15.cutter location data optimization in 5 axis surface machining

10
Cutter-location data optimization machining in 5-axis surface B K Choi, J W Park and C S Jun* A method of generating 'optimal' cutter-location data for 5-axis NC contour milling from given cutter-contact data is presented in the paper. The cutter-location data- optimization problem is formulated as a 2D constrained minimization problem. The cutter orientation angles consisting of the tilt angle ~ a n d yaw angle//are used as decision variables. An analytic expression for approximate cusp heights is derived as a function of ~,~ (for a given path interval) to be used as a measure of optimality. The proposed optimization scheme has been successfully applied in the 5-ax is ac e milling of large marine propellers. 5-axis NC machining, cutter-location data generation, cusp heights 5-axis contour milling is widely used in the machining of turbine blades 1, impellers 2 and marine propellers 3. The m achinin g of large sculptured surfaces on 5-axis NC machines is usually based on face milling 4, while end mills are used for 'smaller' sculptu red surfaces ~. In 5-axis contour milling, the milling cutter is tilted forwards in the direction of the feed. This technique is kno wn as Sturz milling 1 As shown in Figure 1, 5-axis contour milling in general requires four stages of information processing: Cutter contact paths are generated from the input surface data. • Cutter-location data (CL data) are obtained from the cutter-contact data, and then the CL data are converted to joint values of the 5-axis machine. • Bounded-deviation joint path planning 5 is performed, if necessary, to ensure straight-line trajectories. Finally, the resulting joint values are postprocessed t o obtain NC-codes. IE Departmen t, Korea Advanced Insti tute of Science & Technology, 373-1, Gusun g-dong , Yusong-gu, Taejo n, Korea *Gyeongsang National U niversity, Chinju, Korea Paper received: 8 Ju ne 1992. Revised: 30 Octob er 1992 A few 5-axis machining software systems 1-3 have been reported, and most of the commercial CAD/CAM systems suppo rt 5-axis machining capabilities, but very little has been published concerning 'machining efficiency'. Per- haps the two major issues (ignoring the issue of optimizing cutting conditions) in 5-axis milling are: • how to generate cutter-contact paths (or tool trajectories) to give a minimum machining time (or a maximum width of a machined strip), how to generate CL data from the given cutter-contact paths to give minimum cusp heights. The first issue is addressed in Reference 4, in which 'the possibility of reducing machinin g time by fitting the tool trajectory to the surface shape' is explored. The second issue is the subject of this paper. TERMINOLOGY AND OBJECTIVE FUNCTION In this section, some terminologies used in the paper are introduced, and the goal of CL-data optimization is informally stated. The surface of the raw stock to be machined is called the raw-stock surface, and the final smooth surface to be produced is called the part surface. A mathematical description of the part surface is called t h e surface data r(u, v). As shown in Figure 2, two stages of metal removal are usually required to produce a smooth sculptured surface. The raw stock is first machined aw ay by a series of milling operations to obtain a machined surface, and then the uncut volumes (i.e. the cusps left by the milling cutters) are removed by grinding operations to obtain the smooth part surface. A point on the part surface at which the cutter is planned to make contact is called the cutter-contact point e. A series of cutter-contact points may form a cutter-contact path. The distance between a pair of adjacent cutter-contact paths is called the path interval d. volum e 25 num ber 6 june 1993 0010-4485/93/060377-10 @ 1993 Butterworth-Heinemann Ltd 377

Upload: nalla-paiyan

Post on 03-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

7/28/2019 15.Cutter Location Data Optimization in 5 Axis Surface Machining

http://slidepdf.com/reader/full/15cutter-location-data-optimization-in-5-axis-surface-machining 1/10

C u t t e r - l o c a t i o n d a t ao p t i m i z a t i o nm a c h i n i n g

in 5 -ax is sur face

B K C h o i , J W P a r k a n d C S J u n *

A m etho d of generat ing 'opt imal ' cut ter- locat ion da ta fo r5-axis NC contour mi l l ing f rom given cut ter-contact data

is prese nted in the paper. The cu t ter- locat ion data-

op t imi za ti on prob l em i s f o rm u la t ed as a 2D cons t rained

min imi za t i on prob l em. The c u t t e r o r i e n t a t i o n a n g l e s

consisting o f the t i l t ang le ~ a n d y a w a n g l e / / a r e used as

decision variables . A n analyt ic expression fo r appro ximate

cusp heights is derived as a func t ion of ~,~ ( for a

given path in terval ) to be used as a measure of opt imal i ty.

The prop osed opt imizat ion sc hem e has been successful ly

appl ied in the 5-ax is ac e mi l l ing o f large marine propel lers .

5-axis N C machin ing, cu t ter- loca t ion da ta generat ion , cusp heigh ts

5 - a x i s c o n t o u r m i l l i n g i s w i d e l y u s e d i n t h e m a c h i n i n g

of tu rb ine b lades 1 , im pe l le rs 2 and m a r ine p rope l l e rs 3 .

T h e m a c h i n i n g o f l a r g e s c u l p t u r e d s u r f a ce s o n 5 - a x i s N C

m a c h i n e s i s u s u a l l y b a s e d o n f a c e m i l l i n g4 , whi le end

m i l l s a re used fo r ' sm a l le r ' s cu lp tu red sur faces ~ . In 5 -ax is

c o n t o u r m i l l i n g , t h e m i l l i n g c u t t e r i s t i l t e d f o r w a r d s i n

t h e d i r e c t i o n o f th e f e e d . T h i s t e c h n i q u e i s k n o w n a s S t u r z

m i l l ing 1

A s s h o w n i n F i g u r e 1 , 5 - ax i s c o n t o u r m i l l in g i n g e n e r a l

r e q u i r es f o u r s t a g e s o f i n f o r m a t i o n p r o c e s s i n g :

• Cut ter contact path s a r e g e n e r a t e d f r o m t h e i n p u ts u r f ac e d a t a .

• Cut ter- locat ion data ( C L d a t a ) a r e o b t a i n e d f r o m t h e

c u t t e r - c o n t a c t d a t a , a n d t h e n t h e C L d a t a a r e

c o n v e r t e d t o jo in t values o f t h e 5 - a x is m a c h i n e .

• Bounded-deviat ion jo int p ath planning 5 i s p e r f o r m e d ,

i f neces sa ry , to en sure s t ra ig h t - l ine t ra jec to r ie s .

• F i n a l l y , t h e r e s u l t i n g j o i n t v a l u e s a r e pos tprocessed to

o b t a i n N C - c o d e s .

IE Departmen t, Korea Advanced Institute of Science & Technology,373-1, Gusun g-dong , Yusong-gu, Taejo n, Korea*Gyeongsang National U niversity,Chinju, Korea

Paper received: 8 Ju ne 1992. Revised: 30 Octob er 1992

A few 5-ax i s m ach in in g sof tw are sys tem s 1-3 have been

r e p o r t e d , a n d m o s t o f t h e c o m m e r c i a l C A D /C A M s y s t e m s

s u p p o r t 5 - ax i s m a c h i n i n g c a p a b i l it i e s , b u t v e r y l i tt l e h a s

b e e n p u b l i s h e d c o n c e r n i n g ' m a c h i n i n g e f f ic i e n cy ' . P e r -

h a p s t h e t w o m a j o r i s s u e s ( i g n o r i n g t h e i s s u e o f

o p t i m i z i n g c u t t i n g c o n d i t i o n s ) i n 5 - ax i s m i ll i n g a r e :

• h o w t o g e n e r a t e c u t t e r - c o n t a c t p a t h s ( o r t o o l

t r a j e c t o r i e s ) t o g i v e a m i n i m u m m a c h i n i n g t i m e ( o r

a m a x i m u m w i d t h o f a m a c h i n e d s t ri p ) ,

• h o w t o g e n e r a t e C L d a t a f r o m th e g iv e n c u t t e r - c o n t a c t

p a t h s t o g i v e m i n i m u m c u s p h e i g h t s .

The f i r s t i s sue i s addres sed in Refe rence 4 , in which ' the

p o s s i b i li t y o f r e d u c i n g m a c h i n i n g t i m e b y f i t ti n g t h e t o o lt ra jec to ry to the sur face shape ' i s exp lored . The s econd

is sue is the sub jec t o f th i s pape r .

