ÿÿÿþþþ ‘‘‘laplace'''ÙÙÙ˙˙˙ııı‡‡‡555ÚÚÚoooíííäää

19
l X ˘ Œ ˘ J. Sys. Sci. & Math. Scis. x(x) (20xx, x), 1–19 Laplace '5O * /ø (˘Œ˘O¯˘˘, 041004) y¥( (Department of Statistics, Kansas State University, Manhattan, KS, 66503) ` p-ºŒθˇL^Em(X, θ)=0´§XkLaplace§= U*Z = X + U §'[7]Eθ {üO{. ,TO{=^uU ' lLaplace'pÆ. '•0«ıLaplace'§ ¿ '[7] {2kø«ıLaplace'.¥. ,§'[7]{·˜u ˆ^ˇ"X Em(X, θ)= EH(Z, θ)§¥H ,/Œ§T{Ø OK¿^. '•E«˜u^ˇ" E[m(X, θ)|Z] O{. X §ØøO5?1?. c 5O, , Laplace', . MR(2000)K'a 62J02, 62F10 Nonlinear Statistical Inferences With Laplace Measurement Error SHI Jianhong (School of Mathematics and Computer Science, Shanxi Normal University, Linfen, 041004) SONG Weixing (Department of Statistics, Kansas State University, Manhattan, KS, 66503) Abstract When a p-dimensional parameter θ is defined through the moment con- dition Em(X, θ) = 0, a simple estimation procedure of θ was proposed in [7] when X, *{II[g,˘˜7(NSF DMS 1205276)]ˇK. ˇ: y¥(§[email protected] ´vFˇ: 200x-xx-xx, ´?UvFˇ: 200x-xx-xx. ?:

Upload: others

Post on 18-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

l

X Ú Æ ê Æ

J. Sys. Sci. & Math. Scis.

x(x) (20xx, x), 1–19

ÿÿÿþþþØØØLaplace©©©ÙÙÙ555ÚÚÚOOOíííäää∗

¤ïù

(ìÜÆêÆOÅÆÆ, ­ 041004)

y¥(

(Department of Statistics, Kansas State University, Manhattan, KS, 66503)

Á p-ëêθÏLÝ^Em(X, θ) = 0½Â§XkLaplaceÿþا=·

U*ÿZ = X +U§©[7]Eθ üO. , TO=·^uU©

þÑlLaplace©ÙpÕá¹. ©·ò0«õLaplace©Ù§ ¿ò

©[7] í2äkù«õLaplace©ÙÿþØ.¥. ,§©[7]´Äu

Ã^Ï"'X Em(X, θ) = EH(Z, θ)§Ù¥H ,/ª®¼ê§ TéÚ

Oíä¯K¿Ø·^. ©·òE«Äu^Ï" E[m(X, θ)|Z] O. X

§·éùO5?1?Ø.

'c 5ÚOíä, ÿþØ, Laplace©Ù, .

MR(2000)ÌÌÌKKK©©©aaaÒÒÒ 62J02, 62F10

Nonlinear Statistical Inferences With Laplace Measurement Error

SHI Jianhong

(School of Mathematics and Computer Science, Shanxi Normal University, Linfen, 041004)

SONG Weixing

(Department of Statistics, Kansas State University, Manhattan, KS, 66503)

Abstract When a p-dimensional parameter θ is defined through the moment con-dition Em(X, θ) = 0, a simple estimation procedure of θ was proposed in [7] when X,

*II[g,ÆÄ7(NSF DMS 1205276)]ÏK.

ÏÕö: y¥(§[email protected]

ÂvFÏ: 200x-xx-xx, Â?UvFÏ: 200x-xx-xx.

?:

2 X Ú Æ ê Æ xò

a k-dimensional random vector, are contaminated with Laplace measurement errorU , that is, we can only observe Z = X +U . However, the estimation procedure wasdesigned particularly for the cases where the components of the measurement errorvector U are independent. In this paper, we first introduce a general multivariateLaplace distribution, then extend the methodology in [7] to this general multivari-ate scenario. Moreover, the moment estimation procedure in [7] is based on theunconditional expectation Em(X, θ) = EH(X, θ) for some function H. Exampleshows this techniques does not work in some cases. In this paper, we will proposean estimation procedure based on the condition expectation E(m(X, θ)|Z). Largesample properties of the proposed estimation procedure when X is one-dimensionalare discussed.

Keywords Nonlinear Statistical Inference, Measurement Error, Laplace Distribu-

tion, Bias Correction.

1 ÚÚÚ óóó

5ÚO.´ÚOÆ!²LOþÆ!)ÔÚOÆ!àÚOƯõÆ¥A^

2a)ºCþm'XÚO.. u5.§5.3yêâ(!

[ÜCþ'X¡\(¹§ éuëê.5`§5.ëê kX~*

¢S)º§ÚOíä§S dêâû½§mk<0\. 3Nõ¹e§5.¥

ëêθdXoNÝO§û½µ

Em(X; θ) = 0 (1.1)

Ù¥Xk-þ§θ ∈ Θ ⊂ Rpëêþ§mdþ¼ê§Ï~kd ≥ p.,

3¢¥§UduÿþóäØ°(§Uduÿþ¤[B§³½´du<

ϧ·*ÿØX§*ÿ´Xk'CþZ. ~X§3IJwï

Ĥ?1xUþEïÄ(OPEN) ¥§­*ÿI<Ø ¥x

\þ. , ùI*ÿؤ[B§ §S¡. §Æ[À,

Cþ§=kx¹þZ§5X OCþ. 'uOPEN ïÄäN¹§ë

©[13]ó¶©[14]ïÄÖF´¾Ù>zþm'X§3TïÄ¥§A

CþY , Y = 1L«ÖkF´¾§Y = 0L«vk.XJ)ºCþ>zþX±

*ÿ§Logistic½öProbit £8Ï~¬^5éY X'X?1ï. , §3©[14]ï

Ä¥§ X*ÿا¤U*ÿ´Ö¤3[Ì¥Ó¹¿pz¹þZ.

;Í[2]£ãNõ5gEÆ!)ÔuÿÆ!ÆÆ¥9ÿþØ¢~. XÛÏ

L*ÿêâ(Y, Z)5ïÄYX m'X=¤ÿþØ.­ïÄSN. ©z¥

'uZXm'Xkéõ?اk²(ÚO'X)\(Z = X + U§Berkson(

X = Z + U§£8(Z = α + γX + U§¦È(Z = XU §;Í[2]1!

Ùédéõ?Ø. vk²(ÚO'X(ÄÛu9Ïêâ½öyê

â(Instrumental Data/Validation Data)3ëêíä¥. ©·òæ^~\Ø

(: Z = X + U§Ù¥U L«ÿþاXUpÕá.

