(1987)bartlett, john t. _process simulation and optimization using metsim

Upload: luis-la-torre

Post on 03-Jun-2018

336 views

Category:

Documents


2 download

TRANSCRIPT

  • 8/11/2019 (1987)Bartlett, John T. _Process Simulation and Optimization Using Metsim

    1/12

    hapter 3

    PROCESS SIMULATION AND OPTIMIZATION USING METSIM

    M r

    J o hn T. Ba r t l e t t

    ABSTRACT

    Pincock , Al len Hol t , Inc .

    Manager, METSIM A pp li ca ti on s

    Tucson, Arizona

    With more s t r in ge nt envi ron menta l and economic

    c o n s t r a i n t s b e i ng p l a c e d o n m i ni ng o p e r a t i o n s ,

    t

    h a s b ecome ne c e ss a r y t o o p t im iz e e a c h p r o c e s s t o

    minimize energy and raw mater ia l consumption and

    r e d u ce w a st e d i s c h ar g e . I n mo s t c a s e s , d e t a i l e d

    p r o c e s s a n a l y s i s

    s

    r eq u ir ed t o d e t e c t

    i n e f f i c i e n c i e s a nd p ro v id e a l t e r n a t i v e s o l u t i o n s

    f o r pr oc es s improvement. HETSIM, a micro comp uter

    process mode ling and s i mu la t ion sys tem,

    s

    r o u t i n e l y u s ed t o a n a ly z e communi t i o n ,

    h y d r o me ta l l u r g i c a l , p y r o m e ta l l u r g i c a l , a n d c o a l

    prep a ra t i on processes . The pro cess mode l ing

    tech niq ues used in METSIM, in cl ud in g pr oce ss

    c o n t r o l s i m u l at i o n , w i l l b e p r e s e n t e d a nd

    i l l u s t r a t e d u s i n g a c t u a l p l a n t p r o ce s se s .

    INTRODUCTION

    T h e me ta l l u r g i c a l e n g in e e r

    s

    r e qu i re d t o

    e v a lu a t e , d e s ig n, a nd o p e r a t e c o mp lex min e r a l

    p r o c e s s i n g p l a n t s . s o r e g r a d e s d i m i n i s h ,

    e n v i ro n me n tal c o n t r o l s a r e t i g h t e n e d , a nd

    e co n omics ch an g e a t a n a c c e l e r a t i n g p a c e , t h e

    e n g in e e r

    s

    r e q u i r e d t o make f a s t e r a n d more

    acc ura te dec is io ns . One me thod t o improve pro cess

    e v a lu a t i o n t e c h n iq u e s s t o u t i l i z e t h e com pu ter

    f o r p r o c e s s s imu la t io n .

    Process modeling usi ng comp uters ha s become

    more common p lac e wi t h t he a v a i la b i l i t y o f lower

    co s t computer ha rdware , an in c r ea se i n t he number

    o f c o mpu te r t r a i n e d e n g in e e r s , a n d t h e a d v e n t o f

    pro cess s imul a t ion sys tems. Ea r ly compute r models

    w e re d e ve lo pe d f o r s p e c i f i c p r o c e s s e s . T h e s e

    mode ls were expens ive because t hey o f t en r eq ui re d

    f o r m u la t i on a nd t e s t i n g o f new c a l c u l a t i o n

    techniq ues ; were programmed i n t ed i ou s computer

    languages ; were run on non- in t e ra c t i ve ma in f r ame

    compute rs ; and were c re a te d by engi nee r s wi th

    l i t t l e p r i o r e xp er ie nc e. To day , t h e r e a r e pr o c es s

    s imu l a t i o n pa ck ag es a v a i l a b l e wh ic h r e d u c e t h e

    t ime and co s t of c re a t in g a p roce ss model . Some

    o f t h e s e s ys te m s a r e p r o p r i e t a r y t o l a r g e m i ni ng

    c om pa ni es , b u t o t h e r s a r e a v a i l a b l e f o r g e n e r a l

    u s e. No a t t e m p t

    s

    made i n t h i s p a p e r t o c ompa re

    a l l of t h e a v a i l a b l e p r o gr ams o r t h e many

    v a r i a t i o n s i n s i m u l a t i o n t e c h ni q u e s . T h i s p a p e r

    w i l l d e s c ri b e t h e f e a t u r es t h a t a r e av a i l a b l e i n

    th e METSIM proce ss si mu la ti on package.

    PROCESS SIMULATION

    P r o c e s s s imu la t i o n

    s

    a n a n a l y t i c a l t ec h n i q ue

    w h er eb y ma th e ma ti c a l e q u a t i o n s a r e us e d t o

    d e s c r i b e t h e m ec ha ni sm s o f a c t u a l p r o c e s s i n g

    o p e r a t i o n s . When t h e s e e q u a t i o n s a r e r i g o r o u s ly

    s o lv e d , t h e y

    w i l l

    a c c u r a t e l y p r e d i c t t h e o ut co me

    of th e process . Some of t he a r ea s i n which

    p r o c e s s s i m u l a t i o n s p a r t i c u l a r l y u s e f ul a r e :

    A n a ly s is o f p i l o t p l a n t d a t a

    F e a s i b i l i ty s t u d i e s

    D e t a i l e d p r o c e s s d e s i g n

    O p er a to r t r a i n i n g

    P r o c e s s o p t i m i z a t i o n

    C o n t r o l s y st em a n a l y s i s

    E n e r g y a u d i t s

    One advantage of p roc ess s im ula t ion

    s

    t h a t

    t

    s

    l e s s c o s t l y i n t im e a nd money t o s i m u l a t e a

    p ro po se d p r o c e s s t h a n t o o p e r a t e a p i l o t p l a n t . A

    second advantage s t h a t h a za r do u s a nd h i g h c o s t

    p r o c e s s e s c a n b e e x p e rime n ted w i th a t a lo w e r

    r i s k t o t h e e n v ir o nm e n t a nd fi n a n c e s . S i d e

    b e n e f i t s a r e t h a t t h e mo del r e q u i r e s t h e e n g i n e e r

    t o d e v e lo p a d e t a i l e d u n d e rs t a n di n g of t h e

    p r o c e s s , a n d

    t

    p r o v id e s a s t r u c t u r e d f o rm a t f o r

    e v a l u a t i n g p r oc e ss c r i t e r i a .

    The complex i ty of p roc ess mode ls s d e p e n d e n t

    upon th e purpose of t he compute r s im ula t ion and

    t h e i n g e n u i t y o f t h e p r o c e s s e ng i n e er . T h e r e a r e

    t h r e e l e v e l s o f c om p ut er m o de li ng a s s o c i a t e d w i t h

    p r o c e s s s i m u l a t i o n .

    1

    M ass a n d e n e r g y b a l a n c e p r og ra ms c a l c u l a t e

    s t e a d y - s t a t e b a l a n c e s b a s e d u po n u s e r -

    s p e c i f i e d p e r fo rm a nc e a t e ac h s t e p o f t h e

    p r o c e s s a n d d o n o t r e s p o nd t o ch a ng e s i n

    e q uip men t o r o p e r a t i n g p a r a me te r s .

    2 ) S t e a d y - s t a t e s i m u l a t i o n p ro gr am s u t i l i z e

    m od el s d ev e lo p ed f o r s p e c i f i c p i e c e s o f

    e q uip men t a nd g e n e r a l l y r e s p o n d t o c h a n ge s

    i n o p e r a t i n g p a r a m et e r s.

    3 ) N o n - s t ea d y - st a t e o r d yn amic s im u la t o r s

  • 8/11/2019 (1987)Bartlett, John T. _Process Simulation and Optimization Using Metsim

    2/12

    MINER L RESOURCE M N GEMENT

    Y

    PERSON L COMPUTER

    i n c o r p o r a t e t i m e d e p en d e n t p ar a m e t e r s

    w hich f a c i l i t a t e t h e si m u l a t io n o f p r o c e s s

    r e sp o n s e t o c o n t r o l s , f e e d s to c k

    v a r i a t i o n s , a nd o t h e r p e r t u r b a t i o n s .

    F or a p r o c e s s s i m u l a t i o n s y s te m t o b e

    s a t i s f a c t o r y , t s h o ul d b e a b l e t o a n a l y z e s i m p l e

    o r c o mp lex f l o w s h e e t s s o t h a t t c a n b e u se d e a r l y

    i n p r o c e s s d e ve lo p m en t t o m od el a s k e l e t o n

    f l o w s h e e t an d c a n th e n gro w a s p r o c e s s d e t a i l s a r e

    de ve l ope d .

    t

    m ust be c a pa b l e o f a n a l yz i n g

    p r o c e s s e s w i t h a l a r g e n um ber o f u n i t o p e r a t i o n s

    a n d fl o w st r e a m s an d b e a b l e t o t r a c k a nd r e p o r t

    as sa ys on many compounds and elem ents . pr oc es s

    s i m u l a t i o n s y s te m m u st r e a d i l y a c c e p t c u s t om i z ed

    m od ul es t h a t p r e d i c t p r o c e s s b e h a v i o r b a s e d o n

    t e s t d a t a . One t e c h n i q u e i s t o u t i l i z e s te p wi se

    m u l t i p le r e g r e s s i o n o f t e s t d a t a t o g e n e r a te

    p r e d i c t i v e e q u a t io n s . A no th er f e a t u r e t h a t i s

    e x tr e m e ly u s e f u l f o r d e t a i l e d p r o c e s s a n a l y s i s

    i s

    t h e a b i l i t y t o i n c o r p o r a t e d yn am ic al ly a c c u r at e

    p r oc es s c o n t r o ls t o a i d i n i d e n t i f y in g d i f f i c u l t

    o r u n s ta b le c o n t r o l s t r a t e g i e s . I n v a l i d c o n t r o l

    s ch em e s a r e o f t e n a c a u s e o f p r o c e s s m a l f u n c t i o n .

