1. rf operation 2. beam operation and results...injector 1: tandem (a < 120, 1÷10 pna))injector...

22
1. RF operation 2. Beam operation and results 3. SRFQ for high I linacs

Upload: others

Post on 07-Mar-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1. RF operation 2. Beam operation and results...Injector 1: Tandem (A < 120, 1÷10 pnA))Injector 2: PIAVE-all ion species, 20÷200 pnAECRIS - 2 SRFQs and 8 QWRs ALPI: a booster for

1. RF operation2. Beam operation and results

3. SRFQ for high I linacs

Page 2: 1. RF operation 2. Beam operation and results...Injector 1: Tandem (A < 120, 1÷10 pnA))Injector 2: PIAVE-all ion species, 20÷200 pnAECRIS - 2 SRFQs and 8 QWRs ALPI: a booster for

Injector 1: Tandem (A < 120, 1÷10 pnA))

Injector 2: PIAVE - all ion species, 20÷200 pnAECRIS - 2 SRFQs and 8 QWRs

ALPI: a boosterfor Tandem andPIAVE

ECRIS

LEBT 3H-BSRFQs

QWRsB

Commissioning of PIAVE with pilot beam 16O3+

has been completed (June 05)

July 6, 05

Page 3: 1. RF operation 2. Beam operation and results...Injector 1: Tandem (A < 120, 1÷10 pnA))Injector 2: PIAVE-all ion species, 20÷200 pnAECRIS - 2 SRFQs and 8 QWRs ALPI: a booster for

• Crioline con SRFQsfoto e loro tabella

SRFQ1 SRFQ2

Frequency 80 80 MHz

Length 1,41 0,8 m

Diameter 0,81 0,81 m

Weight 280 170 Kg

∆V_interelectrode 148 280 kVModulated cells 41 13Es,p 25,5 25,5 MV/mEs,p/Ea 10 7.33Bs,p 0,025 0.03 TStored Energy 2,1 3,6 JPdiss (set) 10 10 WQ 1x108 2x108

Page 4: 1. RF operation 2. Beam operation and results...Injector 1: Tandem (A < 120, 1÷10 pnA))Injector 2: PIAVE-all ion species, 20÷200 pnAECRIS - 2 SRFQs and 8 QWRs ALPI: a booster for

Focusing ⇐ main quadrupolar ETAcceleration ⇐ small effective EL

modulation of 4 vanes(synchronous with beam bunches)

one modulation period = βλ

NORMAL CONDUCTING∆U ~ 100 kV, Q ~ 104, d.c. < 20%with a few remarkable exceptions

(LEDA: 2.2.MW rf, 100 mA-beam)

SUPERCONDUCTING∆U~ 300 kV, Q~109, d.c. = 100%Motivated by lower rf power (and µA beam) + expertise in cryogenics

(kr)coskz]IAcos2θr[A2Vz)θ,U(r, 010

201 +=

Ideal for β=v/c < 0.05Typically NC, 50-400 MHz

SRF05 – Cornell – July 11, 2005

Radio-Frequency Quadrupoles

Page 5: 1. RF operation 2. Beam operation and results...Injector 1: Tandem (A < 120, 1÷10 pnA))Injector 2: PIAVE-all ion species, 20÷200 pnAECRIS - 2 SRFQs and 8 QWRs ALPI: a booster for

1. To reach spec Ea @ Pcav ≤ 10 W): Q vs Ea curve2. To keep frequency locking to M.O. vs slow volume changes (drifts of the

liquid He P) and fast vibrations

SLOW PHe DRIFTS

Mechanical tuner coping with the ∆f/∆t, induced by ∆PHe/∆tCryo-plant operation minimizes ∆PHe/∆t

MICROPHONICS EXCITATIONS

3. Setup for beam acceleration (“classical” RFQ is split into 2, with ext. bunching)4. RFQ alignment on beam axis (better than ± 0.2 mm for good beam transmission)