T E R M I N O L O G Y A N D O B J E C T IV EF U N C T I O N

I n t h i s s e c t io n , s o m e t e r m i n o l o g i e s u s e d i n t h e p a p e r a r e

i n t r o d u c e d , a n d t h e g o a l o f C L - d a t a o p t i m i z a t i o n is

i n f o r m a l l y s t at e d . T h e s u r f ac e o f t h e r a w s t o c k t o b e

m a c h i n e d i s c a l l e d t h e raw-s tock sur face , a n d t h e f i n a l

s m o o t h s u r f a c e t o b e p r o d u c e d i s c a l le d t h e par t surface.

A m a t h e m a t i c a l d e s c r i p t i o n o f t h e p a r t s u r f ac e i s c a l le dth e surface data r ( u , v ) .

A s s h o w n i n F i g u r e 2 , t w o s t a g e s o f m e t a l r e m o v a l a r e

u s u a l l y r e q u i r e d t o p r o d u c e a s m o o t h s c u l p t u r e d s u r f a ce .

The raw s to ck i s f i r s t m a chin ed aw ay by a s e r i e s o f m i l l ing

o p e r a t i o n s t o o b t a i n a mach ined sur face , a n d t h e n t h e

uncu t vo lum es ( i . e . the cusps l e f t by the m i l l ing cu t t e rs )

a r e r e m o v e d b y g r i n d i n g o p e ra t i o n s t o o b t a i n t h e s m o o t h

p a r t s u r f a c e . A p o i n t o n t h e p a r t s u r f a c e a t w h i c h t h e

c u t t e r i s p l a n n e d t o m a k e c o n t a c t i s c a l l e d t h e

cut ter-contact point e . A ser ie s o f cu t t e r -co n tac t po in t s

m a y f o r m a cut ter-contact path . T h e d i s t a n c e b e t w e e n a

p a i r o f a d j a c e n t c u t t e r - c o n t a c t p a t h s i s c a l le d t h e pa th

interval d.

v o lu m e 2 5 n u m b e r 6 ju n e 1 9 9 3 0 0 1 0 -4 4 8 5 /9 3 /0 6 0 3 7 7 -1 0 @ 1 9 9 3 Bu t te rwo r th -He in e ma n n L td 3 7 7

7/28/2019 15.Cutter Location Data Optimization in 5 Axis Surface Machining

http://slidepdf.com/reader/full/15cutter-location-data-optimization-in-5-axis-surface-machining 2/10

B K Cho i , J W Park and C S Jun

I

Cu tter Co n tact Pa th G en era t i on

C L - D a t a O p t i m i z a t i o n

• C C - D a t a t o C L - D a t a C o n v e r s i o n• C L - D a t a t o J o i n t V a l u e C o n v e r s i o n

B o u n d e d D e v i a t i o n J o i n t P a t h P l a n n i n g

I

I P o s t - P r o c e s s i n g [

F i g u r e 1. I n f o r m a t i o n p r o c e s s i n g .f o r 5 - a x i s m a c h i n i n g

T h e f a c e - m i l l i n g c u t t e r s h o w n i n F i g u r e 3 is m a k i n g a

p o i n t c o n t a c t w i t h t h e p a r t s u r f a c e r ( u , t ~ ) a t a

c u t t e r - c o n t a c t p o i n t e . T h e c u t t e r h a s t w o d e g r e e s o f

f r e e d o m , w h i c h h a v e t o b e f i x e d t o d e t e r m i n e a u n i q u e

c u t t e r l o c a t i o n . I t i s c o n v e n i e n t t o d e f i n e a n o r t h o g o n a l

c o o r d i n a t e f r a m e a t c . T h e u n i t v e c t o r i n t h e d i r e c t i o n

o f t h e c u t t e r - f e e d m o t i o n i s c a ll e d a c u t t e r - f e e d v e c t o r f ,

a n d a u n i t t a n g e n t v e c t o r p e r p e n d i c u l a r t o f i s c a l l e d as u r f a c e - t a n g e n t v e c t o r t . T h e n , a u n i t n o r m a l v e c t o r n is

d e f in ed a s n = f x t . T h u s , t h e t h r ee u n i t v ec to r s f , t , n

a n d t h e p o s i t i o n c d e f in e a n o r t h o g o n a l c o o r d i n a t e f r a m e

H = ( f , t , n , e ) .

T h e c u t t e r l o c a t i o n i n F i g u r e 3 i s c a l l e d a z e r o l o c a t i o n

i n w h i c h t h e b o t t o m o f t h e f a c e - m i l l i n g c u t t e r i s s e a t e d

o n t h e f t p l a n e m a k i n g a p o i n t c o n t a c t w i t h t h e t n

p l a n e a t e . N o w , t h e s h a n k o f t h e c u t t e r i s ti l te d t o t h e

d i r e c t i o n o f f ( i. e . r o t a t e d a r o u n d t ) w h i l e m a i n t a i n i n g

t h e p o i n t c o n t a c t a t e , a s s h o w n i n F i g u r e 4 a . D e p i c t e d

i n F i g u r e 4 a r e t h r e e o r t h o g o n a l v i e w s o f t h e c u t t e r ( i. e .

t h e f a c e o f th e c u t t e r v i e w e d f r o m n a n d f , a n d t h e s i d e

o f t h e c u t t e r v i e w e d f r o m t ) . T h e r o t a t i o n a n g l e s h o w n

i n F i g u r e 4 a i s k n o w n a s t h e S t u r z a n g l e I , b u t w e c a l l it

t h e t i l t a n g l e ~ .

I f t h e c u t t e r i n a z e r o l o c a t i o n i s r o t a t e d a r o u n d t h e

n o r m a l v e c t o r n , w h i l e s t i l l m a i n t a i n i n g t h e p o i n t c o n t a c t

a t e , t h e r e s u l t i n g C u t t e r l o c a t i o n b e c o m e s t h e o n e s h o w n

i n F i g u r e 4 b . T h i s s e c o n d r o t a t i o n a n g l e i s c a l l e d t h e y a w

a n g l e [ L T h e s e t w o a n g l e s c o m p l e t e l y d e f i n e t h e

o r i e n t a t i o n o f t h e f a c e - m i l l i n g c u t te r , a n d s o t h e y

c o n s t i t u t e t h e c u t t e r o r i e n t a t i o n 0 = (~ , [ t ) . F i g u r e 4 c

s h o w s t h e t h r e e o r t h o g o n a l v i e w s o f t h e c u t t e r w i t h b o t h

R a w s t o c k s u r f a c e

M a c h i n e d s u r f a c e

a b

F i g u r e 2 . M e t a l r e m o v a l i n s c u l p t u r e d - s u r f a c e m a c h i n i n g ; ( a ) m i l l i n g , ( b ) g r i n d i n g

f

n

~ i : i ~ i i i i i i l ] i ! i i i i ! ] ! ! ! i l i l ] i ! ] ~ ] ! i ] ! ! ! ! i ! ] ] ~

F i g u r e 3. C u t t e r l o c a t io n a n d c o o r d i n a t e f r a m e ( f , t , n , c )

f

l ,378 com pute r -a ide d des ign

7/28/2019 15.Cutter Location Data Optimization in 5 Axis Surface Machining

http://slidepdf.com/reader/full/15cutter-location-data-optimization-in-5-axis-surface-machining 3/10

Cutter- loca t ion da ta opt imizat ion in 5-ax is surface mach in ing

t

t

b

n I oi i i i i ~ i i i i i i i i i i i i i i ~ i i i i i i i i i i i i l _ .

t

f

C d

c t

F i g u r e 4. Cu tter -or ien tati on an gles an d o rth og on al view s; ( a ) ct > O, f l = O, ( b ) ~ = O, f l > O, ( c ) ct > O, f l > O, ( d )

e l li pse w i t h 2D coo rd i na t e f ra me

t h e t i l t a n d y a w a n g l e s ~ , f l b e i n g p o s i t i v e ( f l c a n b e

n e g a t i v e ) . I n t h is g e n e r a l c u t t e r l o c a t i o n , th e b o t t o m f a ce

o f t h e c u t t e r a p p e a r s a s a n e l l ip s e in e a c h o f th e

o r t h o g o n a l v i e w s .