    When a pp l y i n g p r oc e s s s i m u l a t i o n t e c hn i q ue s

    c e r t a i n d i f f i c u l t i e s and p i t f a l l s n eed t o b e

    r e c o g n i z ed a n d e f f o r t s m ade t o u n d e r s t a n d a n d

    a v o i d them . D e t er m i ni n g t h e p r o p e r c o n s t r a i n t s o n

    t h e sy st em r e q u i r e s a c e r t a i n am ou nt o f f e e l f o r

    t h e f l ow s he e t i n que s t i on . When de ve l op i n g a

    p r o c e s s mo del, d a t a e n t r y e r r o r s an d l o g i c e r r o r s

    a r e o f t e n en c o u nt e re d . I f t h e p r o c e s s s i m u l a ti o n

    p ro g ra m r e s p on d s i n a m an ner s i m i l a r t o a n a c t u a l

    p l a n t , o p e r a ti n g e x p er i en c e c an g i v e i n s i g h t i n t o

    pro ces s mode l ing problems . When s e t t i n g up a

    m ode l, a pp r op r i a t e c hem i c al and phy s i c a l p r oc e s s

    m e chan is ms s hou l d be s e l e c t e d t o m i n i m iz e

    c om pl e x i t y w h i l e s t i l l p r o v i d i n g t h e r e q u i r e d

    a c c u r a c y i n t h e mo de l o u t p u t . T he p e r s o n c r e a t i n g

    a s i m u l a ti o n m od el s h o u ld c o n t i n u a l l y e v a l u a t e t h e

    u l t i m a t e a c c u r a c y a nd a p p l i c a b i l i t y o f t h e m o de l

    i n r e l a t i o n s h i p t o t h e ti m e, m oney, a nd e f f o r t

    expended. The s i m pl es t mechanisms may b e used

    w h i l e d e b u g gi n g t h e o v e r a l l p r o c e s s f l o w s h e e t a n d

    t h e n r e f i n e d u n t i l t h e d e s i r e d a c c u ra c y a nd

    r e s pons e i s a c h i e ve d . T he u s e r m ust a l s o be aw a r e

    t h a t c e r t a i n n o n - l i n e a r e q u a t i o n c o m b i n a t io n s may

    h av e m u l t i p l e v a l i d m a t h em a ti ca l s o l u t i o n s b u t

    o n l y o n e r e l e v a n t p r o c e s s s o l u t i o n . A g ai n,

    p r a c t i c a l ex p e r i e n c e

    i s

    c a l l e d u po n t o p r o v id e

    gu i da nc e f o r de ve l opm en t o f t h e m odel .

    P r o c e s s s i m u l a t i o n

    i s

    n o t a r e p l ac e m e n t f o r ,

    b u t a s u pp l em e n t t o , s ou nd e n g i n e e r i n g p r a c t i c e s

    and judgement. The program us er sho uld be a

    p r o c e s s e n g i n e e r a n d h a ve c o m p l e te c o n t r o l o v e r

    a n d r e s p o n s i b i l i t y f o r t h e a c cu r a cy a nd

    a p p l i c a b i l i t y of t h e c a l c u l a t i o n s . P r o ce s s

    s i m u l a t i o n i s

    no e x ce p ti o n t o t h e t r i t e

    exp res s ion : Garbage In Garbage Out.

    METSIM

    METSIM o r i g i na t e d a s a m e t a l l u r g i c a l p r oc e s s

    e f f i c i e n c y o f t h e d e c i s i o n making p r o c e s s t h a t

    t

    w as e xpanded t o i n c l ude de t a i l e d h e a t ba l a nc e s ,

    c he m i c a l r e a c t i o ns , un i t ope r a t i on m odul es f o r

    p r o c e s s s i m u l a t i o n , p r o c es s c o n t r o l s i m u l a t io n s ,

    and equipment s i z in g ca pa bi l i t e s . METSIM i s th e

    th i r d such program developed by th e author and

    i nc o r p o r a t e s many o f t he l a t e s t model ing

    t e c hn i que s a va i l a b l e . C u r r e n t de ve lopm en t

    i s

    d i r e c t e d t owa r d t h e a r e a s o f e nha nc ed g r a ph i c s ,

    c a p i t a l a nd ope r a t i ng c os t e s ti m a t i on , a nd dynam ic

    p r o c e s s s i m u l a t i o n .

    METSIM

    i s

    a h i gh l y s t r uc t u r e d a nd m odu l ar iz e d

    s ys t e m o f s ub r ou t i n e s w r i t t e n i n APL.

    t i s

    d e s i g n e d t o f u l l y u t i l i z e t h e work s p ac e

    c h a r a c t e r i s t i c s , i n t e r a c t i v e c a p a b i l i ti e s , a nd

    fu nc ti o na l power of APL. The combin ation of

    METSIM and APL ha s ge ner ate d a si mu la tio n language

    wi th t h e power of th e l a rg es t compute rs whi le only

    m ode r a t e l y more c om pl i c a t e d t ha n t he e l e c t r on i c

    c a l c u l a t o r . T he ne ed f o r c om pli c at e d j ob c on t r o l

    l an g ua g e, f i l e ha n d li n g , t e x t e d i t i n g , a nd

    debugging programs h as been e l im ina ted .

    U t i l i z i n g

    t h e alphan ume ric ed i t in g power of APL and a

    st an da rd iz ed nom encla ture system , METSIM can

    e a s i l y b e a mend ed t o i n c o r p o r a te s p e c i a l i z e d

    c a l c u l a t i o ns p r oc e du r e s a s dem anded by t h e u s e r.

    The s uc ce ss f u l ap pl i ca t io n of th e METSIM

    sys tem of programs invo lves more than s imply

    e n t e r i n g a

    f i x e d num be r o f d i g i t s on s ta nda r d i z e d

    i n p u t d a t a s h e e t s.

    Due t o t h e w id e v a r i a t i o n i n

    m i n e r a l p r o c e s s i n g t e ch n i qu e s a nd a v a i l a b l e d a t a ,

    th e deve lopment of pro cess mode ls i s an much of an

    a r t a s t i s a s c i e nc e . T he u s e r m us t be f a m i l i a r

    w i t h p r oc e s s e ng i ne e r i n g ma ss a nd e ner gy ba l a nc e

    c a l c u l a t i o n s . F a m i l i a r i t y w i t h m a th e ma ti ca l

    m ode li ng , num e r i c a l a na l y s i s , a nd p r oc e s s c on t r o l

    t h e o r y i s mos t he lp fu l when a t t em pt ing t o model

    ext re mely complex processes . Sources fo r

    a d d i t i on a l i n f o r m a t i on on c om pu te r m ode li ng and

    n u m e ri c al a n a l y s i s a r e g iv e n i n t h e r e f er e n ce l i s t

    a t t h e e nd of t h i s a r t i c l e .

    P ro gr am S t r u c t u r e

    The comple te s t r u ct ur e of METSIM revo lve s

    a r o un d i n f o r m a t i o n c o n t a in e d i n s t re a m d a t a a r r a y s

    a nd v e c t o r s . D a t a r e l a t i v e t o f lo w st re a ms a r e

    c o n ta i ne d i n t h e s e v a r i a b le s a nd a l l u n i t

    o p e r a t i o n m o d u le s , o u t p u t f u n c t i o n s , a nd v a l ue

    f un c t i o ns ope r a t e on t he s e va r i a b l e s . A r ra y STR

    c on t a i n s s t r e a m m as s f l ow r a t e s c o r r e s pond ing t o

    each component . Array SSA con ta in s so l i d

    component s c re en s i z e ana lys i s . Array WAS

    c o n t a i n s t h e w a s h a b i li t y d a t a f o r e ac h s tr e am i n a

    g r a v i t y s e p a r a t i on / c o a l p r e p a r a t i o n p r oc e s s . WAS

    i s a f o u r - d i m e n si o n a l a r r a y c o n t a i n i n g d a t a s t o r e d

    b y s t re a m s , s c r e e n s i z e , s p e c i f i c g r a v i t y , a nd

    c o a l com pon ent. Ve ct or s TIM, TEM, SPR, an d SHC

    c o n t a i n s t r e a m o p e r a t i n g t i m e s , t e m p er a tu r e s,

    p r e s s u r e s , a nd e n t h a l p y f l o w r at e s.

    l l

    program, sub rou t in e , and con s ta nt names

    used by METSIM have been inco rpo rat ed i n t o a

    s i m u l a t i on p r og r am w r i t t e n t o pe r f o r m m as s s t a n da r d i z e d nom e ncl a tu r e s ys te m . Fo r e xa m pl e,

    b a l a n c e s a r ou n d t h e m aj or u n i t o p e r a t i o n s o f t h e f i r s t c h a r a c t e r i n t h e f u n c t i o n name d e no te s

    v a r i o u s p r o c e s s f l o w s h e e ts . A p p l i c a t i o n o f t h e t h e f o l l o w in g :

    p ro gr am p r o ve d s o s u c c e s s f u l i n i n c r e a s i n g t h e

  • 8/11/2019 (1987)Bartlett, John T. _Process Simulation and Optimization Using Metsim

    3/12

    PROCESS SIMUL TION ND OPTIMIZ TION USING METSIM

    C Calcu l a t ion p rograms

    D Display programs

    F Fu nc t io n s u b r o u t i n e s

    G Graphics proqrams

    H Help screens

    I

    - Input programs

    M - Menus

    0

    -

    Output proqrams

    P

    -

    Pr i n t e r co n t r o l p r o q r am s

    T Telecommunication programs

    U - Uti l i ty p rograms

    V Value funct ions

    METSIM i s menu dr iven and f ea tu re s on- l i ne

    h e l p s cr e en s t o a s s i s t t h e u s e r i n t h e o p e r a t i on

    of t he system. Mult ip le menu i tem s may be

    s e l e c t ed by en t e r i n g t h e co r r e s p o n d i n g nu mb er s o r

    proqram names. For example, th e main ro o t menu

    i s

    CONF - Machine Configurat ion Program

    HELP - On Line Hel p Menu.

    MINP - Input Data Menu

    MDIS - Input Data Display Menu

    MCAL

    -

    Ca lc ula t io n Menu

    MSTR

    -

    Stream Data Display Menu

    MOUT - Output Results Menu

    FILE

    -

    Stor e o r Re t r ie ve Model Program

    Once users become e xpe r ien ced wi th a proqram,

    menus of te n become more of a h indr anc e tha n a h el p

    t o e f f i c i e n t problem solv ing. METSIM ca n be run

    wi thou t the menus by s imply en te r i ng t he

    ap pro pr i ate commands. The us er may re e nt e r t h e

    menu sy s tem a t any l ev e l s i m p l y by en t e r i n g t h e

    submenu name. These and o th e r commands fo ll ow th e

    s tandard ized nomencla tu re which

    i s

    s e l f t a u g h t v i a

    t h e menu system.

    Value Functions

    One fea tu re of METSIM t h a t enha nce s us e r

    i n t e r a c t i o n

    i s

    t h e v a l u e f u n c t i o n . V a l ue

    f u n ct i o n s a r e used t o r e c a l l o r e v a l u a t e s t re a m

    d a t a i n a manner a n a lo g ou s t o i n s t r u m e n t a t i o n

    b e i n g u s ed t o m on i to r an o p e r a t i n g p r o ces s .

    T h ese f u n c t i o n s a r e u s ed i n t h r e e w ay s:

    Feedback and f eedf o rward c on t r o l l er s use

    v a lu e f u n c t i on s t o p ro v id e c u r r e n t d a t a

    f o r p ro c e s s c o n t r o l by s i m u l a t i n g i n p u t

    s i g n a l s fro m p r o ces s i n s t r u m en t a t i o n .

    2 ) V al ue f u n c t i o n s a r e u s ed d u r i n q d a t a

    e n t r y a n d p ro gr am i n t e r r u p t s t o p r o v i d e

    c u r r e n t s t a t u s f o r model t e s t i n g s i m i l a r

    t o a c o n t r o l room o p e r a t o r c h e c k in g p a n e l

    i n st ru m e nt s d u r i n q s t a r t u p o r u p s e ts .

