5)  is  a  T  cell-­‐derived  cytokine.  It  was  identified  as  a  cytokine  that  plays  

an  important  role  in  the  proliferation  and  differentiation  of  mouse  and  human  B  cells  and  

eosinophils   in   vitro.   IL-­‐5  plays   an   essential   role   in   terminal  B   cell   differentiation   to   IgM-­‐

secreting   and   IgG1-­‐secreting   plasma   cells,   but   the   major   targets   of   IL-­‐5   in   humans   are  

eosinophils.  It  is  an  important  player  in  the  pathogenesis  of  asthma  and  other  eosinophil-­‐

dependent  inflammatory  diseases  (Kouro  and  Takatsu,  2009;  Takatsu  et  al.,  2009).  

 

Interleukin-­13   (IL-­‐13)   does   not   use   γc   as   the   other   receptors   mentioned   here,   but   its  

specific  receptor,  IL-­‐13Rα1,  forms  heterodimers  with  IL-­‐4Rα.  Another  IL-­‐13Rα2  functions  

as  a  trap  receptor.  Whereas  IL-­‐4  can  signal  through  IL-­‐4Rα  with  γc  and  also  through  this  IL-­‐

13Rα1/IL-­‐4Rα  heterodimer,   IL-­‐13   can   do   so   only   through   IL-­‐13Rα1/IL-­‐4Rα.   In   addition,  

both   can   signal   through   JAK1/JAK3   and   STAT6.   IL-­‐13   is   a   Th2   cell-­‐derived  

immunoregulatory  cytokine  that  has  many  diverse  functions,  one  of  which  is  to  act  as  a  key  

mediator  of  allergic  inflammation.  Similarly  to  IL-­‐4,  IL-­‐13  induces  B  cell  proliferation  when  

combined  with   CD40-­‐CD40L,   with   the   subsequent   Ig   class   switching   to   IgE   and   IgG4   in  

humans,  but  not  in  mice.  It  also  has  important  functions  in  non-­‐hematopoietic  cells  (Jiang  

et  al.,  2000;  Khurana  Hershey,  2003).  

 

Interleukin-­21   (IL-­‐21)   is  produced  by  NKT  and  TFH  cells   and  has  pleiotropic  effects  on  

both   innate   and   adaptive   immune   responses.   In   addition,   IL-­‐21   has   potent   anti-­‐tumour  

activity   and   is   associated  with   autoimmune   diseases   (Spolski   and   Leonard,   2008).   IL-­‐21  

acts  directly  on  B  cells  to  induce  proliferation,  class  switching  to  IgG1,  and  it  keeps  B  cells  

in  the  GCs  and  promotes  their  longevity.  It  also  drives  TFH  cells  that  are  important  for  an  

efficient   B   cell   response   in   the  GCs.   IL-­‐21R   signalling   in   vivo   increases   the   expression   of  

transcription  factor  Bcl-­‐6  (Linterman  et  al.,  2010,  Zotos  et  al.,  2010;  Goodnow  et  al.,  2010).  

Without   IL-­‐21R,  Bcl-­‐6   expression  decreases   and  B   cells   exit   from   the  GC   (Good-­‐Jacobson  

and   Shlomchik,   2010).   Linterman   et   al.   (2010)   proposed   that   IL-­‐21   contributes   to   GC  

formation  and  the  affinity  maturation  of  GC  B  cells  because  of  the  induction/maintenance  

of   Bcl-­‐6   (Linterman   et   al.,   2010).   In   contrast,   IL-­‐4   plays   an   important   role   in   the   T   cell-­‐

dependent   selection   of   GC   B   cells   and   downregulates   Bcl-­‐6   (Vinuesa   et   al.,   2010).   In  

addition,  Bcl-­‐6   suppresses  Ebi2,  which   is   in   turn   responsible   for   guiding  and   retaining  B  

cells  in  the  outer  follicles  (Zotos  et  al.,  2010).    

 

 30  

Regulation  of  B  cell  adhesion  and  motility  

 

Many  animal  cells  have  extensions  known  as  microvilli  on  their  surfaces.  These  are  formed  

by  bundles  of   filamentous  actin,  held   together  by  actin-­‐bundling  proteins.  Actin   is  widely  

expressed   in   all   eukaryotic   cells   and   supports   many   cell   surface   structures   such   as  

microvilli,   microspikes,   filopodia   and   lamellipodia   (Campellone   and   Welch,   2010).  

Microvilli   express   several   adhesion  molecules  on   their   surfaces,   and   these  molecules   are  

important  for  cell  contacts  (Revenu  et  al.,  2004).  

 

Surface  molecules,  such  as  integrins  play  an  essential  role  in  B  cell  adhesion.  They  mediate  

dual  activation  modes,   such  as   “outside   in”  or   “inside  out”   signalling.  The   former  reflects  

the   events   happening   in   the   cytoplasm  and   the  nucleus   after   the   interaction  of   integrins  

with  their  ligands.  The  latter  acts  in  the  reverse  direction,  and  leads  to  increased  affinity  of  

integrins   for   their   extracellular   matrix   ligands   (Qin   et   al.,   2004;   Anthis   and   Campbell,  

2011).   Contacts   between   lymphocytes   and   stromal   cells   are   initiated   mainly   by   β1  

integrins,   such  as  VLA-­‐4  on  B  cells,  which  binds   to  VCAM-­‐1.  VCAM-­‐1   is  expressed  on   the  

stromal   cells   in   bone   marrow   and   on   follicular   dendritic   cells   in   GCs.   β2   integrins,   in  

contrast,  induce  interactions  mainly  in  the  germinal  centres,  where  LFA-­‐1,  expressed  on  B  

cells   interacts  with   its   ligand   ICAM-­‐1,   expressed   on   neighbouring   B   cells,   DCs   and   FDCs  

(Harwood  and  Batista,  2010;  Vinuesa  et  al.,  2010).    

 

LFA-­‐1   interaction   with   its   ligand   ICAM-­‐1   prevents   GC   B   cells   undergoing   apoptosis  

(Harwood  and  Batista,  2010;  Pereira  et   al.,   2010).   Furthermore,  LFA-­‐1-­‐induced  adhesion  

depends   on   B   cell   activation   through   BCR   cross-­‐linking,   which   in   turn   induces   Rac2-­‐

dependent   B   cell   spreading.   In   addition,   CD19   enhances   BCR   signalling   and   enables  

cytoskeletal  re-­‐organization.  One  of  the  downstream  signalling  molecules  involved  in  these  

processes   is  Vav,  a  guanine  nucleotide  exchange   factor   (GEF)   for  Rho  GTPases   (Harwood  

and   Batista,   2010;   Batista   et   al.,   2010).   In   the   processes,   B   cells   undergo   re-­‐

organization/re-­‐distribution  of  the  molecules  on  the  surface  of  their  membrane,  resulting  

in  immunological  synapse  formation.  Fully  matured  immunological  synapses  have  central  

and  peripheral  supramolecular  activation  clusters  (cSMAC  and  pSMAC),  where  the  cSMAC  

region   is   responsible   for   antigen   internalization,   and   where   pSMAC   contains   LFA-­‐1   and  

VLA-­‐4   (Harwood   and  Batista,   2010).   In   addition,   LFA-­‐1   clustering   during   immunological  

synapse   formation  depends  on   the  Wiskott-­‐Aldrich   syndrome  protein  and  on  GEF  Dock8  

  31  

(Batista  et  al.,  2010).  In  general,  conformational  changes  in  the  integrins  lead  to  changes  in  

affinity   for   their   ligands.   Moreover,   the   binding   avidity   of   integrins   is   induced   by  

rearrangements  of  the  cytoskeleton  (van  Kooyk  and  Figdor,  2000;  Kucik,  2002).    

 

The  cytoskeleton  is  a  highly  dynamic  structure  that  allows  cell  shape  to  change.  It  is  crucial  

for   the   survival   of   cells,   being   responsible   for   cell   contact,   signalling,   movement   and  

division.   Reorganization   of   the   cytoskeleton   depends   on   actin   polymerization   and   de-­‐

polymerization.   Globular   actin   (G-­‐actin)   is   a   monomeric   ATP-­‐binding   protein   that   can  

undergo   self-­‐assembly   to   form   filamentous   actin   (F-­‐actin).   Actin   filaments   are   polar   and  

dynamic.  They  polymerize  (grow)  at  the  barbed  end  and  depolymerize  at  the  pointed  end.  

Turnover   of   the   filaments   is   regulated   by   actin-­‐binding   proteins   (Revenu   et   al.,   2004;  

Campellone   and  Welch,   2010).  Microtubules   are   also   responsible   for   cell   shape,   polarity  

and   the   organization   of   intracellular   organelles   (Jaffe   and   Hall,   2005).   They   also   have   a  

minus   end   and   a   plus   end,   and   are   localized   at   the   centrosome   (MTOC)   and   at   the  

periphery,  respectively.  Microtubules  are  very  dynamic  and  can  shrink  (catastrophe)  and  

grow  (rescue)  (Jaffe  and  Hall,  2005).    

 

Actin,  tubulin  and  other  proteins  (such  as  Rho  guanine  nucleotide  exchange  factors  (GEFs)  

and   small   Rho   GTPases   and   their   effectors)   are   all   involved   in   the   regulation   of   B   cell  

cytoskeleton  reorganization.  

 

Guanine  nucleotide  exchange  factors  

 

Guanine   nucleotide   exchange   factors   (GEFs)   are   several   proteins   that   respond   to  

extracellular   stimuli   and   activate   Rho   GTPases.   These   then   regulate   many   cellular  

responses  that  require  cytoskeletal  changes  (Rossman  et  al.,  2005).    

 

GEFs   can   be   divided   into   two   groups:   classical   and   non-­‐conventional   (atypical).   The  

classical   GEFs   share   a   common   Dbl-­‐homology   (DH)   domain,   whereas   non-­‐conventional  

GEFs   contain   either  Ced-­‐5/Dock180/Myoblast   city   (CDM)-­‐zizimin  homology  2   (CZH2)  or  

Dock   homology   region   2   (DHR2)   catalytic   domains   (Meller   et   al.,   2005;   Rossman   et   al.,  

2005;   Tybulewicz   and   Henderson,   2009).   These   non-­‐conventional   (CZH/DHR)   GEF  

proteins  can  activate  cell  division  control  protein  42  (Cdc42)  and  Ras-­‐related  C3  botulinum  

toxin   substrate   (Rac),   and   they   can   regulate   the   polymerization   of   actin   (Meller   et   al.,  

 32  

2005).  The  CZH/DHR  GEF  family  consists  of  11  dedicator  of  cytokinesis  (Dock)  members  

that  belong  to  four  sub-­‐families  (Table  2)  (Miyamoto  and  Yamauchi,  2010).      

Table  2.  CZH/DHR  GEF  family  members  and  their  binding  partners  

Sub-­family   Dock-­A   Dock-­B   Dock-­C  

(Zir)  

Dock-­D  

(Zizimin)  

Members   Dock1(180),  2,  5   Dock3,  4   Dock6,  7,  8   Dock9,  10,  11  

Binds  to   Rac   Rac   Rac,  Cdc42   Cdc42  

 Dock8  (Zir3)  is  expressed  mostly  in  hematopoietic  cells,  but  also  in  other  cells.  It  is  highly  

expressed   in   germinal   centre   cells   and   in   tumour   cells   of   different   origin   (McGhee   and  

Chatila,   2010).   Dock8   functions   in   B   cells   as   an   adaptor   protein   in   the   TLR9-­‐MyD88  

signalling  pathway  (Jabara  et  al.,  2012).  Mutations  in  Dock8  lead  to  immunodeficiency  with  

susceptibility   to   cutaneous   infections,   eosinphilia   and  high   IgE   levels.  Dock8   is   a  GEF   for  

both  Rac  and  Cdc42,  and  it  may  be  related  to  other  immunodeficiencies,  such  as  Wiskott-­‐

Aldrich  syndrome.    

 

Dock9  (Zizimin1)   is  expressed   in  several   tissues  of  non-­‐hematopoietic  cells.   It   regulates  

the  dendritic  growth  of  hypocampal  neurons  (Miyamoto  and  Yamauchi,  2010).  Dock9  is  a  

dimer  with  two  Cdc42-­‐binding  sites,  and  dimerizes  through  the  CZH2  domain.  With  higher  

Cdc42   concentrations,   the   binding   affinity   of   Dock9   increases.   This   might   represent   a  

mechanism  for  the  regulation  of  Dock9  activity  (Meller  et  al.,  2004;  Meller  et  al.,  2005).    

 

Dock11   (Zizimin2)   has  60%  homology  with  Dock9,   but   is   expressed  mainly   in  B   and  T  

lymphocytes.   In   addition,   Dock11   expression   is   higher   in   GC   B   cells   after   immunization  

with  T  cell-­‐dependent  antigen  than  its  expression  in  non-­‐GC  B  cells.  Its  expression  in  COS-­‐1  

cells   induces   the   activation   of   Cdc42   (Nishikimi   et   al.,   2005).   Also,   Dock11   induces   the  

formation  of  filopodia  in  bone  marrow-­‐derived  dendritic  cells  in  response  to  FcγR  or  TLR4  

signalling.   This   response   is   Cdc42-­‐dependent.   In   addition,   over-­‐expression   of   the   CZH2  

domain   of  Dock11   has   a   dominant   negative   effect   on   293T   cell  migration   (Sakabe   et   al.,  

2012).  

 

Dock10  (Zizimin3)  is  expressed  both  in  hematopoietic  and  non-­‐hematopoietic  tissues  and  

has  50%  homology  with  Dock9  and  Dock11  (Nishikimi  et  al.,  2005).  It  is  an  IL-­‐4-­‐inducable  

gene  in  chronic  lymphocytic  leukaemia  cells  (CLLs)  and  in  human  peripheral  blood  B  and  T  

  33  

cells  (Yelo  et  al.,  2008;  Alcaraz-­‐Garcia  et  al.,  2011).  In  addition,  Dock10  plays  an  important  

role  in  amoeboid  migration  in  melanoma  cells  (Gadea  et  al.,  2008).  Furthermore,  it  may  be  

involved   in   invasion   and   metastasis   during   the   epithelial-­‐mesenchymal   transition   of  

squamous  cell  carcinoma  (HNSCC)  (Humtsoe  et  al.  2012).    

 

Small  Rho  GTPases,  their  effectors  and  effects  

 

Rho  GTPases   are  members  of   a   large   sub-­‐family,   belonging   to   the  Ras   superfamily.  They  

play   roles   in   very   diverse   processes,   such   as   transcription   activation,   adhesion,  

polarization,   cytoskeletal   rearrangement,   migration,   cell   cycle   progression,   cell  

proliferation,  survival/apoptosis  and  the  maintenance  of  genomic  stability  (Williams  et  al.,  

2008;   Mulloy   et   al.,   2010).   Small   Rho   GTPases   transduce   signals   from   many   different  

receptors,  and  act  as  crossroads  in  various  signalling  pathways.  

   

 

 

 

 

 

 

 

 Figure   4.  The  molecular   events   necessary   for   B   cell   adhesion   and  motility.   GEF   –   guanine  nucleotide  exchange  factor;  GAP  –  GTPase  activating  protein;  GDI  –  guanine  nucleotide  dissociation  inhibitors;  WH1  domain  –  WASP  homology  domain;  B  –  basic  region;  GBD  –  GTPase  binding  domain  (also  called  CRIB  –  Cdc42  and  Rac  interactive  binding);  PRD  –  proline-­‐rich  domain;  VCA  –  veprolin-­‐,  central-­‐,  acidic  region  domain;  Arp2/Arp3  –  actin-­‐related  proteins  2  and  3.  WASP  –  Wiskott-­‐Aldrich  syndrome  protein    

Rho   GTPases   are   guanine   nucleotide-­‐binding   proteins   and   thus   they   are   inactive  when  

bound   to   GDP   and   active  when   bound   to   GTP.   The   cycling   between   these   two   states   is  

regulated   by   guanine   nucleotide   exchange   factors   (GEFs),   GTPase   activating   proteins  

(GAPs)  and  guanine  nucleotide  dissociation   inhibitors  (GDIs).  Since  many  of   the  effectors  

are  membrane-­‐associated  proteins,  Rho  GTPases  can  be  modified  at  the  carboxy  terminus  

to  restrict  their  locations  to  the  plasma  membrane.  GAPs  stimulate  GTP  hydrolysis,  which  

leads  to  inactivation  of  Rho  GTPases.  In  addition,  GDIs  can  bind  to  the  carboxy  terminus  of  

 34  

Rho  GTPases  and  thereby  inhibit  their  binding  to  the  membrane.  In  this  case,  Rho  GTPases  

cannot  be  activated  to  interact  with  their  effectors.  GEFs  induce  a  switch  from  GDP-­‐binding  

to  GTP-­‐binding  and  Rho  GTPases  can  bind  their  target  proteins  when  they  are  in  the  active  

GTP-­‐bound   state.   This   is   the   way   in   which   they   induce   many   processes   such   as  

cytoskeleton  regulation,  microtubule  dynamics,  cell  division,  migration  and  adhesion  (Fig.  