T h e e l l ip t i c v i e w o f F i g u r e 4 c p r o j e c t e d o n t h e t - n

p l a n e i s s h o w n a g a i n i n F i g u r e 4 d i n w h i c h a 2 D

c o o r d i n a t e f r a m e i s d e f i n e d su c h t h a t t h e c e n t e r p o i n t o f

t h e e l li p s e b e c o m e s t h e o r i g i n , a n d t h e v e c t o r s t a n d n ,

b e c o m e t h e x a x i s a n d y a x i s, r e s p e c t iv e l y . T h e a n g l e

b e t w e e n t h e m a j o r a x i s o f th e e l l ip s e a n d t h e x a x i s is

th e e l l ipse ro t a t i on ang l e O . T h e m i n o r r a d i u s o f t h e e l li p s e

i s d e n o t e d b y a . N o t i c e t h a t t h e m a j o r r a d i u s o f t h e e l li p s e

i s e q u a l t o t h e c u t t e r r a d i u s R .

T h e l o c a t i o n o f a c u t t e r i s c o m p l e t e l y s p e c i fi e d b y t h e

cu t t e r - cen t er pos i t i on p a n d t h e cu t t e r -ax i s vec t or u . T h e

t up l e L = ( p , u ) i s ca l l ed t he C L d a t a . T h e i n f o r m a t i o n

a t a c u t t e r - c o n t a c t p o i n t u s e d i n o b t a i n i n g C L d a t a is

c a l l e d t h e cu t t e r - con t ac t da t a , o r C C d a t a 6 . I n 3 - a x is N C

m a c h i n i n g , a c u t t e r -c o n t a c t p o i n t c a n d a s u r f a c e n o r m a l

vec t or n c o n s t i t u t e C C d a t a , b e c a u s e t h e t u p l e ( e , n ) g i v e s

u n i q u e C L d a t a f o r a g i v e n c u t t e r t y p e . H o w e v e r , i n

5 - a x i s m a c h i n i n g , t h e l o c a l c o o r d i n a t e f r a m e a t t h e

c u t t e r - c o n t a c t p o i n t is tr e a t e d a s C C d a t a . N a m e l y , t h e

t u p l e ( c , f , t , n ) b e c o m e s C C d a t a f o r 5 - a x i s m a c h i n in g .W i t h r e f e r e n c e to F i g u r e 2 , f o r a g i v e n s e t o f C C d a ta ,

t h e g o a l o f C L - d a t a o p t i m i z a t i o n i s t o p r o d u c e a n

' o p t i m a l ' machi ned sur f ace t h a t c a n b e c o n v e r t e d t o t h e

f i na l par t sur f ace a t a ' m i n i m u m ' g r i n d i n g c o s t .

C U T T E R O R I E N T A T I O N A N D C L D A T A

T h e C L d a t a L = ( p , u ) f o r g i ven C C d a t a C = (c , f , t , n)

b e c o m e s a f u n c t i o n o f th e cut ter or ienta t ion 0 = (~ , f l ) .

F o r a g i v e n c u t t e r o r i e n t a t i o n 0 = ( ~ , f l ) , i t c a n b e s h o w n

t h a t t h e c u t t e r - a x i s v e c t o r u is e x p r e s s e d a s a l i n e a r

c o m b i n a t i o n o f t h e c o o r d i n a t e - a x i s v e c t o r s f , t , n :

u = co s~ n + s i n ~ ( c os f l f + s i n f i t ) ( 1 )W h e n t h e c u t t e r - a x i s v e c t o r u i s n o t p a r a l l e l t o t h e n o r m a l

v e c t o r n , t h e cu t t e r pos i t i on p i s g i ven by

p = c + R ( u x n x u ) / l u x n l ( 2a )

w h e r e R i s t h e r a d i u s o f th e c u t t e r . I f u a n d n a r e p a r a l l e l,

t h e c u t t e r p o s i t i o n m a y b e s e t t o

p = e - R f ( 2 b )

C U S P H E I G H T S I N 5 - A X I S F A C EM I L L I N G

W i t h o u t l o s s o f g e n e r a l i t y , w e c a n s e t t h e r a d i u s o f t h ec u t t e r t o 1 (i .e . R = 1 ) . T h i s n o r m a l i z a t i o n s i m p l i fi e s o u r

d i s cu s s io n s o m e w h a t . N o t e t h a t t h e m a j o r r a d i u s o f th e

vo lume 25 num ber 6 june 1993 379

7/28/2019 15.Cutter Location Data Optimization in 5 Axis Surface Machining

http://slidepdf.com/reader/full/15cutter-location-data-optimization-in-5-axis-surface-machining 4/10

B K Choi, J W Park and C S Jun

n o r m a l i z e d e l l i ps e ( o f F i g u r e 4 d ) i s a l w a y s 1 . T h e

e q u a t i o n o f t h e n o r m a l i z e d e l l ip s e a t a g i v e n c u t t e r

o r i e n t a t i o n ( e t , f l ) i s compl e t e l y spec i f i ed by i t s m i n o r

r a d i u s a a n d t h e r o t a t i o n a n g l e O . A n e l e m e n t a r y a l g e b r a i c

m a n i p u l a t i o n g i v e s t h e f o l l o w i n g ( o b s e r v e i n F i g u r e 4 d

t h a t t h e C C p o i n t e i s o n t h e e l l i p s e , a n d t h e t a n g e n t o f

the e l l ipse a t e i s t ) :

a = s i n ~ c o s 3(3 )

0 = a t a n ( - t an ~ s in / 3 )

wher e a i s t he m i n o r r a d i u s a n d 0 i s t h e r o t a t i o n a n g l e

o f th e n o r m a l i z e d e l li p se .

A c u s p i s a n u n c u t v o l u m e l e f t i n - b e t w e e n a p a i r o f

a d j a c e n t c u t t e r p a t h s . M o r e e x a c t l y , t h e u n c u t v o l u m e is

o b t a i n e d b y s u b t r a c t in g t h e p a r t s u r f a c e r ( u , v ) f r o m t h e

m a c h i n e d s u r fa c e g e n e r a t e d b y t h e c o n t o u r m i l li n g. T h e

h e i g h t o f a c u s p is d e f i n e d as a l o c a l m a x i m u m o f t h e

t h i c k n e s s o f t h e u n c u t v o l u m e . T h u s , c u s p h e i g h t s a r e

d e p e n d e n t o n t h e l o c al g e o m e t r y o f th e p a r t s u r fa c e , a n d

a ls o o n t h e m a g n i t u d e o f t h e p a t h i n te r v a l d . C u s p h e i g h ts

f o r b a l l e n d m i l l in g a r e e a s i l y d e t e r m i n e d 6 - 1 °, b u t e x a c t

c u s p h e i g h t s f o r 5 - a x i s f a c e m i l l in g c a n o n l y b e c o m p u t e d

f r o m a n e x t e n s i v e c u t t i n g s i m u l a t i o n 7 a n d s u r f a c e

e v a l u a t i o n , w h i c h i s a v e r y t i m e - c o n s u m i n g p r o c e s s .

T h u s , w e p ro p o s e a m e t h o d o f c o m p u t i n g a p p r o x i m a t e

c u s p h e i g h t s f o r 5 - a x i s m a c h i n i n g .

A s s u m i n g t h a t t h e p a r t s u r f a c e r ( u , v ) is s m o o t h , i t is

a p p r o x i m a t e d b y i t s t a n g e n t p l a n e a t t he c u t t e r - c o n t a c t

p o i n t e . F u r t h e r , f o r g i v e n v a lu e s o f t h e c u t t e r o r i e n t a t i o n

( ~ , 3 ) a n d t h e p a t h i n t e r v a l d , t h e c u s p h e i g h t i s

a p p r o x i m a t e d f r o m t h e c o n s t r u c t i o n s h o w n i n F i g u r e 5 .

T h e i d e n t i c a l e l li p s es ( o f F i g u r e 4 d ) a d i s t a n c e d a p a r td e f i n e a c u s p a s s h o w n i n F i g u r e 5 ( t h e t i n t e d a r e a ) . T h e

a p p r o x i m a t e e r r o r i n c r ea s e s a s th e c u r v a t u r e o f t h e p a r t

s u r f a c e a c r o s s t h e c u t t e r - c o n t a c t p a t h s i n c r e a s e s . I t w o u l d

b e i n t e r e s t i n g t o e x t e n d t h e c u s p - h e i g h t c o n s t r u c t i o n t o

a c c o m m o d a t e t h e e f fe c t o f th e c u r v a t u r e . T h i s e x t e n s i o n

w il l r e d u c e t h e a p p r o x i m a t i o n e r r o r , b u t m a y h a v e l it tl e

e f fe c t o n t h e C L - d a t a o p t i m i z a t i o n p r o b l e m .