¯¤±§üòZX5?1ÚOíä¬k O½$u. Ϧ

xÏ ¤ïù§y¥(: 5ÿþØÚOíä 3

ؽü$ÿþØéÚO©ÛE¤K§ÒI\ré.b½öÂ8õ9Ïê

â½öyêâ. 3öØ3¹e§ÿþØ.¥Ï~¬bU©Ù®.3ëê

.¥§cÙ´35½õª.¥~´UÑlN(0,Σ). , 3Ù¦E,ëê

.¥§ÄubÚOíä§S¿Øü§cÙ´3ëêÚO¥§Äu1wEâ£8

¼êOkX~úÂñÝ. ©[5]\?ØÿþØéëê£8OÜÝK

§¿âÿþØA¼êéÙ?1©a. XJA¼êܱêÝP~0,

K¡TÿþØäk1w5(super smooth)¶XJA¼êܱõªÝªu0§

K¡TÿþØäk1w5(ordinary smooth).©Ù´äk1w5;.L§ ä

k1w5;.~f´Laplace ©Ù.Laplace©Ù3Ñ£OãØ ¡kX2

A^. 3ÚOÆ¥§duýé OÄu.Ê.d©Ù4q,OkXU,é

X§¤±Ù3­è5ïÄ¥ÓkR/.

3bU©þpÕá§ÙgÑlLaplace©Ù^e§©[7]JÑO.(1.1)

¥ëêθ«ü. 0B§PU = (U1, U2, . . . , Uk), Uj ݼêf(u) =

exp(−√

2|u|/σj)/(√

2σj), Uj , j = 1, 2, . . . , kpÕá. ,P

m(Z; θ, σ) = m(Z; θ) +k∑l=1

(−1

2

)l ∑j1<···<jl

σ2j1 · · ·σ

2jl

(∂2lm(Z; θ)

∂Z2jl· · · ∂Z2

jl

).

3é¼êm(x; θ) \1w5^§©[7]y²Xe­úª

Em(X; θ) = Em(Z; θ, σ).

âþã(اÝ^Em(X; θ) = 0=±dÝ^Em(Z; θ, σ) = 05O. 5¿´§

¦+ù#Ý^6uZ§´%Ú\,Uëêσ. XJEm(Z; θ, σ) =

0±û½θ, σ§©[7]ÑÄu

(θ, σ) = argminθ,σ

(n∑i=1

m(Zi; θ, σ)

)′Wn

(n∑i=1

m(Zi; θ, σ)

)?ÝO. 3K^e§θ, σìC5y². XJEm(Z; θ, σ) = 0Øv±

û½θ, σ§|^σ2jØLZj¯¢§©[7]EθU8Ü.

¦+©[7]ó­5Øó §, TkX²w". ÄkT·^

uU©þpÕá/§ Õá5éu9õCþÚOíä5`´~

b¶,Em(X; θ) = Em(Z; θ, σ)´k'Ã^Ï"ª. ÄuÃ^Ï"ÚOíä3

éõÿr<¿§cÙ´3£8.?Ø¥§=¦·Ä´X/. 'u

ö§·¬3¡?Ø¥^Poisson£8.~f5?Úã.

XJUÑl©Ù§aqÃ^Ï"ªéJ. k = 1, m(x; θ) = xp − 觩[7]ÑXeª§

Em(X; θ) = EZp +

[p/2]∑l=1

(−1)l(σ2

2

)lp!

l!(p− 2l)!Zp−2l − θ.

XJUÑlõ©Ù§aqªéN´. ´éuõª5¼

êm(x, θ)§aq(Øvk.

©(SüXe§31!¥§·ò0«õLaplace©Ù½Â9ù

«©Ùü5§31n!¥§Äuù«õLaplace©Ù§·¬ãaq

4 X Ú Æ ê Æ xò

uEm(X; θ) = Em(X; θ, σ)Ã^Ï"ª§¿ïá²1u©[7]OO

5. Xd§·Òò3Õá5beïáÚOíä§Sí2õ¹¥. 3

1o!§·¬3X ©Ù¹e§ÑE(m(X; θ)|Z)Lª§,·¬|^

ù^Ï"Lª§5U?ÄuÃ^Ï"O. ¤knØ(Jy²Ñ31

Ê!.

2 õõõLaplace©©©ÙÙÙ

¯¢þ§î8§õLaplace©ÙE,vkÚ½Â. '~´d©[4,8]JÑ

ÄuA¼ê½Â. ¯¢þ©[4]¤½ÂõLaplace ©Ù´©[8]½ÂõLaplace©Ù

A~. 3©?Ø¥§·æ^©[4]½Â. âT½Â§k þX A¼ê

XJäk/ª

φ(t) =exp(iµ′t)

1 + t′Σt/2, t ∈ Rk,

K¡XÑlëê(µ,Σ)õLaplace©Ù§PX ∼ Lk(µ,Σ)§Ù¥µk-þ§Σ

k× k½Ý. éw,§Xd½ÂõLaplace ©Ù´ÄuLaplace ©ÙA¼ê

í2. ©ÙLk(µ,Σ)kXe­5µ

(1). XJU ∼ Lk(µ,Σ)§@ol©Ù¿Âþ5`§U = µ +√V Σ1/2W§Ù¥VÑ

lþ1ê©Ù§WÑlõIO©Ù§V W pÕá;

(2). XJU ∼ Lk(µ,Σ)§@oÙݼêäkXe/ª

ψ(u) =2

(2π)k/2B(d/2−1)(

√2q(u;µ,Σ))

(2q(u;µ,Σ))d/2−1, u ∈ Rk, (2.2)

Ù¥q(u;µ,Σ) = (u− µ)′Σ−1(u− µ)§Br(x)´r1a?Bessel¼ê¶

(3). XJU ∼ Lk(µ,Σ)§KEU = µ, Cov(U) = Σ.

5(1)`²õLaplace©Ù¢Sþ´õ©Ù«Ý·Ü§T5Ø=Jø«

)õLaplace©Ù§ Ñ|^T©Ù?1­èÚOíä¦^EM U

5. ù¡óëw©[11,12]'uk = 1?Ø. 5(3)L²ëêΣ (¢xU¥©

þm'X.

duU'u0é¡´ÿþØ.©z¥~^^§¤±3e¡?Ø¥§ ·b

µ = 0.

3 ÃÃÃ^ÝÝÝOOO

±f, g©OPXZݼ꧱φz(t), φx(t)φu(t)©OPZ,XUA¼ê. d

\(Z = X + U§±9XUpÕ᧴φz(t) = φx(t)φu(t). Ïé¤kt ∈ Rk§φu(t) = (1 + t′Σt/2)−1 6= 0§¤±éN´φx(t) = (1 + t′Σt/2)φz(t).|^d¯¢§·±

?Úe¡(Ø.

xÏ ¤ïù§y¥(: 5ÿþØÚOíä 5

ÚÚÚnnn 3.1 bφZ(t)²È§K

f(x) = g(x)− 1

2

k∑j,l=1

σjl∂2g(x)

∂xj∂xl,

Ù¥σjlΣ(j, l)§xjx1j©þ.