Rigid mechanical designUse of VCX fast tuners (ANL)Gentle cryo-plant operation

SRF05 – Cornell – July 11, 2005

The main issues of S-RFQs

Page 6: 1. RF operation 2. Beam operation and results...Injector 1: Tandem (A < 120, 1÷10 pnA))Injector 2: PIAVE-all ion species, 20÷200 pnAECRIS - 2 SRFQs and 8 QWRs ALPI: a booster for

1,E+07

1,E+08

1,E+09

0 1 2 3 4 5

Eacc [MV/m]

Q

SRFQ1SRFQ2Es,p/Eacc = 10 , 7.33

No VCX fast tuners in the test cryostatSRF05 – Cornell – July 11, 2005

1. Off-line Q-curves in a test cryostat

Page 7: 1. RF operation 2. Beam operation and results...Injector 1: Tandem (A < 120, 1÷10 pnA))Injector 2: PIAVE-all ion species, 20÷200 pnAECRIS - 2 SRFQs and 8 QWRs ALPI: a booster for

1,E+07

1,E+08

1,E+09

0 1 2 3 4 5

Eacc [MV/m]

Q

SRFQ1SRFQ2

Frequency window controlled by VCXs: 80 Hz (SRFQ1), 200 Hz (SRFQ2)

SRF05 – Cornell – July 11, 2005

1. On-line Q-curves (loaded by VCX)

Page 8: 1. RF operation 2. Beam operation and results...Injector 1: Tandem (A < 120, 1÷10 pnA))Injector 2: PIAVE-all ion species, 20÷200 pnAECRIS - 2 SRFQs and 8 QWRs ALPI: a booster for

0

1

2

3

4

5

6

13:08:15 13:09:42 13:11:08 13:12:35 13:14:01Time of the day

Phas

e a

nd a

mpl

itude

err

or [V

]

-60

-40

-20

0

20

40

6024 s 8 s, 5 s

6 s

∆P

/ ∆t [

mba

r/min

]

80% of nominal field

SRFQ1 with VCX

Mechanical tuners react at 2 Hz/s(corresponding to ∆P/∆t =2.5÷3 mb/min)SPECS – 5 mb/min

June

2004

, a 6

min

sam

ple

SRF05 – Cornell – July 11, 2005

2. Phase locking difficult before optimizingthe cryo-plant parameters

Page 9: 1. RF operation 2. Beam operation and results...Injector 1: Tandem (A < 120, 1÷10 pnA))Injector 2: PIAVE-all ion species, 20÷200 pnAECRIS - 2 SRFQs and 8 QWRs ALPI: a booster for

200

220

240

260

280

9.00 10.00 11.00 12.00 13.00 14.00Time of the day

He

pres

sure

[mb]

up to30 mb/min

June 2004

SRF05 – Cornell – July 11, 2005

Page 10: 1. RF operation 2. Beam operation and results...Injector 1: Tandem (A < 120, 1÷10 pnA))Injector 2: PIAVE-all ion species, 20÷200 pnAECRIS - 2 SRFQs and 8 QWRs ALPI: a booster for

200

220

240

260

280

9.00 10.00 11.00 12.00 13.00 14.00

Time of the day

He

pres

sure

[mb]

< 1÷2 mb/min

SRF05 – Cornell – July 11, 2005

2. P changes smaller in range and speedafter optimizing the cryo-plant parameters

Careful setup of the P.I.D. parameters controllingcryostat valves opening (continuous filling mode)Control of additional heating or increased production rate of liquid He vs cavity rf power.