I n F i g u r e 5 a , t h e t w o ' l o w e r - h a l f ' e l l i p s e s ( s h o w n b y

t h e s o l i d l i n e s ) y i e l d a n i n t e r s e c t i o n p o i n t , w h i c h m e a n s

t h a t t h e c u s p i s f o r m e d b y t h e f a c e o f th e c u t t e r a l o n e .

W h e n t h e p a t h i n t e r v a l d e x c e e d s a c e r t a i n v a l u e , t h e

c u s p i s f o r m e d b y t h e f a c e a s w e ll a s t h e s i d e o f t h e c u t t e r ,

a s i n t h e c a s e s h o w n i n F i g u r e 5 b . T h e c r i t i c a l v a l u e d c

o f t h e p a t h i n t e r v a l s e p a r a t i n g t h e s e t w o c a s e s is f o u n d

t o b e ( s e e th e A p p e n d i x )

d c = ( 2 / c o s 0 ) / ( l + ( t a n 0 / a ) 2 1 14)

w h e r e 0 a n d a a r e a s g i v e n in E q u a t i o n 3 . F u r t h e r , i f d

e x c e e d s 2 / c o s 0 , t h e c u s p h e i g h t i s u n d e f i n e d ( t h e c u s p

h e i g h t i n th i s c a se b e c o m e s t h e d i s t a n c e b e t w e e n t h e p a r t

s u r f a c e a n d t h e r a w - s t o c k s u r f a c e ) . A s s h o w n i n t h e

A p p e n d i x , t h e c u s p h e i g h t H s h o w n i n F i g u r e 5 i s g i v e n b y

H ( ~ , f l l d ) = t s i n ~ - x s i n O + y c o s O O < d < ~ d c

~ s i n 7 sin O + ( n - a ( 2m - m2 ) 1,'2)

d ~ < d < 2 / c o s O ( 5 )

wh er e 0 < ~ < 9 0 , - 9 0 < f l < 90 , d c i s t he c r i t i ca l va l ue

o f d g iv e n b y E q u a t i o n 4 , x = ( m + ( n 2 ( 4 - m 2 - n 2 ) /

(m 2 + n 2 ) ) 1 / 2 ) / 2 , y = - a ( 1 - - X2) 1 /2 , m = dc os 0 , n =

d sin O / a , a n d a , 0 a r e a s g i v e n b y E q u a t i o n 3 . W h e n t h e

y a w a n g l e i s 0 , t h e a b o v e e q u a t i o n r e d u c e s t o t h e

c u s p - h e i g h t f o r m u l a p r e s e n t e d i n R e f e r e n c e 1 0 , n a m e l y

H ( e , 0 1 d ) = s i n 2 ( 1 - ( 1 - ( d / 2 ) 2 ) 1/2 )

F o r a g i v e n p a t h i n t e r v a l d, th e c u s p - h e i g h t e q u a t i o n o f

E q u a t i o n 5 is a s m o o t h n o n n e g a t i v e f u n c t i o n d e f i n e d

o v e r t h e e n t i r e r e g i o n o f t h e c u t t e r o r i e n t a t i o n s p a c e ,

0 < ~ < 90 a n d - 9 0 < / 3 < 9 0 . It c a n b e s h o w n t h a t

E q u a t i o n 5 is a n e v e n f u n c t i o n o f ft. N a m e l y , w e h a v e

H ( ~ , f l l d ) = H ( ~ , - f l l d ) . I n p r a c t i c e , t h e r a n g e o f th e

t il t a n g l e ~ is l im i t e d f u r t h e r ( t o p e r h a p s a t m o s t 4 5 ° )

w h e n a f a c e - m i l li n g c u t t e r is u s e d . I n t h e c a s e o f

m a r i n e - p r o p e l l e r m a c h i n i n g 3 , f o r e x a m p l e , ~ e [ 2 , 1 5 ] .

C o n t o u r m a p s o f t h e c u s p - h e i g h t f u n c t i o n f o r d = 0 . 1 , 0 . 5 ,

a n d 1 .0 a r e s h o w n i n F i g u r e 6 o v e r th e r a n g e o f ~ e [ 0 , 4 5 ]

a n d f i e [ 0 , 8 0 ] .

I n a l l t h e c o n t o u r m a p s , t h e c u s p h e i g h t a t t h e

b o t to m - l e f t c o r n e r is z e r o, i.e . H ( 0 , 0 1 d ) = 0 . T h e

m a x i m u m v a l u e s o f t h e c u s p h e i g h ts a r e a t t h e t o p - r i g h t

c o r n e r s :

H ( 4 5 , 80 ] 0.1 ) = 0 .0237

H ( 4 5 , 8 0 [ 0 . 5 ) = 0 . 1 89 0

H ( 4 5 , 8 0 1 1 . 0 ) = 0 . 4 2 1 8

A c o n t o u r l in e c o r r e s p o n d s t o a c u s p h e i g h t o f a b o u t

0 .0012 f o r d = 0 .1 , 0 .0095 f o r d = 0 .5 , and 0 .0211 f o r

d = 1 .0 . O b s e r v e i n F i g u r e 6 t h a t t h e c u s p h e i g h t s a r e

i n c r e a s i n g f u n c t i o n s o f ~ fo r a f i x ed v a l u e o f 3 ( a n d o f 3

f o r a f ix e d v a l u e o f ~ ) in t h e ' p r a c t i c a l ' r a n g e o f th e c u t t e r

o r i e n t a t i o n .

: : i ! : ":i (

c

Figure 5. C o n s t r u c t i o n o f c u s p - h e i g h t a p p r o x i m a t i o n

: : : P "

' k c c '

b

380 computer-aided design

7/28/2019 15.Cutter Location Data Optimization in 5 Axis Surface Machining

http://slidepdf.com/reader/full/15cutter-location-data-optimization-in-5-axis-surface-machining 5/10

Cut te r - loca t ion da ta op t im iza t ion in 5 -ax is su r face mach in ing

a b c

F i g u r e 6 . Con t our ma p o f cusp-he i gh t f un c t i o n; ( a ) d = 0 .1 , ( b ) d = 0 .5 , ( c ) d = 1 .0

Figure 7. I n s t a n c e s o f 9 o u g i n 9

C O N S T R A I N T S O N C U T T E RO R I E N T A T I O N

A 5 - a x i s N C m a c h i n e h a s a t l e a s t t w o revo l u t e j o i n t s ( o r

a t m o s t t h r e e p r i s m a t i c j o i n t s ) . M a n y o f t h e ' s ta n d a r d '

5 - a x is m a c h i n e s h a v e a l i n k a g e s t r u c t u r e o f t h e

P - - P - - P - - R - - R t yp e , w h e re R a n d P d e n o te revolute

a n d p r i s m a t i c j o i n t s r e spec t i ve l y . A ve r t i ca l 5 - ax i s

m a c h i n i n g c e n t e r m a n u f a c t u r e d b y C i n c i n n a t i M i l a c r o n

( w i th a 9 5 0 - M C c o n t r o l l e r ) is a n e x a m p l e . T h e T o s h i b a 1

m a c h i n e u s e d f o r m a r i n e - p r o p e l l e r m a c h i n i n g i s o f th e

R - - P - - R - - P - - R t y p e, w h il e t h e m a c h i n e u s e d f o r

i m p e ll er m a c h i n i n g 2 is o f t h e R - - R - - P - - P - - P t y p e.

I n a l l o f t h e 5 - a x i s m a c h i n e s , t h e c u t t e r o r i e n t a t i o n

( ~ , f l ) is s e v e re l y c o n s t r a i n e d b y t h e ( r e v o l u t e ) j o i n t

l i m i ts . T h e t w o r e v o l u t e j o i n t s o f t h e C i n c i n n a t i M i l a c r o n

m a c h i n e h a v e a j o i n t r a n g e o f _ + 25 , a n d o n e o f t h er e v o l u t e j o i n t s o f t h e T o s h i b a m a c h i n e h a s a r a n g e o f

_ + 21 .6 ° . W i t h p a r t i c u l a r g i v e n C C d a t a , a c o n s i d e r a b l e

p o r t i o n o f t h e ~ , f l s p a c e w o u l d t u r n o u t t o b e infeasible ,

o w i n g t o t h e j o i n t l imi t over .