4)  (Meller  et  al.,  2005;  Tybulewicz  and  Henderson,  2009;  Feng  and  Cerione,  2010;  Mulloy  

et  al.,  2010).    

 

Several  GEFs,  GAPs  and  GDIs  can  act  on  the  same  Rho  GTPase,  and  each  Rho  GTPase  can  

activate  many  effectors,   thus   inducing  many  signals   simultaneously  and  affecting  various  

cellular  functions.    

 

Cdc42   and  Racs,  members   of   small   Rho  GTPases   that   are   key   regulators   of   cytoskeleton  

reorganization,  control  actin  polymerization  and  microtubule  dynamics  in  B  cells  (Jaffe  and  

Hall,  2005).    

 

Cdc42   is   involved   in   many   different   cellular   systems.   It   is   clear   that   Cdc42   regulates  

signalling  pathways  in  a  cell-­‐specific  and  tissue-­‐specific  manner,  especially  in  activities  that  

involve  the  actin  cytoskeleton  (Melendez  et  al.,  2011).  Cdc42  deletion,  using  the  CD19-­‐Cre-­‐

expressing  mouse   strain,   results   in   ablation  of   Cdc42   from   the  pro-­‐/pre-­‐B   cell   stage   and  

later   differentiation   stages.   B   cell   development   is   impaired   and   blocked   at   the   early  

transitional   stage.   The   numbers   of   mature   B   cells   are   lower,   as   is   the   strength   of   the  

antigen-­‐specific  humoral  immune  response.  This  indicates  that  Cdc42  is  importance  for  B  

cell  differentiation  and  activation  (Guo  et  al.,  2009).  

 

There   are   three  Rac  GTPases   (Rac1,  Rac2   and  Rac3),  which  have   reasonably  degrees  of  

homology.  However,   their  expression  patterns  differ.  Rac1   is  expressed  ubiquitously,  and  

mice  that  lack  it  are  embryonic  lethal.  Rac2  is  expressed  only  in  hematopoietic  cells,  while  

Rac3  is  expressed  mainly  in  the  brain  (Gu  et  al.,  2003).    

Rac1   and   Rac2   are   crucial   regulators   of   hematopoiesis   (Gu   et   al.,   2003;   Cancelas   et   al.,  

2005;  Mulloy  et  al.,  2010).  Both  GTPases  are  critical  for  B  cell  development.  When  mouse  B  

cells   lack   both   Rac1   and   Rac2,   mature   B   cells   are   absent   from   the   spleen,   due   to   a  

developmental  block  in  T1  B  cells.  The  absence  of  Rac2  alone  leads  to  a  milder  phenotype  

than   the   phenotype   that   develops   in   the   absence   of   both   Rac1   and   Rac2,   with   more   a  

  35  

pronounced  deficiency   in  marginal   zone  B   cells   and  B1a   cells.  There   is  no  obvious  effect  

when   only   Rac1   is   deleted   (Walmsley   et   al.,   2003;   Henderson   et   al.,   2010).   Deletion   of  

either  Rac1  or  Rac2  does  not  affect  T  cell  development,  but  development  stopps  at  the  pre-­‐

TCR   checkpoint   when   both   Racs   are   lacking   (Tybulewicz   and   Henderson,   2009).   In  

summary,  Rac1  and  Rac2  are  redundant  and  sometimes  can  compensate  for  each  other.    

 

There  are  many  Cdc42  and  Rac1  effectors,  including  several  kinases,  lipases,  oxidases  and  

scaffold  proteins  (Thrasher  and  Burns,  2010).  Two  of  the  target  proteins,  Wiskott-­‐Aldrich  

syndrome  protein  (WASP)  and  N-­‐WASP,  have  50%  homology,  and  a  much  higher  homology  

in  the  functional  domains  (Blundell  et  al.,  2010).  

 

WASP  is  expressed  in  all  hematopoietic  cells.  Mutations  in  WASP  in  humans  cause  defects  

in   cell  migration,   leading   to   the   combined   X-­‐linked   recessive   primary   immunodeficiency  

Wiskott-­‐Aldrich   syndrome   (WAS)   (Blundell   et   al.,   2010;   Campellone   and   Welch,   2010;  

Thrasher  and  Burns,  2010).  Mutations  may  also  cause  X-­‐linked  trombocytopenia  (XLT)  or  

X-­‐linked   neutropenia   (XLN).   Hematopoietic   cells   from   patients   with  WAS   have   aberrant  

microvilli  on  their  surfaces  (Takenawa  and  Suetsugu,  2007;  Blundell  et  al.,  2010).    

 

Neural  (N)-­‐WASP  is  ubiquitously  expressed,  and  its  deletion  in  mice  is  embryonic  lethal.  If  

N-­‐WASP   is   not   functioning   properly,   cells   have   multiple   deficiencies   in   processes   that  

require  actin  dynamics  (Campellone  and  Welch,  2010).    

 

In  the  absence  of  binding  partners,  WASP  has  an  auto-­‐inhibited  conformation  in  which  the  

GTPase-­‐binding  domain  (GBD)  interacts  with  the  VCA  (verprolin-­‐,  central-­‐,  acidic  region-­‐)  

domain  and  prevents  the  actin-­‐related  protein  2  and  3  (Arp2/3)  complex  and  monomeric  

actin  binding  to  its  carboxy  terminus  (Fig.  4)  (Takenawa  and  Suetsugu,  2007;  Thrasher  and  

Burns,  2010).   The   inactive   state   of  WASP   is   stabilized   by   another   protein   known   as   the  

WH1-­‐interacting  protein  (WIP),  which  also  regulates  the  absolute  level  of  WASP  in  the  cell,  

protects   it   from   degradation,   and   localizes   it   to   the   areas   of   active   actin   polymerization  

(Blundell  et  al.,  2010;  Campellone  and  Welch,  2010;  Thrasher  and  Burns,  2010).  

 

When  Cdc42   is   active,   it   can   bind   to   the  GBD  on  WASP   and   activate   it   by   induction   of   a  

conformational  change.  This  allows  the  recruitment  and  activation  of  the  Arp2/3  complex  

(ARPC  1-­‐5,  Arp2  and  Arp3),  leading  to  actin  polymerization  and  filopodia  formation  (Fig.  4)  

 36  

(Revenu   et   al.,   2004;   Jaffe   and  Hall,   2005;   Takenawa   and   Suetsugu,   2007;   Thrasher   and  

Burns,   2010;   Feng   and   Cerione,   2010).   This   process   also   induces   the   elongation   of  

microtubules,  leading  to  the  formation  of  membrane  protrusions  (Feng  and  Cerione,  2010).  

In  addition,  Rac1  can  also  bind  to  the  GBD  on  WASP,  but  to  a  lesser  degree  (Blundell  et  al.,  

2010).  Rac1,  however,  does  not  seem  to  be   involved   in  WASP  activation,  although   it  may  

play  a  role  in  the  activation  of  N-­‐WASP  (Thrasher  and  Burns,  2010).  

 

The  F-­BAR  protein  CIP4  

 

Cdc42-­‐interacting  protein  4  (CIP4)  belongs  to  the  Fes/CIP4  homology-­‐Bin/Amphyphysin/  

Rvsp   (F-­‐BAR)   multi-­‐domain   protein   family   (Aspenström,   2009).   CIP4   binds   the   lipid  

membrane  through  the  F-­‐BAR  domain,  and  becomes  associated  with  microtubules  through  

its   highly   conserved   N-­‐terminal   Fes/CIP4   homology   (FCH)   domain.   Its   coiled-­‐coiled  

domain  subsequently  interacts  with  active  Cdc42  and  its  C  terminal  Src  homology  3  (SH3)  

domain   interacts   with   WASP   (Aspenström,   1997;   Tian   et   al.,   2000).   In   addition,   the  

RhoGAP  that  interacts  with  the  CIP4  homologues  (RICH-­‐1)  protein  is  a  GAP  for  Cdc42  and  

Rac  (Richnau  and  Aspenström,  2001).  Interestingly,  RICH-­‐1  binds  CIP4  through  the  same  

SH3  domain  as  WASP  (Richnau  and  Aspenström,  2001).  

 

B   and  T   cell   development   is  not   affected   in  CIP4-­‐deficient  mice,   although   the  number  of  

germinal   centres   and   the   levels   of   T   cell-­‐dependent   antibody   production   and   affinity  

maturation   are   reduced.   Moreover,   the   defect   that   is   induced   by   deletion   of   CIP4   is  

intrinsic  to  the  T  cells  (Koduru  et  al.,  2010).  Also,  CIP4  is   important   in  NK  cells,  where   it  

acts   as   a   cytoskeletal   adaptor   and   polarizes   the   microtubule-­‐organizing   centre   (MTOC)  

(Banerjee   et   al.   2007).   A   recent   study   of   cells   from   patients   with   chronic   lymphocytic  

leukaemia   (CLL)   showed   that   CIP4   associates   with   active   Cdc42,   and   is   necessary   for  

lamellipodium   polarization   and   directed   cell   movement   (Malet-­‐Engra   et   al.,   2013).   All  

these   results   show   that   CIP4   is   important   in   actin   polymerization   and   cytoskeleton  

rearrangements.  

  37  

Regulation  in  vitro    

As  mentioned  previously,  B  cells  must  undergo  cytoskeletal  changes  to  be  able   to  adhere  

and   move   during   their   differentiation   processes.   Most   studies   about   regulation   of   the  

cytoskeleton   and   changes   in   cell   shape   have   been   performed   in   vitro,   but   presumably  

similar  mechanisms  operate   in   vivo.  When  activated  with   various   stimuli   in   vitro,   B   cells  

spread,  express  microvilli,   form  aggregates,  become  polarized  and  become  motile  (Fig.  5)  

(Severinson  and  Westerberg,  2003).    

 

Contacts  between  lymphocytes  are  necessary  for  the  immune  response.  Lymphocytes  may  

contact   each   other   by   forming   microvilli,   which   contain   many   receptors   (including  

integrins   and   perhaps   also   chemokine   receptors).   ICAM-­‐1,   MHC   class   II   and   CD86   are  

present  on  the  microvilli,  which  suggests  that  these  molecules  are  important  for  adhesion  

and  antigen  presentation  (Greicius  et  al.,  2003).    

 

 

 

 

 

 

   

Figure  5.  Morphology  responses  induced  in  B  cells  (from  Severinson  and  Westerberg,  2003)    

Cytokine  stimulation  is  very  important  for  B  cell  activation  and  proliferation.  One  of  the  T  

cell-­‐derived   cytokines,   IL-­‐4,   changes   the   activation   status   of   Cdc42.   In   addition,   over-­‐

expressed  and  constitutively  active  Cdc42  and  Rac1  can  induce  filopodia  and  lamellipodia,  

respectively,  in  B  cells  (Westerberg  et  al.,  2001).    

 

IL-­‐4  induces  cell  adhesion  and  motility.  When  activated  B  cells  are  cultured  in  the  presence  

of  immobilized  antibodies  against  B  cell  surface  structures  (such  as  anti-­‐CD44),  they  form  

long   dendritic   protrusions.   This   process   is   coordinated   by   actin   polymerization,  

microtubules   and   vimentin.   The   spreading   process   starts   with   actin   polymerization,  

followed   by   the   growth   of   microtubules   and   intermediate   filaments   that   are   oriented  

towards  polymerized  actin  (Sumoza-­‐Toledo  and  Santos-­‐Argumedo,  2004).  

 38  

 

B  cells  stimulated  with  LPS+IL-­‐4  or  anti-­‐CD40±IL-­‐4,  but  not  LPS  alone  or  in  the  presence  of  

other  cytokines,  exhibit  dendritic  protrusions  and  extensive  microvilli  formation  (Davey  et  

al.,  1998;  Greicius  et  al.,  2003).    

 

IL-­‐4-­‐induced  cell  adhesion  and  actin  rearrangements  are  STAT6-­‐dependent.  Using  STAT6-­‐/-­‐  

mice,  Davey  et  al.  have  shown   that  STAT6   is  needed   for   the   IL-­‐4-­‐induced  regulation  of  B  

cell   morphology   and   adhesion.   These   STAT6-­‐/-­‐   B   cells   cannot   spread,   polarize,   or   form  

aggregates   in   response   to   IL-­‐4   (Davey   et   al.,   2000).   This   indicates   that   the  morphology  

responses  depend  on  transcriptional  activation.  

 

Greicius  et  al.  have  shown  that  B  cells  activated  with  LPS+IL-­‐4  express  slightly  more  ICAM-­‐

1  than  those  stimulated  with  LPS  alone.   In  addition,   ICAM-­‐1  is  preferably   localized  to  the  

tips  of  the  microvilli,  whereas  LFA-­‐1  is  expressed  on  the  flat  surface  (Greicius  et  al.,  2003).  

The  authors  suggest   that  receptor  distribution  plays  a  role   in  direct   IL-­‐4-­‐induced  cellular  

interactions.    

 

Interestingly,  anti-­‐CD40+IL-­‐4  activated  B  lymphocytes  from  WASP-­‐/-­‐  mice  or  from  patients  

with   WAS   have   fewer   long   microvilli   (Westerberg   et   al.,   2001).   Further,   WASP-­‐/-­‐   B  

lymphocytes  have  impaired  homing  in  vivo,  and  defective  migration,  adhesion,  aggregation,  

polarization  and  spreading  in  vitro  (Westerberg  et  al.,  2001  and  2005).    

 

Anti-­‐CD40   alone   or   LPS   together   with   IL-­‐4   can   induce   homotypic   round   and   tight  

aggregates   in  B  cell  cultures.   In  contrast,  LPS  alone   induces   fewer  cells   to  aggregate,  and  

the   aggregates   have   irregular   shapes.   Experiments   with   LFA-­‐1-­‐/-­‐   mice   or   monoclonal  

antibodies   to   LFA-­‐1   showed   that   homotypic   B   cell   adhesion,   induced   by   LPS   with   or  

without   IL-­‐4,   is   LFA-­‐1-­‐dependent   (Greicius   et   al.,   1998).   However,   the   contact   time  

between  cells   stimulated  by  LPS+IL-­‐4   is   longer   than   that  of  cells   stimulated  with  LPS.   In  

the  presence  of  anti-­‐CD40,  these  contacts  are  even  longer.    

 

Greicius  et  al.  (1998)  hypothesize  that  tight  round  aggregates  induce  a  dynamic  response  

in  response  to  T  cell-­‐dependent  stimuli,  resulting  in  aggregates  with  the  maximal  number  

of   contacts   per   cell.   They   speculate   that   this   response   is   important   for   the   formation   of  

germinal  centres.  

  39  

Materials  and  Methods    

Tamoxifen  preparation  and  administration  for  Mb1-­cre-­ERT2  induction  

 

When  a  mouse  strain  that  expresses  a  non-­‐inducible  cre,  a  recombinase  enzyme,  is  crossed  

with   a   mouse   strain   that   has   loxP   insertions,   effects   will   accumulate   through   all  

differentiation  stages  in  which  the  cre-­‐gene  is  expressed.  A  strain  with  an  inducible  cre  will  

avoid  this  problem,  especially  when  used  to  study  genes  that  are  expressed  in  mature  cells.  