Page 11: 1. RF operation 2. Beam operation and results...Injector 1: Tandem (A < 120, 1÷10 pnA))Injector 2: PIAVE-all ion species, 20÷200 pnAECRIS - 2 SRFQs and 8 QWRs ALPI: a booster for

234

235

236

237

238

239

13.15 13.30 13.45 14.00 14.15 14.30

Time of the day

He

pres

sure

[mb]

0,00

0,50

1,00

Phas

e-A

mpl

itude

err

or [V

]

June

2005

, a 6

0 m

insa

mpl

e

SRFQ2 VCX fast tuner window 200 Hz (specs)SRF05 – Cornell – July 11, 2005

2. ϕ & A errors on SRFQ2 after optimizationof the cryo-plant parameters

Page 12: 1. RF operation 2. Beam operation and results...Injector 1: Tandem (A < 120, 1÷10 pnA))Injector 2: PIAVE-all ion species, 20÷200 pnAECRIS - 2 SRFQs and 8 QWRs ALPI: a booster for

231

232

233

234

235

236

13.15 13.30 13.45 14.00 14.15 14.30

Time of the day

He

pres

sure

[mb]

0,0

0,5

1,0

1,5

2,0

2,5

Phas

e - A

mpl

itude

err

or [V

]

June

2005

, a 6

0 m

insa

mpl

e

SRFQ1 VCX fast tuner window 80 Hz (specs 200 Hz)SRF05 – Cornell – July 11, 2005

2. ϕ & A errors on SRFQ1 after optimizationof the cryo-plant parameters

Vibrations induced bythe slowly tuned end-plates

Page 13: 1. RF operation 2. Beam operation and results...Injector 1: Tandem (A < 120, 1÷10 pnA))Injector 2: PIAVE-all ion species, 20÷200 pnAECRIS - 2 SRFQs and 8 QWRs ALPI: a booster for

B SRFQ1 SRFQ2Lens Lens

Si

FC

3. Setup for beam acceleration(“classical” RFQ is here split in 2, with ext. bunching)

4. RFQ alignment on beam axis (better than ± 0.2 mm for good beam transmission)

SRF05 – Cornell – July 11, 2005

SRFQs: beam-related aspects

Page 14: 1. RF operation 2. Beam operation and results...Injector 1: Tandem (A < 120, 1÷10 pnA))Injector 2: PIAVE-all ion species, 20÷200 pnAECRIS - 2 SRFQs and 8 QWRs ALPI: a booster for

0

2

4

6

8

10

-180 -90 0 90 180

φSRFQ2 - φSRFQ1

Bea

m E

nerg

y [M

eV]

0

10

20

30

40

T [%

]

B SRFQ1 SRFQ2Lens Lens SiFC

SRF05 – Cornell – July 11, 2005

3. Setup of the relative phasebetween the SRFQs

Page 15: 1. RF operation 2. Beam operation and results...Injector 1: Tandem (A < 120, 1÷10 pnA))Injector 2: PIAVE-all ion species, 20÷200 pnAECRIS - 2 SRFQs and 8 QWRs ALPI: a booster for

05

101520253035404550

3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0Energia [MeV]

Yiel

d

02040506070

0

50

100

150

200

250

300

3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0Energia [MeV]

Yiel

d

160170180190200220

B SRFQ1 SRFQ2Lens Lens

Si FC

SRF05 – Cornell – July 11, 2005

3. Energy plots at varyingϕSRFQ2 - ϕ SRFQ1

Page 16: 1. RF operation 2. Beam operation and results...Injector 1: Tandem (A < 120, 1÷10 pnA))Injector 2: PIAVE-all ion species, 20÷200 pnAECRIS - 2 SRFQs and 8 QWRs ALPI: a booster for

0123456789

10

0 90 180 270 360

φSRFQ2-φSRFQ1

Theo

retic

al a

nd m

easu

red

out

put e

nerg

y [M

eV]

∆φ = 137°(theoretical 0°)

T ~ 30 %, as expected from the theoryT ~ 30 → 68% (expected : 70%) after switching on the 3H-buncher

SRF05 – Cornell – July 11, 2005

3. ϕSRFQ2 is scanned, while ϕSRFQ1 = k

Page 17: 1. RF operation 2. Beam operation and results...Injector 1: Tandem (A < 120, 1÷10 pnA))Injector 2: PIAVE-all ion species, 20÷200 pnAECRIS - 2 SRFQs and 8 QWRs ALPI: a booster for