    3 )

    D a ta d i s p l ay an d o u t p u t r ep o r t p r o qr ams

    u se v a l u e f un c t i on s t o c o n v e r t s t o r e d

    s t re a m d a t a t o t h e d e s i r e d o u t p u t f or ma t.

    Model Building

    The developm ent of a METSIM ba se d com put er

    m od el f o r a g i v e n p r o c e s s c a n t a k e a n y o f s e v e r a l

    forms. The model can range f rom a s impl e blac k

    box t o a complex de ta i l ed dynamic model o f th e

    p r o c es s . The b l a c k b ox m ode l r e v e a l s l i t t l e

    a b o u t t h e i n t e r n a l s o f t h e p ro c e s s , b u t c a n b e

    u s e d t o e s t i m a t e t h e e f f e c t of m a j o r p ar a m e t er s on

    pro ce ss behavio r . The dynamic model can be used

    t o d e s i q n a nd e v a l u a t e p r o c e s s o p e r a t i o n a nd

    c o n t r o l s t r a t e g i e s f o r p r o c e ss o p ti m i z a ti o n .

    E x p e ri en ce h as sh ow n t h a t t h e m o st u s e f u l and

    co s t e f f e c t i v e m et ho d o f p r o c es s m od e li n g i s t o

    s t a r t w i t h

    d ev e lo pm e nt o f t h e m od el e a r l y i n t h e

    f e a s i b i l i t y s t a g e a nd t o m od ify an d r e f i n e t h e

    m od el a s more d e t a i l ed d a t a a r e m ade av a i l a b l e and

    more s p e c i f i c r e s u l t s a r e r e q u ir e d . I n t h e b la c k

    boxn approach , fo r example , th e leac h ing

    e f f i c i e n c y o f a u n i t o p e r a t i on would b e f ix e d a t

    an av e r ag e v a l u e b ased up on p r e l i m i n a r y t e s t

    r e s u l t s . The d e t a i l e d m ode l w ou ld c a l c u l a t e t h e

    l e a c h i n g e f f i c i e n c y a s a f u n c t i o n o f t e m p e ra t u re

    a nd r e s i d e n c e ti m e. C o n t r o l s i n t h e b l a c k box

    approach would be min imal o r nonex i s ten t .

    A

    d e t a i l e d m od el wo ul d i n c o r p o r a t e r e e v a n t p r o c e s s

    c o n t r o l s a n t i c i p a t e d f o r t h e o p e r a ti n g p l a n t .

    Th e no r ma l s eq u ence f o r p r o ces s s i m u l a t i o n

    m od el co n s t r u c t i o n f o l l o w s t h e o u t l i n e be lo w.

    Due t o t h e w ide v a r i a t i o n i n m e t a l l u r g i c a l a n d

    chemic al p roc esse s , purposes of models , and

    a v a i l a b i l i t y o f d a t a , i n d i v i d u a l j ud ge me nt m u st b e

    made a s t o t h e a m ou nt o f t i m e a nd d e t a i l g i v e n t o

    e a c h s t e p .

    1 ) D ev el o p a co m p l e te f l o w s h ee t wh ich

    i n c l u d e s a l l u n i t o p e r a t i o n s a nd s t r e am s

    t o b e i n c o rp o r a te d i n t h e s i m u l a t io n .

    2) Compile a

    l i s t

    of components base d on

    f e e d m a t e r i a l s a n d c h e m i c al r e a c t i o n s .

    3 ) S e l e c t u n i t o p e r a t i o n m od ul es f o r e a c h

    a c t u a l u n i t o p e r a t io n a n d d e te r mi n e

    eq ui p m en t p a r am e t e r s f o r each .

    4 ) D e t er m in e f l o w r a t e s an d co m p o s i t i o n s f o r

    a l l f e e d s t re a m s a l o n g w i t h e s t i m a t e s f o r

    c r i t i c a l r e c y cl e s tr ea ms .

    5 ) Add p r o ces s co n t r o l s and o p e r a t i n g an d

    d e s i g n c o n s t r a i n t s .

    U l t i m a t e l y , t h e d e t a i l ed m od el w ou ld b e

    r e f i n e d i n t o o n e encom p as si ng m as s an d en e r g y

    b a la n ce s a s s oc i a t ed w it h a l l u n i t p ro c es s es ; a l l

    c h e m i c al r e a c t i o n s , p h as e c he m i s tr y , a nd p h y s i c a l

    ch an g es an d s ep a r a t i o n s made by t h e o p e r a t i n g

    p l a n t ; a l l m in or p r o c e s s s t r e am s s u c h a s p ump

    g l a n d w a te r , v e n t o f f ga s e s , a n d r e a g e n t s ; a n d a l l

    h e a t l o s s e s , p r o ce s s c o n t r o l s , a nd o t h e r f a c t o r s

    w h ich a f f e c t p r o ces s p e rf o rm an ce i n an y way.

    I n p u t D a t a

    The r e q u i r e d i n p u t d a t a i n c l u d e a f l o w s h e e t

    d e s c r i p t i o n , p r o ce s s o p e r a t i n g c o n d i t i o n s , u n i t

    ope ra t ion parameter s , and componen t , phase , and

    s t r e a m d a t a . T h i s i n p u t

    i s

    g e n e r a l l y d e r i v e d f r om

    p r o c es s de s i g n c r i t e r i a , t h e o r e t i c a l a nd e m p i r ic a l

    d a t a from t e c h n i c a l r e f e re n c e s , a s w e l l a s

    l a b o ra t o ry , p i l o t p l a n t , a nd f u l l s c a l e p l a n t

    o p e r a t i o n s .

  • 8/11/2019 (1987)Bartlett, John T. _Process Simulation and Optimization Using Metsim

    4/12

    MINER L RESOURCE M N GEMENT BY PERSON L COMPUTER

    D a ta i n p u t i n t o METSIM f a l l s i n t o t h e g e n e r a l C a l c u l a t i o n s

    c a t e g o r i e s t a b u l a t e d b e lo w :

    Ca s e D e f in i t i o n

    Component Data

    F lowshee t Da ta

    Uni t Opera t ion Da ta

    Chemical Equil ibr ium Data

    Heat Balance Data

    P r o c e s s Co n t r o l s

    Stream Flowrates and Composit ions

    Stream Names

    Chemica l Equi l ib r ium Da ta

    P r o c e s s e s i n v o l v i n g mass t r a n s f e r o p e r a t i o n s

    c a n be a c c u r a t e l y mo de le d by i n c lu d i n g a n y o f f o u r

    secondary chemica l equi l ib r ium modules. These

    modules can be used by any of t he pr imary u n i t

    o p e r a t i o n s . Th e c h e mica l e q u i l i b r i u m mod ules a r e

    c a p a b l e o f t r a n s f e r r i n g m a t e r i a l b et w ee n

    components and phases by sp ec i fy i ng t h e sou rce

    components and th e des t i na t i on components and by

    s e t t i n g c o n s t r a i n t s on t h e m ag ni tu de o f t h e

    t r a n s f e r . D at a c a n d e f i n e s i m p l e m ass t r a n s f e r

    w i t h o u t r e f e r en c e t o ch e m ic a l r e a c t i o n s o r

    c om pl ex t r a n s f e r r e s u l t i n g f ro m ch e m i ca l r e a c t i o n s

    and inv olv i ng mu l t i p le components and phase

    changes . Combined wi th th e proc ess co nt ro l

    modules th e chemica l equi l ib r ium modules a l lo w

    f o r a c c u ra t e m od eli ng of i n t r i c a t e l y d e t a i l e d

    p r o c e s s e s . T he f o l l o w in g c h e mic a l e q u i l i b r i u m

    mo du le s a r e a v a i l a b l e :

    SOL So lu ti on and phas e changes .

    REX Chemica l r eac t ions .

    CON S o l u b i l i t y and c o n c e n t r a t i o n c o n t r o l .

    EQU Multi phase chemical eq uil ib r iu m.

    P r o c e s s C o n t r o l s

    I n a d d i t i o n t o t h o s e p a ra m et e rs s p e c i f i e d i n

    METSIM us es an as so rtm en t of com put atio nal

    me thods in c lud ing th e se quen t ia l modular approach

    a n d s imu l t a n e o u s e q u a t i o n s t o e f f e c t a n optimum

    blen d of complexity use r t ime and computer

    res ou rce usage. The seq uen tia l modular approach

    i s th e pr imary method used because of i t s

    programming elegance and i t s a m e n a b i l i t y t o

    s i mp l i f i ca t i on of d iv e r s e and complex f lowshee ts .

    Fur the rmore th e sys tem can ea s i ly be expanded to

    encompass new me t a l l u rg ica l p rocess es and

    t e c h n iq u e s . n a d d i t i o n a l a d v an t ag e t o u s in g t h e

    se qu en t i a l modula r approach

    i s

    t h a t i n t er m e d ia t e

    re su l t s may be ob ta ined f rom any s tage of t he

    p r o c e s s i n a n i n t e l l i g ib l e fo rm. However u n de r

    s ome c i r cu ms ta n ce t h i s a p pr o ac h c r e a t e s a l a r g e

    num ber o f r e c y c l e s t r e a m s r e s u l t i n g i n r e l a t i v e l y

    slo w converg ence. In ce rt ai n ca se s METSIM uses

    s i m u l ta n e o us e q u a t i o n s t o s o l ve p a r t s o f t h e

    f l o w s h e e t . T h i s o p t i o n i s t r a n s p a r en t t o t h e

    u s e r .

    In conformance wi th the sequent ia l modula r

    app roac h METSIM u t i l i z e s modules co nta ini ng

    s u b s e t s o f e q u a t i o n s d e s cr i b i n g t h e d e s i g n

    s p e c i f i c a t i o n s a nd p er fo rm an ce c h a r a c t e r i s t i c s f o r

    e a c h r e l e v a n t me ta l l u r g i c a l o r mec h an i ca l p ro c e s s.

    T he s y s t em s o lv e s t h e e q u a t i on s u b s e t f o r e a ch

    mo du le a l l o w in g f o r a n i n d i v id u a l a n a l y s i s o f

    each process i n the f lowshee t . Given da t a on

    d e s i g n v a r i a b l e s a nd i n p u t s t r e am c o mpo s it i on

    e a c h mod ule s u b r o u t i n e c a l c u l a t e s u n iq u ely d e f in e d

    v a lu e s f o r a l l o u tp u t s tr e am v a r i a b l e s w hich ca n

    th e n b e u s e d a s i n p u t s t r ea m v a lu es f o r t h e n e x t

    proc ess s te p . The use r may supply ac tu a l da t a

    o b t a in e d fro m o p e r a ti n g p l a n t s o r p i l o t p l a n t s

    f ro m o p e r a t i o n s u s in g s imi l a r p r o c e s s e s o r f ro m

    e s t i ma te s s u p p l i e d b y t h e e ng in e er .