For   this   reason,  we  used  Mb1-­‐Cre-­‐ERT2,  but  not   regular  Mb1-­‐Cre  or   the  very   commonly  

used   CD19-­‐Cre,   to   delete   genes   from  mature   B   cells.   Mb1-­‐Cre-­‐ERT2   is   expressed   in   the  

cytoplasm  as  a  fusion  protein  of  Mb1-­‐Cre  with  the  binding  domain  of  the  estrogen  receptor.  

After   treatment   with   tamoxifen,   an   antagonist   of   the   estrogen   receptor,   Cre-­‐ERT2  

translocates   into   the  nucleus   and   induces   recombination  of   the   sequence   surrounded  by  

loxP  sites,  resulting  in  the  removal  of  the  target  gene.    

 

The  majority  of  protocols  for  tamoxifen  administration  employ  quite   large  volumes  given  

to  mice.  We  have,  however,  used  a  protocol  that  allowed  us  to  reduce  the  volume  from  250  

to  50  μl/mouse.  To  make  this  possible,  100  mg  of  tamoxifen  (Sigma)  was  pre-­‐wetted  in  100  

μl  of  100%  ethanol  and  dissolved  in  900  μl  corn  oil  (Sigma)  to  a  final  concentration  of  100  

mg/ml,   by   vigorous   shaking   at   55°C   for   approx.   5   hours.   The   dissolved   tamoxifen   was  

divided  into  aliquotes  and  stored  at  -­‐20°C.    

 

A  dose  of  5  mg  of  tamoxifen  was  given  per  mouse  at  a  time.  It  was  administrated  orally  by  

gavage   for   5   days   in   a   row.   Mice   were   killed   on   Day   3   after   the   final   tamoxifen  

administration.  

 

Tamoxifen  can  cause  peritonitis  when  injected  intraperitoneally,  which  is  harmful  to  mice  

and  might  affect  the  humoral   immune  response.  We  did  not  notice  any  side  effects  of  the  

tamoxifen.   Additionally,   we   did   not   notice   any   detectable   deletion   in   the   absence   of  

tamoxifen  treatment.  

 40  

Results  and  Discussion    

Paper  I  

The   STAT6   signalling   pathway   activated   by   the   cytokines   IL-­4   and   IL-­13   induces  

expression  of   the  Epstein-­Barr  virus-­encoded  protein  LMP-­1   in  absence  of  EBNA-­2:  

implications  for  the  type  II  EBV  latent  gene  expression  in  Hodgkin  lymphoma.    

 

The  aim  of  this  study  was  to  investigate  the  influence  of  IL-­‐4  and  IL-­‐13  on  the  Epstein-­‐Barr  

virus   latent   membrane   protein   (LMP)-­‐1   in   the   absence   of   Epstein-­‐Barr   virus   nuclear  

antigen  (EBNA)-­‐2,  and  possible  involvement  in  Hodgkin  lymphoma.  

 

Epstein-­‐Barr  virus  (EBV)  is  a  γ-­‐herpes  virus  found  in  many  tumours.  EBV-­‐infected  B  cells  

can  give  rise  to   lymphomas,  when  the   immune  system  is  compromised  (Type  III   latency)  

(Young   and   Rickinson,   2004).   LMP-­‐1   is   the   main   EBV   oncoprotein   necessary   for   B   cell  

transformation  and  proliferation  in  vitro  (Dirmeier  et  al.,  2003).  Its  expression  is  regulated  

in   Type   III   latency   by   EBNA-­‐2   (Young   and   Rickinson,   2004).   However,   in   Hodgkin-­‐Reed  

Sternberg  cells  that  carry  EBV  LMP-­‐1  is  expressed  in  the  absence  of  EBNA-­‐2  (Type  II  EBV  

latency).    

CD40  ligation  and  stimulation  with  IL-­‐4  can  induce  the  expression  of  LMP-­‐1  in  the  absence  

of  EBNA-­‐2   in   the  EBV-­‐converted,  HL-­‐derived  cell   line  KMH2-­‐EBV  (Kis  et  al.,  2005,  2006).  

We  showed  that  IL-­‐4  alone  induces  LMP-­‐1  expression  in  the  KMH2-­‐EBV  cells,  importantly  

in  the  absence  of  EBNA-­‐2  expression.  Apart   from  IL-­‐4,   IL-­‐13  was  also  found  to  be  able  to  

induce  LMP-­‐1  expression.  

Both   IL-­‐4   and   IL-­‐13   signal   through   STAT6   (Nelms   et   al.,   1999;  Hershey,   2003),  which   is  

constitutively  active   in  HRS  cells  (Skinnider  et  al.,  2002).  We  showed  that  both  cytokines  

induce   STAT6   phosphorylation   in   KMH2   and   KMH2-­‐EBV   cells.   Small   interfering   RNAs  

(siRNAs)  ectopically   introduced  into  KMH2-­‐EBV  cells   inhibited  LMP-­‐1  induction  by  about  

50%  after  IL-­‐4  treatment  and  by  80%  after  IL-­‐13  treatment,  thus  providing  evidence  that  

STAT6  is  involved  in  the  induction  of  LMP-­‐1  expression  by  these  cytokines.    

Two  STAT-­‐binding  sites  in  the  LMP-­‐1  promoter  had  previously  been  identified  (Chen  et  al.,  

2001),   but   neither   of   them   had   the   TTC(N)4GAA   sequence   that   is   expected   for   a   high-­‐

affinity   STAT6-­‐binding   site   (Nelms   et   al.,   1999;   Ehret   et   al,   2001).   Re-­‐analysing   the  

sequences   of   the   LMP-­‐1   promoter,   we   identified   a   new   STAT-­‐binding   site   with   the  

TTCAGGCGAA   sequence,  which  we  named  LRS-­‐STAT6   (LMP-­‐1   regulatory   sequence).   The  

  41  

other  two  STAT  binding  sites  consist  of  palindromes  spaced  by  either  two  (LRS-­‐EDL1)  or  

three  (LRS-­‐TR)  nucleotides.  Furthermore,  all  three  binding  sites  are  conserved  in  multiple  

EBV  strains.    

Electrophoretic  mobility  shift  assay  showed  that  LRS-­‐STAT6  contains  a  functional  STAT6-­‐

binding  site.  LRS-­‐STAT6-­‐NPC  (nucleotide  sequences  from  an  Asian  EBV  strain)  could  also  

work   as   an   efficient   STAT6   binding   site,   but   a   mutation   introduced   into   the   TTC/GAA  

palindrome   prevented   binding.   Surprisingly,   LRS-­‐TR   with   sequences   spaced   by   3  

nucleotides   could   also   function   as   a   STAT6   binding   site,   but   its   affinity   was   lower.   In  

addition,   LRS-­‐EDL1   (TTC(N)2GAA)   was   not   functional.   Using   a   luciferase   reporter   assay  

and  immunoprecipitations,  we  confirmed  the  preferential  binding  of  STAT6  to  LRS-­‐STAT6.  

These  results  suggest  that  IL-­‐4  activates  the  LMP-­‐1  promoter  through  the  newly  identified  

high-­‐affinity  STAT6  binding  site.  

CD40L   alone   did   not   induce   LMP-­‐1   in   HL,   but   it   did   so   in   EBV-­‐carrying   BL   cells.   LMP-­‐1  

induction   in   BL   cells   was   enhanced   in   the   presence   of   cytokines   IL-­‐4   or   IL-­‐10,   but   IL-­‐4  

alone  was  not  able  to  induce  LMP-­‐1,  which  suggests  that  CD40L  activation  can  sensitize  the  

BL  cells  to  IL-­‐4,  for  further  induction  of  LMP-­‐1.    

In  tonsillar  B  cells  infected  with  a  non-­‐transforming  EBV  strain  in  which  EBNA-­‐2  has  been  

deleted,  LMP-­‐1  was  induced  weakly  after  CD40  ligation,  but  strongly  after  IL-­‐4  stimulation,  

whereas  the  effect  of  both  stimuli  together  was  stronger  (a  synergistic  effect).  In  addition,  

IL-­‐4  did  not  upregulate  expression  of  either  LMP-­‐2A  or  LMP2-­‐B,  which  are   co-­‐expressed  

with  LMP-­‐1  in  Type  II  latency  (Thorley-­‐Lawson,  2001;  Young  and  Rickinson,  2004).  

Since   IL-­‐4,   IL-­‐13   and   CD40L   are   products   of   T   cells,   we   co-­‐cultured   peripheral   blood   T  

helper  cells  and  tonsillar  T  cells  with  the  BL  cell  line  that  carries  EBV.  We  found  that  LMP-­‐1  

was   induced   only   when   T   cells   were   activated   by   phytohemagglutinin   (PHA)   or  

Staphylococcus  enterotoxin  B  (SEB),  and  that  in  addition  cell-­‐cell  contacts  were  needed  for  

this  effect.  

We  showed  that  the  T  cell-­‐derived  stimuli  IL-­‐4,  IL-­‐13  and  CD40L  acted  as  LMP-­‐1  inducers  

in  EBV-­‐positive  HL  and  BL  cell   lines,  and  also   in  EBV-­‐infected  normal  B  cells.  Our  results  

show   that   IL-­‐4   and   IL-­‐13   induce  LMP-­‐1  expression   in   the   absence  of  EBNA-­‐2.  Moreover,  

LMP-­‐1  is  induced  via  STAT6  binding  to  its  newly  defined  high-­‐affinity  binding  site  on  LRS-­‐

STAT6.  This  mechanism  might  be  important  for  the  pathogenesis  of  EBV-­‐positive  HLs  and  

other   EBV-­‐carrying   tumours,   such   as   the   monoclonal   B   cell   expansions   that   occur   in  

angioimmunoblastic   T   cell   lymphomas   and   in   peripheral   T   cell   lymphomas   (Chen   et   al.,  

2001;  Hömig-­‐Hölzel  et  al.,  2008;  Kis  et  al.,  2011).  However,  LMP-­‐1  is  always  expressed  in  

 42  

cHL,  while   STAT6   is   activated   only   in   approximately   80%   of   the   cases   (Skinnider   et   al.,  

2002),  giving  room   for  additional,   as  yet  undefined  mechanisms   for  LMP-­‐1  expression   in  

the  absence  of  EBNA-­‐2  in  HRS  cells.    

 

Papers  II,  III  and  IV    

 

Identification  of  genes  responsible  for  B  cell  adhesion  and  motility    

The   aim   of   this   study  was   to   investigate   the   influence   of   IL-­‐4   and   CD40   ligation   on   the  

morphological  responses  of  mouse  B  cells.  Specific  subsidiary  aims  were:  

• To   identify   genes   that   might   be   responsible   for   the   regulation   of   cytoskeletal  

changes   in   B   cells,   such   as   microvilli   formation,   spreading,   tight   adhesion   and  

motility;  

• To  investigate  the  importance  of  these  genes  for  B  cell  responses  in  vitro  and  in  vivo.  

 

Paper  II  

B   cells   devoid   of   the   Rho   GTPase   Cdc42   coordinate   the   actin   and   microtubule  

cytoskeleton  less  effectively  and  form  an  extrafollicular  antibody  response.  

 

Motility  and  adhesion  require  the  cytoskeleton  rearrangement,  and  are  very  important  for  

B   cells   throughout   their   lifetime.   Cdc42,   is   a   small   Rho   GTPase,   and,   is   crucial   for   actin  

polymerization,  adhesion,  migration,  proliferation  and  survival  (Hall,  2005).  It  is  essential  

for  B  lymphocyte  development  and  activation  (Guo  et  al.,  2009).    

B   cells   can  be   stimulated   in   vitro   in   the  process   that  mimics  T   cell   activation  using   anti-­‐

CD40  antibodies  and  the  cytokine  IL-­‐4,  which  will  induce  the  formation  of  large,  round  and  

tight  aggregates.  When  cultured  on  antibody-­‐coated  monolayers,  B  cells  spread  and   form  

finely   branched,   long   protrusions   (Severinson   and   Westerberg,   2003).   Both   of   these  

responses  depend  on  cytoskeleton  rearrangements,   and  suggest   that  Cdc42   is   important.  

We  wished  to  investigate  the  specific  role  of  Cdc42  for  B  cell  activation  in  vitro,  and  for  the  

humoral  immune  response  in  vivo.    

We  used   conditional   gene   targeting   to   induce   the   deletion   of   Cdc42   in  B   cells.   CD21-­‐Cre  

mice   are   extensively   used   for   the   conditional   deletion   of   genes   from   mature   B   cells.  

However,  Cdc42  deletion  using  the  mouse  strain  that  expresses  CD21-­‐Cre  was  embryonic  

lethal.  CD21  and  CD35  are  encoded  by  the  same  gene  in  mice.  However,  CD35  is  expressed  

  43  

not   only   in   B   cells,   but   also   in   other   cell   types.   CD35   and   Cdc42   are   expressed   in  

erythrocyte  precursors  (Wong  et  al.,  2011,  Flygare  et  al.,  2011).  It  is  possible  therefore,  that  

CD21-­‐Cre   is   expressed   in   the   erythrocyte   precursors,   which   explains   the   embryonic  

lethality   of   these   mice.   All   the   experiments   in   this   study   were   carried   out   using   the  

tamoxifen-­‐inducible  Mb1-­‐Cre-­‐ERT2,  which   allowed  us   to   delete   Cdc42   in  B   cells   in   adult  

mice.    

The   deletion   of   Cdc42   from   B   cells   led   to   greatly   reduced   numbers   of   transitional   and  

follicular  B  cells,  in  agreement  with  previous  results  (Guo  et  al.,  2009).  However,  we  found  

that  the  number  of  marginal  zone  B  cells  also  was  lower.  Immunized  Cdc42flox/flox/mb1cre-­‐

ERT2/+   mice   formed   smaller   germinal   centres,   but   they   mounted   normal   IgM   and   IgG  

responses   to   a   particulate   antigen.   The   majority   of   plasma   cells   that   produced   IgG1,  

however,   were   extrafollicular   in   the   knockout   mice.   In   addition,   the   recall   response   in  

response  to  hapten  carrier,  was  diminished,  and  the  affinity  of  antibodies  was   lower   that  

those  of  the  wild-­‐type  mice  and  mice  heterozygotes  for  the  deletion  of  Cdc42.  

Cdc42   is  one  of   the  major  players   in   the   cytoskeleton   reorganization  and   is   crucial   for  B  

cells,  which  have   to  migrate   constantly.   This   led  us   investigate   the  homing   capacity   of  B  

cells.  The  B  cells  were  able  to  home  to  B  cell  areas  independently  of  their  Cdc42  status,  but  

to  a   lesser  extent   than  wild-­‐type  cells.  Migration   towards   the  chemokine  CXCL12   in  vitro  

was  normal,  in  agreement  with  previous  results  (Guo  et  al.,  2009).  

The   spreading   response,   which   depends   on   actin   polymerization   and   the   presence   of  

microtubules,  was  severely  affected  in  B  cells  from  Cdc42flox/flox/mb1cre-­‐ERT2/+  mice.  Instead  

of  the  long,  finely  branched  protrusions  formed  in  wild-­‐type  mice,  Cdc42  knockout  B  cells  

formed   only   short,   thin   and   brush-­‐like   protrusions,   which   stained   only   for   polymerized  

actin,  whereas  protrusions  of  the  wild-­‐type  stained  for  both  polymerized  actin  and  tubulin.  

CIP4   can  mediate   the   interactions   between  WASP   and  microtubules   (Aspenström,   1997,  

Tian   et   al.,   2000).   CIP4  was   present   in   the   cytoplasm   and   in   the   nucleus   of   both   Cdc42-­‐

deficient   and  Cdc42-­‐sufficient   cells.   It  was   also   present   along   the   complete   length   of   the  

protrusions  in  the  wild-­‐type  B  cells.  It  was,  however,  absent  in  the  brush-­‐like  protrusions  

of  Cdc42  knockout  B  cells.    

