1 06-03-2013 «be-rf-pm» clic prototype two-beam modules thermal test planning fabrizio rossi

Download 1 06-03-2013 «BE-RF-PM» CLIC prototype two-beam modules Thermal test planning Fabrizio Rossi

If you can't read please download the document

Upload: roy-manning

Post on 17-Jan-2018

220 views

Category:

Documents


0 download

DESCRIPTION

«BE-RF-PM» Thermal tests planning for CLIC prototype module type EXPERIMENTAL PROGRAM FOR THERMAL TESTS HEATING No active heating in RF structures HEATING No active heating in RF structures COOLING No active cooling in RF structures COOLING No active cooling in RF structures MEASUREMENTS 1.Temperature 2.Alignment Laser tracker Romer arm WPS system MEASUREMENTS 1.Temperature 2.Alignment Laser tracker Romer arm WPS system STEP 1 – Heating environment ENVIRONMENT T amb = 20, 30 & 40 °C v air = 0 m/s in steady-state conditions ENVIRONMENT T amb = 20, 30 & 40 °C v air = 0 m/s in steady-state conditions HEATING Heat power = 50 & 100 % HEATING Heat power = 50 & 100 % COOLING ∆T SAS = % heat power COOLING ∆T SAS = % heat power MEASUREMENTS 1.Temperature 2.Alignment Laser tracker WPS system MEASUREMENTS 1.Temperature 2.Alignment Laser tracker WPS system STEP 2 – Heating AS + AS loads ENVIRONMENT T amb = 20 & 40 °C v air = 0.4 & 0.8 m/s in steady-state conditions ENVIRONMENT T amb = 20 & 40 °C v air = 0.4 & 0.8 m/s in steady-state conditions MEASUREMENTS WPS system MEASUREMENTS WPS system STEP 0 – Alignment tests ENVIRONMENT v air = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 & 0.8 m/s ENVIRONMENT v air = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 & 0.8 m/s ALL THE TESTS ARE PERFORMED WITH NO VACUUM HEATING Heat power = 50 & 100 % HEATING Heat power = 50 & 100 % COOLING ∆T PETS = % heat power COOLING ∆T PETS = % heat power MEASUREMENTS 1.Temperature 2.Alignment Laser tracker WPS system MEASUREMENTS 1.Temperature 2.Alignment Laser tracker WPS system STEP 3 – Heating PETS + RFN loads + DBQ ENVIRONMENT T amb = 20 & 40 °C v air = 0.4 & 0.8 m/s in steady-state conditions ENVIRONMENT T amb = 20 & 40 °C v air = 0.4 & 0.8 m/s in steady-state conditions HEATING Heat power = 50 & 100 % HEATING Heat power = 50 & 100 % COOLING ∆T SAS = % heat power ∆T PETS = % heat power COOLING ∆T SAS = % heat power ∆T PETS = % heat power MEASUREMENTS 1.Temperature 2.Alignment Laser tracker WPS system MEASUREMENTS 1.Temperature 2.Alignment Laser tracker WPS system STEP 4 – Heating all module ENVIRONMENT T amb = 20 & 40 °C v air = 0.4 & 0.8 m/s in steady-state conditions ENVIRONMENT T amb = 20 & 40 °C v air = 0.4 & 0.8 m/s in steady-state conditions

