應用農桿菌 agrobacterium tumefaciens 真菌基因轉殖工具

13
高雄區農業改良場研究彙報 24 卷第 2 Research Bulletin of KDARES Vol.24(2) 應用農桿菌(Agrobacterium tumefaciens)做為絲狀 真菌基因轉殖工具 曾敏南 1 、陳昱初 2 摘要 當植物受傷而釋放出酚化物時,可誘導農桿菌 (Agrobacterium tumefaciens) 啟動癌腫誘導質體 (tumour-inducing plasmid)中的一連串 Vir genes,進而將 Ti-plasmid 上的 T-DNA 複製並轉移到寄主植物細胞中,並 產生植物生長調節物質,造成植物細胞不正常的增生而形成癌腫。基於此 特性,農桿菌已漸被用來做為真菌轉殖及基因研究工具。與傳統的方法比 較,在真菌上利用農桿菌進行轉殖,可得到較佳的轉殖效率,其原因除了 VirE2 蛋白可以保護 T-DNA 不受寄主細胞中 nucleases 的傷害外,VirD2 蛋白可能在 T-DNA 插入寄主基因體 (genome) 之後,扮演著 DNA 修復的 角色。近年來農桿菌亦多被應用於基因置換之研究,在基因置換實驗中需 建構一個置換盒,置換盒中包含有選殖標誌基因(selectable marker)及建構 於選殖標誌基因兩側,與目標基因具同源性的基因片段 (homologous gene fragment) 。影響置換效率有許多因子,其中同源性基因片段的長度即為一 重要因素,研究發現除了基因片段長度外,序列本身似乎更為重要。 關鍵語:農桿菌、基因轉殖、絲狀真菌 前言 由於絲狀真菌(filamentous fungi)基因研究工作中,觸及大量基因功能的 研究,因此提高了應用可攜帶高分子量(high molecular weight)去氧核醣核酸 (DNA)之工具的需求。酵母菌 (Saccharomyces cerevisiae)為第一個 genome 完整解序的真菌,目前也有許多工具已被開發來作為酵母菌之應用。在這些 工具中包含利用電腦進行基因功能的分析,及利用 2-D 膠體電泳來分析蛋白 特徵。在這些工具中,經過修改亦有部分已可適用於絲狀真菌的基因研究, 例如利用隨機突變(random insertional mutation)或標的突變 (targeted mutation) 的方式來作為基因功能研究的工具。但這些方法需要透過基因轉殖工具而進 行,包含 polyethylene glycol (PEG)、限制酵素媒介基因的插入 (restriction enzyme-mediated integration, REMI) ,以及農桿菌媒介轉殖 (Agrobacterium mediated transformation) 。這些方法中,由於農桿菌可應用於各種材料,包含: 1,2 高雄區農業改良場助理研究員及副研究員兼作物環境課長(通訊作者 E-mail: [email protected]) - 10 -

Upload: others

Post on 18-Dec-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

15(2)(Agrobacterium tumefaciens)

polyethylene glycol (PEG) (restriction
enzyme-mediated integration, REMI)(Agrobacterium
1,2 ( E-mail: [email protected])

1,000 (gene disruption cassette) 0.5-30% transposon (restriction
enzyme-mediated integration, REMI) transporson transposon (non-coding region) REMI REMI DNA genome 1995 Bundock (Agrobacterium
tumefaciens) DNA (T-DNA) 1998 de Groot (Ascomycetes)
(Basidiomycetes) (Zygomycetes) (Oomycetes) Agaricus bisporus, Calonectria morganii, Fusarium
circinatum Helminthosporium turcicum (protoplast) (ref.)
(Agrobacterium tumefaciens) (crown gall disease) (Agrobacterium
- 11 -
242 Research Bulletin of KDARES Vol.24(2)
tumefaciens) (tumer-inducing plasmid) Ti-plasmid 200kbpTi-plasmid
T-DNA ( 1)T-DNA 24bp
left border right border border encoding auxin cytokinin
Ti-plasmid
virulence region vir genes T-DNA virulence region T-DNA
( encodign auxin
) T-DNA
1. (Agrobacterium tumefaciens) Vir (Michielse et al. 2005b)
T-DNA T-DNA virulence region plasmid T-DNA virulence region plasmid helper plasmid disarmed plasmid A. tumefaciens T-DNA plasmid E. coli T-DNA electroporation A. tumefaciens binary vector system
T-DNA
- 12 -
242 Research Bulletin of KDARES Vol.24(2)
autophosphorylation VirA phosphoryl group VirG VirG protein DNA binding VirG vir genes activator ( 1)
T-DNA Vir C Vir D Vir D2 Vir
D1 right border 3 4 nucleotide right border 3’OH left border T-strand VirD2-T-strand complex type IV T-pilus
virulence protein VirB1-11 VirD4 T-strand VirB protein transport pore “T-pilusVirB2 protein T-pilin T-pilin T-pilus VirD4 protein T-strand VirB complex VirD2/T-strand complex VirE2VirE3 VirF T-pilus VirE2 DNA VirE2 T-strand T-strand nucleases
T-strand transport poreVirD2 C-terminal nuclear localization signal T-strand 5’ VirD2 T-strand T-DNA
de Groot et al. 1998
protoplast acetosiringone virulence systemMichielse
(2004) vir gene Aspergillus awamorni vir gene ( 2 1)
2. Ti-plasmid virulence region (Toro et al. 1988)
VirCEFH T-DNA VirFH VirE3
- 13 -
VirC2
1. vir(Michielse et al. 2004)
Aspergillus Toro (1988) Vir C1 Vir C2
T-DNA nickingVirCT-DNA
nicking Michielse VirC2
T-DNA T-DNA VirABD G