    METSIM algo r it hm s e li mi nat e th e need fo r user

    i n v o lv e me n t i n r e c y c l e s t r ea m t e a r i n g a nd mu l t i p l e

    th e u n i t o p e r a t i o n mo du le s o th e r c o n s t r a i n t s may s t r e a m n umbe rs a r e n o t r e q u ir e d . T he u s e r i s

    b e a p p l i e d t o t h e p r o ce s s f l o w sh e e t t hr ou gh t h e r e q u i r e d t o p r ov i de i n i t i a l e s t im a t e s o f o nl y

    us e of f eedback feedf o rward and s t r eam

    c r i t i c a l r e c y c l e s t r ea ms . T he W e gs te in

    t e m p e r a t u r e c o n t r o l s . T he se c o n t r o l s f u n c t i o n i n

    c o n v e r g e n c e a c c e l e r a to r

    i s

    em plo yed t o f a c i l i t a t e

    a man ne r s i mi l a r t o t h o s e i n o p e r a t i n g p l a n t s . r a p id c o nv e rg e nc e o f r e c y c l e s t r ea m v a lu es . T h i s

    t e c h n iq u e a lmo s t a lwa y s r e s u l t s i n r e c y c l e s t re a m

    F ee df or wa rd c o n t r o l l e r s a r e u s ed t o m a i n ta i n c o nv e rg e nc e i n f ew e r i t e r a t i o n s t h a n a r e r e q ui r e d

    c e r t a i n s t re a m r a t i o s s uc h a s a i r t o f u e l l i q u i d by t h e d i r e c t s u b s t i t u t i o n method. I f r e c yc l e

    t o s o l i d s o r r e a g e n t c on su m pt io ns . The

    s t r ea m nonconvergence i s de te c ted th e program

    f e e df o r w ar d c o n t r o l s t i e s t r ea m f l o w r a t e s t o g e t h e r a u t o m a t i c a l l y s w i t ch e s t o v a r io u s b ac ku p

    s o t h a t a s o ne fl ow v ar i e s t h e o t h e r i s v a r i e d c o nv e rg e nc e r o u t i n e s i n c l ud i n g d i r e c t

    p r o p o r t i o n a l l y .

    s u b s

    t

    u t i o n .

    F ee db ac k c o n t r o l l e r s a d j u s t s p e c i f i e d s t r e a m

    Upon comple t ion of da ta inpu t th e ma in

    u n i t o p e r a t i o n p r o c e s s c o n t r o l o r e q uip men t c a l c u l a t i o n p ro gr am CALC c a n

    be

    r u n

    v a r i a b l e s w i t h i n a d e f in e d r an g e t o a d e s ig n a t ed i n t e r a c t i v e l y p e r m it t i ng t h e u s e r t o s e l e c t t h e

    s

    e t p o i n t . The c o n t r o l l e r i t e r a t i v e l y m o d i f ie s t h e

    a c c ur a c y. T h i s f e a t u r e i s u s e f u l when s t a r t i n g u p

    independ ent va r iab le and feeds the in fo rma t ion t o a new mode l i n much the same manner a s wi th ac t ua l

    t h e u n i t o p er at i on u n t i l t h e d e s ir e d s e t p o i n t i s p l a n t s t a r t u p t h a t i s s t a r t i n g u p on e p l a n t

    a t t a i n e d .

    s e c t i o n o r p i e c e o f e qu ip me nt a t a t ime .

    Two h e a t b a l a n c e c o n t r o l me th od s a r e a v a i l a b l e P ro gr am O u tp u t

    t o th e METSIM use r . S t r eam temp era tu re co nt ro ls

    f i x o u t l e t s t r e a m t e m p e ra t u re s a nd may be a p p l i e d S c r ee n d i s p l a y f u n c t i o n s p e r m i t t h e u s e r t o

    t o an y s t r ea m e x i t i n g a u n i t o p e r a t i o n m o du le .

    e xa m in e u n i t o p e r a t i o n an d s t re a m d a t a d u r i n g a l l

    H e a t i n p u t a nd h e a t l o s s c o n t r o l s s i m u l a t e v a r i o u s p h a s es o f m od el b u i l d i n g a nd t e s t i n g . T h i s

    t y p e s o f h e a t t r a n s f e r . e n a bl e s t h e u s e r t o r e a d i l y d e t e c t i n p u t a nd

  • 8/11/2019 (1987)Bartlett, John T. _Process Simulation and Optimization Using Metsim

    5/12

    c o n t r o l e r r o r s a nd a i d i n m od el r e fi n e m e n t . T he

    s c r e e n d i s p l a y f un c t i o ns a l s o e n a b l e t h e u s e r t o

    o b t a i n v i a t h e PRINT o p t i o n a h a r d c o py o f d a t a

    i n b r i e f f o rm a t f o r h i s t o r i c a l d i s c us s i o n or

    a n a l y t i c a l p ur po se s .

    METSIM o f f e r s a v a r i e t y o f o u t p u t f o r m a t s

    i n c l u d i n g u s e r c us t o mi z e d r e p o r t s . T he no r m al

    METSIM o u t p u t c o n t a i n s s t r e a m d a t a i n c l u d i n g m a s s

    v o l u m e tr i c a nd e n e r g y f l o w r a t e s s p e c i f i c

    g r a v i t i e s t e m pe r at u re s s c r e e n a n a l y s e s

    c o n c e n t r a t i o n s a nd a s s a y s . A h e a t b a l a n c e a r o u nd

    e a c h u n i t o p e r a t i o n i s o u t p u t a l o n g w i t h a s u mm ar y

    o f th e h e a t s o f r e ac t i on . P a r t i c l e s i z e a n a l y s i s

    a nd w a sh a bi l i ty d a t a c a n b e o u t p u t i n e i t h e r

    t a b u l a r o r g r a p h i c f o rm a t . T he o u t p u t r e p o r t m enu

    c o n t a i n s t h e f o l l o w i n g

    i t e m s :

    S p e c i a l R e p o r t

    Writer

    In p u t Data Ech o

    E q ui p ne n t S i z e s

    Heat Balance Summary

    Design Flow Rates

    Str eam Component Assay s

    S t r eam Elemen ta l Assay s

    S t r e a m S c r e e n A n a l y s i s

    S c r e e n A n a l y s i s P l o t s

    D e t a i l e d W a s h a b i l i t y D a t a

    3-D Was h ab i l i ty Data P l o t s

    C o al m a l i t y R ep or t

    Hardware Requirements

    METSIM w i l l ru n o n mo s t co mp u ter sy s tem h av i n g

    t h e APL langu age and 512- kil oby tes of memory. In

    a d d i t i o n t o IBM DEC an d CDC ma in fr am es METSIM

    c a n b e r u n o n I n t e l 8 08 8/ 8 03 86 m a c h i n e s s u c h as

    t h e IBM PC/XT/AT and co mp at ib le s and Mot orol a

    6 80 0 0 m a c hi n e s s u c h a s t h e W i c a t A t a r i A mi ga

    a n d Macintosh

    APPLICATIONS

    Du r in g th e l a s t e l ev e n y ea r s METSIM an d

    i t s

    t w o p r e d e c e s s o r p r o g ra m s h a v e b e e n u s e d t o m od e l

    o v e r e i g h t y d i f f e r e n t pr o c e s s e s t h r o ug h o u t t h e

    w o rl d. T he se h av e b ee n u s ed f o r f e a s i b i l i t y

    s t u d i e s d e t a i l e d p l a n t d e si g n a nd t r o u b l e

    s h o o t i n g of o p e r a t i n g p l a n t s .

    C o mmin u t io n Ap p l ica t io n s

    METSIM ha s been used o n cru sh in g pro ce ss es t o

    e v a l u a t e t h e e f f e c t o f f e e d r a t e r o ck h a r d n es s

    f e e d s i z e d i s t r i b u t i o n o p e r a t i n g t i m e c r u s h e r

    t y p e c r u s h e r s e t t i n g a nd s c r e e n t y p e s a n d s i z e s

    o n p r o d uc t s i z e d i s t r i b u t i o n . One m od el i s o l a t e d

    c r u s he r g ap s e t t i n g s a s t h e c a u s e o f m a t e r i a l

    h a n d l i n g p ro bl e ms i n a r o c k q u a r r y .

    METSIM h as a l s o b een u s ed ex te n s iv e l y o n many

    t y p e o f g r i n di n g c i r c u i t s . b d e l s h a ve b ee n

    d e v e l o pe d f o r s e m i- a u to g e no u s r o d a n d b a l l m i l l s

    a s w e l l a s f i n e s c r e e ns h yd ro cy c lo ne s a nd s p i r a l

    a nd r a k e c l a s s i f i e r s . One s i m u l a t i o n m od el

    d e m os t ra t e d t h a t t h e h y dr o cy c l on e v o r t e x s i z e s

    w e re i n c o r r e c t f o r t h e p r o p e r c o n t r o l o f a SAG an d

    b a l l m i l l c i r c u i t . P l a n t o p e r a t o r s h ad b ee n

    t r y i n g t o g ai n c o n t r o l of t h e c i r c u i t by c h a ng i ng

    t h e n um be r o f o p e r a t i n g c y c l o n e s .

    Another

    s i m ul a ti o n was u s e d t o e v a l u at e t h e p i l o t p l a n t

    t e s t d a t a f o r

    a

    new SAG an d b a l l

    m i l l

    c i r c u i t .

    The d a t a a p pe a re d i n c o n s i s t e n t u n t i l t h e

    s i m u l a t i o n m o de l s d e t e c t e d m a l f u n c ti o n i n g

    c l a s s i f i e r s a nd w orn t e s t m i l l d i s c h a r g e g r a t e s .

    I t i s now r ec om me nd t h a t a p r o c e s s s i m u l a t i o n

    m od el b e r un c o n c u r r e n t l y w i th p i l o t p l a n t

    t e s t

    p ro gr am s i n o r d e r t o d e t e c t q u es t i on a bl e f a u l t y

    a n d re du nd an t d a t a i n

    t i m t o

    modify

    t e s t

    p r o c e d u r e s t o i m pr ov e t h e r e m a i n in g t e s t program.

    B as e M e t al A p p l i c a t i o n s

    METSIM h a s b een a p p l i ed s u c ce ss fu l l y on

    s e v e r a l a s p e c t s o f c o p p e r m ol ybd enum l e a d a n d

    z i n c p r o c e s s i n g i n c l u d i n g c o mm in ut io n a n d

    f l o t a t i o n c i r c u i t s c o n c en t r a t e r o as t in g

    l e a c h i ng a n d d r y i n g a nd t a i l i n g s d i s p o s a l . A

    t a i l i n g s d i s p o s a l s y s t e m mo de l i n vo l v e d a c y c l o ne

    s t a t i o n an d tw o p i p e l i n e s f o r s a n ds an d

    slimes.