Specs: ± 0.2 mm between SRFQ1 and SRFQ2 and between SRFQsand injection line for good T

0,00

20,00

40,00

60,00

80,00

-2 -1 0 1 2

y - misalignment [mm]Tr

ansm

issi

on [%

]

The quad in front of SRFQsis moved vertically and horizontally around theSRFQs’ axis

4. Control of alignment tolerances

Page 18: 1. RF operation 2. Beam operation and results...Injector 1: Tandem (A < 120, 1÷10 pnA))Injector 2: PIAVE-all ion species, 20÷200 pnAECRIS - 2 SRFQs and 8 QWRs ALPI: a booster for

ECRIS

LEBT 3H-BSRFQs

QWRsB

to ALPI

booster

Emittance box

1.

2. 3. 4.

Longitudinal emittanceHor & Ver emittances

E

t

1. 2. 0.08÷0.1 mm mrad3. 0.1÷0.2 mm mradth. 0.1 mm mrad

3. 2.3 keV ns /A(th. 0.5 keV ns /A)

Transmission1.► 2. 90% 2. ► 3. 68%3. ► 4. 85%

SRF05 – Cornell – July 11, 2005

Page 19: 1. RF operation 2. Beam operation and results...Injector 1: Tandem (A < 120, 1÷10 pnA))Injector 2: PIAVE-all ion species, 20÷200 pnAECRIS - 2 SRFQs and 8 QWRs ALPI: a booster for

July 6, 05

SRFQ1&2 so far accelerated beams for~ 600 hours (since Nov 04)July, 05: first injection into ALPI boosterOct, 05 – Jan, 06: beam tests on bothPIAVE +ALPI with heavier beams (131Xe18+)Goal: PIAVE+ALPI operation with approved NP experiments from Feb, 06

ALPI

PIAVE

July 18-20, 05

SRF05 – Cornell – July 11, 2005

Page 20: 1. RF operation 2. Beam operation and results...Injector 1: Tandem (A < 120, 1÷10 pnA))Injector 2: PIAVE-all ion species, 20÷200 pnAECRIS - 2 SRFQs and 8 QWRs ALPI: a booster for

• 5 mA of d & p to 40 MeV cw (SPES)• Operate at subharm. of 352 MHz

(EURISOL) – 88 MHzεx,y, RMS,n= 0.1 mm mradεl,RMS = 0.1 deg MeV/AE = 1.3 MeV/A

⎟⎟⎠

⎞⎜⎜⎝

⎛=

02 Rmc

eVB λ

• V (between vanes) ~ 280 kV (3 times higher than NC), large λ

• R0 can be increased, transmissiongreatly improves and contrsuctiontolerances are relaxed

• Higher EA, compact structure

2

02 ⎟⎟

⎞⎜⎜⎝

⎛=

RmceVB λ

2mceVkNλε = βλ

eVAkEA =

Pros of the SRFQ option

SRF05 – Cornell – July 11, 2005

A SRFQ for a high current linac

Page 21: 1. RF operation 2. Beam operation and results...Injector 1: Tandem (A < 120, 1÷10 pnA))Injector 2: PIAVE-all ion species, 20÷200 pnAECRIS - 2 SRFQs and 8 QWRs ALPI: a booster for

kW13Beam loadingGauss0±0 ,25B within ±1 mm from joint

%± 2Voltage flatness

Gauss300Bs,p

MV/m20,7Es,p

MHz94,2Dipole mode

MHz88Frequency

1.3 m

SRF05 – Cornell – July 11, 2005

HFSS

A 88 MHz PIAVE-likeSRFQ

Page 22: 1. RF operation 2. Beam operation and results...Injector 1: Tandem (A < 120, 1÷10 pnA))Injector 2: PIAVE-all ion species, 20÷200 pnAECRIS - 2 SRFQs and 8 QWRs ALPI: a booster for

SRFQs work and accelerate beams!