TRANSCRIPT

BE-RF-PM CLIC prototype two-beam modules Thermal test planning Fabrizio Rossi BE-RF-PM Thermal tests planning for CLIC prototype module type TOPICS 1.Experimental program for thermal tests 2.CLIC prototype module type 0 3.Heating system 4.Cooling system 5.Air conditioning and ventilation system 6.Preparation for experimental tests 7.Experimental validation of numerical modelling 8.Conclusions BE-RF-PM Thermal tests planning for CLIC prototype module type EXPERIMENTAL PROGRAM FOR THERMAL TESTS HEATING No active heating in RF structures HEATING No active heating in RF structures COOLING No active cooling in RF structures COOLING No active cooling in RF structures MEASUREMENTS 1.Temperature 2.Alignment Laser tracker Romer arm WPS system MEASUREMENTS 1.Temperature 2.Alignment Laser tracker Romer arm WPS system STEP 1 Heating environment ENVIRONMENT T amb = 20, 30 & 40 C v air = 0 m/s in steady-state conditions ENVIRONMENT T amb = 20, 30 & 40 C v air = 0 m/s in steady-state conditions HEATING Heat power = 50 & 100 % HEATING Heat power = 50 & 100 % COOLING T SAS = % heat power COOLING T SAS = % heat power MEASUREMENTS 1.Temperature 2.Alignment Laser tracker WPS system MEASUREMENTS 1.Temperature 2.Alignment Laser tracker WPS system STEP 2 Heating AS + AS loads ENVIRONMENT T amb = 20 & 40 C v air = 0.4 & 0.8 m/s in steady-state conditions ENVIRONMENT T amb = 20 & 40 C v air = 0.4 & 0.8 m/s in steady-state conditions MEASUREMENTS WPS system MEASUREMENTS WPS system STEP 0 Alignment tests ENVIRONMENT v air = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 & 0.8 m/s ENVIRONMENT v air = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 & 0.8 m/s ALL THE TESTS ARE PERFORMED WITH NO VACUUM HEATING Heat power = 50 & 100 % HEATING Heat power = 50 & 100 % COOLING T PETS = % heat power COOLING T PETS = % heat power MEASUREMENTS 1.Temperature 2.Alignment Laser tracker WPS system MEASUREMENTS 1.Temperature 2.Alignment Laser tracker WPS system STEP 3 Heating PETS + RFN loads + DBQ ENVIRONMENT T amb = 20 & 40 C v air = 0.4 & 0.8 m/s in steady-state conditions ENVIRONMENT T amb = 20 & 40 C v air = 0.4 & 0.8 m/s in steady-state conditions HEATING Heat power = 50 & 100 % HEATING Heat power = 50 & 100 % COOLING T SAS = % heat power T PETS = % heat power COOLING T SAS = % heat power T PETS = % heat power MEASUREMENTS 1.Temperature 2.Alignment Laser tracker WPS system MEASUREMENTS 1.Temperature 2.Alignment Laser tracker WPS system STEP 4 Heating all module ENVIRONMENT T amb = 20 & 40 C v air = 0.4 & 0.8 m/s in steady-state conditions ENVIRONMENT T amb = 20 & 40 C v air = 0.4 & 0.8 m/s in steady-state conditions BE-RF-PM Thermal tests planning for CLIC prototype module type TOPICS 1.Experimental program for thermal tests 2.CLIC prototype module type 0 3.Heating system 4.Cooling system 5.Air conditioning and ventilation system 6.Preparation for experimental tests 7.Experimental validation of numerical modelling 8.Conclusions BE-RF-PM Thermal tests planning for CLIC prototype module type CLIC PROTOTYPE MODULE TYPE 0 Accelerating structure Compact load RF network PETS unit Vacuum network Central vacuum tank Magnets Cooling system inlet (black) and outlet (white) pipes AS heater BE-RF-PM Thermal tests planning for CLIC prototype module type CLIC PROTOTYPE MODULE TYPE 0 BE-RF-PM Thermal tests planning for CLIC prototype module type TOPICS 1.Experimental program for thermal tests 2.CLIC prototype module type 