The  spreading  of  fixed  cells  resembled  the  trailing  uropods  found  in  cultures  stimulated  by  

anti-­‐CD40+IL-­‐4,  as  observed  using  time-­‐lapse  microscopy.  Cdc42-­‐sufficient  B  cells  formed  

long   protrusions   and   seemed   to   use   them   in   contacts   with   other   cells,   whereas   Cdc42-­‐

deficient  B  cells  formed  only  short  extensions  and  were  perhaps  less  efficient  in  adhesive  

interactions.   However,   B   cells   activated   by   anti-­‐CD40+IL-­‐4   that   lacked   Cdc42   formed  

 44  

equally  large,  round  and  tight  aggregates  as  those  formed  by  wild-­‐type  B  cells.  Our  results  

show   that   Cdc42   is   important   for   the   GC   response   of   B   cells   in   vivo   and   the   spreading  

response  in  vitro,  and  that  these  two  reactions  are  linked.    

 

Paper  III  

The   guanine   nucleotide   exchange   factor   Dock   10:   expression   and   function   in   B  

lymphocytes  

 

The  guanine  nucleotide  exchange  factor  Dock10  is  coded  by  a  gene  that  is  induced  by  IL-­‐4.  

Dock10  was  identified  in  human  peripheral  blood  B  and  T  cells  and  in  the  tumour  cells  of  

patients  suffering  from  chronic  lymphocytic  leukaemias  (CLLs)  (Yelo  et  al.,  2008).  Dock10  

is  a  GEF   for  Cdc42  and  plays  an   important   role   in  amoeboid  cell  migration   (Gadea  et  al.,  

2008).  However,  very  little  is  known  about  the  function  of  Dock10  in  B  cells.    

STAT6  is  needed  for  the  IL-­‐4-­‐induced  morphological  responses  in  B  cells,  such  as  spreading  

and   aggregation   (Davey   et   al.,   2000).   This   suggests   that   these   responses   depend   on  

transcription.  Therefore,  we  carried  out  microarray  analysis  to  compare  B  cells  stimulated  

by   anti-­‐CD40+IL-­‐4   with   those   stimulated   by   LPS   to   find   a   gene   that   induces   these  

morphological   responses.   Dock10   was   a   possible   candidate.   We   confirmed   that   IL-­‐4  

induced   strong   Dock10   expression   in   mouse   spleen   B   cells,   and   that   it   was   the   only  

stimulus/cytokine  capable  of  this.  

Dock10  was  located  in  the  cytoplasm  and  in  the  long  protrusions  of  spread  B  cells  that  had  

been   induced   by   anti-­‐CD40+IL-­‐4.   It   is   possible   that   it   co-­‐localizes   with   actin   filaments.  

Dock10  knockout  B  cells  cultured  in  vitro,  however,  had  normal  aggregation  and  spreading,  

suggesting   that   Dock10   acts   in   a   redundant  manner   together   with   other   closely   related  

GEFs.  It  is  also  possible  that  it  is  not  important  for  these  responses.  

Dock10   expression   in   CLLs   (Yelo   et   al.,   2008)   and   its   importance   in   the   amoeboid   cell  

motility   of   melanoma   cells   (Gadea   et   al.,   2008)   led   us   to   test   different   mouse   B   cell  

tumours.  Dock10  was  expressed  only  in  L10  and  A20  cells.  Moreover,  Dock10  expression  

was   upregulated  by   IL-­‐4   in   both   cell   lines   that   expressed  Dock10  before   treatment,   and  

also   in   BCL1,  which   did   not   express  Dock10   before   stimulation.   Interestingly,   BCL1   is   a  

spontaneously   derived   tumour   cell   line,   corresponding   to   the   human   CLL.   This   is   in  

agreement  with  Dock10  expression  and  upregulation  by  IL-­‐4  in  CLLs,  and  suggests  that  it  

plays  a  role  in  tumour  transformation.  

  45  

We  purchased  Dock10Flox/Frt  mice   from   the  European  Mouse  Mutant  Archive   (EMMA)   to  

investigate   the   role  of  Dock10   in  B   lymphocytes.  These  mice  were  produced  by   flanking  

exon   4   of  Dock10   by   loxP   sites   and   by   inserting   the   LacZ-­‐encoded   gene,   surrounded   by  

FRT   sites.   By   breeding   with   either   CD21-­‐Cre   or   Mb1-­‐Cre-­‐ERT2   mice,   a   Dock10-­‐LacZ  

reporter  mouse  was  created  and  used  to  investigate  Dock10  expression  in  hematopoietic  

cells   in  various  lymphoid  organs.  We  detected  LacZ  in  these  mice  by  X-­‐Gal  analysis  using  

FACS  (Guo  and  Wu,  2008).  We  found  that  Dock10  was  expressed  at  all  stages  during  the  

development  of  B  cells,  and  that  it  was  expressed  in  other  hematopoietic  cells.  

Dock10  deletion  from  one  allele  of  the  B  cells  did  not  affect  either  B  or  T  cell  differentiation  

or   B   cell   phenotype,   but   preliminary   results   suggest   that   immunized   mice   have   higher  

numbers  of  GC  B  cells   than   the  wild-­‐types  have.  However,   these  experiments  need   to  be  

repeated  with  more  mice.  

When  Dock10Flox/Frt  mice  were   first   bred  with  mice   that   expressed  Flp-­‐recombinase,   the  

LacZ-­‐gene   was   removed.   This   was   followed   by   a   second   breeding   with   Mb1-­‐Cre-­‐ERT2  

mice,   to  delete  exon  4  of  Dock10  from  the  mature  B  cells.  Genomic  Dock10  deletion  was  

efficient   in   spleen  B  cells.  Dock10  mRNA   levels  were   reduced  5-­‐fold   in  knockout  B  cells,  

but   expressed   at   normal   levels   in   heterozygotes.   Interestingly,   neither   homozygotes   nor  

heterozygotes  expressed  detectable  amounts  of  Dock10  protein.  The  Cre-­‐induced  deletion  

may   have   resulted   in   a   truncated   protein   that   we   cannot   detect,   because   of   the   lack   of  

antibodies.  If  Dock10  is  a  dimer  (as  are  Dock8  and  Dock9),  the  absence  of  Dock10  protein  

in   heterozygotes   may   be   due   to   dimerization   of   a   wild-­‐type   and   a   truncated   Dock10,  

leading  to  an  unstable  dimer  and  thus  no  detectable  protein.  

The  absence  of  Dock10  in  B  cells  had  no  detectable  effect  on  the  B  cell  phenotype,  or  on  

their   function   in   the  bone  marrow  or   in   the  spleen.  Our  preliminary  results   suggest   that  

the  numbers  of  T2-­‐marginal  zone  precursor  (MZP)  cells  and  marginal  zone  (MZ)  B  cells  in  

the   spleen   are   slightly   elevated.   These   experiments   must   be   repeated   before   any  

conclusions  can  be  drawn.  

The  humoral  immune  response  to  TNP-­‐SRBC,  measured  as  IgM  or  IgG  antibody  titres  in  the  

serum,  did  not  differ  between  knockout  mice   and  wild-­‐type  mice.   In   vitro   switching  was  

also   normal,   but   B   cells   with   one   functional   allele   of   Dock10   had   significantly   higher  

switching  to  IgG3.  TNP-­‐SRBC  is  a  very  potent  antigen,  and  it  would  therefore  be  interesting  

to  use  a   less  potent  antigen,  such  as  NP-­‐KLH.   It  would  also  be   interesting  to  use  a  T  cell-­‐

independent  antigen.  The  motility,  aggregation  and  spreading  of  B  cells  deficient  in  Dock10  

was  normal.  

 46  

It   is  possible  that  we  would  have  observed  a  difference  if  we  had  used  a  different  mouse  

strain  that  express  Cre,  such  as  CD19-­‐Cre,  since  this  would  result  in  accumulative  effects.  

Also,   it   would   be   interesting   to   delete   Dock10   in   other   cell   types,   such   as   T   cells.   It   is  

possible   that   another   closely   related   GEF,   Dock11,  which   is   expressed   in   hematopoietic  

cells  as  Dock10  is,  acts  in  a  redundant  manner.  If  that  is  the  case,  conditional  targeting  of  

both   GEFs   may   provide   an   answer   to   whether   they   play   a   role   in   B   cell   cytoskeletal  

responses.  In  addition,  deletion  of  Rac1/2  together  with  Dock10  might  give  a  phenotype,  if  

there  is  a  compensation  mechanism  between  these  pathways.  

 

Part  IV  (preliminary  results)  

Investigation  of  the  role  of  the  small  Rho  GTPases  Rac1  and  Rac2  in  B  cell  activation  

 

Like  many  other  members  of  the  Rho  GTPase  family,  Rac1  and  Rac2  have  been  implicated  

in  regulating  the  actin  cytoskeleton,  and  in  cell  survival  and  proliferation.  Rac2  is  expressed  

only  in  hematopoietic  cells,  while  Rac  1  is  ubiquitously  expressed  and  mice  that  lack  Rac1  

are  embryonic  lethal  (Gu  et  al.,  2003).  When  both  Rac1  and  Rac2  are  deleted  from  early  B  

cell  development,  the  cells  are  not  able  to  enter  the  white  pulp  of  the  spleen  (Henderson  et  

al.,  2010).  To  achieve  deletion  of  Rac1  only  in  mature  B  cells,  we  used  the  Mb1-­‐Cre-­‐ERT2  

mouse  strain.    

In   the   absence   of   Rac1   and   Rac2,   the   B   cell   phenotype   was   similar   to   the   phenotype  

described  previously   using   the  CD19-­‐Cre  mouse,   but   it  was   less   severe   (Walmsley   et   al.,  

2003;  Henderson   et   al.,   2010).  B   cells   stimulated  by   anti-­‐CD40+IL-­‐4  normally   form   long,  

thin  and  branched  protrusions  when  cultured  on  antibody  monolayer  (Davey  et  al.,  1998;  

Severinson   and   Westerberg,   2003).   Our   results   confirmed   that   small   Rho   GTPases   are  

essential  for  these  morphological  changes  in  B  cells,  since  B  cells  that  lack  Cdc42,  have  an  

impaired   spreading   response   (Paper   II).   To   our   surprise,   neither   deletion   of   one   of   the  

Racs,   nor   the   double   deletion   of   Rac1   and   Rac2   from   B   cells,   influenced   the   spreading  

response.  

Signals   from  T   cells   are  very   important  during  B   cell   activation.  B   cells   activated   in   vitro  

with   anti-­‐CD40+IL-­‐4   formed   large,   tight   and   round   aggregates.   B   cells   deficient   in   Rac1  

aggregated  normally,  but  cells  deficient   in  Rac2  formed  smaller  aggregates  with   irregular  

shapes.  When  both  Rac1  and  Rac2  were  deleted,  on   the  other  hand,   there  was  almost  no  

aggregation   and   the   small   aggregates   that   did   form   had   irregular   shapes.   In   addition,   in  

vitro   experiments   showed   that   the   degree   to  which   B   cells   switched   to   IgG2b   increased  

  47  

significantly,  when  the  cells  stimulated  with  LPS.  Furthermore,  when  activated  with  anti-­‐

CD40+IL-­‐4,  Rac1  and  Rac2  double-­‐deficient  B  cells  switched  to  IgG1  to  a  lower  degree.    

In  conclusion,  we  have  found  that  B  cell  spreading  depends  on  Cdc42,  but  is  independent  of  

Rac1/2.   Furthermore,   B   cell   homotypic   adhesion   depends   on   Rac1/2,   but   not   on   Cdc42.  

Failure  in  the  aggregation  in  the  absence  of  Rac1/2,  however,  might  explain  the  surprising  

switching  results.  Cells  would  first  need  to  proliferate  and  form  tight  aggregates  to  be  able  

to   produce   T   cell-­‐dependent   IgG1.   The   results   presented   are   preliminary   and   should   be  

repeated  with  more  mice.  

 

 48  

Conclusions  and  perspectives    

The  work  presented  here  has  examined  the  activation  and  motility  of  B  cells.  CD40-­‐CD40  

ligation   and   signalling   by   cytokines   (such   as   IL-­‐4)   are   very   important   for   both   of   these  

processes.  

In   classical  Hodgkin   lymphoma,   EBV-­‐infected   cells   express   latent   protein   LMP-­‐1,   but   do  

not  express  EBNA-­‐2,  which  is  essential  for  LMP-­‐1  expression.  We  investigated  in  Paper  I  

the  molecular  mechanism  behind  LMP-­‐1  expression  in  EBV-­‐infected  HL-­‐derived  cell  lines.  

The  KMH2-­‐EBV  cell  line  was  derived  by  infection  of  KMH2  with  EBV.  This  gave  us  a  model  

system  that  resembles  cHL,  because  exposure  of  these  cells   in  vitro   to  CD40L  and  IL-­‐4  in  

the  absence  of  EBNA-­‐2  induced  LMP-­‐1  expression  (Kis  et  al.,  2005).  Using  this  cell  line,  we  

found  that  the  cytokines  IL-­‐4  and  IL-­‐13  act  through  the  transcription  factor  STAT6,  binding  

to  the  viral  promoter  element  LRS-­‐STAT6.  In  this  way,  the  cytokines  were  able  to  induce  

LMP-­‐1   expression   in   the   absence   of   EBNA-­‐2.   The   same  mechanism   of   LMP-­‐1   induction  

might  be  responsible   for  pathogenesis   in  EBV-­‐positive  classical  Hodgkin   lymphoma  or   in  

some   other   EBV-­‐carrying   tumours.   Therefore,   results   from   investigation   of   the   LMP-­‐1  

induction  and  maintenance  by  cytokine  signalling  might  be  useful  in  the  treatment  of  EBV-­‐

positive  lymphomas.  

Papers   II   and   III   describe   investigations   of   genes   involved   in   B   cell   motility   and  

cytoskeletal  changes   in  vitro  and   in  vivo.  Preliminary  results  from  a  further  aspect  of  this  

project  are  presented  in  Part  IV.  We  conditionally  deleted  either  Dock10  or  the  small  Rho  

GTPases  Cdc42  and  Rac1  together  with  Rac2  in  B  cells.  We  wished  to  study  mature  B  cells,  

so  first  we  tried  to  use  breedings  with  CD21-­‐Cre  mice  to  induce  Cdc42  deletion.  However,  

surprisingly,   in   crossings   with   Cdc42flox   mice,   homozygous   mice   died   before   birth.  

Therefore,  we  used  the  tamoxifen-­‐inducible  Mb1-­‐Cre-­‐ERT2  mouse  strain  instead.    

Although  Dock10  was  selectively  upregulated  by   IL-­‐4   in  primary  cells  and  CLL  cells,  and  

might   be   co-­‐localized  with   polymerized   actin,   it  was   not   involved   in  B   cell   spreading   or  

aggregation.  Deletion  of  the  Dock10  Rho  GTPase  Cdc42  from  B  cells  resulted  in  impaired  

spreading   (Paper   II),   as   did   also   deletion   of   the   downstream   effector   of   Cdc42,   WASP  

(Westerberg  et  al.,  2001).  However,  the  expression  pattern  of  Dock10  in  cell  lines  suggests  

that  it  plays  a  role  in  tumour  development  and  progression.  Deletion  of  Dock10  in  B  cells  

did   not   give   rise   to   an   aberrant   phenotype,   even   though   it   is   expressed   in   the   early  

differentiation  stages  of  B  cells  (Paper  III).    

  49  

One   explanation   is   that   compensation   from   other   closely   related   guanine   nucleotide  

exchange  factors  (such  as  Dock11)  take  place,  or  compensation  from  Rho  GTPases  (Rac1).  

Double   knockouts   would   allow   us   to   determine   whether   there   is   redundancy   between  

Dock10  and  other  molecules.  However,  the  activation  status  of  Rac1/2,  Cdc42  and  Dock11  

in  B  cells  could  be  tested  in  mice  deficient  for  Dock10,  in  order  to  gain  information  about  

the   compensation   possibilities.   Dock10  may   be   is   important   for   other   hematopoietic   or  

non-­‐hematopoietic  cells.    