T h e s e c o n d c o n s t r a i n t o n t h e ~ , f l s p a c e c o m e s f r o m

9ougi n9 ( m e a n i n g t h a t t h e c u t t e r o v e r c u t s t h e p a r ts u r f a c e ) . I n s t a n c e s o f 9 o u g i n 9 a r e s h o w n i n F i g u r e 7 . A

c u t t e r o r i e n t a t i o n t h a t r e s u l t s i n g o u g i n g b e c o m e s

i n f e as i b le . T h e t h i r d s o u r c e o f i n f e a s ib l e c u t t e r o r i e n t a t i o n

c o m e s f r o m ' c o l l i s i o n s ' b e t w e e n t h e m a c h i n e s t r u c t u r e

a n d t h e w o r k p i e c e ( a n d b e t w e e n d i f fe r e n t p a r t s o f t h e

m a c h i n e s t r u c t u re ).

C L - D A T A O P T I M I Z A T I O N

S i n c e u n i q u e C L d a t a L = ( p , u ) is o b t a i n e d o n c e t h e

cut ter o r ientat ion 0 = (ct , f l ) i s f ixed, C L - d a t a o p ti m & a -

tion i s e q u i v a l e n t t o f i n d i n g a n o p t i m a l ( f e a s i b l e ) v a l u eof O = ( ct , f l ) f o r eac h se t o f C C d a t a C = (c , f , t , n) . In

t h i s p a p e r , t h e c u s p h e i g h t g i v e n b y E q u a t i o n 5 i s u s e d

vo lume 25 num ber 6 june 1993 381

7/28/2019 15.Cutter Location Data Optimization in 5 Axis Surface Machining

http://slidepdf.com/reader/full/15cutter-location-data-optimization-in-5-axis-surface-machining 6/10

B K Choi, J W Park and C S Jun

a s a m e a s u r e o f o p t i m a l i t y ( a s s u m i n g t h a t t h e grinding

cost i s p r o p o r t i o n a l t o t h e c u s p h e i g h t ) . T h u s , t h e

C L - d a t a o p t i m i z a t i o n p r o b l e m m a y b e f o r m u l a t e d a s

f o l l ows :

m i n i m i z e H ( a, fl Jd ) ( 6 )

a s g i v e n b y E q u a t i o n 5 , s u b j e c t t o ( a ) n o g o u g i n g , ( b )

n o j o i n t l i m i t o v e r , a n d ( c ) n o c o l l is i o n s .

T h e f o r m u l a t i o n i n E x p r e s s i o n 6 i s a 2 D c o n s t r a i n e d

o p t i m i z a t i o n p r o b l e m . T h e o b j e c ti v e f u n c t i o n is m o n o -

t o n i c ( s e e F i g u r e 6 ) , a n d , a s a r e s u lt , a n o p t i m a l s o l u t i o n

l ie s o n t h e b o u n d a r y o f a fe a si b le r e g io n . T h e r e m a y b e

m o r e t h a n o n e f e a s i b l e r e g i o n o r n o f e a s i b l e r e g i o n a t

a l l . S i nce t he f eas i b l e r eg i on canno t be i den t i f i ed i n

a d v a n c e , s o m e f o r m o f se a r c h t e c h n i q u e h a s t o b e u s e d

t o s o l v e E x p r e s s i o n 6 . A d e s c r i p t i o n o f t h e s e a r c h p r o b l e m

i s g i ven i n F i gur e 8 . T he f i r s t s t ep i s t o i n i t i a l i ze t he

orientat ion 0 = (~ , f i ) f o r t h e c u r r e n t C C d a t a C i =

( e , f , t , n ) . I f t h e C C d a t a c o r r e s p o n d s t o t h e f i r s t p o i n t

o f a t o o l p a t h , t h e orientat ion angles a r e s e t t o ze r o ( i . e .= / 3 = 0 ) . O t h e r w i s e , t h e p r e v i o u s s o l u t i o n ( 7 , / 3 a t

C~_ 1) is used as an ini t ia l va lue.

T h e m a i n l o o p o f t h e s e a r ch p r o c e d u r e h a s t h r e e ' c h e c k '

r o u t i n e s , a n d t w o ' c o m p u t a t i o n ' r o u t i n e s . T h e t h r e e

c h e c k r o u t in e s a r e ( a ) t h e c u t t e r - g o u g i n g c h e c k r o u t i n e ,

( b ) t h e j o i n t l i m i t - o v e r c h e c k r o u t i n e , a n d ( c ) t h e c o l l i si o n

c h e c k r o u ti n e . T h e t w o c o m p u t a t i o n r o u t i n e s a re ( a ) t h e

C L - d a t a c o m p u t a t i o n r o u t i n e ( E q u a t i o n s 1 a n d 2 ) , a n d

( b ) t h e j o i n t - v a l u e c o m p u t a t i o n r o u t i n e ( i n v e r se

k i n e m a t i c s o l u t i o n ).

A t th e b e g i n n i n g o f t h e m a i n l o o p , t h e i n p u t C C d a t a

C i i s c o n v e r t e d t o C L d a t a L~ = ( p , u ) f o r t h e c u r r e n t

orientat ion value 0 = ( ~ , / 3 ) . T he nex t s t ep i s t o check

w h e t h e r t h e m i l l i n g c u t t e r a t L ~ gouges t h e p a r t s u r f a c e .

W h e n n o g o u g i n g i s d e t e c t e d , L ~ i s c o n v e r t e d t o a

jo in t - va lue vec tor J~ by so l v i ng t he inver se k inemat ic

equat ions o f t h e 5 - a x is m a c h i n e . I f a l l t h e c o m p o n e n t s o f

J~ a r e w i t h i n t he i r jo in t l imi t s ( i . e . t he l i mi t - ove r check

is s a t i s f a c t o r y ) , th e n t h e 3 D l o c a t i o n s o f t h e m a c h i n e

c o m p o n e n t s ( u s u a l ly s p in d l e m o t o r s ) a r e c o m p a r e d w i th

t h e w o r k p i e c e f o r a p o s s i b l e c o l l i s i o n .

T o s p e e d u p t h e 9ouging- check a n d coll is ion-check

o p e r a t i o n s , t h e p a r t s u r f a c e r ( u . v ) c a n b e s t o r e d i n anonparametr ic Z map f o r m 7 . F o r a gouging check , t h e Z

v a l u e s o f a s e t o f p o i n t s s a m p l e d f r o m t h e b o t t o m f a c e

o f t h e c u t te r a r e c o m p a r e d w i t h t h e Z m a p o f th e p a r t

s u r f a c e . T h i s a p p r o a c h w a s a p p l i e d i n t h e m a r i n e -

p r o p e l l e r m a c h i n i n g , a n d f o u n d t o b e w o r k i n g f in e .

I f a l l t h e t h r e e ' c h e c k ' r o u t i n e s a r e s a t i s f a c t o r y , w e h a v e

a ' f e a s i b l e ' s o l u t i o n . O t h e r w i s e , t h e c u r r e n t o r i e n t a t i o n

O = ( ~ , f l ) i s an ' i n f eas i b l e ' so l u t i on . O nce a f eas i b l e

s o l u t i o n i s o b t a i n e d , a s y s t e m a t i c s e a r c h i s m a d e ( w i t h i n

t h e f e a s i b l e r e g i o n ) u n t i l n o m o r e i m p r o v e m e n t i s

o b s e r v e d . A t t h i s s t a g e , o n e m a y u s e t h e s o - c a l l e d

f eas ib le -d i rec t ion me th od 12. O n t h e o t h e r h a n d , w h e n t h e

c u r r e n t s o l u t i o n i s a n i n f e a s i b l e o n e , a n e w c u t t e ro r i e n t a t i o n i s t r i e d u n t i l a f e a s i b l e s o l u t i o n i s o b t a i n e d

o r t h e s e a r c h s p a c e i s e x h a u s t e d ( i n t h e l a t t e r c a s e, t h e r e

i s n o f e a s i b l e c u t t e r l o c a t i o n f o r t h e i n p u t C C d a t a C ~ ) .

H e r e , a 2 D grid search m a y b e t h e o n l y c h o i c e i f n o

k n o w l e d g e a b o u t t h e f e a s i b l e r e g i o n i s a v a i l a b l e .

T h e a b o v e s e a r c h p r o c e d u r e i s v e r y t i m e - c o n s u m i n g

i n g e n e r a l b e c a u s e t h e m a i n l o o p n e e d s a c o n s i d e r a b l e

a m o u n t o f c o m p u t a t i o n ( a n d t h e r e a re u s u a ll y th o u s a n d s

o f p i e c es o f C C d a t a ) . I n p a r t i c u l a r , t h e ' g o u g i n g - c h e c k '

a n d t h e ' c o l l i s i o n - c h e c k ' r o u t i n e s h a v e t o d e a l w i t h

v o l u m e - i n t e r s e c t io n p r o b l e m s , a n d t h e i n v e r se k i n e m a t i c

s o l u t i o n m a y n e e d n u m e r i c a l , ~ te ra ti on s. I f w e h a v e s o m e

i n f o r m a t i o n a b o u t t h e s h a p e o f t h e f ea s i b le r e g io n , a m o r e

e f f ic i e n t s e a r c h m e t h o d c a n b e d e v i s e d , a s w i ll b e s e e n i n

t h e n e x t s e c t i o n .