ÄuþãÚn§·±e¡Ã^Ï"ª.

½½½nnn 3.1 bëê¼êm(x, θ)ݼêg(z)÷ve¡^

(C1). ézθ ∈ Θ§ëê¼êm(x, θ)'ux§¿‖x‖ → ∞§

m(x, θ)g′(x)→ 0, m′(x, θ)g(x)→ 0.

(C2). ézθ ∈ Θ§

E‖m(Z, θ)‖ <∞, E

∥∥∥∥∂2m(Z, θ)

∂Zj∂Zl

∥∥∥∥ <∞,K·k

Em(X, θ) = Em(Z, θ)− 1

2

k∑j,l=1

σjlE∂2m(Z, θ)

∂Zj∂Zl. (3.3)

/ÏÚn3.1§½n3.1y²~ü. ¯¢þ§|^½n^¿?1©ÜÈ©§·

±y²§é¤kj, l = 1, 2, . . . , k,∫m(x, θ)

∂2g(x)

∂xj∂xldx = E

∂2m(Z, θ)

∂Zj∂Zl.

Ú©[7]'uÕáLaplaceÿþØ©þ(J'§½n3.1(Øl/ªþw~

ü§Ã^Ï"ªmà9ëê¼êm(z, θ)'uz . Äu½n3.1§·

±X²1u©[7](J. B?اP

m(Z; θ,Σ) = m(Z, θ)− 1

2

k∑j,l=1

σjl∂2m(Z, θ)

∂Zj∂Zl.

3.1 £££OOO¹¹¹eee:::OOO

bÝ^Em(Z; θ,Σ) = 0±(½θ, Σ. é?¿é¡½ÝWn, ½Â

(θ, Σ) = argminθ,Σ

(n∑i=1

m(Zi; θ,Σ)

)′Wn

(n∑i=1

m(Zi; θ,Σ)

). (3.4)

Ó§·b

(C3). Em(Z; θ,Σ) = 0 =θ = θ0, Σ = Σ0 > 0, Ù¥θ0,Σ0ý¢ëê¶

(C4). é,½é¡Ý§WnVÇÂñuW ;

(C5). ±σPþ(σjl, j ≥ l), α = (θ′, σ′)′.E∂m(Z; θ,Σ)/∂α 3§÷§¿3α0,

S§∂m(Z; θ,Σ)/∂α÷vLipschitz^.E‖m(Z; θ0,Σ0)‖2 <∞.

6 X Ú Æ ê Æ xò

3þã^e§·ke¡½n.

½½½nnn 3.2 b^(C1)-(C5)¤á§K(θ, σ)VǪu(θ0, σ0)§¿

√n

(θ − θ0

σ − σ0

)=⇒ N

(0, (A′WA)−1(A′WΩWA)(A′WA)−1

),

Ù¥

A =

∂m(Z; θ)

∂θ− 1

2

k∑j,l=1

σjl∂m3(Z; θ)

∂Zj∂Zl∂θ,

(− 1

2δ(j,l)∂2m(Z; θ)

∂Zj∂Zl, j ≥ l

) ,Ω = Em(Z; θ,Σ)m′(Z; θ,Σ); XJj = l, δ(j, l) = 1, ÄKδ(j, l) = 0.

dθ, ΣÜ5§·ØJe¡(Ø.

½½½nnn 3.3 b^(C1)-(C5)¤á§Wn = n(∑ni=1 m(Zi; θ, Σ)m′(Zi; θ, Σ))−1, ,

(θ, Σ) = argminθ,σ

(n∑i=1

m(Zi; θ, σ)

)′Wn

(n∑i=1

m(Zi; θ, σ)

)(θ,Σ)O§KWnVǪuΩ−1§(θ, Σ)E(θ0,Σ0)ÜO§¿

√n

(θ − θ0

σ − σ0

)=⇒ N

(0, (A′ΩA)−1

).

Ù¥σ = (σjl, j ≥ l), σjlΣ(j, l)©þ.

ÌIO'uÝOÜ5IOØy§·±½n3.23.3y².

'姩·Ñ[y²L§.

3.2 ØØØ£££OOO¹¹¹eeeUUUOOO

XJݧEm(Z; θ,Σ) = 0Øv±û½θ,Σ§Ò´`§^(C3)ؤá§@oUì

©[7]Jøg´§·±E'uθU8Ü. ½Â

η0(θ) = Em(Z, θ)− 1

2

k∑j,l=1

√τ2j τ

2l

[E∂2m(Z, θ)

∂Zj∂Zl

]−.

η1(θ) = Em(Z, θ) +1

2

k∑j,l=1

√τ2j τ

2l

[E∂2m(Z, θ)

∂Zj∂Zl

]+

.

Ù¥τ2jZ1j©þ§j = 1, 2, . . . , k. þªmàÑy3ê þ+, −L«A¼

êÜKÜ. dué?¿j, l = 1, 2, . . . , k§Ñk|σjl| ≤√σ2jσ

2l ≤

√τ2j τ

2l §¤±·k

η0(θ0) ≤ Em(Z; θ0,Σ0) = 0 ≤ η1(θ0),

dت¿XëêθU8ÜÀ

Θ0 = θ|θ ∈ Θ, η0(θ) ≤ 0 ≤ θ1(θ) .

ÚOíäO§?½ÝW§9ªuW?U6êâ½ÝSWn§½Â

Q(θ) = [η0(θ)I(η0(θ) > 0)]′W [η0(θ)I(η0(θ) > 0)] + [η1(θ)I(η1(θ) < 0)]′W [η1(θ)I(η1(θ) < 0)],

xÏ ¤ïù§y¥(: 5ÿþØÚOíä 7

Qn(θ) = [ηn0(θ)I(ηn0(θ) > 0)]′Wn[ηn0(θ)I(ηn0(θ) > 0)]

+[ηn1(θ)I(ηn1(θ) < 0)]′Wn[ηn1(θ)I(ηn1(θ) < 0)],

Ù¥

ηn0(θ) =1

n

n∑i=1

m(Zi, θ)−1

2

k∑j,l=1

√τ2j τ

2l

[1

n

n∑i=1

∂2m(Zi, θ)

∂Zij∂Zil

]−.

ηn1(θ) =1

n

n∑i=1

m(Zi, θ) +1

2

k∑j,l=1

√τ2j τ

2l

[1

n

n∑i=1

∂2m(Zi, θ)

∂Zij∂Zil

]+

,

ùpτ2jZij , i = 1, 2, . . . , n. 3e¡8Üål½Âe

ρ(A,B) = supa∈A

infb∈B|a− b|,

|a− b|a, bü:mîªål§·ke¡(Ø.