0 3.Heating system 4.Cooling system 5.Air conditioning and ventilation system 6.Preparation for experimental tests 7.Experimental validation of numerical modelling 8.Conclusions BE-RF-PM Thermal tests planning for CLIC prototype module type HEATING SYSTEM: heaters Experimental conditions to be reproduced: G. Riddone, A. Samoshkin, CLIC Test Module meeting GROUP HEATER Q.TYS/NDimensions (mm)VoltageP max (W)I max (A)Operating condition 8 AS10680/TC31-80/6065W240V/SF8 x V AC % 2 PETS unit1S/N 0680/TS44-80/2175W240V/SF11.17 x % 2 DBQ8+8=16CSS _220v12.7 x % TOTAL % DBQ heaters AS + PETS heaters BE-RF-PM Thermal tests planning for CLIC prototype module type HEATING SYSTEM: electric network POWER SOCKET Max. 16 A POWER SOCKET Max. 32 A POWER SOCKET Max. 63 A POWER SOCKET Max. 63 A Improvement of electric network completed BE-RF-PM Thermal tests planning for CLIC prototype module type HEATING SYSTEM: SSR Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8 SSR AS PETS 240 Vac PWM NI Ch 24 V Logic output SSR (Solid State Relays) IL MAGNETS INTERLOCKS 6 interlocks (2 for MB, 2 for PETS units, 2 for DBQ) IL5 IL6 IL1 IL2 IL3 IL4 BE-RF-PM Thermal tests planning for CLIC prototype module type HEATING SYSTEM: improvements Following the last CLIC seminar meeting ( ), the main modifications to be implemented to the current layout of CLIC prototype module type 0 are concerning the heating system, in particular: 1.CL: integration of heaters to reproduce heat dissipation (~50 W) 2.Heaters control: investigation of alternative solutions to the current one (PWM system) Integrated thermocouple type J (accuracy = 1.5 C) Silicon rubber heater Heat power = 50 W Voltage = 240 Vac Q.ty 20 BE-RF-PM Thermal tests planning for CLIC prototype module type HEATING SYSTEM: SCR Semi Conductor Relays (SCR) are designed to proportion electric power to resistive loads only, such as ovens, furnaces, heat sealers, etc. The power controller accepts a 4 to 20 mA dc input. SCR offers two methods of proportional control: Zero-voltage-switched and Phase-angled-fired. o With the Zero-voltage-switching mode, the controller switches on complete cycles of the AC supply voltage. The trigger circuit is designed to turn on the SCRs as close as possible to the point where the AC sine wave crosses through zero. In effect, the line voltage is turned on and off and applied to the heaters in whole cycles. With an input of 4 to 20 mA, the output will be off below 4 mA and full on at 20 mA. Proportioning action is obtained by varying the number of cycles on to the number of cycles off. The output will vary from one cycle on and nine cycles off at low input, to all cycles on at maximum input. This output is integrated by the heaters which produce a smoothly proportioning heat output that varies directly with the input signal. o With the Phase-angle-fired mode, the power to the load is controlled by governing the point of turn on (firing) of each half cycle of the full AC sine wave. SCR19 (manufactured by Omega) MORE INFO HERE Semi Conductor Relays (SCR) BE-RF-PM Thermal tests planning for CLIC prototype module type HEATING SYSTEM: SCR Ch1Ch2Ch3Ch4 SCR AS CL MAGNETS 240 Vac NI Ch 24 V Logic output NI Ch 0-20 mA Analog output SSR (Solid State Relays) SCR (Semi- Conductors Relays) 0-20 mA Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8 SSR 240 Vac PWM IL1 IL2 IL3 IL4 IL5 IL6 PETS IL5 IL3 IL4 IL6 IL7 IL8 IL mA IL8 IL1 BE-RF-PM Thermal tests planning