When  the  Dock10  effector,  Cdc42,  was  deleted  from  B  cells,  there  was  a  much  pronounced  

phenotype  (Paper  II).  Mice  with  Cdc42-­‐deficient  B  cells  were  not  able  to  produce  a  proper  

germinal   centre   response  with  high-­‐affinity   antibodies.   Furthermore,   these  mice  did  not  

respond  to  an  antigen  recall.  Despite  normal  migration  to  chemokines,  Cdc42-­‐/-­‐  B  cells  had  

reduced  homing  capacity  in  vivo.  In  addition,  B  cells  that  lack  Cdc42  failed  to  spread.  These  

B  cells   formed  thin,  short  protrusions  that  stained  for  polymerized  actin,   instead  of   long,  

branched   dendrites,   positive   for   both   polymerized   actin   and   tubulin.   This   indicates   that  

Cdc42  is  crucial  for  the  coordination  of  both  actin-­‐dependent  and  microtubule-­‐dependent  

responses.   Interestingly,   Cdc42-­‐interacting   protein   4   (CIP4)   can   connect   WASP   to  

microtubules.   It   is   possible   that   CIP4   is   activated   by   Cdc42   and   WASP,   and   that   this  

induces   its   binding   to   tubulin.   This   suggests   that   in   B   cells   in   which   Cdc42   has   been  

knocked   out,   CIP4   cannot   connect  WASP   and   bring   it   to   the  microtubules,   and   thereby  

stabilize  them.  Therefore,  Cdc42-­‐deficient  B  cells  do  not  have  a  proper  spreading  response,  

and  only  short,  brush-­‐like  protrusions  are   formed.  We  found  that  CIP4  was,  surprisingly,  

present  in  the  nucleus.  More  experiments  are  needed  to  confirm  this,  and  to  determine  its  

function   in   the  nucleus.   In  addition,  CIP4  acts  as  a  FasL  binding  partner,  which   suggests  

that   it   is   important   for   the   germinal   centres   in   vivo.   In   addition,   our   results   show   that  

Cdc42-­‐dependent  motility  is  essential  for  mounting  an  efficient  humoral  response  in  mice.    

Rac1  and  Rac2  double  knockout  B  cells  (Part  IV)  are  clearly  deficient  in  aggregation.  This  

might   imply   that   Rac1/2   are   important   for   the   germinal   centre   formation   in   vivo.   In  

addition,   the  extremely  high  switching  rates   to   IgG2b,  while   the   levels  of   IgG1  are   lower,  

make   it   very   interesting   to   study   Ig   class   responses   to   T-­‐dependent   and   T-­‐independent  

antigens   in   vivo.   Furthermore,   investigation   of   the   Cdc42   activation   status   in   Rac1/2-­‐

deficient  cells  may  be  an  option,  since  these  GTPases  might  influence  each  other’s  activity.  

The   preliminary   results   presented   here   require   confirmation   from   further   experiments,  

especially  in  the  Dock10  project  (Paper  III),  and  the  Rac1/2  data  (Part  IV).  

 50  

Different   signalling   pathways   communicate   with   each   other   by   crosstalk,   and   often  

proteins  cooperate  or  antagonize  each  other.  Therefore,  deleting  a  GEF,  GTPase  or  a  target  

protein  might  affect  a  whole  cascade  of  other  molecules  in  the  same  or  related  pathways.  

All  these  pathways  are  connected  in  one  way,  or  another  in  vivo:  switching  one  pathway  off  

may  lead  to  another  pathway  being  switched  on,  and  a  subsequent  pathological  response.  

All   the  molecules   studied   here   are   responsible   for   the  motility   of   normal   cells,   and   thus  

may  play  roles  in  tumour  invasion  and  dissemination.  

We  hope  that   these  results  shed  some   light  on   the   importance  of   the  molecules  we  have  

investigated  for  activation  and  motility  in  normal  B  cells,  and  on  the  possible  roles  of  these  

molecules  in  B  cell  malignancies.  

 

  51  

Acknowledgements    

This  work  was  performed  at   the  Department  of  Molecular  Biosciences,   the  Wenner-­‐Gren  Institute,  Stockholm  University.      Many  people  have  contributed  and  supported  me  during  my  PhD.      First,   I  would  like  to  thank  my  supervisor  Eva  Severinson,   for  her  scientific  guidance,  her  endless  support  and  patience.  Thank  you  for  accepting  me  as  your  PhD  student,  giving  me  the  fantastic  opportunity  to  come  to  Sweden.  Thank  you  for  inspiring  me,  helping  to  focus  on   important   things,   for   your   constructive   criticism   and   creative   suggestions,   especially  during  the  writing  of  the  manuscripts  and  the  thesis,  and  sharing  your  huge  knowledge  and  experience  with  me.  I  am  really  grateful  for  your  role  in  my  growth  as  a  researcher,  and  as  a  person.  Thank  you  for  believing  in  me!  Second,   I   would   like   to   thank   my   co-­‐supervisor   Lisa   Westerberg   for   all   valuable  discussions,   suggestions,   encouragement   and   help   during  my   studies   and  writing   of   my  thesis  and  manuscripts.      I  would  like  to  thank  all  seniors  at  the  former  Immunology  Department  -­‐  Eva  Sverremark-­‐Ekström,  Carmen  Fernandez,  Marita  Troye-­‐Blomberg  and  Klavs  Berzins,  and   those  at   the  Cell  Biology  Department  –  Roger  Karlsson,  Ann  Kristin  Östlund  Farrants,  Per  Ljungdal  and  Claes  Andreasson.  Thank  you  for  you  support,  help  and  discussions!    I  would  like  to  thank  Anna-­‐Stina  Höglund  for  her  help  with  microscopy.    I  would  like  to  thank  Eva  Nygren,  Ellinor  Ljunglöf,  Solveig  Sundberg  and  all  other  personnel  at  the  Animal  Facility  for  always  being  friendly  and  taking  good  care  of  my  mice.  I  would   like   to   thank   all   the   administrative   personal   for   their   help   -­‐   Lina,   Gelana,   Anna-­‐Leena,  but  especially  Magdalena  –  you  are  the  best!  I  would  like  to  thank  the  IT  support  –  Bengt  and  Gunnar  for  all  their  help.    I  would  like  to  thank  all  former  and  present  people  at  the  former  Immunology  Department,  especially  Maggan,   for  all  your  help  with  technical   issues;  Shanie,  Manijeh,  Pablo,   Jubayer  and  Stephanie   for  discussions  and  help  during  my  PhD;  and  of  course  Olga,   for  being  my  good  friend,  for  all  discussions,  your  help,  support  and  all  the  fun  we  had  together.  I  would  like  to  thank  all  former  and  present  people  at  the  former  Cell  Biology  department,  especially  Kicki,   for  all   your  help  and  support  with   technical   and  other   issues;   Javier,   for  lots  of  discussions  and  all  suggestions;  my  officemates  -­‐  Ming,  Naveen  and  Mats  for  lots  of  fun  and  discussions;  Sara  and  Steffi  for  your  discussions  and  being  always  kind  and  helpful;  Kerstin,   Bojana   and   Peter   –   it   was   nice   to   have   you   as   students.   I   would   like   to   thank  Andrea   S.,   in   particular,   for   being   my   good   friend,   for   all   scientific   and   non-­‐scientific  discussions  and  all  the  fun  we  had  together.  Thank  you  once  more  everyone  at   the  departments,   if   I  haven’t  mentioned  your  name,   it  does  not  mean  you  are  not  important!  You  all  have  contributed  in  one  way  or  another!  The  departments  would   be   different  without   all   of   you!   Thank   you   for   creating   such   a   great  working  and  non-­‐working  environment!    I   would   like   to   thank   some   people   from   the   new   Department   of   Molecular   Biosciences:  Andrea   E.,   Katarina   T,   Widad,   Steffi   Bauer   and   Elina   for   all   scientific   and   non-­‐scientific  discussions,  your  help  and  fun.  Thank  you  for  your  friendship!    

 52  

I   would   like   to   thank   some   people   from   Eva   Klein’s   lab,   MTC,   Karolinska   Institutet:   my  friend   Lorand   (Lori),   for   all   help,   scientific   and   non-­‐scientific   discussions;   also,   Noemi,  Daniel,  Emma  and  of  course  Eva  Klein  and  George  Klein  –  for  the  all  help,  discussions  and  support  at  the  beginning  of  my  PhD  studies.    I   would   like   to   thank   people   from   the   Translational   Immunology   Unit   at   Karolinska  University  Hospital,  Solna  for  always  being  nice  and  helpful  to  me.  I  would  like  especially  to  thank  my  friend  and  co-­‐author  Marisa,  for  all  your  help,  and  for  the  discussions  and  all  the  fun   we   had   together;   Carin,   also   co-­‐author   in   one   paper,   for   all   your   help   with   my  experiments;  Liliana  for  your  help  with  cryo-­‐sectioning;  and,  of  course  Mikael  Karlsson  for  help  and  the  possibility  of  using  the  reagents.    I  would  like  to  thank  the  Lithuanian  folk  dance  group  “BALTIJA”  for  all   the  fun  moments,  travel  and  concerts.  I  would  especially  like  to  thank  Gedas  for  “taking”  me  there,  Jurga,  for  accepting   me,   Vilma   J.   and   Tomas,   Aurelija   and   Valentinas,   Olga   O.,   Irute   and   Donatas,  Kristina  and  Mindaugas,  Paulius  and  Skirmante  and  Giedrius  for  being  my  good  friends  in  the  group  and  outside.  “BALTIJA”  helped  me  to  feel  at  home  here  in  Stockholm!    I  would   like   to   thank  my   friend  Vilma  V.   for  my   first   trip   to   Stockholm   (I   knew   I  would  come   back!)   and   Vilma   U.   for   10   years   of   scientific   and   non-­‐scientific   friendship,   which  started  back  in  Lithuania  and  continues  in  Sweden…    I   would   like   to   thank   Irute   Girkontaite,   from   the   Centre   For   Innovative   Medicine,   State  Research  Institute,  for  introducing  me  to  the  B  cell  world  and  sharing  all  your  knowledge  with  me.      Also,   I   would   like   to   thank   my   other   friends   and   colleagues   from   Vilnius,   Lithuania:  Neringa,   Siga,  Tania,   Lauryte,  Virga,   Ieva,  Danute  Davidoniene,   Ingrida,  Ritute  and  Aida  –  thank  you  for  your  friendship  and  support  during  these  years!    And   last,   but   not   the   least,   I   would   like   to   thank   my   family   in   Lithuania,   especially   my  parents  for  endless  love  and  support!  Thank  you  for  believing  in  me!    This  work  was  supported  by  the  Swedish  Research  Council.    

  53  

References    

Ahuja  A,  Anderson  SM,  Khalil  A,  Shlomchik  MJ.  Maintenance  of  the  plasma  cell  pool  is  independent  of  memory  B  cells.  PNAS  2008;  105(12):4802-­‐4807.  

 Alcaraz-­‐Garcia  MJ,  Ruiz-­‐Lafuente  N,  Sebastian-­‐Ruiz  S,  Majado  MJ,  Gonzalez-­‐Garcia  C,  Bernardo  MV,  

Alvarez-­‐Lopez  MR.  Human  and  mouse  DOCK10  splicing  isoforms  with  alternative  first  coding  exon   usage   differentially   expressed   in   T   and   B   lymphocytes.   Human   Immunology   2011;  72:531-­‐537.  

 Allen  CDC,  Cyster   JG.   Follicular  dendritic   cell   networks  of   primary   follicles   and  germinal   centers:  

phenotype  and  function.  Seminars  in  Immunology  2008;  20:14-­‐25.    Allen  CDC,  Okada  T,  Cyster  JG.  Germinal-­‐Centre  organization  and  cellular  dynamics.  Immunity  2007;  

27:  190-­‐202.    Allen  CDC,  Okada  T,  Tang  HL,  Cyster  JG.  Imaging  of  germinal  centre  selection  events  during  affinity  

maturation.  Science  2007;  315:528-­‐531.    Allende  ML,  Tuymetova  G,  Lee  BG,  Bonifacino  E,  Wu  YP,  Proia  RL.  S1P1  receptor  directs  the  release  

of   immature   B   cells   from   bone   marrow   into   blood.   J   Exp   Med   2010;   DOI:  10.1084/jem.20092210.  

 Allman  D,  Pillai  S.  Peripheral  B  cell  subsets.  Current  Opinion  in  Immunology  2008;  20:149-­‐157.    Anthis   NJ,   Campbell   ID.   The   tail   of   integrin   activation.   Trends   in   Biochemical   Sciences   2011;  

36(4):191-­‐198.    Arnon  TI,  Horton  RM,  Grigorova  IL,  Cyster  JG.  Visualization  of  splenic  marginal  zone  B-­‐cell  shuttling  

and  follicular  B-­‐cell  egress.  Nature  2013;  493(7434):684-­‐688.    Aspenström   P.   A   Cdc42   target   protein   with   homology   to   the   non-­‐kinase   domain   of   FER   has   a  

potential  role  in  regulating  the  actin  cytoskeleton.  Current  Biology  1997;  7(7):479-­‐487.    Aspenström   P.   Roles   of   F-­‐BAR/PCH   proteins   in   the   regulation   of  membrane   dynamics   and   actin  

reorganization.  Int  Rev  Cell  Mol  Biol  2009;  272:1-­‐31.      Babcock  GJ,  Hochberg  D,  Thorley-­‐Lawson  DA.  The  Expression  Pattern  of  Epstein-­‐Barr  Virus  Latent  

Genes   In  Vivo   Is  Dependent  upon   the  Differentiation  Stage  of   the   Infected  B  Cell.   Immunity  2000;  13:497–506.    

 Banerjee   PP,   Pandey   R,   Zheng   R,   Suhoski   MM,   Monaco-­‐Shawver   L,   Orange   JS.   J   Exp   Med   2007;  

204(10):2305-­‐2320.    Basu  S,  Ray  A,  Dittel  BN.  Cannabinoid  receptor  2  is  critical  for  the  homing  and  retension  of  marginal  

zone   B   lineage   cells   and   for   efficient   T-­‐independent   immune   responses.   The   Journal   of  Immunology  2011;  187:5720-­‐5732.  

 Batista  FD,  Treanor  B,  Harwood  NE.  Vizualizing  a  role  for  the  actin  cytoskeleton  in  the  regulation  of  

B-­‐cell  activation.  Immunological  Reviews  2010;  237:191-­‐204.    Beltman  JB,  Allen  CDC,  Cyster  JG,  de  Boer  RJ.  B  cells  within  germinal  centers  migrate  preferentially  

from  dark  to  light  zone.  PNAS  2011;  108(21):8755-­‐8760.    

 54  

Blundell  MP,  Worth  A,  Bouma  G,  Thrasher  AJ.  The  Wiskott-­‐Aldrich  syndrome:  the  actin  cytoskeleton  and  immune  cell  function.  Disease  Markers  2010;  157-­‐175.  

 Bolduc   A,   Long   E,   Stapler   D,   Cascalho   M,   Tsubata   T,   Koni   PA,   Shimoda   M.   Constitutive   CD40L  

expression   on   B   cells   prematurely   terminates   germinal   centre   response   and   leads   to  augmented  plasma  cell  production  in  T  cell  areas.  Journal  of  Immunology  2010;  185:220-­‐230.  

 Boothby  M,  Mora  AL,  Aronica  MA,  Youn  J,  Sheller  JR,  Goenka  S,  Stephenson  L.  IL-­‐4  Signalling,  Gene  

Transcription   Regulation,   and   the   Control   of   Effector   T   Cells.   Immunologic   Research   2001;  23(2-­‐3):179–191.  

 Bortnik  A,  Allman  D.  What  is  and  what  should  always  have  been:  long-­‐lived  plasma  cells  induced  by  

T  cell-­‐independent  antigens.  The  Journal  of  Immunology  2013;  190:5913-­‐5918.    Bromberg  J,  Darnell  JE  Jr.  The  role  of  STATs  in  transcriptional  control  and  their  impact  on  cellular  

function.  Oncogene  2000;  19:2468-­‐2473.      Busch   LK,   Bishop   GA.   The   EBV   Transforming   Protein,   Latent   Membrane   Protein   1,   Mimics   and  

Cooperates   with   CD40   Signaling   in   B   Lymphocytes.   The   Journal   of   Immunology   1999;  162:2555–2561.    

 Campellone  KG,  Welch  MD.  A  nucleator  arms  race:  cellular  control  of  actin  assembly.  Nat  Rev  Mol  

Cell  Biol  2010;  11:237-­‐251.    Cancelas   JA,  Lee  AW,  Prabhakar  R,  Stringer  KF,  Zheng  Yi,  Williams  DA.  Rac  GTPases  differentially  

integrate   signals   regulating   hematopoietic   stem   cell   localization.   Nature   Medicine   2005;  11(8):886-­‐891.  