- 14 -
Blastomyces dermatitidis acetosyringone(AS)
vir
genes
( 2) pre-culture AS Beauveria
bassianaFusarium
oxysporum Magnaporthe grisea
pre-culture AS
2. (Agrobacterium tumefaciens) Aspergillus awamorini (Toro et al. 1988)

(Trihcoderma atroviride) 1993 Suominen T. reesei calcium/polyethylene glycol 32-52% T. atroviride Zeilinger (2004) T. atroviride (gene replacement cassette) tmk1 ( encodign MAP
kinase) ( 3A) tga3 ( encoding heterotrimeric G protein apha-subunit)( 3B) tmk1 disruption cassette EcoRI disruption cassette
genome EcoRI
- 15 -
242 Research Bulletin of KDARES Vol.24(2)
3. (A)pTSZtmk1 (B)pTSZ tga3 DNAs EcoRI (A, C)ApaI/NheI (B) SmaI/ClaI (D) (Zeilinger et al. 2004)
tmk1 ( ) ApaI NheI ApaI NheI tga3 Zeillinger (2004)
50 T. atroviride 12wild type southern blot genomic DNA EcoRIApaI/NheI SmaI/ClaI genome
EcoRI tmk tga 4.2 kb/3.2
kb 5.7 kb/4.1 kb southern blot wild type 4.2 kb 5.7 kb tmk tga tmk1 6 4.2kb/3.2kb 6 tmk
- 16 -
242 Research Bulletin of KDARES Vol.24(2)
tga wild type 5.7kb tga 5 5.7 4.1 kb tmk
tga tmk
tga 5’ 3’ non-coding region primer hygromycin primer PCR
Aspergillus awamori
( Saccharomyces cerevisiae
S. pombe) 50-100 bp 50-100%(1,16) (>1000 bp) 1030% G/C contant chromatin
Michielse (2005 a,b) Aspergillus awamori
pyrG 1000500250100 50 bp 5’pyrG 3’pyrG 5’pyrG 3’pyrG
500 bp ( 4)
4. Aspergillus awamori pyrG (Michielse et al. 2005a)
- 17 -
CaCl2/PEG 1000500 250 bp
pgd promoter hygromycin 5’pyrG 3’pyrG 5’pyrG 5’ amdS Amds gene encode acetamidase
(E.C3.3.1.4) Aspergillus acetamide Acetamidase (acetamide) (acetate)
(ammonium) amds gene acetamide (8) fluoroacetamide fluoroacetamide acetamidase fluoroacetate Amds gene amds gene ( 5)
5. amds Michielse et al ( . 2005 b)
amds gene fluoroacetami-de Aspergillus awamori CaCl2/PEG 1000 bp (29%)(10%) 500 250bp 1000 bp 29% 500 bp 5% 500 bp
3’ 500 bp (outer) 34% 1000 bp ( 3)
250 bp ( ) CaCl2/PEG
- 18 -
(Michielse et al. 2005 b)
southern
analysis NcoI 2659 bp 3091 bp 3091 bp 3091 bp
( 6) pyrG 1000 bp 500 bp 29% 5% 500 outer ( 500 bp 6) 34% amds amds pyrG
6% pyrG terminator
8% amds 1000 bp pyrG amds
3. CaCl2/PEG (Michielse et al. 2005 a)