½½½nnn 3.4 b^(C1)-(C3)§(C5)¤á. éuªu0êSγn§½Â8Ü

Θn = θ|θ ∈ Θ, Qn(θ) ≤ argminb∈ΘQn(b) + γn,

Kn→∞, ρ(Θn,Θ0)→ 0, a.s..?Ú§XJ·ksupθ∈Θ

Qn(θ)−Q(θ)

/γn → 0, a.s.,

@oρ(Θ0,Θn)→ 0, a.s..

½n3.4y²aqu©[9]¥·K35y²§dÑ.

4 ^ÝÝÝOOO

·±kÿþØPoisson£8~f5m©!?Ø. 3½ÅCþX

^e§bYÑlþexp(Xθ)Poisson©Ù.=

P (Y = y|X) =exp(yXθ) exp(− exp(Xθ))

y!, y = 0, 1, . . . .

XJ±(X,Y )|*ÿ(Xi, Yi), i = 1, 2, . . . , n§@oθÐOAT´4q,

O§Ò´¦

Ln(θ) =1

n

n∑i=1

[− exp(Xiθ) + YiXiθ − log Yi!]

θ. 3XØ*ÿÑlÿþØ.Z = X + U§·U´Ä±

Ln(θ) =1

n

n∑i=1

[− exp(Ziθ) + YiZiθ − log Yi!]

θ5θO. ùÒ´¤¢NaiveO. 5¿n→∞ §

Ln(θ)→ E[− exp(Xθ) + Y Xθ − log Y !] + E[− exp(Zθ) + exp(Xθ)],

8 X Ú Æ ê Æ xò

Ò´`§XJ·½Â

L0n(θ) =1

n

n∑i=1

[YiZiθ − log Yi!]− E exp(Xθ)

KL0n(θ)Ln(θ)VÇÂñuE[− exp(Xθ) + Y Xθ − log Y !]. Äuù?q,¼

êL(θ)§©[6]ѧXJE exp(Xθ)®§KL0n(θ):±θO. ©[6]¡ù

O©O.3½K^e§©OÜ5ìC5

y².

´§E exp(Xθ)®^ ¿X·IéX©Ùk¤)§ 3ÿþØ

©z¥§ïÄ<ééX©ÙÑb§¤±XJA^©[6]§ 1

´E exp(Xθ) O. ù5§3ÿþØÑlLaplace©Ù¹e§©[7]ó§½

ö·31n!(J§BJøE exp(Xθ)«UO. ¯¢þ§·k

E exp(Xθ) =

[1− 1

2σ2θ2

]E exp(Zθ).

Xd§XJ?ÚbÿþØUσ2®§·=±ÏL4z

L1n(θ) =1

n

n∑i=1

[YiZiθ − log Yi!−

(1− 1

2σ2θ2

)exp(Ziθ)

]5¦θO. , c[©Û±w§éu|½(Zi, Yi), i = 1, 2, . . . , n§θ¼ê§

θ → ±∞§L1n(θ) → +∞. Ò´`§L1n(θ):¿Ø3. ù¿X3þã

¹¥§©[7]ó§½ö·31n!(J¿Ø·^.

4.1. ^ÏÏÏ"""úúúªªª

3ÿþØ.ÚOí䥧£8(Regression Calibration)´«Uk~$

O . ¦^TÄkE(X|Z)O§,3AÚOíä§S¥§

±E(X|Z)OX. 'uT[¹§±ëw;Í[2]14Ù§½ö©[3]¥?

Ø. ¯¢þ§£8¿ØUØÿþØ5K§¦Ù-<÷¿J§

Øk°(E(X|Z) O§Im(x, θ)x¹1w¼ê, ½ökXÿþØ

. 3e¡?Ø¥¬w§ÿþØ.äkLaplace©Ù§·Ø=UE(X|Z)

°(Lª§ é1w¼êm(x, θ)§·UE[m(X, θ)|Z]°(Lª. ¦

^ö ±kO.

·Äkã·^uõX(J. éuëê¼êm(x; θ)§XJE(m(X; θ)) = 0§@

o¿XE(E[m(X; θ)|Z]) = 0. ¤±XJ·UE[m(X; θ)|Z] Lª(w,ùL

ª6uΣ)§K33.1 !¥m(Z; θ,Σ)§Ìaqg´±Eθ,ΣO§¿*

þ5`§d^Ï"E[m(X; θ|Z)]ÑuEO'âÃ^Ï"'X¥m(Z; θ,Σ) E

OЧ.¾3¤kZ ÿ¼ê¥§^Ï"E[m(X; θ|Z)]3þØ¿Âe

Cum(X; θ).

bm(x)ÿ¼ê. e¡½nÑ^Ï"E(m(X)|Z) Lª.

½½½nnn 4.1 bÿþØUÑld(2.2)½Âþ0õLaplace©Ù§ZA¼

xÏ ¤ïù§y¥(: 5ÿþØÚOíä 9

êφZ(t)²È§K

E[m(X)|Z] =1

g(Z)

∫ m(x)ψ(Z − x)g(x)dx− 1

2

n∑j,l=1

σjl

∫m(x)ψ(Z − x)

∂2g(x)

∂xj∂xldx

. (4.5)

Ù¥ψd(2.2)½ÂUݼê.

XJk = 1§K·ke¡íØ

íííØØØ 4.1 b¼êm§g§¿éb(x) = m(x)g(x), m′(x)g(x)½m(x)g′(x)5`

limx→±∞

b(x) exp(−|x|)→ 0.

K·k

E[m(X)|Z] = m(Z) + l(Z), (4.6)

Ù¥

l(z) =ez/b

g(z)

∫ ∞z

[m′(x)− bm′′(x)

2

]g(x)e−x/bdx− e−z/b

g(z)

∫ z

−∞

[m′(x) +

bm′′(x)

2

]g(x)ex/bdx,

b = σ/√

2.

5551. UÑl©Ù§ÃØX©ÙÛ§·okE(X|Z) = Z + σ2g′(Z)/g(Z).

©[10]Jdúª´Maurice Tweedie3T©öh<Ï&¥Jѧ¤±Túª¡

Tweedieúª. duÙ²BayesnØ'X§Tweedieúª~2A^§

[¹ë©[1]ó. ½n4.1 ­¿Â3uÿþØÑlLaplace ©Ù§·

aqTweedie úª(4.5)§Ù¥m(x) Ø==ux 5¼ê.

5552. ØJy²§é(4.5)¥l(Z)Ï"=

El(Z) = −σ2

2E

[∂2m(Z)

∂Z2

],

dd=(3.3)k = 1/.

ãB'姷e5Ä/. ùÏkü:§´3õ

¹e§d(4.7)§gêÑy3^Ï"Lª¥§^gØÝO

êgéU¬éOnØ&?5æ. ´3½^e§·,±

ò(4.7) zaqu(4.8) /ª§Ò´`3E(m(X)|Z)Lª¥Ñy´g§ Ø

´g꧴3õ¹?n¥§ØPÒ,±§õênØØyL§

¹ÓÉ.