] T r y n e w o t,1 3 )]

ir

I Initialize =(a,l~) I

I Comp,,teCL-OataL=~p,,,) ]

( Ooo,in,C h k

I C o m p u t e o i n tV a lu e s J Il

N o O ~

[ T r y n e w ( o t,[ 3 )]

N o

F i g u r e 8 . Search procedure for CL - da ta o p t imiza t ion

5 - A X I S F A C E M I L L I N G O F M A R I N EP R O P E L L E R S

T h e a u t h o r s h a v e d e v e l o p e d a d e d i c a t e d p ie c e o f

C aM s o f t w a r e 3 f o r t h e 5 - a x is m a c h i n i n g o f l a r g e

m a r i n e p r o p e l l e r s ( u p t o 1 0 m i n d i a m e t e r a n d 6 0

t o n s i n w e i g h t ) f o r a s h i p - b u i l d i n g c o m p a n y i n

K o r e a . T h e p a r t s ( c o p p e r - a l l o y c a s t i n g ) a re m a c h i n e d

o n a d u a l - s p i n d l e 5 - a x is T o s h i b a 11 m a c h i n e . A n o v e r a l l

v i e w o f t h e m a c h i n e i s s h o w n i n F i g u r e 9 . A p a r t t o b e

m a c h i n e d i s l o a d e d o n t o t h e t ab l e w h i c h p r o v i d e s t h e C

mot ion o f th e m a c h i n e . T h e k i n e m a t i c s t r u c t u r e o f t h e

m a c h i n e i s e a s il y m o d e l e d u s in g t h e D e n a v i t - H a t e n b e r g

r e p r e s e n t a t i o n 1 3, b u t a n i t e r a ti v e n u m e r i c a l s e a r c h

is r e q u i r e d t o o b t a i n t h e i n v e r s e k i n e m a t i c s o l u t i o n 3 .

F a c e - m i l l i n g c u t t e r s o f a b o u t 2 5 c m i n d i a m e t e r a r e

u s e d f o r t h e m a c h i n i n g o f th e m a r i n e p r o p e l le r s .

T h e f a c e - m i l l i n g c u t t e r i s s h o w n i n F i g u r e 1 0 .

T h e c o m p a n y h a s b e e n p r o d u c i n g m a r i n e p r o p e l l e r s

f o r y e a r s b y u s i n g a p r o p r i e t a r y p i e c e o f C aM s o f t w a r e

f r o m a J a p a n e s e c o m p a n y o n a l ic e n s ed b a s is . C u r r e n t l y ,a c o m m e r c i a l C AD s y s t e m i s b e i n g u s e d i n d e s i g n i n g t h e

m a r i n e p r o p e l l e r s . T h e p a r t s u r f a c e ( i . e. o n e s i d e o f th e

382 computer-aided design

7/28/2019 15.Cutter Location Data Optimization in 5 Axis Surface Machining

http://slidepdf.com/reader/full/15cutter-location-data-optimization-in-5-axis-surface-machining 7/10

Cutter- loca t ion d ata opt imizat ion in 5-ax is surface mac hin ing

R A M ( B )

F i g u r e 9 . Du a l - sp in d l e 5 -a x i s ma ch in e

Figure 10 . Fa ce-mi l l i n g cu t t er u sed i n 5 -a x& ma ch in # ~9

F igure 11 . S u r f a c e o f o n e s i d e o f b l a d e

b l a d e ) o f a t y p i c a l m a r i n e p r o p e l l e r i s d e f i n e d i n it i a l ly a s a

1 3 × 18 a r r a y o f 3 D p o i n t s ; t h e n u m b e r o f p o i n t s i n

t h e r a d i a l d i r e c t i o n ( c a l l e d t h e v d i rec t i o n ) is 18,

a n d t h a t i n t h e c i r c u l a r d i r e c t i o n (u d i rec t i o n ) is 13.

T h e 1 3 3 D p o i n t s i n t h e u d i r e c t i o n s e q u e n c e l i e o n

a c o n c e n t r i c c i r c l e . F r o m t h e i n p u t d a t a a r r a y , ach o rd - l en g th sp l i n e su r fa ce i s c o n s t r u c t e d w h i c h i s

s im i la r to the n o n u n i fo rm B- sp l i n e su r fa ce- f i t t i n g

m e t h o d i n t r o d u c e d i n R e f e r e n c e 7. A v i ew o f th e

resu l t ing com pos i t e su r face (cons i s t ing o f 12 x 17

b i c u b i c p a t c h e s ) i s s h o w n i n F i g u r e 1 1 .

I n t h e m a r i n e - p r o p e l l e r m a c h i n i n g , c u t t e r - c o n t a c t

p a t h s a r e g e n e r a t e d i n

c i r c u l a r d i r e c t i o n ) . T h e

i n t e r v a l s i n c e n t i m e t e r s

a r e a s f o l l o w s :

< 3 m d i a m e t e r b l a d e :

the u d i rec t ion ( i . e . the

' t e c h n i c a l d a t a ' f o r p a t h

( f o r a N A C A - t y p e b l a d e )

8 ( - 0 . 4 R ) ; 1 0 ( 0 . 5 - 0 . 9 R ) ; 6 ( 0 . 9 5 -1 . 0 R )

3 - 5 m d i a m e t e r b l ad e :

1 0 ( - 0 . 4 R ) ; 1 2 ( 0 . 5 - 0 . 9 R ) ; 7 ( 0 . 9 5 - 1 . 0 R )

5 - 7 m d i a m e t e r b l a d e :

1 2 ( - 0 . 4 R ) ; 1 4 ( 0 . 5 - 0 . 9 R ) ; 8 ( 0 . 9 5 - 1 . 0 R )

> 7 m d i a m e t e r b l a d e :

1 4 ( - 0 . 4 R ) ; 1 6 ( 0 . 5 - 0 . 9 R ) ; 9 (0 . 9 5 - 1 . 0 R )

F or t echn ica l reasons , the b lade sur face i s d iv ided

i n t o t h r e e r e g i o n s , a n d d i f f e r en t v al u e s o f p a t hin te rva l s a re spec i f i ed . In the above exam ple , the

t h r e e r e g i o n s a r e t h e r e g i o n w i t h i n 0 . 4 r a d i u s o f t h e

b l a d e , t h e r e g i o n b e t w e e n 0 . 5 r a d i u s a n d 0 . 9 r a d i u s ,

a n d t h e r e g i o n o v e r 0 .9 5 r a d i u s . I f c u t t e r - c o n t a c t

p a t h s a r e g e n e r a t e d a c c o r d i n g t o t h e a b o v e s p e c i f ic a t io n ,

a b o u t 2 0 o r m o r e p a t h s a r e o b t a i n e d a l o n g ' v - co n s ta n t '

i soparametric l ines .

F u r t h e r , t h e a l l o w e d r a n g e o f t h e t i l t anole is

2 - 1 5 ° , a n d t h e ya w a n g les i n th e m a c h i n i n g c o n f i g u r a t i o n

a r e a l w a y s n e g a t i v e ( t h e y a r e n o t a l l o w e d t o e x c e e d

- 8 5 °) . I n s u m m a r y , w e h a v e

2 ~ < a ~ < 1 5

-85~</~<0

d ~ 0 . 8

In th i s pa r t i cu la r case , the feas ib le reg ion fo r typ ica l

C C d a t a i s a l w a y s o f t h e s h a p e s h o w n i n F i g u r e 1 2

2 4 G 8 !o 12 t4

° i i i J J J i J i ii i i i i i i i i i i i i J l i i i i i i H i ii i i i i i i i i i i i i i i i i !| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ~

- 2 ° ~ J J ! J ~ J ~ J i ~ i i ~ J J i J i l J i i J i J i ~ J J ~ i i l J J J J J J ~ J ~ i J J ~ #

~ i i ii i iE ~ i i ilm l i lj i ii i ii i ii i ii i ii i iiH i i ii ! ! ~ ' '" ' -

- ~ ° | [ [ J i i i i i i i i i ! i i i i '

i i i i | j ! i i i | i i i i i i ~m m i i i i i i i i i ~

_oo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= : : = = ~ l l l l = = ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

- 7 0 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : . . . . . . . . . . .

