1matthias liepe08/02/2007 erl main linac: overview, parameters cavity and hom damping matthias liepe

35
1 Matthias Liepe 08/02/2007 ERL Main Linac: ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

Upload: jared-sharp

Post on 21-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

1Matthias Liepe 08/02/2007

ERL Main Linac: ERL Main Linac: Overview, Parameters

Cavity and HOM Damping

Matthias Liepe

Page 2: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

2Matthias Liepe 08/02/2007

Outline• Overview

– Layout– Parameters and optimization

•Gradient•Temperature

• Cavity and HOM damping– Overall concept– Cavity design– HOM beam line absorber

• Test and R&D plans

Page 3: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

3Matthias Liepe 08/02/2007

LayoutLayoutParameters and OptimizationParameters and Optimization

Page 4: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

4Matthias Liepe 08/02/2007

Linac Layout• Main Linac Tunnel length: 319 m• Cryo-module: 6 SRF cavities + 1 magnet package• CW cavity operation!• Linacs are in 2+2 sections to limit cryo-load per

linac

Linac A1 = 16 modules

Linac B2 = 16 modulesLinac B1 = 16 modules

Linac A2 = 16 modules

= cold-warm transition (0.25 m)

Cryo-connection (4 m warm section)

319 m

Page 5: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

5Matthias Liepe 08/02/2007

Critical Parameters / Objectives

Parameter Cornell ERL

XFEL consequence

operation mode cwcw pulsed 250 * 2K load per cavity,

factor 3 larger total 2K load

linac energy gain

5 GeV 20 GeV

average current 0.1 A* 2 3· 10-5 A (IERL/IXFEL)2=4· 107

(PHOM,ERL/PHOM,XFEL)=400

bunch charge 77 pC 1 nC

bunch length 2 ps 80 fs - 1 ps f < 100 GHz for HOMs

emittance (norm.)

0.3 mrad· mm

1.4 mrad· mm

coupler ports

energy spread (rms)

2e-4 1.25e-4 Similar, but much higher beam current,

QL!

• Accelerate / decelerate 100 mA beam to 5 GeV• Minimize emittance growth• Low trip rate• Minimize cost (construction and operation)

Page 6: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

6Matthias Liepe 08/02/2007

Objectives and Challenges

– Operate SRF cavities CWCW •Very reliable operation essential •Avoiding excessive cryogenic loads •Minimize RF drive power

– Accelerate a high beam currenthigh beam current•Avoiding beam instability and excessive

HOM losses•Dispose high HOM power safely

– Preserve beam emittance•Small wake fields•Good cavity alignment•Small transverse kick fields from beam

pipe asymmetries (input couplers, …)

Page 7: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

7Matthias Liepe 08/02/2007

Cryomodules

• 6 SRF cavities per module (tentative)

• Modules connect directly (no cold-warm transitions)

• All cryogenic piping is inside of the modules

• Details: Eric’s talk…

Page 8: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

8Matthias Liepe 08/02/2007

ERL Main Linac: Technical Parameters I

Parameter Cornell ERL Comments / justification

Total linac length 629 m for 5 GeV; fill factor lower due to larger number of

magnets and longer, larger diameter beam tubes for HOM damping by beam

pipe absorbers

Module length 9.8 m

SRF cavities per module

6 (tentative)

Total number of cavities

384

Geometric fill factor 49 %• Note: A very optimistic 65% fill factor (with XFEL type cavity beam tubes and a different HOM damping scheme) would reduce the total SRF linac cost (modules, RF, cryo, tunnel) by 2 % (assuming same cost for HOM (assuming same cost for HOM damping and same Qdamping and same Q00).).

Page 9: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

9Matthias Liepe 08/02/2007

ERL Main Linac: Technical Parameters II

Parameter Cornell ERL Comments / justification

Cavity frequency 1.3 GHz ILC technology available

Cells per cavity 7Strong HOM damping; risk of

trapped modesActive cavity length

0.8 m

Impedance per cavity (circuit definition)