    The s i m u l a t i on i s o l a t e d s e n s i t i v e a r e a s a nd

    p r om p t ed c h a n g e s i n t h e d e s i g n p h i l o so p h y . T he

    s y s t e m w as b u i l t a n d s t a r t e d u p w i t h a minimum o f

    problems.

    P r e c i o u s

    Metal

    G o l d / S i l v e r A p p l i c a t i o n s

    P r e c i o u s m e t a l p r o c e s s s i m u l a t i o n s h a ve

    i n c l u d e d c om m in ut i on g r a v i t y c o n c e n t r a t i o n

    c y a n i d a t i o n f l o t a t i o n c a rb o n- i n- p ul p

    c a rb on -i n -l e ac h s m e l t i n g a nd r e f i n i n g c i r c u i t s

    C IP m od e li n g h a s b e e n u s e d t o o p t i m i z e

    the

    number

    o f a d s o r p t i o n s t a g e s c a r b o n i n v e n t o r i e s a n d

    o v e r a l l s y s t e m h y d r a u l i c s . One m od el w as u s e d t o

    e s t a b l i s h t h e m o s t e co no mi c s c he d u le f i r i n g r a t e

    a nd c h a r g in g r a t e f o r a g o l d p r e c i p i t a t e s m e l t i n g

    f u r n a c e . A n ot h e r p r o c e s s i n c l u d e d c r u s h i n g

    g r i n di n g c l a s s i f i c a t i o n s a nd a nd s l i m l e a c h i n g

    c i r c u i t s c o u n te r - c ur r e n t d e c a n t at i o n f i l t r a t i o n

    a n d M e r ri l l -C r ow e p r e c i p i t a t i o n . T he s i m u l a t i o n

    p e r m i tt e d t h e o p t i m i z a t i o n o f

    t h e CCD c i r c u i t

    m i n i m i z i n g c y a n i d e c o n s u m p t i o n a n d m a x i mi z i ng g o l d

    r e c o v e r y . W i t h e q u i p m e nt c h a n g e s t h e g o l d

    p r o d u c t i o n w as i n c r e a s e d 2 2 p e r c e n t . A n ot h e r

    s i m u l a t i o n i n v o l v e d a r o d m i l l a nd t h r e e d i f f e r e n t

    s i z e d b a l l m i l l s . T he m od el d e m o s t r a t e d t h a t t h e

    b a l l m i l l f e ed s p l i t was c r i t i c a l and t h e m i l l s

    w er e u nd er ch ar ge d. P r e c i s e c o n t r o l o f t h e s p l i t

    a n d

    a

    h i g h er b a l l c h a r g e i n c r e a s e d t h e t h ro u gh p ut

    b y 1 6 p e r c e n t . A n o n - s t e a d y - s t a t e m o de l w a s

    d e ve l o pe d f o r a p r e c i o u s m e t a l v a t l e a c h p r o c e s s .

    T he o pt im um o p e r a t i n g s c h e d u l e wa s d e t e rm i n e d i n

    o r d e r t o m in i mi z e p r e g n a n t s o l u t i o n f l o w

    r a t es an d

    m a xi m iz e g o l d r e c o v e r y . C a p i t a l cos t s a v i n g s w e r e

    a l s o r e a l i z e d a s a r e s u l t of m i ni m iz i ng s t o c k p i l e

    an d ta n k ag e v o lu mes .

    Uran iu mf lan ad iu m Ap p l ica t io n s

    METSIM c o n t a i n s a l l t h e u n i t o p e r a t i o n s

    n e c e s s a r y t o e v a l u a t e u r a ni um r e c o v e r y f l o w s h e e t s

    i n c l u d i n g c om m in ut i on a c i d an d c a r b o n a t e

    l e ac h i ng m u l t i s t a g e c o u n t e r c u r r e n t d e c a n t a t i o n

    b e l t f i l t e r s c o u n te r c u rr e n t i o n e xc ha ng e s o l v e n t

    e x t r a c t i o n p r e c i p i t a t i o n d r y i ng an d c a l c i n i n g .

    S e v e n t e e n u r a n i u m p r o c e s s e s h a v e b e e n m o d e l l e d .

    One model was used

    t o i n v e s t i g a t e p l a n t losses o f

    s o l u b l i z e d u ra ni um . A l t e r n a t i v e s t u d i e s p r ov e d

  • 8/11/2019 (1987)Bartlett, John T. _Process Simulation and Optimization Using Metsim

    6/12

    MINER L RESOURCE M N GEM ENT

    BY

    PERSON L COMPUTER

    t h a t l o s s e s c o u l d b e r e d uc e d f ro m n i n e t o f o u r

    percen t by opera t iona l changes and ano ther two

    percen t by equ ipmen t add i t ions . A f i v e p e r c e n t

    improvement was re a l i ze d in p l an t opera t ions .

    Chloride Hydrometal lurgy

    METSIM h as been ap pl ied to th re e molybdeni t e

    u p q r ad i n g p l a n t s u s i n g c h l o r i d e l e a c h i n g

    t ec h no l og y . I t was u s ed e a r l y i n o ne p r o j e c t t o

    d i r e c t t h e l a b o r a t o r y t e s t w ork. A

    f lowsh eet was

    es tab l is he d and a minimal amount of lab ora tor y

    t e s t work was perfo rmed as a res u l t . The p rocess

    m odel h i g h l i g h t e d a r e a s r e q u i r i n g a d d i t i o n a l t e s t

    work. These ad d i t io na l t e s t s were perfo rmed and

    th e p rocedure was rep ea ted u n t i l t h e model was

    c o m pl et e. T he l e n g t h o f t h e l a b o r a t o r y t e s t

    program was reduced by se v er al months. The model,

    which includ ed a dynamic lea ch in g module, was

    i n s t a l l e d on s i t e an d us ed by o p e r a t i n g p e rs o n n e l

    t o de te rmine op timum p la n t parameters.

    An alumina ex t ra c t i on p rocess model was

    d e v el o pe d f o r t h e h y d r o c h l o r i c a c i d l e a c h of c l a y s

    w i th su b se q ue n t p u r i f i c a t i o n , c r y s t a l l i z a t i o n , and

    thermal decomposi tion . Th i s model , t he f i r s t

    in t eg ra ted mass and energy ba lance o f the comple te

    p r o c e s s , d e m o n st r at e d p o t e n t i a l e n er g y s a v i n g s

    o v e r o r i g i n a l e s t i m a t e s a n d was i n s t ru m e n t a l i n

    t h e d e c i s io n t o p i l o t t h e p r o c e s s . T he m od el w as

    i n s t a l l e d o n s i t e t o a i d i n s t a r t u p and p r oc e ss

    o p e r a t i o n .

    P y r o m e t a l l u r g i c a l A p p l i c a t i o n s

    METSIM has been used t o s im ul at e

    p y r o m e t a l l u r g i c a l p r o c e s s e s i n c l u d i n g d r y i n g ,

    ro as t ing , smel t ing , and conver t ing . The models

    i n c o r p o r a t e ch e m i ca l r e a c t i o n s , i m p u r i ty

    co ns t i tu en t s , and thermodynamics t o p rov ide

    de ta i l e d mass and energy ba lances . Convec t ive ,

    c o n d u ct iv e , an d r a d i a n t h e a t l o s s e s a s s o c i a t e d

    w i t h t h e p r o c e s s w e re i n c o r p o r a t e d i n t o t h e m o de l.

    One p r o j e c t i n v o l v e d mo d el in g t h r e e a l t e r n a t i v e

    c o p p e r s m e l t i n g p r o c e s s e s i n c l u d i n g t h e f l a s h

    s m e l t e r , d e ad r o a s t p r o c e s s , a nd c o n v e n t i o n al

    r e v e r b a t o r y sm e l t in g . Use o f s t a n d a r d c a l c u l a t i o n

    m eth od s f a c i l i t a t e d d e t e c t i o n o f s m a l l b u t

    s i g n i f i c a n t d i f f e r e n c e s i n e ne rg y , f l u x , and

    re ag en t consumption. Another model was used to

    c a l c u l a t e h e a t b a la n c e s f o r t h e d e s ig n of a

    m u l t i h e a r t h r o a s t e r f o r v a r y i n g g r a d e s of

    molybdenum conc en t ra t e . T ray t o t r ay ba lan ces

    w er e made t o d e t e c t h o t s p o t s a nd p r o v i d e f o r t h e

    n e c e s s a r y c o o l i n g s p r a y s .

    C o a l P r e p a r a t i o n

    METSIM has been used t o model se v er al c oa l

    wash ing and p re par a t io n p la n t s . Numerous co a l

    s t re a m s , w i t h d i f f e r e n t w a s h a b i l i t i e s a nd

    compos i t ions , can be b lended and p roduc t

    q u a n t i t i e s a nd q u a l i t i e s p r e d i c te d . C oa l

    p r e p a r a t i o n u n i t o p e r a t i o n s i n c lu d e c r u s h e r s ,

    b re ake rs , s c re ens , dense med ia ba ths , dense media

    c y c l o n e s , j i g s , t a b l e s , w a t e r o n l y c y c l o n e s ,

    f l o t a t i o n c e l l s , an d m a g ne ti c s e p a r a t o r s . One

    model was developed fo r a 2000 metr ic ton per hour

    p l a n t i n t h e U n i te d Kingdom i n o r d e r t o e v a l u a t e

    tw o a l t e r n a t i v e d e n se m ed ia c i r c u i t c o n t r o l

    schem es. One c o n tr o l method was shown t o be

    uns tab le when t r y in g t o reduce th e dens i ty of the

    heavy media, the p rocess was s ta rt ed up

    suc ces s fu l ly with t he s t a b l e con t ro l scheme.

    Another model was used t o design a co al

    p r e p a r a t i o n p l a n t i n C hin a.

    EXAMPLE OUTPUT

    I n o r d e r t o i l l u s t r a t e t h e va r io u s t yp e s of

    ou tpu t dat a av ai la bl e to th e METSIM use r, sev era l

    sample repor t s f rom d i f fe ren t types o f model s a re

    [p rese n ted i n the accompanying t ab les and g raphs .

    For a comminution typ e flow sheet l ik e th e SAG

    m l l a n d b a l l m l l c i r c u i t of F ig u re 1 , t h e

    p a r t i c l e s i z e a n a l y s i s i s t h e p ri ma ry co n ce rn . I n

    a d d i ti o n t o t h e s o l i d S I ) , l i q u id L I ) , and t o t a l

    T C) fl o w r a t e s a nd s p e c i f i c g r a v i t i e s a s shown i n

    Table 1 , t he sc reen ana lys i s can be ob ta ined as a

    p l o t , F i g u r e

    2

    o r a s t a b u l a t e d d a t a , T a b l e

    2 .