4.2 ^ÝÝÝOOO

duXݼê§l ZݼêÃl¡.XJ±Z1, Z2, . . . , ZnL«Z

|§@o·Ò±¦^gØÝO.±KPÀ½Ø¼ê§hI°§KgØÝ

O½Â

gh(z) =1

nh

n∑i=1

K

(Zi − zh

).

10 X Ú Æ ê Æ xò

BO§P

µl(x; θ, σ) =

[m′(x; θ) + (−1)l

σ

2√

2m′′(x; θ)

]exp

((−1)l

x√

2

σ

),

l = 1, 2.âíØ4.1, é½θ, σ§E(m(X, θ)|Z)±^eªO

E(m(X, θ)|Z) = m(Z; θ) +eZ√

2/σ

gh(Z)

∫ ∞Z

µ1(x; θ, σ)gh(x)dx− e−Z√

2/σ

gh(Z)

∫ Z

−∞µ2(x; θ, σ)gh(x)dx.

I5¿´§©1ÑyØO§3nØØy· yØOk"e.. ´

ù¦é| ¢ê8Ü©Ù¿ØÜn. ©z¥®²k5?nù¯K. 3

©¥§·æ^´òë$Zi, i = 1, 2, . . . , n3,4«mS§ù

Ib'¼êëY5§=£;K©1C"5nØ(J. d§v

êa, -H(Z; θ, σ) = I[−a,a](Z)E(m(X, θ)|Z)§¿^

H(Z; θ, σ) = I[−a,a](Z)E(m(X, θ)|Z)

H(Z; θ, σ)O§ùpI[−a,a](·)4«m[−a, a]«5¼ê. BO§3e¡?Ø¥

·^Ia(·)5L«[−a, a]«5¼ê.

X3.1!¥?اXJÝ^EH(Z; θ, σ) = 0±(½θ, σ§é?¿6uêâ

½ÝWn§·±^

(θ, σ) = argminθ,σ

(n∑i=1

H(Zi; θ, σ)

)′Wn

(n∑i=1

H(Zi; θ, σ)

). (4.7)

Ó§·b

(S1). θ, σëêm©ORp, R+¥;f8¶

(S2). EH(Z; θ, σ) = 0 =θ = θ0, σ = σ0 > 0, Ù¥θ0, σ0ý¢ëê¶

(S3). é,½é¡Ý§WnVÇÂñuW ;

(S4). ±Pα = (θ′, σ)′. EH(Z; θ, σ)/∂α3§÷§¿3α0,S§∂H(Z; θ, σ)/∂α

÷vLipschitz^. E‖H(Z; θ0, σ0)‖2 <∞.

(S5). ؼêK÷v

K(x) ≥ 0,

∫K(x)dx = 1,

∫xK(x)dx = 0, 0 <

∫x2K(x)dx <∞.

(S6). I°h÷vh→ 0, nh2 →∞, nh4 → 0.

3þã^e§·ke¡½n.

½½½nnn 4.2 b^(S1)-(S6)¤á§K(θ, σ)VǪu(θ0, σ0)§¿

√n

(θ − θ0

σ − σ0

)=⇒ N

(0, (A′WA)−1(A′WΩWA)(A′WA)−1

),

Ù¥A = E∂H(Z; θ, σ)/∂α, Ω = Cov(S11(Z)− S12(Z) + S21(Z)− S22(Z)),Ù¥

S11(Z) = µ1(Z; θ0, σ0)

∫ a

−aI(u < Z) exp(u

√2/σ0)du;

xÏ ¤ïù§y¥(: 5ÿþØÚOíä 11

S12(Z) =exp(Z

√2/σ)

g(Z)Ia(Z)

∫ ∞Z

µ1(x; θ0, σ0)g(x)dx;

S21(Z) = µ2(Z; θ0, σ0)

∫ a

−aI(u > Z) exp(−u

√2/σ0)du;

S22(Z) =exp(−Z

√2/σ)

g(Z)Ia(Z)

∫ Z

−∞µ2(x; θ0, σ0)g(x)dx.

dθ, σÜ5§·ØJe¡(Ø.

½½½nnn 4.3 b^(S1)-(S6)¤á§Wn = n(∑ni=1 H(Zi; θ, σ)H ′(Zi; θ, σ))−1, ,

(θ, σ) = argminθ,σ

(n∑i=1

H(Zi; θ, σ)

)′Wn

(n∑i=1

h(Zi; θ, σ)

)(β, σ)O§KWnVǪuΩ−1§(θ, σ)E(θ0, σ0)ÜO§¿

√n

(θ − θ0

σ − σ0

)=⇒ N

(0, (A′ΩA)−1

).

5 ÌÌÌ(((JJJyyy²²²

·Äk5y²Ún3.1.

yyy²²²µµµ ±φZ(t), φu(t)©OL«ZUA¼ê. dA¼êüúª§Xݼê

f(x) =1

(2π)k

∫exp(−it′x)φZ(t)φ−1

u (t)dt =1

(2π)k

∫exp(−it′x)φZ(t)

[1 +

1

2t′Σt

]dt

=1

(2π)k

∫exp(−it′x)φZ(t)dt+

1

2(2π)k

k∑j,l=1

σjl

∫exp(−it′x)tjtlφZ(t)φ−1

u (t)dt

= g(x) +1

2(−i)2

k∑j,l=1

σjl∂2

∂xj∂xl

[1

(2π)k

∫exp(−it′x)φZ(t)dt

]

= g(x)− 1

2

k∑j,l=1

σjl∂2g(x)

∂xj∂xl.

e5·y²íØ4.1.

yyy²²²µµµ B姷òm(x; θ)m(x), b = σ/√

2. |^^Ï"½Â§·k

E[m(X)|Z] =

∫m(x)f(x|z)dx =

∫m(x) 1

2be−|x−z|

b [g(x)− b2g′′(x)]dx

g(z).

þª¥©f±?Úe¡üªÚµ

S1n(z) =1

2bez/b

∫ ∞z

m(x)e−x/b[g(x)− b2g′′(x)]dx,

S2n(z) =1

2be−z/b

∫ z

−∞m(x)ex/b[g(x)− b2g′′(x)]dx.