= ~ = = = ~ = . = = = © . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-8 0 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

= = == = ~== == = = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F i g u r e 1 l F e a s i b l e r e g i o n f o r t y p i c a l C C - d a t a

vo lume 25 num ber 6 june 1993 383

7/28/2019 15.Cutter Location Data Optimization in 5 Axis Surface Machining

http://slidepdf.com/reader/full/15cutter-location-data-optimization-in-5-axis-surface-machining 8/10

B K Choi, J W Park and C S Jun

( w e h a v e y e t t o d e t e r m i n e t h e r e a s o n ) . F o r s o m e

C C - d a t a p o i n t s , h o w e v e r , t h e f e a s i b l e r e g i o n g r o w s

t o cov e r t he en t i r e dom ai n ( i .e . ~ e [ 2 , 15] , / 3 e [ - 85 , 0 ] )

o r s h r i n k s a n d d i s a p p e a r s ( i. e . n o f e a s ib l e s o l u t i o n e x i s ts ).

T o a v o i d a n e x p e n s i v e 2 D s e a r c h , a s m o o t h search

curve c a n b e d e f i n e d f o r t h e ~ , / 3 d o m a i n , f r o m t h e

l o w e s t c u s p - h e i g h t p o i n t ( ~ = 2 a n d /3 = 0 ) t o t h e

h ig h es t p o i n t ( ~ = 15 a n d / 3 = - 8 5 ) a s s h o w n inF i g u r e 1 3. T h e c u r v e s h o u l d p a s s t h r o u g h t h e

f eas i b l e r eg i on i f i t ex i s t s . T hus , t he s ea r ch cur v e

s h o u l d b e s e l e c te d f r o m a f a m i l y o f c u r v e s l o c a t e d

a b o v e t h e d i a g o n a l l i n e j o i n i n g t h e u p p e r - l e f t c o r n e r

(c~ = 2 , /3 = 0 ) an d t he bo t t om - r i g h t co r ne r ( ~ = 15 ,

/3 = - 8 5 ) o f t h e d o m a i n . T h e a c t u a l s h a p e o f t h e

s e a r c h c u r v e m a y b e d e t e r m i n e d b y c h a n g i n g i t s

f u l l nes s .

T h e r e q u i r e m e n t f o r t h e s e a r c h c u r v e i s m e t b y a

c o n i c - s e c t i o n c u r v e . T h u s , a r e a s o n a b l e c h o i c e fo r

t h e p a r a m e t r i c s e a r c h c u r v e r ( u ) i s a ra t i ona l

quadratic' Bb zier curv e 7 wi t h i t s t h r ee con t ro l ver t i ces

V i a t t h e c o r n e r s o f th e r e c t a n g u l a r d o m a i n , a s

s h o w n i n F i g u r e 1 4 . N a m e l y ,

V 1 = p ( 2 , O )

V 2 = q ( 1 5 , 0 )

V 3 : S(15, --8 5)

T h e f u l l nes s o f th e c u r v e i s ea s i ly c o n t r o l l e d b y

v a r y i n g t h e mi ddl e we i gh t 09 o f t h e r a t i o n a l c u r v e .

W e t r i e d d i f f e r e n t v a l u e s o f co , a n d f o u n d t h a t ~o = 1

w a s a g o o d c h o i c e ( m a k i n g i t a n o n r a t i o n a l c u r v e ) .

T h e s e a r c h p r o c e d u r e o f F i g u r e 9 h a s b e e n

i m p l e m e n t e d a s a 1 D s e a r c h a l o n g t h e s e a r c h c u r v er ( u ) o f F i g u r e 1 4. T h e 1 D ( b i n a r y ) s e a r c h w a s f o u n d

t o b e v e r y e ff ic ie n t ( c o m p a r e d w i t h t h e 2 D s c h e m e ) ,

w i t h o u t t h e r e b e i n g a n o t i c e a b l e d i f f e r e n c e i n t h e

q u a l i t y o f t h e s o l u t i o n . A t t h e e a r l y s t a g e o f th e

d e v e l o p m e n t , a v e r s io n o f th e 2 D s e a r ch s c h e m e w a s

i m p l e m e n t e d , b u t w a s f o u n d t o b e i m p r a c t i c a l ,

b e c a u s e it t o o k f o r e v e r t o c o m p u t e ' o p t i m a l ' C L

d a t a o n a 3 8 6 I B M P C ( w e d id n o t r e a c h t h e e n d

o f t h e r u n , b u t i t w a s e x p e c t e d t o t a k e m o r e t h a n

5 0 h t o p r o c es s th e d a t a f o r a m a r i n e p r o p e l l e r ) .

T h e c o m p a n y i s c u r r e n t l y u s i n g t h e CAM s o f t w a r e

- 8 5

0(2, O)

S e a r c h r e g io n

t

F i g u r e 13 . R e q u i r e m e n t o f s e a rc h c u r v e

q (15, O)

s (15, - 85)

p = V 1 q = V 2

S e a r c h r e g io n

s = V 3

F i g u r e 14 . R at i ona l B kz i e r s earch curve

r u n n i n g o n 3 8 6 I B M P C s , a n d i t t a k e s a b o u t 2 h

t o c o m p l e t e t h e j o b ( o f F i g u r e 1 ) f o r a la r g e - s iz e

m a r i n e p r o p e l le r . O f t h e 2 h , t h e C L - d a t a o p t i m i z a t i o ns t e p a l o n e i s e x p e c t e d t o t a k e a b o u t 4 0 ra i n .

A s t o t h e a c t u a l t i m e r e q u i r e d f o r a c o m p l e t e

5 - a x i s m a c h i n i n g , t h e c o m p a n y s t a t e s t h a t i t t a k e s

a b o u t 4 0 h o f N C m a c h i n i n g ( e x c l u d i n g th e s e tu p

t i m e ) f o r a n 8 m ( in d i a m e t e r ) m a r i n e p r o p e l l e r ,

a n d a b o u t 6 0 h f o r a 9 . 8 m p r o p e l l e r . T h e g r i n d i n g

o p e r a t i o n s a r e p e r f o r m e d m a n u a l l y b y s k i ll e d o p e r a t o r s ,

w h i c h a l s o t a k e s a f e w d a y s , i n c l u d i n g h a n d l i n g . A s t o

t h e o p t i m a l i ty o f t h e p r o p o s e d C L - d a t a o p t i m i z a t i o n

m e t h o d , t h e a u t h o r s o f t h e p a p e r w e r e n o t a b l e t o v e r if y

i t ( e x p e r i m e n t a t i o n w i t h m a r i n e p r o p e l l e r s w a s n o t

p e r m i t t e d , b e c a u s e t h e p r i c e o f a t y p i c a l m a r i n e p r o p e l l e r

is se v e ra l h u n d r e d t h o u s a n d d o l l a rs ) . T h e c o m p a n y s t a te s

t h a t t h e C AM s o f t w a r e d e v e l o p e d b y t h e a u t h o r s

r e s u l t e d i n a c o n s i d e r a b l e s a v i n g i n m a c h i n i n g t i m e

w h i l e g i v i n g a n i m p r o v e d m a c h i n e d q u a l i t y ( c o m p a r e d

w i t h t h e p r e v i o u s v e r s i o n ) .

C O N C L U S I O N S

I n t h e p a p e r , t h e C L - d a t a o p t i m i z a t i o n p r o b l e m i n

5 - a x i s f a c e m i l l i n g i s f o r m u l a t e d a s a 2 D c o n s t r a i n e d

m i n i m i z a t i o n p r o b l e m i n t e r m s o f th e cu t t e r -or i en t a t i on

angles or,/3. T o u s e t h e c u s p h e i g h t a s t h e o b j e c t i v ef u n c t i o n o f t h e o p t i m i z a t i o n p r o b l e m , a n a n a l y t ic

e x p r e s s i o n o f t h e c u s p h e i g h t i s o b t a i n e d i n t e r m s o f t h e

t i l t ang l e ~ , yaw ang l e / 3 , a n d pat h i n t e rva l d .