for CLIC prototype module type HEATING SYSTEM: interlocks IL1 = 50 C IL2 = 50 C IL3 = 50 C IL4 = 50 C IL5 = 90 C IL6 = 90 C IL7 = 50 C IL8 = 50 C BE-RF-PM Thermal tests planning for CLIC prototype module type 0 15 TOPICS 1.Experimental program for thermal tests 2.CLIC prototype module type 0 3.Heating system 4.Cooling system 5.Air conditioning and ventilation system 6.Preparation for experimental tests 7.Experimental validation of numerical modelling 8.Conclusions BE-RF-PM Thermal tests planning for CLIC prototype module type COOLING SYSTEM: SAS #1 + CL TS1 TS2TS3TS4TS5TS6 TS7 TS29.C TS29.ATS29.B TS29.D Thermocouples type J Material: Fe/CuNi Accuracy = 1.5 C RTD sensor PT 100 (4-wire resistance) Accuracy = 0.1 C BE-RF-PM Thermal tests planning for CLIC prototype module type COOLING SYSTEM: SAS #2 + CL TS8 TS9 TS10 TS30.C TS30.ATS30.B TS30.D Thermocouples type J Material: Fe/CuNi Accuracy = 1.5 C RTD sensor PT 100 (4-wire resistance) Accuracy = 0.1 C BE-RF-PM Thermal tests planning for CLIC prototype module type COOLING SYSTEM: PETS + RF NETWORK + CL TS23 TS17 TS18 TS19 TS20 TS21 TS22 TS24 TS25 TS26 TS36 TS35 TS34 TS33 RTD sensor PT 100 (4-wire resistance) Accuracy = 0.1 C Thermocouples type J Material: Fe/CuNi Accuracy = 1.5 C BE-RF-PM Thermal tests planning for CLIC prototype module type COOLING SYSTEM: DBQ TS27 TS28 RTD sensor PT 100 (4-wire resistance) Accuracy = 0.1 C BE-RF-PM Thermal tests planning for CLIC prototype module type COOLING SYSTEM: transducers SAS #2 SAS #1SAS #3 SAS #4 PETS SAS #2 SAS #1 SAS #3 SAS #4 CV1CV2CV3CV4 CV5 CV7 PT1 FT1 + TS SV0 SV1 PRV1 SV2SV3SV4 SV5 HV1 HV2 HV3 HV4 TS37 BE-RF-PM Thermal tests planning for CLIC prototype module type COOLING SYSTEM: water chiller NameVWK 30/1-S Outlet water temperature [C]15-25 Cooling power [kW] (water = 20 C, air = 32 C)4.5 Head pump 1.5 m 3 /h5 Dimension s [mm]715 x 715 x 1375 Price []6.670 NameVWK 90/1-S Outlet water temperature [C]15-25 Cooling power [kW] (water = 20 C, air = 32 C)12.6 Head pump 1.5 m 3 /h5 Dimension s [mm]715 x 715 x 1375 Price []8.450 Total heat power coming from TM0: 3280 (AS) (PETS) (CL) = 4610 W BE-RF-PM Thermal tests planning for CLIC prototype module type COOLING SYSTEM: air temperature TS39 TS41 TS38 TS40 TS TS43 TS45 TS44 TS38 TS40 TS39 TS48 TS50 TS49 AIR TEMPERATURE AROUND TM0 3 cross sections 5 thermocouples type T for each cross section Thermocouples type T Material: Cu/CuNi Accuracy = 0.5 C BE-RF-PM Thermal tests planning for CLIC prototype module type COOLING SYSTEM: electronics NI cDAQ-9178 #1 #1NI Ch, 10 V, 500 kS/s, 12- Bit Analog Input Module Ch01FT1Flow rate Ch02TSInlet temp. Ch03PT1PRV pressure Ch04 Ch05 Ch06 Ch07 Ch08 #2NI Ch, 100 kS/s, 16-Bit, 0 to 20 mA Analog Output Module Ch01CV1SAS#1 Ch02CV2SAS#2 Ch03CV3SAS#3 Ch04CV4SAS#4 #3NI Ch, 100 kS/s, 16-Bit, 0 to 20 mA Analog Output Module Ch01CV5PETS Ch02CV7AS + PETS Ch03SCR1AS Load Ch04SCR2RFN Load #4NI Ch 24 V Logic, 100 s, Sourcing Digital Output Module Ch01SSR1AS heater Ch02SSR2PETS heater Ch03SSR3DBQ heaters Ch04 Ch05 Ch06 Ch07 Ch08 #5NI Ch Isothermal Thermocouple Input Module Ch01TS29.AAS Load#1 Ch02TS29.BAS Load#1 Ch03TS29.CAS Load#1 Ch04TS29.DAS Load#1 Ch05TS30.AAS Load#2 Ch06TS30.BAS Load#2 Ch07TS30.CAS Load#2 Ch08TS30.DAS Load#2 Ch09TS31.AAS Load#3 Ch10TS31.BAS Load#3 Ch11TS31.CAS Load#3 Ch12TS31.DAS Load#3 Ch13TS32.AAS Load#4 Ch14TS32.BAS Load#4 Ch15TS32.CAS Load#4 Ch16TS32.DAS Load#4 NI cDAQ-9178 #2 #1NI Ch, 100 RTD, 24-Bit Analog