12 X Ú Æ ê Æ xò

|^½n^¿?1©ÜÈ©§±∫ ∞z

m(x)e−x/bg′′(x)dx =

∫ ∞z

m(x)e−x/bdg′(x)

= −m(z)e−z/bg′(z)−∫ ∞z

g′(x)

[m′(x)e−x − 1

bm(x)e−x/b

]dx

= −m(z)e−z/bg′(z)−∫ ∞z

g′(x)m′(x)e−x/bdx+1

b

∫ ∞z

g′(x)m(x)e−x/bdx

= −m(z)e−z/bg′(z) + g(z)m′(z)e−z/b +

∫ ∞z

g(x)m′′(x)e−x/bdx− 1

bg(z)m(z)e−z/b

−2

b

∫ ∞z

g(x)m′(x)e−x/bdx+1

b2

∫ ∞z

g(x)m(x)e−xbdx.

aq± ∫ z

−∞m(x)ex/bg′′(x)dx =

∫ z

−∞m(x)ex/bdg′(x)

= m(z)ez/bg′(z)− g(z)m′(z)ez/b +

∫ z

−∞g(x)m′′(x)ex/bdx

−1

bg(z)m(z)ez/b +

2

b

∫ z

−∞g(x)m′(x)ex/bdx+

1

b2

∫ z

−∞g(x)m(x)ex/bdx.

òþãüªf\Sn1(z), Sn2(z)Lª¥§·±

Sn1(z) = − b2ez/b

∫ ∞z

g(x)m′′(x)e−x/bdx+ ez/b∫ ∞z

g(x)m′(x)e−x/bdx

+b

2m(z)g′(z)− b

2g(z)m′(z) +

1

2g(z)m(z),

Sn2(z) = − b2e−z/b

∫ z

−∞g(x)m′′(x)ex/bdx− e−z/b

∫ z

−∞g(x)m′(x)ex/bdx

− b2m(z)g′(z) +

b

2g(z)m′(z) +

1

2g(z)m(z).

òþãüªf\E[m(X)|Z]Lª¥, \n=íØ4.1(Ø.

y²½n4.2§·ÄkÑüÚn. bX1, X2, . . . , XnÑlݼêf(x)Õá

Ó©ÙÅCþ§fn(x)f(x)ØÝO§Ù¥Ø¼êK§I°h.

ÚÚÚnnn 5.1 bݼêf(x)| R§÷vf(x)§Ùêk..KK ÷v

^(S5)§Ké?¿êa,

supx∈[−a,a]

|fn(x)− f(x)| = O

(√log n

nh

)+O(h2), a.s..

Ún5.1ã´ØÝO¥2<(J§¤±·ã Øy.

ÚÚÚnnn 5.2 bη(x)ëY¼ê§Ý¼êf(x)êk.. ·k

1√n

n∑i=1

η(Xi)Ia(Xi)[fn(Xi)−f(Xi)] =1√n

n∑i=1

[η(Xi)f(Xi)Ia(Xi)−Eη(X)f(X)Ia(X)]+op (1) .

xÏ ¤ïù§y¥(: 5ÿþØÚOíä 13

yyy²²²µµµ \n§·k

1√n

n∑i=1

η(Xi)Ia(Xi)fn(Xi) =1√

n(n− 1)h

∑i 6=j

η(Xi)Ia(Xi)K

(Xi −Xj

h

)+

K(0)√nnh

n∑i=1

η(Xi)Ia(Xi)

− 1√nn(n− 1)h

∑i 6=j

η(Xi)Ia(Xi)K

(Xi −Xj

h

),

duE|η(X)Ia(X)| <∞§E|η(X)f(X)Ia(X)| <∞e§üþop(1).P

h(Xi, Xj) =1

2[η(Xi)Ia(Xi) + η(Xj)Ia(Xj)]

1

hK

(Xi −Xj

h

),

K·k

1

n(n− 1)

∑i 6=j

η(Xi)Ia(Xi)1

hK

(Xi −Xj

h

)=

2

n(n− 1)

∑i<j

h(Xi, Xj).

PþªUn§KØJwÑUnU -ÚOþ§

1√n

n∑i=1

η(Xi)Ia(Xi)fn(Xi) =√nUn + op(1).

½Âθ = Eh(X1, X2). ·5ÄUn3z:þÝK§E(Un|Xi), i = 1, 2, . . . , n. ü

O±uy§ézi = 1, 2, . . . , n,

E(Un|Xi) =2

nE[h(X,Xi)|Xi] +

n− 2

nθ,

þªmà1¥XXiÕáÓ©Ù.- Un =∑ni=1E(Un|Xi)− (n− 1)θ, ´

Un − θ =2

n

n∑i=1

(E[h(X,Xi)|Xi]− θ) .

Ph(Xi) = E[h(X,Xi)|Xi]§H(Xi, Xj) = h(Xi, Xj)− h(Xi)− h(Xj)− θ.K

Un − Un =2

n(n− 1)

∑i<j

[h(Xi, Xj)− h(Xi)− h(Xj)− θ] =2

n(n− 1)

∑i<j

H(Xi, Xj).

5¿i, j, k(= 1, 2, . . . , n)üüا·kEH(Xi, Xj) = 0, E[H(Xi, Xj)|Xi] = 0§

ö¿XEH(Xi, Xj)H(Xj , Xk) = 0§l ±íÑ

E(Un − Un)2 =2

n(n− 1)EH2(X1, X2).

üO±uyEH2(X1, X2) = O(1/h)§Xd·=

E(Un − Un)2 = O

(1

n2h

), or Un = Un +Op

(1

n√h

).

dunh→∞§¤±ù¯¢¿X√n(Un − θ) =

√n(Un − θ) + op(1). ,§·k

θ = E

(η(X1)Ia(X1)

1

hK

(X1 −X2

h

))=

∫∫ a

−aη(u)f(v)f(u)

1

hK

(u− vh

)dudv

=

∫ a

−aη(u)f(u)

[∫K(v)f(u+ vh)dv

]du = Ef(X)η(X)Ia(X) +O(h2).

5¿E[h(Xi, Xj)|Xi]±L«

1

2E

[η(Xi)Ia(Xi)

1

hK

(Xi −Xj

h

) ∣∣∣Xi

]+

1

2E

[η(Xj)Ia(Xj)

1

hK

(Xi −Xj

h

) ∣∣∣Xi

],

14 X Ú Æ ê Æ xò

üO±¦

E

[η(Xi)Ia(Xi)

1

hK

(Xi −Xj

h

) ∣∣∣Xi

]= η(Xi)f(Xi)Ia(Xi) +Op(h

2)

e¡5y²eª¤á

E

[η(Xj)Ia(Xj)

1

hK

(Xi −Xj

h

) ∣∣∣Xi

]= η(Xi)f(Xi)Ia(Xi) +Op(h

2).

'å§PþªàQh(Xi).¯¢þ§·k

n−1/2n∑i=1

[Qh(Xi)− η(Xi)f(Xi)Ia(Xi)]

=1√n

n∑i=1

[Qh(Xi)− θ]−1√n

n∑i=1

[η(Xi)f(Xi)Ia(Xi)− Eη(X)f(X)Ia(X)] + op(1).