    Th e a n a l y s i s o f f l o t a t i o n c i r c u i t s , s e e F ig u re

    3,

    ar e usu al ly cente red around mineralogy and

    e lemen ta l as says . Typ ica l ou tpu t repo r t s s e l ec ted

    fo r the se p rocesses a r e the componen t as says fo r

    s o l i d s , i l l u s t r a t e d i n T ab le

    3,

    percen t so l ids and

    s p e c i f i c g r a v i t i e s , T ab le 4 , and so l id phase

    ele me nta l as sa ys , Table 5. The performance of

    hydrometal lurgical f lowsheets , an example of which

    i s t h e g o l d c y a n i d a ti o n c i r c u i t of F i g u re 4 , i s a

    func t ion o f s o l u t ion f lows and concen t ra t ions . A

    sample o f th i s type o f ou tpu t

    i s

    the aqueous

    a s s a y s i n g ram s p e r l i t e r , T ab le 6 , t he f lowra tes ,

    Table 7 , and the s o l id , aqueous, and to t a l go ld

    assay s a s g rams per met r i c ton in Tab le 8.

    Pyro meta l lug ica l p rocesses a re opera ted under

    t empera tu re co n t ro l and theref o re th e energy

    balance

    i s

    of prime importance. The fl as h sme lter

    c i r c u i t , i l l u s t a t e d i n Fi g ur e 5 , c o n t a in s s e v e r a l

    hig h tem per atu re un it ope ratio ns. The METSIM

    ou tpu t fo r t h i s type o f model con ta ins comple te

    t ab u l a t i on s of s t ream tempera tu res and en tha lpy

    f lo w s a s i n T a b le 9. A lso a v a i l a b l e t o t h e u s e r

    i s a complete he at balance around each un i t

    o p e r a t i o n a s i n T a b le 1 0. T h i s i n c l u d e s t h e h e a t

    con ta ined i n feed s t reams , hea t s o f rea c t ions and

    phases changes , hea t t rans fe r and los s es , hea t ing

    a nd c o o l i n g r e q u i r e m e n ts , h e a t c o n t e n t o f e x i t

    s t ream s , and the ov era l l hea t ba lance e r ro r . The

    i n d i v i d u a l h e a t s o f r e a c ti o n a r e a l s o pr es en t ed t o

    t h e u s e r . D e t a i l e d e l em e n t al a s s a y s a r e o f t e n

    chosen a s ou tpu t f rom th i s type of model , s ee

    Table 1 1 .

    C o a l p r e p a r a t i o n p l a n t s i m u l a t i o n r e q u i r e s

    c o n s i d e r a b l e i n p u t d a t a i n t h e f o rm o f w a s h a b i li t y

    d a t a , a s h an d s u l f u r a n a l y s i s , a n d h e a t v a lu e

    d a t a . T h i s d a t a i s u s u a l l y p r e s e n t e d i n

    t a b u l a t e d f orm s i m i l a r t o t h a t i n Ta bl e 12 . T h is

    da ta fo rm i s so mew hat d i f f i c u l t t o v i s u a l i z e ,

    e s p e c i a l l y w hen s e v e r a l t a b l e a r e n eed ed t o

    re p re se n t each co al type. METSIM can pre sen t the

    d a t a i n t h r e e - d i m e n si o n al p l o t s , s e e F ig u r es

    6,

    7, 8 and 9, f o r e a s i e r i n t e r p r e t a t io n . F ig u re s 6

    and 7 show the weigh t d i s t r ibu t io n o f two

    d i f f e r e n t c o a l s ea ms . S tr ea m 1 i s r e l a t i v e l y

    c lea n co a l w i th min ing d i l u t i on . S tream 3 i s

    a

  • 8/11/2019 (1987)Bartlett, John T. _Process Simulation and Optimization Using Metsim

    7/12

    PROCESS SIMUL TION ND OPTIMIZ TION USING METSIM

    d i r t i e r c o a l w i t h m ore m i d d l i n g s . A f t e r t h e tw o

    a r e b l e n de d a n d r u n t h r o u g h a d e n s e me di a p l a n t ,

    t h e r e f u s e would l o ok l i k e t h a t i n F i g u re 8 w h i l e

    t h e c l e a n c o a l would h av e c h a r a c t e r i s t i c s o f t h a t

    shown i n F igur e 9 .

    A

    sum mary o f c o a l q u a l i t y a n d

    p r o d u c t i o n c a n be r e c a l l e d v i a t h e c o al q u a l i t y

    r e p o r t a s show n i n T a b l e 1 3.

    CONCLUSION

    O ver t h e p a s t d ec a de , p r o c e s s s i m u l a t i o n h a s

    p r o g r e s s e d f ro m r e l a t i v e l y s i m p l e

    mass

    b a l a n c i n g

    p ro gr am s t o e a s i l y u se d f u l l s c a l e p r o c e s s

    s im u la t io n sy s tems . Numero us s i mu la t i o n mo d els

    h a v e b e e n d e v e l o p e d w i t h m a n y p l a n t s a n d p r o c e s s e s

    h a v i ng b e n e f i t e d t h ro u gh r e d u ce d c o s t s a n d / or

    i n c r e a s e d t h r o ug h p u t a n d r e c o v e r y . P r o c e s s

    d e s i g n , a n a l y i s , a n d o p t i m i z a t i o n c a n now b e

    a c c o m p l is h e d i n less t i m e a nd a t l ow er c o s t t h a n

    e v e r b e f o r e .

    A s

    t h i s t r e n d c o n t i n u e s,

    c o m p u t e r i z e d p r o c e s s a n a l y s i s w i l l become one of

    t h e m ajor t o o l s t o be u s ed t o o f f s e t d e c l i n i n g o r e

    g r a d e s a n d en vi ro m en t a l a n d e c o no m i c c o n s t r a i n t s

    w hi ch a r e b e i n g p l a c e d o n m in i n g o p e r a t i o n s .

    REFERENCES

    Himmelblau, D. M. 1972, APPLIED NONLINEAR

    PROGRAMMING McG ra w- Hi ll , New Yor k, N. Y.

    Himmelblau, D. M. 1974, BASIC PRINCIPLES AND

    CALCULATIONS I N CHEMICAL ENGINEERING,

    P r e n t i c e - H a l l , E ng le wo od C l i f f s , N. J

    Ho lla nd, C.

    D.

    1975, FUNDAMENTALS AND

    MODELLING OF SEPARATION PROCESSES,

    Prentice- all E ng le wo od C l i f f s , N. J

    K u e s t e r , J L. an d Mi ze,

    J H.

    1973,

    OPTIMIZATION TECHNIQUES WITH FORTRAN,

    McGraw -Hil l, New Yo rk, N. Y.

    Lynch, A.

    J.

    1977, MINERAL CRUSHING

    AND

    G R I N D I N G

    CIRCUITS, E l s e v i e r S c i e n t i f i c

    Pu bl is h i ng Company, Amsterdam, The Ne the r la nds .

    Mah,

    R .

    S.

    H.

    a n d S e i d e r ,

    W

    D. E d i t o r s ) ,

    1981, FOUNDATIONS OF COMPUTER-AIDED CHEMICAL

    PROCESS DESIGN, E ng in ee ri ng F ou nd a ti on , New

    York, N. Y.

    Myers, A. L. an d Se id e r ,

    W.

    D. 1976,

    INTRODUCTION TO CHEMICAL ENGINEERING AND

    COMPUTER CALCULATIONS, P r e n t i c e - H a l l , m g ewo od

    C l i f f s , N. J

    Ramani,

    R. V.

    E d i t o r ) , 197 7, 14TH INTERNATIONAL

    APCOM SYMPOSIUM, S o c i e t y of Mi ni ng E n gi n e e rs ,

    New York, N. Y.

    Ramirez, W. F., 19 76 , PROCESS SIMULATION, D.

    C. H eath and Company, Le xi ng to n, Mass.

    S e a d e r , J D . S e i d e r , W. D. a n d P a u l s ,

    A.

    C., 1977, FLOWTRAN SIMULATION A N

    INTRODUCTION, Cache, Cambridge, Mass.

  • 8/11/2019 (1987)Bartlett, John T. _Process Simulation and Optimization Using Metsim

    8/12

    112

    MINER L RESOURCE M N GEMENT BY PERSON L COMPUTER

    COMMINUTION CIRCUIT

    F I G U R E 1 COMMINUTION FLOWSHEET

    T B L E 1 F lO W R T E S N D S P E C I F I C G R V I T I E S

    DEBIGN FLOl RL)lES

    NO. STREP1 TIRE 871H-51 STI H-L I STIH-TC GPll R1lHR

    .....-~~~~~~~~~.*.....--+-~~~~~~..-..--.*.--.---.-......*...-.-.