400 Ohm Iris radius optimized; trade-off between HOM losses and fundamental mode losses

Cavity Loss Factor

10 V/pC

E_peak/E_acc < 2.2 upper limit to reduce field emission

Average acc. gradient

16.2 MV/m optimization (cost, field emission)

unloaded Q0 > 21010 cost of cryogenic plant (largest contributor)

loaded Q 6.5e7 (2107 - 1108) optimized for 20 Hz peak

detuning and 10 Hz typical detuningCavity full

bandwidth20 Hz

Peak detuning < 20 Hz

Cavity offset tolerance

1 mm Similar to ILC

Cavity angle tolerance

1 mrad

Operating temp. 1.8 K Optimization

Page 10: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

10Matthias Liepe 08/02/2007

ERL Main Linac: Technical Parameters III

Parameter Cornell ERL

Comments / justification

Average HOM power per cavity

154 W Overhead for resonance excitation of modes, dipole

lossesMax. HOM power per cavity

300 W

Average 1.8K Static load/Cavity 

0.5 W

Average 1.8K Dyn. load/Cavity

10.5 W for Q0 = 2· 1010

Total 1.8 K static load 0.2 kW

Total 1.8 K dynamic load 4 kW for Q0 = 2· 1010

Total 5 K static load 2.3 kW

Total 5 K dynamic load 3.1 kW dominated by HOM losses; assumes that 5% of HOM

power goes to 5K

Total 80 K static load 5 kW

Total 80K dynamic load 60 kW dominated by HOM losses

Page 11: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

11Matthias Liepe 08/02/2007

ERL Main Linac: Technical Parameters IV

Parameter Cornell ERL

Comments / justification

Ave RF Power/Cavity 2 kW for 20 Hz peak detuning and 10 Hz typical detuningPeak RF Power/Cavity 5 kW

Number of Cavities/RF Unit

1 vector sum control difficult

Bunch to bunch energy fluctuation

2· 10-4

Stability requirements similar to XFEL, but have to achieve this at much higher

QL and with higher beam currents; see talk on LLRF

RMS field ampl. stab. uncorrelated

5· 10-4

RMS field ampl. stab. correlated

1· 10-4

RMS field phase stab. uncorrelated

0.15 deg

RMS field phase stab. correlated

0.02 deg

Page 12: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

12Matthias Liepe 08/02/2007

Optimal Operating Temperature

for 10 n residual resistance

1.8K (25% reduced AC power as compared to 2K)

Note: T<1.8K is might cause instability in the cryo-system.

temperature [K]1.4 1.6 1.8 2 2.2 2.4

0

1

2

3

4x 10

4

Cry

o A

C p

ow

er

/ ac

tive

len

gth

[a

rb. u

nit

s]

750 MHz1300 MHz1500 MHz

Bernd Petersen DESY

Page 13: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

13Matthias Liepe 08/02/2007

Cavity Operation at 1.8KERL2005: Bernd Petersen, DESY

• Lowering the temperature seems to be effective as long as Q = Q(T) follows BCS and the temperature dependent dynamic loads dominate (reasonable lower limit 1.5 K)

• HeII cooling might become unstable below 1.8 K – tests required

• Another cold compressor stage is required for each 0.2 K temperature step to lower temperatures – investment costs and system complexity increase

• In view of pressure drops, critical gas velocities, work of compression and general sizing the lower gas densities at lower temperatures seem to be balanced by the lower cooling loads and the related lower mass flows

Page 14: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

14Matthias Liepe 08/02/2007

Optimal Field Gradient I

10 15 20 250

200

400

600total cost

cost

[ar

b. U

nit

s]

field gradient [MV/m]

capitaloperationtotal

10 15 20 250

50

100

150capital cost

cost

arb

. un

its]

field gradient [MV/m]

tunnellinacRFcryo

10 15 20 250

50

10010 year operating cost

cost

[ar

b. u

nit

s]

field gradient [MV/m]

RFcryo

10 15 20 25200

300

400

500

600tunnel length

len

gth

[m

]

field gradient [MV/m]10 15 20 25

200

400

600

800number of cavities

#

field gradient [MV/m]10 15 20 25

109

1010

1011

cavity Q0

Q0

field gradient [MV/m]

10 15 20 250

5

10

15IOT peak power

po

wer

[kW

]

field gradient [MV/m]10 15 20 25

0

10

20

30cryo AC power

po

wer

[M

W]

field gradient [MV/m]10 15 20 25

0

5

10cryo power fractions

po

wer

[M

W]

field gradient [MV/m]

cav. dyn.HOMinput Cstatic

Page 15: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

15Matthias Liepe 08/02/2007

Main Linac Cost Distribution for E=16.2 MV/m

• Cryogenic plant and module costs dominate

Tunnel RF system Cryomodules Cryogenic plant0

10

20

30

40

50

rela

tive

co

st [

%]

Page 16: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

16Matthias Liepe 08/02/2007

Optimal Field Gradient II

• Q0-value has significant impact on cost (high impact parameter)

• Construction cost changes only moderately for gradients between 16 and 23 MV/m

• Operating cost / AC power increases with gradient• Select gradient at lower end: 16.2 MV/m 16.2 MV/m

10 15 20 250

100

200

300co

st [

arb

. un

its]

field gradient [MV/m]

10 15 20 2510

9

1010

1011

Q0

field gradient [MV/m]

construction10 years operation

case 1case 2

Less risk for same cost!Less risk for same cost!