Var

(1√n

n∑i=1

[Qh(Xi)− θ]−1√n

n∑i=1

[η(Xi)f(Xi)Ia(Xi)− Eη(X)f(X)Ia(X)]

)= E ([Qh(X1)− θ]− [η(X1)f(X1)Ia(X1)− Eη(X)f(X)Ia(X)])

2

= E[Qh(X1)− θ]2 + E[η(X1)f(X1)Ia(X1)− Eη(X)f(X)Ia(X)]2

−2E[Qh(X1)− θ][η(X1)f(X1)Ia(X1)− Eη(X)f(X)Ia(X)].

±y²n→∞§þªmànÏ"ÑÂñuVar(η(X)f(X)Ia(X)). ù¿X

1√n

n∑i=1

E

[η(Xj)Ia(Xj)

1

hK

(Xi −Xj

h

) ∣∣∣Xi

]=

1√n

n∑i=1

η(Xi)f(Xi)Ia(Xi)] + op(1).

nþ¤ã§·k

√n(Un − θ) =

2√n

n∑i=1

[η(Xi)f(Xi)Ia(Xi)− Eη(X)f(X)Ia(X)] +Op(√nh2).

XJ^nh4 → 0¤á§K·ª

1√n

n∑i=1

η(Xi)[fn(Xi)− f(Xi)] =√nUn −

1√n

n∑i=1

η(Xi)f(Xi)Ia(Xi) + op(1)

=√n(Un − θ)−

1√n

n∑i=1

[η(Xi)f(Xi)Ia(Xi)− θ] + op(1).

|^c㤧éþªmà\n=Ún(Ø.

ÚÚÚnnn 5.3 bµ(x), η(x)ëY¼ê§∫ a

−aη2(u)

[∫ ∞u

f(x)µ2(x)dx

]f(u)du <∞,

K·k

1√n

n∑i=1

η(Xi)Ia(Xi)

∫ ∞Xi

[fn(x)− f(x)]µ(x)dx =1√n

n∑i=1

[P (Xi)− EP (X)] + op(1).

Ù¥

P (Xi) = µ(Xi)

∫ a

−aη(u)I(u < Xi)f(u)du.

xÏ ¤ïù§y¥(: 5ÿþØÚOíä 15

yyy²²²µµµ duÚny²aquÚn5.2y²§¤±·=QãØÓ?. Äk§

1√n

n∑i=1

η(Xi)Ia(Xi)

∫ ∞Xi

fn(x)µ(x)dx =1

nh√n

n∑i=1

η(Xi)Ia(Xi)

∫ ∞Xi

K

(Xi − xh

)µ(x)dx

− 1

n(n− 1)h√n

∑i 6=j

η(Xi)Ia(Xi)

∫ ∞Xi

K

(Xj − xh

)µ(x)dx

+1

(n− 1)h√n

∑i 6=j

η(Xi)Ia(Xi)

∫ ∞Xi

K

(Xj − xh

)µ(x)dx.

du

E

∣∣∣∣∣ 1

nh

n∑i=1

η(Xi)Ia(Xi)

∫ ∞Xi

K

(Xi − xh

)µ(x)dx

∣∣∣∣∣ ≤∫ a

−a|η(u)|f(u)

[∫ ∞0

K(v)µ|(v + uh)|dv]du,

þªmàO(1), ¤±

1

nh√n

n∑i=1

η(Xi)Ia(Xi)

∫ ∞Xi

K

(Xi − xh

)µ(x)dx = op(1).

ᒄ

E

∣∣∣∣∣∣ 1

n(n− 1)h

∑i6=j

η(Xi)Ia(Xi)

∫ ∞Xi

K

(Xj − xh

)µ(x)dx

∣∣∣∣∣∣≤

∫ a

−a|η(u)|f(u)

[∫ ∞u

f(x)|µ(x)|dx]du+O(h2) = O(1),

¤±1

n(n− 1)h√n

∑i 6=j

η(Xi)Ia(Xi)

∫ ∞Xi

K

(Xj − xh

)µ(x)dx = op(1).

Xd§·Ò±

1√n

n∑i=1

η(Xi)

∫ ∞Xi

fn(x)µ(x)dx =√nUn + op(1),

Ù¥Un = 2n−1(n− 1)−1∑ni=1 h(Xi, Xj)§

h(Xi, Xj) =1

2

[η(Xi)

∫ ∞Xi

1

hK

(Xj − xh

)µ(x)dx+ η(Xj)

∫ ∞Xj

1

hK

(Xi − xh

)µ(x)dx

].

½Âθ = Eh(X1, X2)§¿ÄUn3z:þÝK§·±ÙGLª

Un − θ =

n∑i=1

E[Un|Xi]− (n− 1)θ =2

n

n∑i=1

(E[h(X,Xi)|Xi]− θ) ,

Un − Un =2

n(n− 1)

∑i<j

[h(Xi, Xj)− h(Xi)− h(Xj)− θ] =2

n(n− 1)

∑i<j

H(Xi, Xj).

¿·k

E[Un − Un]2 =2

n(n− 1)EH2(X1, X2).

3Ún^e§±y²EH2(X1, X2) = O(1). dd=√n(Un − θ) =

√n(Un − θ) + op(1).

16 X Ú Æ ê Æ xò

eP

Rh(Xi) = E

[η(Xi)Ia(Xi)

∫ ∞Xi

1

hK

(X − xh

)µ(x)dx

∣∣∣Xi

]

Ph(Xi) = E

[η(X)Ia(X)

∫ ∞X

1

hK

(Xi − xh

)µ(x)dx

∣∣∣Xi

]´y

Rh(Xi) = η(Xi)Ia(Xi)

∫ ∞Xi

f(u)µ(u)du+Op(h2).

·±

1√n

n∑i=1

Ph(Xi) =1√n

n∑i=1

P (Xi) + op(1),

¯¢þ§·IyE[Ph(Xi)− P (Xi)]2 = o(1)=.

,§·éN´wE[h(X,Xi)|Xi] = [Ph(Xi)+Rh(Xi)]/2§EPh(X) = ERh(X)§θ =

[EPh(X) + ERh(X)]/2. ¤±k

1√n

n∑i=1

η(Xi)Ia(Xi)

∫ ∞Xi

[fn(x)−f(x)]µ(x)dx =√nUn−

1√n

n∑i=1

η(Xi)Ia(Xi)

∫ ∞Xi

f(x)µ(x)dx+op(1),

òc¡¤¯¢\þªmà§=Ún(Ø.

íííØØØ 5.2 bµ(x), η(x)ëY¼ê§∫ a

−aη2(u)

[∫ u

−∞f(x)µ2(x)dx

]f(u)du <∞,

1√n

n∑i=1

η(Xi)Ia(Xi)

∫ Xi

−∞[fn(x)− f(x)]µ(x)dx =

1√n

n∑i=1

[Q(Xi)− EQ(X)] + op(1).

Ù¥

Q(Xi) = µ(Xi)

∫ a

−aη(u)I(u > Xi)f(u)du.

íØ5.2y²L§aquÚn5.3y²§ã Øy.

e¡·5¤½n4.2y².