AMT CaCl2/PEG pyrG
1000bp pyrG flank
- 19 -
CaCl2/PEG 3 gfaA gfaA CaCL2/PEG 6 Kluyveromyces lactis 10 71 (4)
CaCL2/PEG CaCL2/PEG DNA-protein complex VirD2 VirE2 Streptomyces spp.
S. cerevisiae DNA DNA (6, 13) DNA VirD2 VirE2 CaCL2/PEG nucleases
Michielse (2005) 1000 bp pyrG 500 bp inner flagement 500bp outer flagement 5% 34% 500bp inner 500bp outer motif G/C content G/C content 46% 53% chromatin

1. Bahler, J., Wu, J. Q., Longtine, M. S., Shah, N. G., McKenzie, A., Steever, A.
B., Wach, A., Philippsen, P., Pringle, J. R. 1998. Heterologous modules for
efficient and versatile PCR-base gene targeting in Schizosaccharomyces
pombe. Yeast 14: 943-951.
2. Bako, L., Umeda, M., Tiburcio, A. F., Schell, J., and Koncz, C. 2003. The
- 20 -
VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the
TATA box-binding protein and a nuclear protein kinase in plants. PNAS 100:
10108-10113.
3. Bundock, P., Dulk-Ras, A., Beijersbergen, A., Hooykaas, P. J. 1995.
Trand-kindom T-DNA transfer from Agrobacterium tumefaciens to
Saccharomyces cerevisiae. EMBO J. 14: 3206-3214.
4. Bundock, P., Mroczek, K., Winkler, A. A., Steensma, H. Y., Hooykaas, P.J.
1999. T-DNA from Agrobacterium tumefaciens as an efficient tool for gene
targeting in Kluyveromyces lactis. Mol. Gen. Genet. 261:115-121.
5. De Groot, M. J. A., Bundock, P., Hooykaas, P. J. J., and Beijersbergen, A. G.
M. 1998. Agrobacterium tumefaciens-mediated transformation of filamentous
fungi. Nat. Biotechnol. 16: 839-842.
6. Hilleman, D., Puhler, A., Wohlleben, W. 1991. Gene disruption and gene
replacement in Streptomyces via single stranded DNA transformation of
integration vectors. Nucleic Acids Res. 19: 727-731.
7. Hoekema, A., Hirsch, P. R., Hooykaas, P. J. J., and Schilperoort, R. A. 1983. A
binary plant vector strategy based on separation of vir- and T-region of the
Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179-180.
8. Hynes, M. J. 1977. Induction of the acetamidase of Aspergillus nidulans by
acetate metabolism. J. Bacterio. 131: 770-775.
9. Michielse, C. B., Arentshorst, M., Ram, A. F. J., and van den Hondel, C. A. M.
J. J. 2005a. Agrobacterium-mediated transformation leads to improved gene
replacement efficiency in Aspergillus awamori. Fungal Genet. Boil. 42: 9-19.
10. Michielse, C. B., Hooykaas, P. J. J., van den Hondel, C. A. M. J. J., and Ram,
A. F. J. 2005b. Agrobacterium-mediated transformation as a tool for functional
genomics in fungi. Curr. Genet. 48: 1-17.
11. Michielse, C. B., Ram, A. F. J., Hooykaas, P. J. J., and van den Hondel, C. A.
M. J. J. 2004. Role of bacterial virulence proteins in Agrobacterium-mediated
transformation of Aspergillus awamori. Fungal Genet. Boil. 41: 571-578.
12. Roberts, R. L., Metz, M., Monks, D. E., Mullaney, M. L., Hall, T., and Nester,
E. W. 2003. Purine synthesis and increased Agrobacterium tumefaciens
transformation of yeast and plants. PNAS 100: 6634-6639.
13. Simon, J. R., Moore, P. D. 1987. Homologous recombination between
single-stranded DNA and chromosomal genes in Saccharomyces cerevisiae.
- 21 -
Mol. Cell. Biol.7:2329-2334.
14. Suominen, P. L., Mantyla, A. L., Karhunen, T., Hakola, S., and Nevalainen, H.
1993. High frequency one-step gene replacement in Trichoderma reesei. II.
Effects of deletions of individual cellulase genes. MGG 241: 523-530.
15. Van Attikum, H. Bundock, P. and Hooykaas, P. J. J. 2001. Non-homologous
end-joining proteins are required for Agrobacterium T-DNA integration.
EMBO J. 20: 6550-6558.
16. Wach, A., Brachat, A., Pohlmann, R., and Philippsen, P., 1994. New
heterologous modules for classical or PCR-based gene disruptions in
Saccharomyces cerevisiae. Yeast 10: 1793-1808.
17. Zeillinger, S. 2004. Gene disruption in Trichoderma atroviride via
Agrobacterium- mediated transformation. Curr. Genet. 45: 54-60.
- 22 -