    I

    UM OF 111NE 100.000

    b b 8 . 1 1

    2 1 . 8 6 6 9 6 . 6 0 l I I P . 2 5 2 5 1 . 2 1

    2 BR I I I L I U NDR 100 . 000

    1 9 1 . 5 1

    I b . 12 101 . 90 b55 . 19 118 . 8b

    1 8 R l l 1 L Y O VER 1 0 0 . 0 0 0 211 .15 11 . 55 188 . 10 1b l . 85

    105.15

    4 CRUSHER PROD 100.000 211.15 11.55 188.1 0 1b1.85 105 . 15

    5 STOCKPILE 100.000

    b b 8 . 1 1

    21 . Bb b1b . 60 1111 . 25 25 1 . 11

    b SP6 11LL FEED 100 .00 0 bb8 .11

    11 . 8b b1 b . 60 1119 . 15 15 1 . 11

    7 UP6 UPTER 100.0 00 .00

    101 . 12 101 . 12 1205 . 11 111 11

    10 UP1 DSCHR6 L00.0 00 819.21

    1 1 1 . 6 1 l l 9 8 . 1 1 11 0 1. 55 b l l . 5 1

    II

    SCREEN OBllE IOO.VO0

    110 . 50

    10.01 200.59

    111 I l

    1 5 . b b

    I 2 SPB RECYCLE 100.0 00 170.50

    1 0 . 0 1 2 0 0 .5 9 1 1 1 . 1 1 1 5 .b b

    11 SC REEN U BI I F 100 . 000

    b b 9 . 7 1

    329 . 59 999 . 12 2121 . 18 521 . 92

    L5 SUMP NPTER 100.000 .00

    119 . 15 119 . 15 1151 . 61 10 1 . 61

    I b SP6 CYC FEED 100.000 bb8.1 1

    bbB.11 l111 11 1 b l 1 . 0 1 8 1 5 . b O

    I7 SPb CIC OVER 10 0.000

    111.00 111.2b 581.1 b 1111.90

    151 . 09

    18 1P8 CIC UNDR 10 0.0 00

    5 1 5 . 1 1

    1 l 9 . 1 8 1 5 5 .2 1 I b 8 1 . 1 1 1 8 1 . 5 l

    20 Bl lL DISCHPGE 100.000

    1577.18

    11b . 10 2121 . 11 5158 . 51 1211 . 0b

    21 8111 BUHP UlR 100.000

    . 0 0

    811 . 18 811 . 18 1119 . 92 151 . 01

    22 1111 CVC FEED 100.000

    1511.48 1511.18 1151.9b Bbl8.1 b

    1111.09

    21 B11L CIC UNDR 1 00.00 0

    1011 . 11

    5 2 b . 8 2 I l b 8 . 5 b 1 b 7 1 .1 0 8 1 1 . 5 5

    24 Bl lL CIC OVER 100.0 00 515.1 1

    l 0 5 0 . b b I 5 8 b . 1 0 5 0 0 1 . 0b l I 1 b . 5 5

    SPECIFIC 8RPIVITlES

    NO. STREP* PC5 88- Sl SO-LI 56-TC

    .+ +~

    I RUN OF MINE 9b.0 000 1.b5000

    l . 0 0 0 0 0 2 . 1 8 5 1 1

    2 0R1111V UNDR 9b. 000 0 1.b5OOO I . 0 0 0 0 0 2 . 1 8 5 1 1

    1 8R1111V OVER 9b.0000 2.65000

    l . 0 0 0 0 0 1 . 1 8 5 1 1

    1

    CRUSHER PROD Pb.0000 1.b5000 1.00000 2.18591

    5 STOCKPILE Pb.0000 2.650 00

    1 . 0 0 0 0 0 1 . 1 8 5 1 1

    b SPB 1111 FEED 9b.0000 2.b5VOO

    1. 00000 1 . 18511

    1 818 N I TER , 0000 , 00000 1 . 00000 1 . 00000

    LO SP8 DUCHRS 70.0000 2.b 5000 1 .0000 0 L.11158

    11 SCREEN 0S11E 85.00 00 2.b5000 1.000 00 2.11 115

    I2 BPI8 RECVCLE 85.00 00 1 .b500 0

    1 . 00000 1 . 12125

    I1 SCREEN US11E bb.98 bI 2.b50 00 1.0 0000 1 .1155 1

    I5 1U11P UPITER ,0000 .0000 0 1.000 00 1.000 00

    Ib UP18 CVC FEED 50.00 00 1 .b500 0

    1 . 00000 1 . 15205

    I7 BPI8 CVC OVER 22.8 115 1.b 500 0

    1 . 00000 1 . 1b581

    18 UP18 CIC UMDR 10.9181 1 .b500 0 1 .0000 0 1.1 9111

    20 8111 DI ICHRBE b7. 881 1 2.65000 1.000 00 1 .1121 1

    21 1111

    BURP NTR

    . oooo . ooooo 1 . 00ooo

    I U O O O O

    22 EM1 CIC FEED 50.0000 1.b5000

    1 . 00000 1 . 15105

    21 E l l 1 CI C UND R bb . 11 11 2 . b5000 1 . 00000 1 . 70509

    21 811L CIC OVER 11.7101

    2.b5OOO 1.00000

    1 . 2 b b l b

    S G

    n i L L

    WLL MILL

    C R C L I I T

    4 5 1 0 8 6

    784

    S CR EW M L Y S L S PER ENT PLlSSlNG

    S C R E E N I O C I

    ' 0 n o 7 0 6 0 5 0 4 0 3 0 20 1 0 O n l C R O *

    1 6 . 8 0 0 I N 4 2 6 7 20

    1 1 , 8 7 9 I N 3 0 1 7 3 7

    8 . 4 0 0 I N 2 1 3 36 0

    5 .9 .10 I N 150818

    4 . 200 I N 1116680

    2 . 9 ' 0

    IN

    7 5 4 3 4

    2 . 1 0 ~ N 5 33 40

    1 . 4 8 5 I N 3 7 7 17

    I US0 I N 2 6 07 0

    :42

    I N

    I

    8 8 5 9

    525 I N 1 3 3 35

    , 3 7 1 I N 9 4 2 9

    3

    T I

    6 1 3 0

    4

    TI

    4 7 6 0

    T 1 3 3 6 0

    8

    T I

    2 3 8 0

    I 0

    T I

    I 6 8 0

    1 4 T I 1 1 90

    2 T I 8 4 1

    2 8 T I 5 9 5

    35 T I 4 2 0

    4 8 T I 2 97

    6 5 T I 2 10

    I UO T I 1 4 9

    1 50 T I I 0 5

    2 00 T I 14

    270

    Y

    5 3

    4 0 0 T 37

    6 00 T I 2 6

    8 00 T I I 9

    S C R E W I O O

    9 0 n o 7 0 6 0

    JO

    40 30 20 10 O U I C R ~

    PERCENT PASSING

    F I G U R E

    2.

    SCREEN N LYSIS PLOT

    T B L E 2 SCREEN N tYS IS D T

    SCREEN SIZE PNPILVSIS

    1TREhM NO. 18 61REPIN NO. 10 STREPI11 NO. 12

    SPI1 CVC UNDR UML DISCHRBE

    811L CIC FEED

    PBO. ( 11 0 P10. (15 PSO. b 15

    ... . . ..

    ... .. ...

    . .. ....

    SCREEIIBIIICRDU 1 1 1 1 P C R

    PCP

    e l l ~ P C R r c e

    STIH PC*

    P C P

    , _ _ _ _ _ _ _ _ . . _ _ _ _ _ + _ _ ~ ~ ~ ~ . ~ . ~ - ~~ , ~ ~ ~ . ~ . . ~~ ~ ~ . ~ , . ~ ~. . ~ . . ~ ~ ~ ~ ~. . . . ~

    , 5 1 5 I N

    11115 21 . 111 3 . 9800

    1b.01 .OO

    ,000 100.00 .OO ,000 100.00

    , 1 7 1 I N

    9 1 2 9 l b . 1 7 1 b . 7 5 2 1

    89.21 1.51

    ,097 99.10 1.5 1 .O97 99.10

    1

    1 1

    ( 710 11 . Yb1 7 . 1191

    81.11 5.b1

    .15b 99.55 5.61 .15b 99.55

    1 1

    1 l b 0 1 1 . 7 7 2 7 . 9 1 3 1

    71.11 12.48

    ,791 98.7b 11.18 ,791 98.7b

    b T I

    11bO 1b . 195 8 . b710

    b1 . 11 21 . 94

    1.191 97.36 21.94 1,111 11.1b

    8 1

    1180 18 . 801 7 . 1411

    51.17 11.11

    2 . 040 95 . 11 12 . 1 1 2 . 040 15 . 12

    LO T I I bU O l b . 111 b . 7515

    50.72 11.21

    2 . 801 92 . 52 11 . 21 1 . 801 92 . 52

    11 1V

    1190 11 . 9bb b . 52b 1

    44.19 5b.11

    1 . 59b 88 . 91 5b . 11 1 . 59b 88 . 11

    2 0 TY 1 1 1 1 1. 14 0 b .1 1b 0

    18.01 70.12

    1.19b

    11 11

    10.12 1.116 81.11

    1 8 1 5 1 5 1 1 , 0 1 9 b . l b 1 1

    11.84 8b.11

    5.161 78.97 8b.11 5.1bl 78.97

    1 5 1 120 10 . 745 5 . 1118

    1b.10 102.71

    b . 511 71 . 4b 101. 74 b . 511 7 1 . U

    18

    IY

    297 18.295 5.181b

    10.81 118.b2

    7 . 511 b1 . 11 118 . 62 7 . 519 b1 . 11

    b5 T I 210 21 . bY2 4 . 5959

    I b . 11 121 . 75

    1 . l b l 5b . 77 111 .75 1 . l b l 5b . 71

    100 1

    l 19 18 . 1b4 1 . 5211

    1 1 . 7 1 l l l . 1 2

    7.112 41.05 111.12 7.1 21 11.05

    1 5 0 T I

    105 11.b24 1.541 1

    IO. lb 111.80

    1 . 017 1 l . 9b 111 .80 7 . 087 1 l . 1b

    1 0 0 1

    7 1 0 5 1

    8.21 100.51

    b . 172 15 . 59 100 . 51 b . 112 15 . 51

    270 1 51 l 2 . 37b 1 . 1101

    5.90 81.40

    5.b04 29.99 88.10 5.b01 29.91

    1 0 0 7 1

    17 11.111 1.7517

    1.15 Bb.51

    5 . 185 21 . 50 1b . 5 1 5 . 185 21 . 50

    bOO T I

    26 5.612 1.0175

    2.10 69.01

    1 . 176 20 . 11 h9 . 03 1 . 17b 20 .11

    1 0 0 1

    I

    I 2 5 9 1 0 I b

    .OO 117.50

    20.127 .OO 111 .50 20. 12 1 .OO

    SlREPII NO.

    11

    SIREPI11 NO. 21

    B11L CI C UNDR Bll L CVC OVER

    PBO. 1 0 09 Y80. 1 07

    .

    . .. ..

    . .. . . .

    SCREENS MICRON Sl /H PCR PCP S11H PCR PCP

    ...---___.______.__~~~-,-~...-.---.

    ,17 1 IN 9129 1.5 1 ,117 99.85 .OO .OOO 100.00

    1 1 1 b710 S .b2 . 540 99 . 11 .OO . 0001 00 . 00

    1 l V 17bO 12 . 41 1. 198 98 . l l .OO , 000 l 00 . 00

    b IV 11bO 21.91 2.10 b 9b.01 .OO ,000 100.00

    8 11 1180 11.19 1.09 0 92.92 .OO ,000 100.00

    LO T I 1bOO 11.21 4.244 8 1.b8 .OO ,000 100.00

    I1 lV 1190 5b. 71 5.41b 81.11 .OO ,000 100.00

    10 T I 111 70 . 91 b . 808 1b . 41 .OO , 000 100 .00

    18 1V 595 8b.11 8.2b9 b8.15 .00 ,000 100.00

    15 11 120 l 01 . 70 9 . 859 58. 19 . 01 , 001 99 . 99

    18 1V 197 117.11 11. 1b1 11.01 1.29 .240 99.75

    b5 T I 110 115 . 85 11 . 111 15 . 91 12 .91 2 . 401 97 . 11

    100 11 I 19 82 . 19 7 . 909 18 . 00 19 . 11 7 .359 89 . 98

    150 11 105 51.00 5.Yb1 21.71 57 .00 10.b19 79.15

    100 11 71 10 . 81 1 .917 18 .12 59 . 72 11 . 14b b8 . 10

    270 11 51 11 . 17 1 . 155 15 . b7 55 . 51 10 . 1b5 57 .81

    100 11 17 10 . 71 2 . 918 12 . 71 55 .82 10 . 420 41 .41

    bOO T I l b 11 . 91 2 . 291 10 . 41 15 . 10 8 . 118 19 . 00

    8 0 0 I V

    I1

    lOB.51 lO.111 .OO 108.91 18.99 5 .OO

  • 8/11/2019 (1987)Bartlett, John T. _Process Simulation and Optimization Using Metsim

    9/12

    PROCESS SIMULATION AND OPTIMIZATION USING METSlM

    3

    FIGURE

    3

    FLOTATION FLOWSHEET

    TABLE

    3

    COMPONENT ASSAYS

    METSIII FLOTATION EIAMPLE

    LEPO ZINC FLOTPTIDN CIRCUIT

    4 / 5 / l V 84 9827

    STRERM OATA

    SOLID

    -

    NEISHT PERCENT

    NO. PlREeM IIISC POS INS 1525

    ................................................