½½½nnn4.2yyy²²²µµµ duëêm;5±9'¼ê'uëêëY5§Ü5y²'ü,

dÑ. ·=Iy²OìC5.

dõ¼êVÐm§θ, σ÷veã§

0 =

(1

n

n∑i=1

˙H(Zi; θ0, σ0)

)′Wn

(1√n

n∑i=1

H(Zi; θ0, σ0)

)

+

(1

n

n∑i=1

¨H(Zi; θ, σ)

)′Wn

(1

n

n∑i=1

H(Zi; θ, σ)

)⊗ I(p+1)×(p+1)

(α− α0)

+

(1

n

n∑i=1

˙H(Zi; θ, σ)

)′Wn

(1

n

n∑i=1

˙H(Zi; θ, σ)

)√n(α− α0),

xÏ ¤ïù§y¥(: 5ÿþØÚOíä 17

Ù¥˙H(Z; θ, σ),

¨H(Z; θ, σ)©OL«H(Z; θ, σ)é(θ, σ) §θ0uθθ0m§σ0

uσσ0m. dθ, σÜ5§9^(S2)§·Iy²n−1/2(∑n

i=1 H(Zi; θ0, σ0))ä

k¤IìC5.

âH(Zi; θ0, σ0)½Â§·±ò n−1/2(∑n

i=1 H(Zi; θ0, σ0))

1√n

n∑i=1

H(Zi; θ0, σ0) =1√n

n∑i=1

H(Zi; θ0, σ0) +

6∑j=1

Tjn,

Ù¥§

T1n =1√n

n∑i=1

[1

gn(Zi)− 1

g(Zi)

]exp(Zi

√2/σ)Ia(Zi)

∫ ∞Zi

µ1(x; θ0, σ0)[gn(x)− g(x)]dx

T2n =1√n

n∑i=1

g−1(Zi) exp(Zi√

2/σ)Ia(Zi)

∫ ∞Zi

µ1(x; θ0, σ0)[gn(x)− g(x)]dx

T3n =1√n

n∑i=1

[1

gn(Zi)− 1

g(Zi)

]exp(Zi

√2/σ)Ia(Zi)

∫ ∞Zi

µ1(x; θ0, σ0)g(x)dx

T4n =1√n

n∑i=1

[1

gn(Zi)− 1

g(Zi)

]exp(−Zi

√2/σ)Ia(Zi)

∫ Zi

−∞µ2(x; θ0, σ0)[gn(x)− g(x)]dx

T5n =1√n

n∑i=1

g−1(Zi) exp(−Zi√

2/σ)Ia(Zi)

∫ Zi

−∞µ2(x; θ0, σ0)[gn(x)− g(x)]dx

T6n =1√n

n∑i=1

[1

gn(Zi)− 1

g(Zi)

]exp(−Zi

√2/σ)Ia(Zi)

∫ Zi

−∞µ2(x; θ0, σ0)g(x)dx.

dÚn5.1±íT1n = op(1), T4n = op(1). 3Ún5.3¥§η(Z) = g−1(Z) exp(Z√

2/σ0),

µ(x) = µ1(x; θ0, σ0), |^½n¥PÒS11(Z), Kk

T2n =1√n

n∑i=1

[S11(Zi)− ES11(Z)] + op(1),

dÚn5.1

T3n =1√n

n∑i=1

[[g(Zi)− gn(Zi)]

g2(Zi)

]exp(Zi

√2/σ)Ia(Zi)

∫ ∞Zi

µ1(x; θ0, σ0)g(x)dx+ op(1).

3Ún5.2¥

η(Z) = g−2(Zi) exp(Zi√

2/σ)Ia(Zi)

∫ ∞Zi

µ1(x; θ0, σ0)g(x)dx,

Kk

T2n = − 1√n

n∑i=1

[S12(Zi)− ES12(Z)] + op(1),

|^Ún5.2§±9íØ5.2§aq

T5n =1√n

n∑i=1

[S21(Zi)− ES21(Z)] + op(1),

T6n = − 1√n

n∑i=1

[S22(Zi)− ES22(Z)] + op(1).

18 X Ú Æ ê Æ xò

dd=½n(Ø.

ëëë ©©© zzz

[1] Efron, G. Tweedie’s formula and selection bias. JASA, 2011, 106(496): 1602-1614.

[2] Carroll, R., Ruppert, D., Stefanski, L.A., Crainiceanu,C. Measurement Error in Nonlinear Mod-els: A Modern Perspective, Second Edition, 2006, Chapman and Hall/CRC.

[3] Carroll, R., Stefanski, L.A. Approximate quasi-likelihood estimation in models with surrogatepredictors. JASA, 1990, 85(411): 652-662.

[4] Eltoft, T.On the Multivariate Laplace Distribution. IEEE Signal processing letters, 2006, 13(5):300-303.

[5] Fan, J.and Truong, Y. Nonparametric Regression with Errors in Variables. Ann.Statist., 1993,21(4): 1900-1925.

[6] Guo, J., Li, T. Poisson regression models with errors-in-variables: implication and treatment.Journal of Statistical Planning and Inferences, 2002, 104(2): 391-401.

[7] Hong, H.and Tamer, E.A. Simple Estimator for Nonlinear Error in Variable Models. Journal ofEconometrics, 2003, 117(1): 1-19.

[8] Kotz, S., Kozubowski, T., Podgorski, K. The Laplace Distribution and Generalizations, 2001,Birkhauser Boston, 239-272.

[9] Manski, C., Tamer, E. Inference on regressions with interval data on a regressor or outcome.Econometrica, 70: 519õ546.

[10] Robbins, H. An empirical Bayes approach to statistics. In Proceedings of the Third Berkeley Sym-posium on Mathematical Statistics and Probability, 1954õ1955, vol.I. University of CaliforniaPress, Berkeley and Los Angeles, 1956§ 157õ163.

[11] Shi, J., Chen, K., Song, W. Robust errors-in-variables linear regression via Laplace distribution.Statistics & Probability Letters, 2014, 84: 113-120.

[12] Song, W., Yao, W., Xin, Y. Robust mixture regression model fitting by Laplace distribution.Computational Statistics & Data Analysis, 2014, 71, 128õ137.

[13] Subar A.F., Thompson F.E., Kipnis V., Midthune D., Hurwitz P., McNutt S., McIntosh A.,Rosenfeld S. Comparative validation of the Block, Willett, and National Cancer Institute foodfrequency questionnaires: the Eating at America’s Table Study. Am J Epidemiol., 2001, 154(12):1089-1099.

[14] Tosteson T.D., Stefanski L.A., Schafer D.W. A measurement-error model for binary and ordinalregression. Stat Med., 1989 8(9):1139-1147.

>±d©~g·¤²k). agk)B·Æ)§Ç·±Æ§< —– Æ)µy¥(

1‘ 19