 Carsetti   R,   Rosado   MM,   Wardemann   H.   Peripheral   development   of   B   cells   in   mouse   and   man.  

Immunological  Reviews  2004;  197:179-­‐191.    Cerutti  A,  Cols  M,  Puga  I.  Activation  of  B  cells  by  non-­‐canonical  helper  signals.  EMBO  reports  2012;  

13(9):798-­‐810.    Cerutti   A,   Cols   M,   Puga   I.   Marginal   zone   B   cells:   virtues   of   innate-­‐like   antibody-­‐producing  

lymphocytes.  Nat  Rev  Immunology  2013;  13:118-­‐132.    Chan   TD,   Gardam   S,   Gatto   D,   Turner   VM,   Silke   J,   Brink   R.   In   vivo   control   of   B-­‐cell   survival   and  

antigen-­‐specific  B-­‐cell  responses.  Immunological  Reviews  2010;  237:90-­‐103.    Chappell   CP,   Draves   KE,   Giltiay   NV,   Clark   EA.   Extrafollicular   B   cell   activation   by   marginal   zone  

dendritic   cells   drives   T   cell-­‐dependent   antibody   responses.   J   Exp   Med   2012;   DOI:  10.1084/jem.20120774.  

 Chen  H,  Lee   JM,  Zong  Y,  Borowitz  M,  NG  MH,  Ambinder  RF,  Hayward  SD.  Linkage  between  STAT  

Regulation   and   Epstein-­‐Barr   Virus   Gene   Expression   in   Tumors.   Journal   of   Virology   2001;  75(6):2929–2937.    

 Chen  H-­‐C,  Reich  NC.  Live  Cell  Imaging  Reveals  Continuous  STAT6  Nuclear  Trafficking.  The  Journal  of  

Immunology  2010;  185:64–70.    Chu   VT,   Berek   C.   The   establishment   of   the   plasma   cell   survival   niche   in   the   bone   marrow.  

Immunological  Reviews  2013;  251:177-­‐188.    Chung  Y,  Tanaka  S,  Chu  F,  Nurieva  RI,  Martinez  GJ,  Rawal  S,  Wang  Yi-­‐H,  Lim  H,  Reynolds  JM,  Zhou  X-­‐

H,  Fan  H-­‐M,  Liu  Z-­‐M,  Neelapu  SS,  Dong  C.  Follicular  regulatory  T  cells  expressing  Foxp3  and  

  55  

Bcl-­‐6  suppress  germinal  center  reactions.  Nature  Medicine  2011;  17(8):983-­‐988.    Cinamon  G,  Zachariah  MA,  Lam  OM,  Foss  FW  Jr,  Cyster   JG.  Follicular  shuttling  of  marginal  zone  B  

cells  facilitates  antigen  transport.  Nature  Immunology  2008;  9(1):54-­‐62.    Cohen   JI.  The  biology  of  Epstein-­‐Barr  virus:   lessons   learned   from   the  virus   and   the  host.  Current  

Opinion  in  Immunology  1999;  11:365-­‐370.    Cyster   JG.   B   cell   follicles   and   antigen   encounters   of   the   third   kind.   Nature   Immunology   2010;  

11(11):989-­‐996.    Davey  EJ,  Greicius  G,  Thyberg  J,  Severinson  E.  STAT6  is  required  for  the  regulation  of  IL-­‐4  induced  

cytoskeletal  events  in  B  cells.  Int  Immunol  2000;  12:995–1003.    Davey  EJ,  Thyberg  J,  Conrad  DH,  Severinson  E.  Regulation  of  cell  morphology  in  B  lymphocytes  by  

interleukin-­‐4:  evidence  for  induced  cytoskeletal  changes.  J  Immunol  1998;  160:5366–5373.    Davies   EG,   Thrasher   AJ.   Update   on   the   hyper   immunoglobulin   M   syndromes.   British   Journal   of  

Haematology  2010;  149:167-­‐180.    Dirmeier  U,  Neuhierl  B,  Kilger  E,  Reisbach  G,  Sandberg  ML,  Hammerschmidt  W.  Latent  membrane  

protein   1   is   critical   for   efficient   growth   transformation   of   human   B   cells   by   Epstein-­‐Barr  virus.  Cancer  Res  2003;  63(11):2982-­‐2989.  

 Dogan  I,  Bortocci  B,  Vilmont  V,  Delbos  F,  Megret  J,  Storck  S,  Reynaud  C-­‐A,  Weill  J-­‐C.  Multiple  layers  

of  B   cell  memory  with  different   effector   functions.  Nature   Immunology   2009;  10(12):1292-­‐1299.  

 Dooms  H,   Abbas   AK:   Revisiting   the   role   of   IL-­‐2   in   autoimmunity.  Eur   J   Immunol   2010;   40:1538-­‐

1540.    Ehret   GB,   Reichenbach   P,   Schindler   U,   Horvath   CM,   Fritz   S,   Nabholz   M,   Bucher   P.   DNA   binding  

specificity  of  different  STAT  proteins.  Comparison  of   in  vitro   specificity  with  natural   target  sites.  J  Biol  Chem  2001;  276(9):6675-­‐6688.    

 Elgueta  R,  Benson  MJ,  de  Vries  VC,  Wasiuk  A,  Guo  Y,  Noelle  RJ.  Molecular  mechanism  and  function  of  

CD40/CD40L  engagement  in  the  immune  system.  Immunol  Reviews  2009;  229:152-­‐172.    Erickson  LD,  Durell  BG,  Vogel  LA,  O’Connor  BP,  Cascalho  M,  Yasui  T,  Kikutani  H,  Noelle  RJ.  Short-­‐

circuiting  long-­‐lived  humoral  immunity  by  the  heightened  engagement  of  CD40.  J  Clin  Invest  2002;  109(5):613-­‐620.  

 Faulkner  GC,  Krajewski  AS,  Crawford  DH.  The  ins  and  outs  of  EBV  infection.  Trends  in  Microbiology  

2000;  8(4):185-­‐189.    Feng  Q,  Cerione  RA.  Cdc42  and  its  cellular  functions.  Handbook  of  Cell  Signaling  2010;  3:1785-­‐1794.    Flygare  J,  Rayon  Estrada  V,  Shin  C,  Gupta  S,  Lodish  HF.  HIF1alpha  synergizes  with  glucocorticoids  to  

promote  BFU-­‐E  progenitor  self-­‐renewal.  Blood  2011;  117:3435-­‐3444.    Gadea   G,   Sanz-­‐Moreno   V,   Self   A,   Godi   A,   Marshall   CJ.   DOCK10-­‐Mediated   Cdc42   Activation   Is  

Necessary  for  Amoeboid  Invasion  of  Melanoma  Cells.  Current  Biology  2008;  18:1456–1465.    Gatto  D,  Brink  R.  The  germinal  centre  reaction.  Mechanisms  of  allergic  diseases  2010;  126:898–907.    Gatto   D,   Brink   R.   B   cell   localization:   regulation   by   EBI2   and   its   oxysterol   ligand.   Trends   in  

 56  

Immunology  2013;  34(7):336-­‐341.    Gatto  D,  Paus  D,  Basten  A,  Mackay  CR,  Brink  R.  Guidance  of  B  cells  by  the  orphan  G  protein-­‐coupled  

receptor  EBI2  shapes  humoral  immune  responses.  Immunity  2009;  31:259–269.    Gerasimcik   N,   Baptista   M,   Westerberg   L,   Severinson   E.   The   guanine   nucleotide   exchange   factor  

Dock10:  expression  and  function  in  B  lymphocytes.  Manuscript  2013.    Gerasimcik  N,  Dahlberg  C,  Baptista  M,  Westerberg  L,  Severinson  E.  B  cells  devoid  of  the  Rho  GTPase  

Cdc42   coordinate   the   actin   and   microtubule   cytoskeleton   less   effectively   and   form   an  extrafollicular  antibody  response.  Manuscript  2013.  

 B   cells   devoid   of   the   Rho   GTPase   Cdc42   coordinate   the   actin   and  microtubule   cytoskeleton   less  

effectively  and  form  an  extrafollicular  antibody  response.      Gires   O,   Kohlhuber   F,   Kilger   E,   Baumann  M,   Kieser   A,   Kaiser   C,   Zeidler   R,   Scheffer   B,   Ueffing  M,  

Hammerschmidt  W.   Latent  membrane   protein   1   of   Epstein-­‐Barr   virus   interacts   with   JAK3  and  activates  STAT  proteins.  The  EMBO  Journal  1999;  18(11):3064-­‐3073.  

 Gonzalez  SF,  Degn  SE,  Pitcher  LA,  Woodruff  M,  Heesters  BA,  Carroll  MC.  Trafficking  of  B  cell  antigen  

in  lymph  nodes.  Annu  Rev  Immunol  2011;  29:215-­‐33.    Good-­‐Jacobson  KL,  Shlomchik  MJ.  Plasticity  and  heterogeneity  in  the  generation  of  memory  B  cells  

and  long-­‐lived  plasma  cells:  the  influence  of  germinal  center  interactions  and  dynamics.  The  Journal  of  Immunology  2010;  185:3117-­‐3125.  

 Goodnow  CC,  Vinuesa  CG,  Randall  KL,  Mackay  F,  Brink  R.  Control  system  and  decision  making  for  

antibody  production.  Nature  Immunology  2010;  11(8):681-­‐688.    Goormachtigh   G,   Ouk   T-­‐S,   Mougel   A,   Tranchand-­‐Bunel   D,   Masy   E,   Le   Clorennec   C,   Feuillard   J,  

Bornkamm  GW,  Auriault   C,  Manet  E,   Fafeur  V,  Adriaenssens  E,   Coll   J.   Autoactivation  of   the  Epstein-­‐Barr  Virus  Oncogenic  Protein  LMP1  during  Type  II  Latency  through  Opposite  Roles  of  the  NF-­‐κB  and  JNK  Signaling  Pathways.  Journal  of  Virology  2006;  80(15):7382–7393.  

 Graham  JP,  Arcipowski  KM,  Bishop  GA.  Differential  B-­‐lymphocyte  regulation  by  CD40  and  its  viral  

mimic,  latent  membrane  protein  1.  Immunol  Reviews  2010;  237:226-­‐248.    Green  JA,  Suzuki  K,  Cho  B,  Willison  LD,  Palmer  D,  Allen  CDC,  Schmidt  TH,  Xu  Y,  Proia  RL,  Coughlin  

SR,   Cyster   JG.   The   sphingosine   1-­‐phosphate   receptor   S1P2   maintains   the   homeostasis   of  germinal   center   B   cells   and   promotes   niche   confinement.   Nature   Immunology   2011;  12(7):672-­‐680.  

 Gregory   CD,   Rowe   M,   Rickinson   AB.   Different   Epstein-­‐Barr   virus-­‐B   cell   interactions   in  

phenotypically  distinct   clones  of   a  Burkitt's   lymphoma   cell   line.   Journal   of  General  Virology  1990;  71:1481-­‐1495.    

 Greicius   G,   Tamosiunas   T,   Severinson   E.   Assessment   of   the   role   of   leukocyte   function-­‐associated  

antigen-­‐1  in  homotypic  adhesion  of  activated  B  lymphocytes.  Scand  J  Immunol  1998;  48:642–50.  

 Greicius   G,  Westerberg   L,   Davey   EJ,   Buentke   E,   Scheynius   A,   Thyberg   J,   Severinson   E.   Microvilli  

structures  on  B  lymphocytes:  inducible  functional  domains?  Int  Immunol  2003;  16:353-­‐364.    Gu  Yi,  Filippi  MD,  Cancelas   JA,  Siefring   JE,  Williams  EP,   Jasti  AC,  Harris  CE,  Lee  AW,  Prabhakar  R,  

Atkinson  SJ,  Kwiatkowski  DJ,  Williams  DA.  Hematopoietic   cell   regulation  by  Rac1  and  Rac2  Guanosine  Triphasphatases.  Science  2003;  302:445-­‐449.  

  57  

 Guo  F,  Velu  CS,  Grimes  L,  Zheng  Y.  Rho  GTPase  Cdc42   is  essential   for  B-­‐lymphocyte  development  

and  activation.  Blood  2009;  114:2909-­‐2916.    Guo  W   and  Wu   H.   Detection   of   LacZ   expression   by   FACS-­‐Gal   analysis.   Protocol   Exchange   2008;  

DOI:10.1038/nprot.2008.163.    Hall,  A.  Rho  GTPases  and  the  control  of  cell  behaviour.  Biochem  Soc  Trans  2005;  33:891-­‐895.    Hardy  RR,  Hayakawa  K.  B  cell  development  pathways.  Annu  Rev  Immunol  2001;  19:595-­‐621.    Harwood  NE,  Batista  FD.  Early  events  in  B  cell  activation.  Annu  Rev  Immunol  2010;  28:185-­‐210.    Hauser   AE,   Junt   T,   Mempel   TR,   Sneddon   MW,   Kleinstein   SH,   Henrickson   SE,   von   Andrian   UH,  

Shlomchik  MJ,  Haberman  AM.  Definition  of  Germinal-­‐Center  B  cell  migration  in  vivo  revelas  predominant  intrazonal  circulation  patterns.  Immunity  2007;  26:655-­‐667.  

 Hauser  AE,  Kerfoot  SM,  Haberman  AM.  Cellular  choreography  in  the  germinal  center:  new  visions  

from  in  vivo  imaging.  Semin  Immunopathol  2010;  32:239-­‐255.    Hauser   AE,   Shlomchik   MJ,   Haberman   AM.   In   vivo   imaging   studies   shed   light   on   germinal-­‐centre  

development.  Nat  Rev  Immunol  2007;  7:499-­‐504.    Henderson   RB,   Grys   K,   Vehlow   A,   de   Bettignies   C,   Zachacz   A,   Henley   T,   Turner   M,   Batista   F,  

Tybulewicz  VLJ.  A  novel  Rac-­‐dependent  chackpoint  in  B  cell  development  controls  entry  into  the  splenic  white  pulp  and  survival.  J  Exp  Med  2010;  207(4):837-­‐853.  

 Herzog   S,   Reth   M,   Jumaa   H.   Regulation   of   B-­‐cell   proliferation   and   differentiation   by   pre-­‐B-­‐cell  

receptor  signaling.  Nat  Rev  Immunology  2009;  9:195-­‐205.    Hislop   AD,   Taylor   GS,   Sauce   D,   Rickinson   AB.   Cellular   Responses   to   Viral   Infection   in   Humans:  

Lessons  from  Epstein-­‐Barr  Virus.  Annu  Rev  Immunol  2007;  25:587–617.      Howard  M,  Farrar  J,  Hilfiker  M,  Johnson  B,  Takatsu  K,  Hamaoka  T,  Paul  WE.  Identification  of  a  T  cell-­‐

derived  B  cell  growth  factor  distinct  from  interleukin  2.  J  Exp  Med  1982;  155:914-­‐923.    Hömig-­‐Hölzel  C,  Hojer  C,  Rastelli  J,  Casola  S,  Strobl  LJ,  1  Müller  W,  Quintanilla-­‐Martinez  L,  Gewies  A,  

Ruland   J,   Rajewsky   K,   Zimber-­‐Strobl   U.   Constitutive   CD40   signaling   in   B   cells   selectively  activates  the  noncanonical  NF-­‐κB  pathway  and  promotes  lymphomagenesis.  J  Exp  Med  2008;  DOI:  10.1084/jem.20080238.  

 Humtsoe   JO,  Koya  E,  Pham  E,  Aramoto  T,  Zuo   J,   Ishikawa  T,  Kramer  RH.  Transcriptional  profiling  

identifies   upregulated   genes   following   induction   of   epithelial-­‐mesenchymal   transition   in  squamous  carcinoma  cells.  Experimental  Cell  research  2012;  318:379-­‐390.  