Input Module Ch01TS0Inlet water temp. Ch02TS1SAS#1 Ch03TS2SAS#1 Ch04TS3SAS#1 #2NI Ch, 100 RTD, 24-Bit Analog Input Module Ch01TS4SAS#1 Ch02TS5SAS#1 Ch03TS6SAS#1 Ch04TS7SAS#1 #3NI Ch, 100 RTD, 24-Bit Analog Input Module Ch01TS8SAS#2 Ch02TS9SAS#2 Ch03TS10SAS#2 Ch04TS11SAS#3 #4NI Ch, 100 RTD, 24-Bit Analog Input Module Ch01TS12SAS#3 Ch02TS13SAS#3 Ch03TS14SAS#4 Ch04TS15SAS#4 #5NI Ch, 100 RTD, 24-Bit Analog Input Module Ch01TS16SAS#4 Ch02TS17PETSu#1 Ch03TS18PETSu#1 Ch04TS19PETSu#1 #6NI Ch, 100 RTD, 24-Bit Analog Input Module Ch01TS20PETSu#2 Ch02TS21PETSu#2 Ch03TS22PETSu#2 Ch04TS23RF network #7NI Ch, 100 RTD, 24-Bit Analog Input Module Ch01TS24RF network Ch02TS25RF network Ch03TS26RF network Ch04TS27DBQ#1 #8NI Ch, 100 RTD, 24-Bit Analog Input Module Ch01TS28DBQ#2 Ch02TS37Outlet water temp. Ch03 Ch04 #6NI Ch, 24 V Logic, 100 s, Sinking Digital Input Module Ch01SSR1AS interlock Ch02SSR2PETS interlock Ch03SSR3DQB interlock Ch04 Ch05 Ch06 Ch07 Ch08 #7NI Ch Isothermal Thermocouple Input Module Ch01TS33RFN Load#1 Ch02TS34RFN Load#1 Ch03TS35RFN Load#1 Ch04TS36RFN Load#1 Ch05 Ch06 Ch07 Ch08 Ch09 Ch10 Ch11 Ch12 Ch13 Ch14 Ch15 Ch16 #8NI Ch Isothermal Thermocouple Input Module Ch01TS38Air sect. #1 Ch02TS39Air sect. #1 Ch03TS40Air sect. #1 Ch04TS41Air sect. #1 Ch05TS42Air sect. #1 Ch06TS43Air sect. #2 Ch07TS44Air sect. #2 Ch08TS45Air sect. #2 Ch09TS46Air sect. #2 Ch10TS47Air sect. #2 Ch11TS48Air sect. #3 Ch12TS49Air sect. #3 Ch13TS50Air sect. #3 Ch14TS51Air sect. #3 Ch15TS52Air sect. #3 Ch16 BE-RF-PM Thermal tests planning for CLIC prototype module type COOLING SYSTEM: software Software interface Panel for control valves BE-RF-PM Thermal tests planning for CLIC prototype module type COOLING SYSTEM: layout AS heater PETS heater DBQ heaters Temperature sensors (q.ty 65) SUPPORTING FRAME FOR COOLING SYSTEM COMPONENTS WATER CHILLER SSR ELECTRONICS FOR HEATING AND COOLING SYSTEM POWER SOCKET Max. 63 A POWER SOCKET Max. 63 A POWER SOCKET Max. 16 A POWER SOCKET Max. 32 A ELECTRIC NETWORK BE-RF-PM Thermal tests planning for CLIC prototype module type 0 26 TOPICS 1.Experimental program for thermal tests 2.CLIC prototype module type 0 3.Heating system 4.Cooling system 5.Air conditioning and ventilation system 6.Preparation for experimental tests 7.Experimental validation of numerical modelling 8.Conclusions BE-RF-PM Thermal tests planning for CLIC prototype module type AIR CONDITIONING AND VENTILATION SYSTEM AIR COOLING T = C v = m/s AIR CIRCULATION (v = 4 m/s) Transport test BE-RF-PM Thermal tests planning for CLIC prototype module type 0 28 TOPICS 1.Experimental program for thermal tests 2.CLIC prototype module type 0 3.Heating system 4.Cooling system 5.Air conditioning and ventilation system 6.Preparation for experimental tests 7.Experimental validation of numerical modelling 8.Conclusions BE-RF-PM Thermal tests planning for CLIC prototype module type PREPARATION FOR EXPERIMENTAL TESTS The aim of these tests is to: 1.Measure characteristic of control valves 2.Test SSR for heater control 3.Measure heat power generated by PWM (on the basis of temperature increase of water) 4.Calibrate the temperature sensor (RTD) 5.Tune the PID controller https://edms.cern.ch/document/ /3 Ioannis Kossyvakis, Roberto Mondello BE-RF-PM Thermal tests planning for CLIC prototype module type 0 30 TOPICS 1.Experimental program for thermal tests 2.CLIC prototype module type 0 3.Heating system 4.Cooling system 5.Air conditioning and ventilation