Page 17: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

17Matthias Liepe 08/02/2007

Field EmissionGamma radiation measured at DESY/FLASH from cavity field

emission:

• Exponential growth in FE with gradient

• Serious problem in cw cavity operationcw cavity operation

• Low trip rate Low trip rate essential for light essential for light source!source!

• Favors lower gradients

• High reliability: don’t push gradient and RF power to limit

16.2 MV/m16.2 MV/mFor ERL : 10Gy/h * 200 (for cw)= 2 mGy/h = 0.2 rad/h2 mGy/h = 0.2 rad/h

10 years of operation: 100 Gy = 10,000 rad100 Gy = 10,000 rad (at 5000h/year)

Page 18: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

18Matthias Liepe 08/02/2007

Cavity Performance Goals

– For gradient overhead: Require average cavity performance in linac: 18 MV/m at Q = 218 MV/m at Q = 2101010 10 with with 2 2 MV/m spreadMV/m spread

Min. cavity performance in linac: 16 MV/m at Q = 21010

– Average operating gradient: 16.2 MV/m16.2 MV/m 384 cavities!

– This gives This gives 12.5 % overhead12.5 % overhead for initial performance for initial performance risks and failures (tuner, IOT, power supply…) risks and failures (tuner, IOT, power supply…)

– Individual cavities can operate at gradients up to 20 MV/m

• Cryogenic system can support 20 MV/m at Q = 11010 for individual cavities

• RF power sufficient for 20 MV/m with <20 Hz peak detuning

Page 19: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

19Matthias Liepe 08/02/2007

Cavity and HOM dampingCavity and HOM damping

Page 20: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

20Matthias Liepe 08/02/2007

Overall Concept

• 7-cell, 1.3 GHz SRF cavity

• HOM damping via beam line absorbers– Relative simple and quite effective concept

– Avoids kicks from beam line asymmetries

– Deals with high HOM power

– Works well at high frequencies

– Supports high Q0 operation

• Fill factor is not a strong cost driver

1.8K 80K80K1.8K 1.8K

Page 21: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

21Matthias Liepe 08/02/2007

Design Approach• Center cell shape optimized for low cryo-

losses

• Optimize mechanical design for low microphonics

• Input coupler with opposite stub to minimize transverse kick fields

• End cells and tubes optimized for good HOM power extraction

• All higher-order monopole, and dipole modes propagate in beam tube

• Cold beamline absorbers between cavities

Page 22: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

22Matthias Liepe 08/02/2007

Cavity Cell Shape and R/Q*G

Comparison of 1-Cell Geometries

25

35

45

55

65

75

85

95

105

115

0 50 100

Z (mm)

R (

mm

)

30mm_10%

30mm_20%

35mm_10%

35mm_20%

39mm_10%

39mm_20%

43mm_10%

43mm_20%

Baseline

1.3 GHz center-cell:

•Cells optimized for fixed side wall angle (82 deg) and electric peak field (E/Eacc=2.2)

•Selected iris radius = 35 mm

3 3.5 4 4.5-12

-10

-8

-6

iris radius [cm]lo

ng

. lo

ss f

acto

r [

V/p

C] 3 3.5 4 4.5

1.2

1.4

1.6

1.8x 10

4

iris radius [cm]

R/Q

*G [

2

]

3 3.5 4 4.511.5

12

12.5

13co

olin

g p

ow

er [

kW]

iris radius [cm]

Total cooling power (fund. mode + HOM at 80K)16 MV/m, 2*100 mA

7-cell cavity

For single cell

TTF shape

Page 23: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

23Matthias Liepe 08/02/2007

Number of Cells per Cavity

• Risk of trapped modes increases with number of cells

5 6 7 8 990

95

100

105

110

115

cells per cavityrela

tive

co

nst

ruct

ion

co

st [

%]

F. Marhauser at al. PAC 1999

1500 2000 2500 3000 3500 4000

102

104

106

Q

frequency [MHz]

7 cell8 cell9 cell

Monopoles

Page 24: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

24Matthias Liepe 08/02/2007

Coupler Kick

Symmetrizing stub helps to reduce transverse kick fields and resulting emittance growth.

Page 25: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

25Matthias Liepe 08/02/2007

Multipacting

•Multipacting happens 3.5-13 MV/m.