 Jabara   HH,   McDonald   DR,   Janssen   E,   Massaad   MJ,   Ramesh   N,   Borzutzky   A,   Rauter   I,   Benson   H,  

Schneider   L,   Baxi   S,   Recher  M,   Notarangelo   L,  Wakim   R,   Dbaibo   G,   Dasouki  M,   Al-­‐Herz  W,  Barlan  I,  Baris  S,  Kutukculer  N,  Ochs  H,  Plebani  A,  Kanariou  M,  Lefranc  G,  Reisli  I,  Fitzgerald  K,  Golenbock  D,  Manis  J,  Keles  S,  Ceja  R,  Chatila  T,  Geha  RS.  DOCK8  functions  as  an  adaptor  that  links   Toll-­‐like   receptor–MyD88   signaling   to   B   cell   activation.   Nature   Immunology   2012;  13(6):612-­‐620.  

 Jaffe  AB,  Hall  A.  Rho  GTPases:  biochemistry  and  biology.  Annual  Review  of  Cell  and  Developmental  

Biology  2005;  21:247-­‐69.    Jiang  H,  Harris  MB,  Rothman  P.  IL-­‐4/IL-­‐13  signaling  beyond  JAK/STAT.  J  Allergy  Clin  Immunol  2000;  

 58  

105:1063-­‐1070.    Kelly  LM,  Pereira   JP,  Yi  T,  Xu  Y,  Cyster   JG.  EBI2  guides   serial  movements  of   activated  B  cells   and  

ligand  activity  is  detectable  in  lymphoid  and  nonlymphoid  tissues.  The  Journal  of  Immunology  2011;  187:3026-­‐3032.  

 Kerfood   SM,   Yaari   G,   Patel   JR,   Johnson   KL,   Gonzalez   DG,   Kleinstein   SH,   Haberman   AM.   Germinal  

center   B   cell   and   T   follicular   helper   cell   development   initiates   in   the   interfollicular   zone.  Immunity  2011;  34:947-­‐960.  

 Khurana   Hershey   GK.   IL-­‐13   receptors   and   signaling   pathways:   an   evolving   web.   J   Allergy   Clin  

Immunol  2003;  111(4):677-­‐90.    Kis   LL.   The   role   of   the   microenvironment   on   the   regulation   of   Epstein-­‐Barr   virus   latent   gene  expression.  Doctoral  Thesis  2009;  1-­‐79.    Kis   LL,   Gerasimcik   N,   Salamon   D,   Persson   EK,   Nagy   N,   Klein   G,   Severinson   E,   Klein   E.   STAT6  

signaling   pathway   activated   by   the   cytokines   IL-­‐4   and   IL-­‐13   induces   expression   of   the  Epstein-­‐Barr  virus–encoded  protein  LMP-­‐1  in  absence  of  EBNA-­‐2:  implications  for  the  type  II  EBV  latent  gene  expression  in  Hodgkin  lymphoma.  Blood  2011;  117:65-­‐174.  

 Kis  LL,  Nishikawa  J,  Takahara  M,  Nagy  N,  Matskova  L,  Takada  K,  Elmberger  PG,  Ohlsson  A,  Klein  G,  

KleinE.   In   vitro  EBV-­‐infected  subline  of  KMH2,  derived   from  Hodgkin   lymphoma,  expresses  only  EBNA-­‐1,  while  CD40   ligand  and  IL-­‐4   induce  LMP-­‐1  but  not  EBNA-­‐2.   Int   J  Cancer  2005;  113:937–945.  

 Kis  LL,  Takahara  M,  Klein  G,  Klein  E.  Cytokine  mediated  induction  of  the  major  Epstein  Barr  virus  

(EBV)-­‐encoded  transforming  protein,  LMP-­‐1.  Immunol  Lett  2006;  104:83-­‐88.    Kis  LL,  Takahara  M,  Nagy  N,  Klein  G,  Klein  E.  IL-­‐10  can  induce  the  expression  of  EBV-­‐encoded  latent  

membrane   protein-­‐1   (LMP-­‐1)   in   the   absence   of   EBNA-­‐2   in   B   lymphocytes   and   in   Burkitt  lymphoma–and  NK  lymphoma–derived  cell  lines.  Blood  2006;  107:2928-­‐2935.  

 Kishi  Y,  Aiba  Y,  Higuchi  T,  Furukawa  K,  Tokuhisa  T,  Takemori  T,  Tsubata  T.  Augmented  antibody  

response  with  premature  germinal  center  regression  in  CD40L  transgenic  mice.  The  Journal  of  Immunology  2010;  185:  211-­‐219.  

 Klein  E,  Kis  LL,  Klein  G.  Epstein  Barr  virus  infections  in  humans:  from  harmless  to  life  endangering  

virus-­‐lymphocyte  interactions.  Oncogene  2007;  26:1297-­‐1305.    Klein   U,   Dalla-­‐Favera   R.   Germinal   centres:   role   in   B-­‐cell   physiology   and   malignancy.   Nat   Rev  

Immunology  2008;  8:22-­‐33.    Koduru  S,  Kumar  L,  Massaad  MJ,  Ramesh  N,  Le  Bras  S,  Ozcan  E,  Oyoshi  MK,  Kaku  M,  Fujiwara  Y,  

Kremer  L,  King  S,  Fuhlbrigge  R,  Rodig  S,  Sage  P,  Carman  C,  Alcaide  P,  Luscinskas  FW,  Geha  RS.  Cdc42  interacting  protein  4  (CIP4)  is  essential  for  integrin-­‐dependent  T-­‐cell  trafficking.  PNAS  2010;  107(37):16252-­‐16256.  

 Kouro   T,   Takatsu   K.   IL-­‐5-­‐   and   eosinophil-­‐mediated   inflammation:   from   discovery   to   therapy.   Int  

Immunology  2009;  21(12):1303-­‐1309.    Kovanen   PE,   Leonard   WJ.   Cytokines   and   immunodeficiency   diseases:   critical   roles   of   the   γc-­‐

dependent   cytokines   interleukins   2,   4,   7,   9,   15,   and   21,   and   their   signaling   pathways.  Immunological  Rev.  2004;  202:67-­‐83.    

 

  59  

Kracker   S,   Gardes   P,   Mazerolles   F,   Durandy   A.   Immunoglobulin   class   switch   recombination  deficiencies.  Clinical  Immunology  2010;  135:193-­‐203.  

 Kucik  DF.  Rearrangement  of  integrins  in  avidity  regulation  by  leukocytes.  Immunol  Research  2002;  

26(1-­‐3):199-­‐206.    Kurosaki  T.  B-­‐lymphocyte  biology.  Immunological  Reviews  2010;  237:  5-­‐9.    Kurosaki   T,   Shinohara  H,   Baba  Y.   B   cell   signaling   and   fate   decision.  Annu  Rev   Immunology   2010;  

28:21-­‐55.    Kurth  J,  Spieker  T,  Wustrow  J,  Strickler  GJ,  Hansmann  LM,  Rajewsky  K,  Küppers  R.  EBV-­‐infected  B  

cells  in  infectious  mononucleosis:  viral  strategies  for  spreading  in  the  B  cell  compartment  and  establishing  latency.  Immunity  2000;  13:485-­‐495.    

 Küppers  R.  Mechanisms  of  B-­‐cell  lymphoma  pathogenesis.  Nat  Rev  Cancer  2005;  5:251-­‐262.    Küppers  R,  Klein  U,  Hansmann  ML,  Rajewsky  K.  Cellular  origin  of  human  B-­‐cell  lymphomas.  N  Engl  J  

Med  1999;  11:1520-­‐1529.    Linternam  MA,  Beaton  L,  Yu  D,  Ramiscal  RR,  Srivastava  M,  Hogan  JJ,  Verma  NK,  Smyth  MJ,  Rigby  RJ,  

Vinuesa  CG.   IL-­‐21  acts  directly   on  B   cells   to   regulate  Bcl-­‐6   expression   and  germinal   center  responses.  J  Exp  Med  2010;  DOI:  10.1084/jem.20091738.  

 Linternam  MA,   Pierson  W,   Lee   SK,   Kallies   A,   Kawamoto   S,   Rayner   TF,   Srivastava  M,   Divekar  DP,  

Beaton  L,  Hogan  JJ,  Fagarasan  S,  Liston  A,  Smith  KGS,  Vinuesa  CG.  Foxp3+  follicular  regulatory  T  cells  control  the  germinal  center  response.  Nature  Medicine  2011;  17(8):975-­‐982.  

 Loder   F,   Mutschler   B,   Ray   RJ,   Paige   CJ,   Sideras   P,   Torres   R,   Lamers   MC,   Carsetti   R.   B   cell  

development    in  the  spleen  takes  place  in  discrete  steps  and  is  determined  by  the  quality  of  B  cell  receptor-­‐derived  signals.  J  Exp  Med  1999;  190(1):75-­‐89.  

 Lundgren  M,  Larsson  C,  Femino  A,  Xu  M,  Stavnezer  J,  Severinson  E.  Activation  of  the  Ig  Germ-­‐Line  

gamma   1   promoter.   Involvement   of   C/enhancer-­‐binding   protein   transcription   factor   and  their  possible   interaction  with  an  NF-­‐IL-­‐4  site.  The   Journal  of   Immunology  1994;  153:2983-­‐2995.  

 Luzuriaga  K,  Suvillan  JL.  Infectious  mononucleosis.  NEJM  2010;  362(21):1993-­‐2000.    Mackay   F,   Figget   WA,   Saulep   D,   Lepage   M,   Hibbs   ML.   B-­‐cell   stage   and   context-­‐dependent  

requirements  for  survival  signals  from  BAFF  and  the  B-­‐cell  receptor.  Immunol  Reviews  2010;  237:205-­‐225.  

 MacLennan  ICM.  Germinal  centers.  Annu  Rev  Immunol  1994;  12:117–139.    Malek  TR.  The  biology  of  Interleukin-­‐2.  Annu  Rev  Immun  2008;  26:453-­‐79.    Malet-­‐Engra  G,  Viaud  J,  Ysebaert  L,  Farce  M,  Lafouresse  F,  Laurent  G,  Gaits-­‐Iacovoni  F,  Scita  G,  Dupre  

L.  CIP4  controls  CCL19-­‐driven  cell  steering  and  chemotaxis  in  chronic  lymphocytic  leukemia.  Cancer  research  2013;  73(11):3412-­‐3424.  

 McGhee  SA,  Chatila  TA.  DOCK8  immune  deficiency  as  a  model  for  primary  cytoskeletal  dysfunction.  

Disease  Markers  2010;  29:151-­‐156.    McHeyzer-­‐Williams  M,  Okitsu  S,  Wang  N,  McHeyzer-­‐Williams  L.  Molecular  programming  of  B   cell  

memory.  Nat  Rev  Immunology  2012;  12:24-­‐34.  

 60  

 Melendez  J,  Grogg  M,  Zheng  Yi.  Signaling  role  of  Cdc42  in  regulating  mammalian  physiology.  J  Biol  

Chem  2011;  286(4):2375-­‐2381.    Meller   N,   Irani-­‐Tehrani   M,   Ratnikov   BI,   Paschal   BM,   Schwartz   MA.   The   novel   Cdc42   guanine  

nucleotide   exchange   factor,   Zizimin1,   dimerizes   via   the  Cdc42-­‐binding  CZH2  domain.   J   Biol  Chem  2004;  279(36):37470-­‐37476.  

 Meller  N,  Merlot  S,  Guda  C.  CZH  proteins:  a  new  family  of  Rho-­‐GEFs.   Journal  of  Cell  Science  2005;  

118:4937-­‐4946.    Meyer-­‐Hermann  M,  Mohr  E,  Pelletier  N,   Zhang  Y,  Victora  GD,  Toellner  K-­‐M.  A   theory  of   germinal  

center  selection,  division,  and  exit.  Cell  Reports  2012;  2:162-­‐174.    Miyamoto   Y,   Yamauchi   J.   Cellular   signaling   of   Dock   family   proteins   in   neural   function.   Cellular  

Signalling  2010;  22:175-­‐182.    Montecino-­‐Rodriguez   E,   Dorshkind   K.   B-­‐1   B   cell   development   in   the   fetus   and   adult.   Immunity  

2012;  36:13-­‐21.      Mulloy   JC,   Cancelas   JA,   Filippi  MD,   Kalfa   TA,   Guo   F,   Zheng   Y.   Rho  GTPases   in   hematopoiesis   and  

hemopaties.  Blood  2010;  115:936-­‐947.    Muppidi   JR,   Arnon   TI,   Bronevetsky   Y,   Veerapen   N,   Tanaka   M,   Besra   GS,   Cyster   JG.   Cannabinoid  

receptor  2  positions  and  retains  marginal  zone  B  cells  within  the  splenic  marginal  zone.  J  Exp  Med  2011;  208(10):1941-­‐1948.  

 Murray   PJ.   The   JAK-­‐STAT   Signaling   Pathway:   Input   and   Output   Integration.   The   Journal   of  

Immunology  2007;  178:2623–2629.    Natkunam  Y.  The  biology  of  the  germinal  center.  Hematology  2007;  210-­‐215.    Nelms  K,  Keegan  AD,  Zamorano  J,  Ryan  JJ,  Paul  WE.  The  IL-­‐4  Receptor:  Signaling  Mechanisms  and  

Biologic  Functions.  Ann  Rev  Immunol  1999;  17:701-­‐738.    Nelson   BH.   Interleukin-­‐2   signaling   and   the   maintenance   of   self-­‐tolerance.   Curr   Dir   Autoimmun.  

2002;  5:92-­‐112.    Nishikimi   A,   Meller   N,   Uekawa   N,   Isobe   K-­‐I,   Schwartz   MA,   Maruyama   M.   Zizimin2:   a   novel,  

DOCK180-­‐related   Cdc42   guanine   nucleotide   exchange   factor   expressed   predominantly   in  lymphocytes.  FEBS  Letters  2005;  579:1039-­‐1046.  

 Oracki  SA,  Walker  JA,  Hibbs  ML,  Corcoran  LM,  Tarlinton  DM.  Plasma  cell  development  and  survival.  

Immunological  Reviews  2010;  237:140-­‐159.    Pape  KA,  Taylor  JJ,  Maul  RW,  Gearhart  PJ,  Jenkins  MK.  Different  B  cell  populations  mediate  early  and  

late  memory  during  an  endogenous  immune  response.  Science  2011;  331:1203-­‐1207.    Paulie   S,   Ehlin-­‐Henriksson  B,  Mellstedt  H,  Koho  H,  Ben-­‐Aissa,   Perlmann  P.  A  p50   surface   antigen  

restricted   to   human   urinary   bladder   carcinomas   and   B   lymphocytes.   Cancer   Immunol  Immunother  1985;  20(1):23-­‐8.  

 Pereira   JP,  Kelly  LM,  Cyster   JG.  Finding   the   right  niche:  B-­‐cell  migration   in   the  early  phases  of  T-­‐

dependent  antibody  responses.  Int  Immunol  2010;  22(6):413-­‐419.    

  61  

Pereira  JP,  Kelly  LM,  Xu  Y,  Cyster  JG.  EBI2  mediates  B  cell  segregation  between  the  outer  and  centre  follicle.  Nature  2009;  460(27):1122-­‐1127.  

 Pieper   K,   Grimbacher   B,   Eibel   H.   B-­‐cell   biology   and   development.   J   Allergy   Clin   Immunol   2013;  

131:959-­‐71.    Pillai   S   Cariappa   A.   The   follicular   versus  marginal   zone   B   lymphocyte   cell   fate   decision.  Nat   Rev  

Immunology  2009;  9:767-­‐777.    Puga  I,  Cols  M,  Barra  CM,  He  B,  Cassis  L,  Gentile  M,  Comerma  L,  Chorny  A,  Shan  M,  Xu  W,  Magri  G,  

Knowles  DM,  Tam  W,  Chiu  A,  Bussel  JB,  Serrano  S,  Lorente  JA,  Bellosillo  B,  Lloreta  J,  Juanpere  N,  Alameda  F,   Baro  T,   de  Heredia   CD,   Toran  N,   Catala  A,   Torrebadell  M,   Fortuny  C,   Cusi  V,  Carreras   C,   Diaz   GA,   Blander   JM,   Farber   CM,   Silvestri   G,   Cunnigham-­‐Rundles   C,   Calvillo  M,  Dufour   C,   Notarangelo   LD,   Lougaris   V,   Plebani   A,   Casanova   JL,   Ganal   SC,   Diefenbach   A,  Arostegui   JI,   Juan   M,   Yague   J,   Mahalaoui   N,   Donadieu   J,   Chen   K,   Cerutti   A.   B   cell-­‐helper  neutrophils  stimulate  the  diversification  and  production  of   immunoglobulin  in  the  marginal  zone  of  the  spleen.  Nature  Immunology  2012;  13(2):170-­‐80.    