system 6.Preparation for experimental tests 7.Experimental validation of numerical modelling 8.Conclusions BE-RF-PM Thermal tests planning for CLIC prototype module type EXPERIMENTAL VALIDATION OF NUMERICAL MODELLING HEATING No active heating in RF structures HEATING No active heating in RF structures COOLING No active cooling in RF structures COOLING No active cooling in RF structures MEASUREMENTS 1.Temperature 2.Alignment Laser tracker Romer arm WPS system MEASUREMENTS 1.Temperature 2.Alignment Laser tracker Romer arm WPS system STEP 1 Heating environment ENVIRONMENT T amb = 20, 30 & 40 C v air = 0 m/s in steady-state conditions ENVIRONMENT T amb = 20, 30 & 40 C v air = 0 m/s in steady-state conditions HEATING Heat power = 50 & 100 % HEATING Heat power = 50 & 100 % COOLING T SAS = % heat power COOLING T SAS = % heat power MEASUREMENTS 1.Temperature 2.Alignment Laser tracker WPS system MEASUREMENTS 1.Temperature 2.Alignment Laser tracker WPS system STEP 2 Heating AS + AS loads ENVIRONMENT T amb = 20 & 40 C v air = 0.4 & 0.8 m/s in steady-state conditions ENVIRONMENT T amb = 20 & 40 C v air = 0.4 & 0.8 m/s in steady-state conditions MEASUREMENTS WPS system MEASUREMENTS WPS system STEP 0 Alignment tests ENVIRONMENT v air = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 & 0.8 m/s ENVIRONMENT v air = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 & 0.8 m/s ALL THE TESTS ARE PERFORMED WITH NO VACUUM HEATING Heat power = 50 & 100 % HEATING Heat power = 50 & 100 % COOLING T PETS = % heat power COOLING T PETS = % heat power MEASUREMENTS 1.Temperature 2.Alignment Laser tracker WPS system MEASUREMENTS 1.Temperature 2.Alignment Laser tracker WPS system STEP 3 Heating PETS + RFN loads + DBQ ENVIRONMENT T amb = 20 & 40 C v air = 0.4 & 0.8 m/s in steady-state conditions ENVIRONMENT T amb = 20 & 40 C v air = 0.4 & 0.8 m/s in steady-state conditions HEATING Heat power = 50 & 100 % HEATING Heat power = 50 & 100 % COOLING T SAS = % heat power T PETS = % heat power COOLING T SAS = % heat power T PETS = % heat power MEASUREMENTS 1.Temperature 2.Alignment Laser tracker WPS system MEASUREMENTS 1.Temperature 2.Alignment Laser tracker WPS system STEP 4 Heating all module ENVIRONMENT T amb = 20 & 40 C v air = 0.4 & 0.8 m/s in steady-state conditions ENVIRONMENT T amb = 20 & 40 C v air = 0.4 & 0.8 m/s in steady-state conditions BE-RF-PM Thermal tests planning for CLIC prototype module type EXPERIMENTAL VALIDATION OF NUMERICAL MODELLING: case studies STEP# INPUT OUTPUT T amb (C)v air (m/s) Heat power (%) T i,water (C) T o,water (C) SASAS LoadPETSRFN LoadDBQSAS (+10 C)PETS (+15 C) WPS system (study influence of vibrations induced by air speed on WPS measuring system) Temperature sensors 2.Alignment Temperature sensors 2.Alignment Temperature sensors 2.Alignment Temperature sensors 2.Alignment BE-RF-PM Thermal tests planning for CLIC prototype module type EXPERIMENTAL VALIDATION OF NUMERICAL MODELLING: FEA OUTPUT: temperature distribution OUTPUT: deformations Lauri Kortelainen BE-RF-PM Thermal tests planning for CLIC prototype module type EXPERIMENTAL VALIDATION OF NUMERICAL MODELLING: FEA FEA 1.Discrete temperature 2.Displacements of fiducials BE-RF-PM Thermal tests planning for CLIC prototype module type 0 35 CONCLUSIONS Ready to start 1.Thursday afternoon, March 7 th : validation tests for air conditioning and ventilation system 2.Friday, March 8 th : STEP 0 3.From Monday, March 11 th : STEP 1 (2 weeks)