•Location is the bend of the enlarged beam tube.

•Can be processed through and can re-appear.

• If required: can modify bend region to suppress multipacting

From ERL injector cavity:

Page 26: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

26Matthias Liepe 08/02/2007

Mechanical Design for low Microphonics

• Cavity design:

– High mechanical vibration frequencies

– Low sensitivity to He-pressure changes 1 bar pressure

Courtesy E. Zaplatin

mode 1

mode 3

Stif. ring 0.7*req 0.4*req 0.65*req no ring

mode freq / Hz freq / Hz freq / Hz freq / Hz

1 131.03 85.34 115.15 54.62

2 131.04 85.33 115.15 54.62

3 315.52 191.3 268.39 133.34

4 315.52 191.3 268.39 133.34

Page 27: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

27Matthias Liepe 08/02/2007

7-Cell Cavity End-Cell Design

• End cell shape has significant impact (example HOM):

• Will use fine-tuning of end cell to– Increase damping of strongest dipole mode(s)– Avoid strong monopole modes at beam harmonics

(2600 MHz, 5200 MHz, …)

changed end-cell shape

Page 28: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

28Matthias Liepe 08/02/2007

Main Linac HOM Loads• HOM load based on injector HOM load design

• But: Higher current (factor 2) and longer cavities significant more power to be absorbed (150 W vs. 30 W)

• Resonant HOM excitation of high frequency modes can result in even greater HOM power in a few cavities

Design need to support > 200 W

• Future work:– Design optimization (3D models)

– Material studies

– Improved and simplified design for higher power handling and reduced fabrication cost (reduced number of absorber tiles, only one absorbing material …)

Page 29: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

29Matthias Liepe 08/02/2007

80K Cornell Beamline Absorber

Flange to Cavity

Flange to Cavity

RF Absorbing

Tiles

Cooling Channel

(GHe)Shielded Bellow

•Baseline design finished

•Three RF absorbing materials selected to cover full frequency range

•Full beam test in Full beam test in injector module in injector module in 2008 2008

Page 30: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

30Matthias Liepe 08/02/2007

Cornell Beamline Absorber II

• ANSYS simulations confirm 200 W power capability

• Need to determine optimal temperature of HOM loads (probably 100 K; balance of static losses vs. better cryogenic efficiency)

Page 31: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

31Matthias Liepe 08/02/2007

HOM Damping Simulations

• CLANS calculations (started 3D Microwave Studio models)

• Modes are sufficiently damped for 100 mA operation

1000 1500 2000 2500 3000 3500 400010-2

100

102

104

106

frequency [MHz]

R/Q

*Q/2

f [O

hm

/cm

2 /G

Hz]

2400 2600 2800

102

104

106

Q

frequency [MHz]

MonopolesDipoles

5000 5200 5400

102

104

106

Q

frequency [MHz]

Factor 5 below BBU limit

7-cell TTF shape

7-cell low loss

Page 32: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

32Matthias Liepe 08/02/2007

Test and R&D plansTest and R&D plans

Page 33: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

33Matthias Liepe 08/02/2007

Cavity R&D Items– Finalize design

•end cells•number of cells per cavity•study multipacting in more detail

– Polarized cavity to further suppress BBU?

– Study QStudy Q00(E), microphonics level, FE, (E), microphonics level, FE, radiation and trip rates to finalize radiation and trip rates to finalize parametersparameters•Results from injector cryomodule•Daresbury / Cornell / LBNL Test Module•Main linac test cryomodule

– R&D program for high Q0 at medium fields

Page 34: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

34Matthias Liepe 08/02/2007

Modified

Daresbury / Cornell / LBNL Test Module

•Collaborative effort to study high-Qhigh-Q00 cavity cavity operation operation

•Trip rate and QTrip rate and Q00 vs. gradient (long term operation vs. gradient (long term operation planned)planned)

•Microphonics levels and high QMicrophonics levels and high QLL operation operation

•Beam operation (ERLP@Daresbury)Beam operation (ERLP@Daresbury)

•Modified Stanford/Rossendorf cryomodule

Two 1.3 GHz 7 cell cavities

Cornell-style cold HOM load

Cornell-style input coupler (from ERL injector)

Page 35: 1Matthias Liepe08/02/2007 ERL Main Linac: Overview, Parameters Cavity and HOM Damping Matthias Liepe

35Matthias Liepe 08/02/2007

HOM Load R&D Items

– Optimize and simplify HOM beam line load design

– Optimize operating temperature of HOM loads

– Explore waveguide HOM damping scheme

– Verify HOM damping for main linac cavity with beam