T h e p r o p o s e d o p t i m i z a t i o n s c h e m e h a s b e e n a p p l i e d

t o t h e 5 - a x is f a c e m i ll i n g o f m a r i n e p r o p e l l e r s . I n t h is

s p e c if ic a p p l i c a t i o n , th e o p t i m i z a t i o n p r o b l e m h a s b e e n

e f f ic i e n tl y i m p l e m e n t e d a s a 1 D s e a r c h p r o b l e m .

H o w e v e r , a f u r t h e r s t u d y i s n e e d e d t o u n d e r s t a n d t h e

s t r u c t u r e o f t h e C L - d a t a o p t i m i z a t i o n p r o b l e m i n g e n e ra l .

I n t h e p a p e r , i t i s a s s u m e d t h a t t h e c u t t e r p a t h p l a n n i n g

i s pe r f o r med o f f l i ne , bu t i t w i l l be i n t e r e s t i ng t o s ee

w h e t h e r t h e p r o p o s e d C L - d a t a o p t i m i z a t i o n s c h e m e c a n

b e e x t e n d e d t o o n li n e c u t te r p a t h p l a n n i n g ( m e a n i n gt h a t t h e c u t t e r p a t h p l a n n i n g a n d t h e C L - d a t a

o p t i m i z a t i o n a r e c o n s i d e r e d a t t h e s a m e t i m e ) .

384 computer-aided design

7/28/2019 15.Cutter Location Data Optimization in 5 Axis Surface Machining

http://slidepdf.com/reader/full/15cutter-location-data-optimization-in-5-axis-surface-machining 9/10

Cutter- loca t ion da ta opt imizat ion in 5-ax is surface mach in ing

R EFER EN C ES

1 M a s o n , F '5 x 5 f o r h i g h - p r o d u c t i v i t y a i r fo i l m i l l i n g '

Amer. Machinist ( N o v 1 9 9 1 ) p p 3 7 - 3 9

2 T a k e u e h i, Y e t aL ' 5 -a x i s c o n t r o l m a c h i n i n g b a s e d o ns o l i d m o d e l ' J. Precision Eng. Vol 56 N o 11 (1990)

p p 1 1 1 -1 1 6 ( i n J a p a n e s e )

3 Choi , B K et al. ' D e v e l o p m e n t o f a 9 -a x is m a r i n ep r o p e l l e r m a c h i n i n g s y s t e m ' Project Report K o r e a

A d v a n c e d I n s t i t u t e o f S c i e n c e & T e c h n o l o g y , K o r e a

( 1 9 9 1 ) ( i n K o r e a n )

4 M a r e i n i a k , K ' I n f l u e n c e o f s u r fa c e s h a p e o n

adm is s ib le too l pos i t ions in 5 -ax i s face m i l l ing 'Comput.-AidedDes. V o 1 1 9 N o 5 ( 1 9 8 7 ) p p 2 3 3 - 2 3 6

5 T a y l o r , R ' P l a n n i n g a n d e x e c u t i o n o f s t r a i g h t li n e

m a n i p u l a t o r t r a je c t o r ie s ' in B r a d y , M ( E d . ) RobotMotion: Planning and Control M I T P r e s s , U S A( 1 9 8 2 ) p p 2 6 5 - 2 8 6

6 Choi , B K et aL ' C o m p o u n d s u r f a c e m o d e l i n g a n d

m a c h i n i n g ' Comput.-Aided Des. V o l 2 0 N o 3 ( 1 9 8 8 )p p 1 2 7 - 1 3 6

7 Choi , B K Surface Modeling for CAD/CAM Elsev ie r( 1 9 9 1 )

8 K i m , D H a n d C h o i , B K ' C a l c u l a ti o n o f e c o n o m i c

C L - d a t a f o r s c u l p tu r e s u r f a ce m a c h i n i n g ' J. KIIE V o l9 N o 2 (1 9 8 3 ) p p 2 7 - 3 5 ( i n K o r e a n )

9 L o n e y , G C a n d O z s o y , T M ' N C m a c h i n i n g o f f r eef o r m s u r f a c e s ' Comput.-Aided Des. V o l 1 9 N o 2( 1 9 8 7 ) p p 8 5 - 9 0

10 Vieke rs , G W a n d Q u a n , K W ' Ba l l -m i l l s ve rsuse n d - m i l l s f o r c u r v e d s u r f a c e m a c h i n i n g ' J . Eng.Industry (Trans. ASME) Vol 111 (1989) pp 22 26

11 TOSNUC 600M Instruction Manual T o s h i b aM a c h i n e ( 1 9 85 )

1 2 G o t t f r i e d , B S a n d W e i s m a n , J Introduction toOptimization Theory P r e n t i c e - H a l l ( 1 9 73 )

13 C ra ig , J J Introduction to Robotics A d d i s o n - W e s l e y( 1 9 8 6 )

A P P E N D I X

Y

E1

, (m , n ) ~ L

x

a

x = l

Eo

. (re,n) L

X

bI '

F igure 15 . Construction for cusp-height calculation

I f the ab ove e l l ipses a re s ca led in the y d i rec t ion by

1/a, the equ a t ion s o f the re su l t ing c i rcle s a re

X2 + y2 = 1

for Co , and (8 )

( x - m ) 2 + ( y - k ) 2 = 1

for Ca , where k = n/a = d s in O/a. T h e c o n d i t i o n f o r t h e

two ' lower-ha l f ' c i rc le s ( i . e . e l l ipses ) to in te rs ec t i s tha t

t h e d i s t a n c e b e t w e e n t h e p o i n t ( 1 , 0 ) a n d t h e c e n t e r p o i n t

of C a i s le s s than 1 . Th a t i s , we n eed to have

((m -- 1) 2 + ( k - 0)2 ) 1/2 ~< 1 (9 )

Derivation of cusp-height Equation 5

T h e minor radii of the e l l ipses in F i gure 15 a re a a nd the

m a jor rad i i a re 1 . The s econd e l l ipse E 1 i s ob ta ined by

t r a n s l a t i n g E o b y d i n t h e d i r e c t i o n o f 0. N o t e t h a t t h e

cusps in F igure 15 a re the s am e as the cusps in F igure

5 . T h e h e i g h t o f t h e c u s p i s th e d i s t a n c e b e t w e e n t h e

intersection point p a n d t h e common tangent line L. T h e

e q u a t i o n s o f th e e l l ip s e s i n F i g u r e 1 5 a re

x 2 + y2/a2 = 1

f o r E o , a n d ( 7 )

( x - m ) 2 + ( y - n ) 2 / a 2 = 1

for E 1, wh ere a = s in ~ cos /~ , m = d cos 0, an d n = d s in 0.

E q u a t i o n 4 f o r th e critical value of d is a d i rec t re su l t o f

t h e a b o v e r e l a t io n . F u r t h e r , i f m is g r e a t e r t h a n 2 , w h i c h

i s equ iva len t to d > 2 /cos 0 , the cusp i s unde f ined .

I f t h e c o n d i t i o n i n E x p r e s s i o n 9 h o l d s , t h e i n t e r s e c t i o n

p o i n t p i n F i g u r e 1 5 a i s o b t a i n e d b y s o l v i n g E q u a t i o n s

8 , a n d t h e n s c a l i n g b a c k t h e y v a l u e :

w h e r e

P = (Px, Py) (10)

Px= (re+s)~2

py = -- a( 1 -- px2) 1/2

s 2 = k 2 ( 4 _ m 2 _ k z ) / ( m 2 + k 2)

vo lume 25 num ber 6 june 1993 385

7/28/2019 15.Cutter Location Data Optimization in 5 Axis Surface Machining

http://slidepdf.com/reader/full/15cutter-location-data-optimization-in-5-axis-surface-machining 10/10

B K Choi, J W Park and C S Jun

I f E x p r e s s i o n 9 d o e s n o t h o l d , t h e i n t e r s e c t i o n p o i n t p

i n F i g u r e 1 5 b i s g i v e n b y

p~, = 1

a n d

py = n - a( 2m - m2) 1/2

S i n c e t h e u n i t n o r m a l v e c t o r o f t h e t a n g e n t l i n e L is g i v e n

b y

n = ( s i n O , - c o s O )

a n d t h e d i s t a n c e o f L f r o m t h e o r i g i n is

a o = sin

t h e d i s t a n c e b e t w e e n p a n d L , n a m e l y t h e c u s p h e i g h t ,

i s e x p r e s s e d a s

H = s i n ~ - p . n ( l l )

R e a r r a n g i n g t h e t e r m s i n E q u a t i o n 1 1, t h e c u s p - h e i g h tE q u a t i o n 5 i s o b t a i n e d .

386 com puter-a ide d des ign