 Puls  A,  Eliopolos  AG,  Nobes  CD,  Bridges  T,  Young  LS,  Hall  A.  Activation  of  the  small  GTPase  Cdc42  by  

the   inflammatory   cytokines   TNFα   and   IL-­‐1,   and   by   the   Epstein-­‐Barr   virus   transforming  protein  LMP1.  J  Cell  Science  1999;  112:2983-­‐2992.  

 Purtha  WE,  Tedder  TF,  Johnson  S,  Bhattacharya  D,  Diamond  MS.  Memory  B  cells,  but  not  long-­‐lived  

plasma   cells,   posses   antigen   specificities   for   viral   escape   mutants.   J   Exp   Med   2011;  208(13):2599-­‐2606.  

 Qin   J,   Vinogradova   O,   Plow   EF.   Integrin   Bidirectional   Signaling:   A   Molecular   View.   PLoS   Biology  

2004;  2(6):0726-­‐0729.    Radbruch  A,  Muehlinghaus  G,  Luger  EO,  Inamine  A,  Smith  KGC,  Dörner  T,  Hiepe  F.  Competence  and  

competition:  the  challenge  of  becoming  a   long-­‐lived  plasma  cell.  Nat  Rev  Immunology  2006;  6:741-­‐750.  

 Reth  M.  B  cell  antigen  receptors.  Curr  Opin  Immunol  1994;  6(1):3-­‐8.    Reth  M,  Wienands  J.  Initiation  and  processing  of  signals  from  the  B  cell  antigen  receptor.  Annu  Rev  

Immun  1997;  15:453-­‐79.    Revenu  C,  Athman  R,  Robine  S,  Louvard  D.  The  co-­‐workers  of  actin  filaments:  from  cell  structures  to  

signals.  Nat  Rev  Mol  Cell  Biol  2004;  5:1-­‐12.    Richnau   N,   Aspenström   P.   RICH,   a   Rho   GTPase-­‐activating   protein   domain-­‐containing   protein  

involved  in  signaing  by  Cdc42  and  Rac1.  J  Biol  Chem  2001;  276(37):35060-­‐35070.    Rossman   KL,   Der   CJ,   Sondek   J.   GEF  means   go:turning   on   Rho   GTPases  with   guanine   nucleotide-­‐

exchange  factors.  Nat  Rev  Mol  Cell  Bio  2005;  6:167-­‐180.    Rowe  M,  Rowe  DT,  Gregory  CD,  Young  LS,  Farell  PJ,  Rupani  H,  Rickinson  AB.  Differences   in  B  cell  

growth   phenotype   reflect   novel   patterns   of   Epstein-­‐Barr   virus   latent   gene   expression   in  Burkitt's  lymphoma  cells.  The  EMBO  Journal  1987;  6(9):2743-­‐2751.      

 Roy   B,   Shukla   S,   Lyszkiewicz   M,   Krey  M,   Viegas   N,   Düber   S,  Weiss   S.   Somatic   hypermutation   in  

peritoneal  B1b  cells.  Molecular  Immunology  2009;  46:1613-­‐1619.    Sakabe   I,   Asai   A,   Iijima   J,   Maruyama   M.   Age-­‐related   guanine   nucleotide   exchange   factor,   mouse  

Zizimin2,  induces  filopodia  in  bone  marrow-­‐derived  dendritic  cells.  Immunity  &  Ageing  2012;  

 62  

9(2):1-­‐9.    Schweighoffer   E,   Vanes   L,   Nys   J,   Cantrell   D,   McCleary   S,   Smithers   N,   Tybulewicz   VLJ.   The   BAFF  

receptor   transduces   survival   signals   by   co-­‐opting   the   B   cell   receptor   signalling   pathway.  Immunity  2013;  38:475-­‐488.  

 Schwickert   TA,   Lindquist   RL,   Shakhar   G,   Livshits   G,   Skokos   D,   Kosco-­‐Vilbois   MH,   Dustin   ML,  

Nussenzweig   MC.   In   vivo   imaging   of   germinal   centres   reveals   a   dynamic   open   structure.  Nature  2007;  446:83-­‐87.  

 Schwickert   TA,   Victora   GD,   Fooksman   DR,   Kamphorst   AO,   Mugnier   MR,   Gitlin   AD,   Dustin   ML,  

Nussenzweig   MC.   A   dynamic   T   cell-­‐limited   checkpoint   regulates   affinity-­‐dependent   B   cell  entry  into  the  germinal  center.  J  Exp  Med  2011;  10.1084/jem.20102477.  

 Severinson  E,  Westerberg  L.  Regulation  of  adhesion  and  motility  in  B  lymphocytes.  Scand  J  Immunol  

2003;  58:139-­‐144.    Shapiro-­‐Shelef   M,   Calame   K.   Regulation   of   plasma-­‐cell   development.  Nat   Rev   Immunology   2005;  

5:230-­‐242.    Shlomchik  MJ,  Weisel  F.  Germinal  center  selection  and  the  development  of  memory  B  and  plasma  

cells.  Immunological  Reviews  2012;  247:52-­‐63.    Skinnider   BF,   Elia   AJ,   Gascoyne   RD,   et   al.   Signal   transducer   and   activator   of   transcription   6   is  

frequently  activated  in  Hodgkin  and  Reed-­‐Sternberg  cells  of  Hodgkin  lymphoma.  Blood  2002;  99(2):618-­‐626.    

 Smith  KGC,  Hewitson  TD,  Nossal  GJV,  Tarlinton  DM.  The  phenotype  and   fate  of   antibody-­‐forming  

cells  of  the  splenic  foci.  Eur  J  Immunol  1996;  26:444-­‐448.    Snapper   CM,   Finkelman   FD,   Paul   WE.   Differential   regulation   of   IgG1   and   IgE   synthesis   by  

interleukin  4.  J  Exp  Med  1988;  167:183-­‐196.    Spolski  R,  Leonard  WJ.  Interleukin-­‐21:  basic  biology  and  implications  for  cancer  and  autoimmunity.  

Annu  Rev  Immunol.  2008;  26:57-­‐79.    Stavnezer  J,  Guikema  JEJ,  Schrader  CE.  Mechanism  and  Regulation  of  Class  Switch  Recombination.  

Annu  Rev  Immunol  2008;  26:261–292.    Sumoza-­‐Toledo   A,   Santos-­‐Argumedo   L.   The   spreading   of   B   lymphocytes   induced   by   CD44   cross-­‐

linking  requires  actin,  tubulin,  and  vimentin  rearrangements.  J  Leukoc  Biol  2004;  75:233-­‐239.    Sverremark   E,   Fernandez   C.   Germinal   center   formation   following   immunization   with   the  

polysaccharide   dextran   B512   is   substantially   increased   by   cholera   toxin.   International  Immunology  1998;  10(7):851-­‐859.  

 Sverremark   E,   Fernandez   C.   Role   of   T   cells   and   germinal   center   formation   in   the   generation   of  

immune   responses   to   the   thymus-­‐independent   carbohydrate   Dextran   B512.  The   Journal   of  Immunology  1998;  161:4646-­‐4651.  

 Takatsu  K,   Kouro  T,  Nagai   Y.   Interleukin   5   in   the   link   between   the   innate   and   acquired   immune  

response.  Adv  Immunol  2009;  101:191-­‐236.      Takenawa   T,   Suetsugu   S.   The   WASP-­‐WAVE   protein   network:   connecting   the   membrane   to   the  

cytoskeleton.  Nat  Rev  Mol  Cell  Biol  2007;  8:37-­‐48.    

  63  

Taylor   JJ,   Pape   KA   Jenkins   MK.   A   germinal   center-­‐independent   pathway   generates   unswitched  memory  B  cells  early  in  the  primary  response.  J  Exp  Med  2012;  209(3):597-­‐606.  

 Taylor  JJ,  Jenkins  MK,  Pape  KA.  Heterogeneity  in  the  differentiation  and  function  of  memory  B  cells.  

Trends  in  Immunology  2012;  33(12):590-­‐597.    Teitel  M,  Pandolfi  PP.  Lymphoid  malignancies.  Mouse  Models  of  Human  Cancer  2004;  237-­‐259.    Thaunat  O,  Granja  AG,  Barral  P,  Filby  A,  Montaner  B,  Collinson  L,  Martinez-­‐Martin  N,  Harwood  NE,  

Bruckbauer   A,   Batista   FD.   Assymetric   segregation   of   polarized   antigen   on   B   cell   division  shapes  presentation  capacity.  Science  2012;  335:475-­‐479.  

 Thorley-­‐Lawson   DA.   Epstein-­‐Barr   virus:   exploiting   the   immune   system.  Nat   Rev   Immunol   2001;  

1:75-­‐82.    Thorley-­‐Lawson   DA.   EBV   the   prototypical   human   tumor   virus-­‐just   how   bad   is   it?   J   Allergy   Clin  

Immunol  2005;  116(2):251-­‐261.    Thrasher  AJ,  Burns  SO.  WASP:   a   key   immunological  multitasker.  Nat  Rev   Immunol   2010;  10:182-­‐

192.    Tian   L,   Nelson   DL,   Stewart   DM.   Cdc42-­‐interacting   protein   4   mediates   binding   of   the   Wiskott-­‐

Aldrich  syndrome  protein  to  microtubules.  J  Biol  Chem  2000;  275(11):7854-­‐7861.    Tybulewicz  VLJ,  Henderson  RB.  Rho   family  GTPases  and  their  regulators   in   lymphocytes.  Nat  Rev  

Immun  2009;  9:630-­‐644.    Uchida  J,  Yasui  T,  Takaoka-­‐Shichijo  Y,  Muraoka  M,  Kulwichit  W,  Raab-­‐Traub  N,  Kikutani  H.  Mimicry  

of   CD40   signals   by   Epstein-­‐Barr   virus   LMP-­‐1   in   B   lymphocyte   responses.   Science   1999,  289:300-­‐303.  

 van   Kooyk   Y,   Figdor   CG   Avidity   regulation   of   integrins:   the   driving   force   in   leukocyte   adhesion.  

Current  Opinion  in  Cell  Biology  2000;  12:542–547.    Victora  GD,  Nussenzweig  MC.  Germinal  centers.  Annu  Rev  Immunol  2012;  30:429-­‐57.    Victora   GD,   Schwickert   TA,   Fooksman   DR,   Kamphorst   AO,   Meyer-­‐Hermann   M,   Dustin   ML,  

Nussenzweig   MC.   Germinal   center   dynamics   revealed   by   multiphoton   microscopy   with   a  photoactivable  fluorescent  reporter.  Cell  2010;  143:592-­‐605.  

 Vinuesa  CG,  Cook  MC,  Ball  J,  Drew  M,  Sunners  Y,  Cascalho  M,  Wabl  M,  Klaus  GGB,  MacLennan  IMC.  

Germinal  centers  without  T  cells.  J  Exp  Med  2000;  191(3):485-­‐493.    Vinuesa   CG,   Linterman   MA,   Goodnow   CC,   Randall   KL.   T   cells   and   follicular   dendritic   cells   in  

germinal  center  B-­‐cell  formation  and  selection.  Immunological  Reviews  2010;  237:72-­‐89.    Vitetta   WS,   Ohara   J,   Myers   CD,   Layton   JE,   Krammer   PH,   Paul   WE.   Serological,   biochemical,   and  

functional  identity  of  cell-­‐stimulatory  factor  1  and  B  cell  differentiation  factor  for  IgG1.  J  Exp  Med  1985;  162:1726-­‐1731.  

 Vossenkämper   A,   Spenser   Jo.   Transitional   B   cells:   how   well   are   the   checkpoints   for   specificity  

understood?  Arch  Immunol  Ther  Exp  2011;  59:379-­‐384.    Walmsley  MJ,  Ooi  SKT,  Reynolds  LF,  Harless  Smith  S,  Ruf  S,  Mathiot  A,  Vanes  L,  Williams  DA,  Cancro  

MP,   Tybulewicz   VLJ.   Critical   roles   for   Rac1   and   Rac2   GTPases   in   B   cell   development   and  signaling.  Science  2003;  302:459-­‐462.  

 64  

 Wang  X,   Cho  B,   Suzuki  K,   Xu  Y,   Green   JA,   An   J,   Cyster   JG.   Follicular   dendritic   cells   help   establish  

follicle   identity   and   promote   B   cell   retention   in   germinal   centers.   J   Exp   Med   2011;  208(12):2497-­‐2510.  

 Westerberg  L,  Greicius  G,  Snapper  SB,  Aspenström  P,  Severinson  E.  Cdc42,  Rac1,  and  the  Wiskott-­‐

Aldrich  syndrome  protein  are  involved  in  the  cytoskeletal  regulation  of  B  lymphocytes.  Blood  2001;  98:1086-­‐1094.    

 Westerberg   L,   Larsson   M,   Hardy   SJ,   Fernandez   C,   Thrasher   AJ,   Severinson   E.   Wiskott-­‐Aldrich  

syndrome  protein  deficiency  leads  to  reduced  B-­‐cell  adhesion,  migration,  and  homing,  and  a  delayed  humoral  immune  response.  Blood  2005;  105:1144-­‐1152.    

 Williams   DA,   Zheng   Yi,   Cancelas   JA.   Rho   GTPases   and   regulation   of   hematopoietic   stem   cell  

localization.  Methods  in  Enzymology  2008;  439:365-­‐393.      Wills-­‐Karp  M,   Finkelman   FD.   Untangling   the   complex  web   of   IL-­‐4-­‐   and   IL-­‐13-­‐mediated   signaling  

pathways.  Science  Signaling  2008;  1(51):1-­‐4.    Wollenberg  I,  Agua-­‐Doce  A,  Hernandez  A,  Almeida  C,  Oliveira  VG,  Faro  J,  Graca  L.  Regulation  of  the  

germinal  center  reaction  by  Foxp3+  follicular  regulatory  T  cells.   J   Immunol  2011;  187:4553-­‐4560.  

 Wong   P,   Hattangadi   SM,   Cheng   AW,   Frampton   GM,   Young   RA,   Lodish   HF.   Gene   induction   and  

repression  during  terminal  erythropoiesis  are  mediated  by  distinct  epigenetic  changes.  Blood  2011;  118:128-­‐138.  

 Yelo   E,   Bernardo  MV,   Gimeno   L,   Alcaraz-­‐Garcia  MJ,   Majado  MJ,   Parrado   A.   Dock10,   a   novel   CZH  

protein  selectively  induced  by  interleukin-­‐4  in  human  B  lymphocytes.  Molecular  Immunology  2008;  45:3411–3418.  

 Yoshida  T,  Mei  H,  Dörner  T,  Hiepe  F,  Radbruch  A,  Fillatreau  S,  Hoyer  BF.  Memory  B  and  memory  

plasma  cells.  Immunol  Rev  2010;  237:117-­‐139.    Young  LS,  Dawson  CW,  Eliopoulos  AG.  The  expression  and  function  of  Epstein-­‐Barr  virus  encoded  

latent  genes.  Mol  Pathol  2000;  53:238-­‐247.    Young  LS,  Rickinson  AB.  Epstein-­‐Barr  virus:  40  years  on.  Nat  Rev  Cancer  2004;  4(10):757-­‐768;    Zotos  D,  Coquert  JM,  Zhang  Y,  Light  A,  D’Costa  K,  Kallies  A,  Corcoran  LM,  Godfrey  DI,  Toellner  KM,  

Smyth  MJ,  Nutt  SL,  Tarlinton  DM.   IL-­‐21  regulates  germinal   center  B  cell  differentiation  and  proliferation  through  a  B  cell-­‐intrinsic  mechanism.  J  Exp  Med.  2010;  207(2):365-­‐378.