    I FLOT FEED 02. 195 9 4.8501 12.9205 ,0211 7

    5 PO R bH R F D 02 . 11 11 4 . 8501 12 . 9281 , 01767

    4 PB 6CVNS FO 85. 940 1 1.957 0 11.0889 ,0135 2

    4 P I RSHR CY 4 . 7 09 0 5 8 .0 0 0 0 57 . 00 0 0 , 2 9 09 9

    7 1 P I CLNR TL 18.0458 27.0459 54.75 94 ,1501 1

    9 1 P I CLNR CN I . 40 57 42 . 0000 14 . 0000 , 51427

    10 2 P 1 CLNR TL 8 . 1957 52 . 0125 10 . 5200 , 11404

    I 2 LEPD CDNC . O5 11 4 8 .0 0 0 0 1 0 .0 0 00 . 54 4 94

    I 4 PO OCVNS CY 4 1 . 6 1 4 4 5 4 . 00 0 0 2 0 . 00 0 0 , 1 8 5 4 4

    15 CICL FEED 45.81 14 54.00 00 20.00 00 ,1854 4

    I 1 C I C L O F LD I 45 . 8144 54 . 0000 20 . 0000 , 10344

    17 CICL UFLDN 45.01 44 54.00 00 20.0000 ,1814 4

    I0 P I RENO DSCH 41.01 11 14.0 000 20.00 00 . I05 44

    I 9 PO f iC V Y8 TL 81 . 12 94 1 . 0075 11 .8144 , 00810

    2 1 I N ROHR RO 8 7 . 1 2 9 4 1 . 0 0 7 5 1 1 .0 1 4 4 , 0 0 0 4 6

    22 IN RBHR 1L 95.1127 ,7407 4.054 7 ,0059 5

    2 4 ZN R6HR CN 1 5 . 9 7 0 9 50 . 0 0 0 0 5 4 . 00 0 0 . O2 9 04

    25 I N S CVN 8 TL 91 . 0545 . l 49 9 2 . l V l 9 . 00515

    2 1 I N S CV YI CH 7 1 . 9 9 2 7 1 . 00 0 0 2 7 .0 0 0 0 , 0 0 7 1 9

    28 CICL FEED 52.21 71 21.19 00 41.17 00 ,0221 5

    29 C I C L U FL DN 52 . 21 71 21 . 5900 44 . 1700 . 02215

    10 IN REYO DSCY 52. 217 5 21.5900 44.11 00 ,0217 5

    51 C IC L O F LD l 52 . 21 75 21 . 1900 41 . 1700 . 02215

    52 1 IN CLNR TL 45.01 10 44.7 789 11.4075 ,0010 4

    54 1 11 CLYR CY 54. 9715 5 . 0000 40 . 0000 . 02552

    55 2 I N CLNR TL 72 . 0992 5 . 514 1 21 . 2847 , 00000

    1 7 Z IN C CONC 2 2 . 7 1 1 2 2 . 4 7 0 0 7 4 . 5 1 1 0 . 0 3 98 0

    TABLE

    4 .

    P E R CE N T S O L I D S A ND S P E C I F I C G R A V I T I E S

    METSIII FLOTPTION EIPIIPLE

    LEPD ZINC FLOTATION ClRCUll

    4 ta tl 9o b 9 ~ 2 6

    SPECIFIC SRPVl l lES

    YO. STRE M PC8 58- 51 SO-L1 00-1 C

    .--.---......---.--.----.-.---...-----.-,--

    I

    F LO T F EE D 50 . 00 00 2 . 82152 1 . 00000 1 .24011

    2

    REPBENT8 ,0000 ,0000 0 1.000 00 1.00000

    5 PO R8YR FD 29.91 40 2.021 52 1.00 000 1.21908

    4 P I SC VN S FO 29 . 0014 2 . 751 41 1 . 00000 1 . 22154

    5 LNDR IPTER ,0 00 0 ,0 000 0 1.0 000 0 L.OOOOO

    P 8 R 0H R CN 50 . 1811 5 . 17102 I . 00000 1 . 1 2W I

    7 PO CLNR TL l l . l 1 1 2 4 . 1 0 0 0 1 1 . 0 0 0 0 0 1 . 1 5 0 0 1

    8 LNDR YPTER .0000 ,0000 0 1.000 00 1.000 00

    9

    I

    PO C LN R CN 11. 24 10 5 . 41744 1 . 00000 1 . 34195

    I 0 2 PO CLNR TL l l . 19 14 4 . 55210 1 . 0000 0 1 . 20042

    I 1 L ND R I P TE R , 0000 . 00000 1 . 00000 1 . 00000

    12 LEAD CONC 11.11 21 1.941 92 1.00000 1.1111 1

    I

    LNDR YPTER ,00 00 ,000 00 1.000 00 1.000 00

    I 4 PO O CVN S CN 21 . 7210 1 . 19111 1 . 000 00 1 . 20929

    I

    C I CL P ES O 15 . 4408 1 . 49111 1 . 00000 1 .14014

    I 4 C IC L OF LO N 21 . 7240 5 . 49113 1 . 00000 1 . 20929

    I 1 C I CL U F L O l 10 . 0000 1 . 49511 1 . 00000 2 .04329

    I 0 P O RONO OSCY 10 . 0 000 1 . 4917 1 1 . 00000 2 . 04129

    I 9 PO OCVN8 IL 29.22 50 2.71404 1.000 00 1.12110

    20 R E P IE N 18 , 0000 . 00000 1 . 00000 1 . 00000

    21 1N R SY R RO 29. 1599 2 . 71404 1 . 00000 1 . 22101

    2 2 1N RSHR TL 2 7 . 0 1 2 1 2 . 41 2 1 4 1 . 0 0 0 0 0 1 . 2 1 0 1 1

    21 LN OR I A T ER . 0000 . 00000 1 . 00000 1 . 00000

    2 4 1N )BUR CN 5 l . 1 2 0 1 4 . 2 0 0 6 1 1 . 0 0 0 0 0 1 .1 2 1 4 3

    25 IN BCVNS TL 21.11 12 2.41 409 1. 0000 0 1.20112

    24 LNDR NPTER ,0000 ,0000 0 1.000 00 1.000 00

    27 I N SCVNO CN 20. 4512 2 . 90420 1 . 00000 1 . 22949

    20 CICL FEEO 42.40 09 1.141 15 1.00000 1.41419

    29 C I CL U F L O I 10 . 00 00 1 . 14015 1 . 00000 2 . 01011

    50 IN RONO OSCH 70.00 00 1 .74 071 1 .0000 0 2.01 011

    11 C I C L O F L Ol 50 . 4997 3 . 74015 1 . 00000 1 . 29122

    52 I N C LN R TL 21 . 7100 1 . 90140 1 . 00000 1 . 21174

    55 L NOR I P TE R , 0000 , 00000 1 . 00000 1 . 00000

    14 I N C LN R CN 27. 7102 3 . 41109 1 . 00000 1 . 24404

    55 2 I N CL NR I L 20 . 135 2 2 . 9217 2 1 . 00000 1 . 11792

    31 LIIDR YPTER ,0000 ,0000 0 1.000 00 1.000 00

    17 ZINC CONC 50.1R 01 1.661 99 l .OOOOO 1.20111

    TABLE 5 ELEMENTAL ASSAYS

    IIETSIM FLOlAllOl EXAMPLE

    LEPU ZINC FLOTPTION ClRCUll

    4 I 5 / 1 9 0 4 9 x 2 0

    ELEMENTPL PSSPIS

    SOLID PHASE

    YO. STREPM 5 IN

    ... ------.........--.--.--~----.

    1 FLOT FEED 4.907 4 0.47 42

    5 PO R 8H R F D 4 . 9014 0 . 414 2

    4 PO OCVN8 FO 4.241 9 0.1 110

    4 PO R6YR CN 1 9 .9 0 55 2 4 . 0 21 l

    7 PO C LN R I L 21 . 4424 14 . 7409

    9

    I

    P I C LN R CN 20. 1915 24 . 1142

    10 2 PL CLNR 1L 25.41 01 19.12 90

    I 2 LEPD CONC 19.40 00 20.44 52

    I 4 P L S CV NB CN 11. 1413 11 . 4190

    I 5 C I C L F EE O 11 . 14 I 1 11 . 4190

    I

    C I C L O FL OU 11 . 14 l 1 11 . 4190

    17 C I C L U F L O I 11 . 14 11 15 . 4190

    15 PU RENO DSCH 11.1411 11,4190

    I9 PO SCVN6 TL 4.034 0 7.9 111

    21 IN R8YR no 4.054 8 7.951 1

    2 2 1N RBYR TL 1 . 4 17 7 2 . 7 2 0 5 , 0 0 1 4 2 , 4 4 5 7

    28 I N R HH R CN 21 . 79 10 14 . 21 13 , 02310 23 . 9113

    25 IN SCVNS TL ,02 22 1.4 701 .0 0110 ,4494

    1 7 I N SCVN O CN 9 . 0 1 9 1 1 0 . 1 1 1 4 . 0 0 4 1 1 . E bb 0

    28 C I CL F EE D l O . 0004 10 . 9117 . 01900 10. 1944

    29 C l CL U F L U l 10 . 0004 10 . 9111 . 01900 10 .4944

    50 IN RENO OSCH lO.000 4 10.9 771 .0190 0 10.4 944

    51 CICL OFLON 18.0004 10.977 7 .0191 0 lB.494 4

    52

    I

    I N C LNR TL 9 . 7 5 1 0 1 . 4 5 3 0 . 0 0 1 4 0 1 0 . 1 1 1 0

    14

    I

    I N C LN R C I I 10 . 1400 40 . 2570 , 0240 1 2 . 1900

    55 2 I N C LN R r L 0 . 1717 11 . 4242 , 00000 1 . 1010

    57

    Z I N C

    L O N C

    ~ 4 . 8 0 s ~s . v s s o . o a r a s

    Z I I V I

  • 8/11/2019 (1987)Bartlett, John T. _Process Simulation and Optimization Using Metsim

    10/12

    MINERAL RESOURCE MANAGEMENT

    Y

    PERSONAL COMPUTER

    T AB L E 7 STREAM FLOWRATES

    OESi[iU F LOU R R T LL

    N O ST R EAh

    T T M E ST / H - S 5T H - R C T . H - T ; P i