zif lectures lecture i black hole/qubit correspondence · lecture i black hole/qubit correspondence...

47
Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits ZIF LECTURES LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1 / 47

Upload: others

Post on 13-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

ZIF LECTURESLECTURE I

Black hole/qubit correspondence

M. J. Duff

Physics DepartmentImperial College

October 2009Bielefeld

1 / 47

Page 2: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Abstract

Quantum entanglement lies at the heart of quantuminformation theory, with applications to quantumcomputing, teleportation, cryptography andcommunication. In the apparently separate world ofquantum gravity, the Bekenstein-Hawking entropy of blackholes has also occupied center stage.Here we describe a correspondence between theentanglement measures of qubits in quantum informationtheory and black hole entropy in string theory.

2 / 47

Page 3: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Lecture I: Black hole/qubit correspondence

Black holesQubitsSTU black holesBlack hole/qubit correspondenceWrapped D3-branes and 3 qubits

3 / 47

Page 4: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Black holes

BLACK HOLES

4 / 47

Page 5: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Reissner-Nordström solution

Static, spherically symmetric four-dimensional line element

ds2 = −e2h(r)dt2 + e2k(r)dr2 + r2(dθ2 + sin2θdφ2). (1.1)

The most general static black hole solution ofEinstein-Maxwell theory is given by Reissner-Nordströmsolution

e2h(r) = e−2k(r) = 1− 2Mr

+Q2

r2 , (1.2)

with M and Q the mass and electric charge of the blackhole.

5 / 47

Page 6: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Surface gravity and the area

Besides the mass and the charge which are measured atinfinity there are two other quantities, surface gravity andthe area, measured on the event horizon that are given by

κS =

√M2 −Q2

2M(M +√

M2 −Q2)−Q2, A = 4π(M+

√M2 −Q2)2.

(1.3)The R-N solution has two horizons determined by

r± = M ±√

M2 −Q2. (1.4)

Cosmic censorship: M ≥ |Q|. These black holes havesmooth geometries at the horizon and free-fallingobservers would not feel anything as they fall through thehorizon.

6 / 47

Page 7: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Bekenstein-Hawking

Temperature

TH =~κS

2π(1.5)

Entropy

SBH =A

4~G4, (1.6)

where G4 is the four dimensional Newton constant.

7 / 47

Page 8: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Extremal black holes

“ Extremal” black holes M = |Q|.Two horizons, r+ and r−, coincide and the area reduces to

A = 4πQ2 (1.7)

Therefore the entropy which is proportional to the area iscompletely determined in terms of the charges of theextremal black hole.

TH = 0 (1.8)

Since the Hawking radiation is proportional to thetemperature, one can conclude that the extremal blackholes are stable.

8 / 47

Page 9: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Magnetic charge

Like the mass, the charge of the black hole is measured atasymptotic region by

Q =1

∮S2∞

?F , (1.9)

where S2∞ is a spacelike sphere at infinity and ?F is the

field strength dual.The black hole can also carry magnetic charge

P =1

∮S2∞

F , (1.10)

and we just need to replace Q2 with Q2 + P2 in all theformulae.

9 / 47

Page 10: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

More general black holes

The supergravity theories we shall consider have morethan the one photon of Einstein-Maxwell theory. The(D = 4,N = 2) STU model has 4; the (D = 4,N = 8)model has 28, so the black holes will carry 8 or 56 electricand magnetic charges, respectively.Similarly, the (D = 5,N = 8) black hole and black stringhave 27 electric and 27 magnetic charges, respectively.Both also involve scalar fields.

10 / 47

Page 11: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

BPS black holes

The extremal black holes obey generalised mass = chargeconditions.A black hole that preserves some unbrokensupersymmetry (admitting one or more Killing spinors) issaid to be BPS (after Bogomol’nyi-Prasad-Sommerfield)and non-BPS otherwise.All BPS black holes are extremal but extremal black holescan be BPS or non-BPS.

11 / 47

Page 12: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Qubits

QUBITS

12 / 47

Page 13: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Two qubits

The two qubit system Alice and Bob (where A,B = 0,1) isdescribed by the state

|Ψ〉 = aAB|AB〉= a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉.

The bipartite entanglement of Alice and Bob is given by

τAB = 4|det ρA| = 4|det aAB|2,

whereρA = TrB|Ψ〉〈Ψ|

τAB is invariant under SL(2)A × SL(2)B, with aABtransforming as a (2,2), and under a discrete duality thatinterchanges A and B.

13 / 47

Page 14: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Two qubits: examples

Example, separable state:

|Ψ〉 =1√2|00〉+

1√2|01〉

τAB = 0

Example, Bell state:

|Ψ〉 =1√2|00〉+

1√2|11〉

τAB = 1

EPR “paradox”

14 / 47

Page 15: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Three qubits

The three qubit system Alice, Bob and Charlie (whereA,B,C = 0,1) is described by the state

|Ψ〉 = aABC |ABC〉= a000|000〉+ a001|001〉+ a010|010〉+ a011|011〉+ a100|100〉+ a101|101〉+ a110|110〉+ a111|111〉.

15 / 47

Page 16: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Cayley’s hyperdeterminant

The tripartite entanglement of Alice, Bob and Charlie isgiven by

τABC = 4|Det aABC |,

Coffman et al: quant-ph/9907047Det aABC is Cayley’s hyperdeterminant

Det aABC = −12εA1A2εB1B2εC1C4εC2C3εA3A4εB3B4

· aA1B1C1aA2B2C2aA3B3C3aA4B4C4

Miyake and Wadati: quant-ph/0212146

16 / 47

Page 17: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Symmetry

Explicitly

Det aABC =

a2000a2

111 + a2001a2

110 + a2010a2

101 + a2100a2

011

− 2(a000a001a110a111 + a000a010a101a111

+ a000a100a011a111 + a001a010a101a110

+ a001a100a011a110 + a010a100a011a101)

+ 4(a000a011a101a110 + a001a010a100a111).

It is invariant under SL(2)A × SL(2)B × SL(2)C , with aABCtransforming as a (2,2,2), and under a discrete triality thatinterchanges A, B and C.

17 / 47

Page 18: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Local entropy

Another useful quantity is the local entropy SA, which is ameasure of how entangled A is with the pair BC:

SA = 4det ρA ≡ τA(BC)

where ρA is the reduced density matrix

ρA = TrBC |Ψ〉〈Ψ|,

and with similar formulae for B and C.

18 / 47

Page 19: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Tangles

Tangles

ΤABC

ΤBC

ΤACΤAB

A

B C

A

B C

2-tangles τAB, τBC , and τCA give bipartite entanglementsbetween pairs in 3-qubit system3-tangle τABC is a measure of the genuine 3-wayentanglement:

τABC = τA(BC) − τAB − τCA

19 / 47

Page 20: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Entanglement classes

Entanglement classes

Class τA(BC) τB(AC) τ(AB)C τABC

A-B-C 0 0 0 0A-BC 0 > 0 > 0 0B-CA > 0 0 > 0 0C-AB > 0 > 0 0 0

W > 0 > 0 > 0 0GHZ > 0 > 0 > 0 6= 0

Dur, Vidal, Cirac: quant-ph/0005115

20 / 47

Page 21: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

LOCC

Local Operations and Classical Communication=LOCCTwo states are said to be LOCC equivalent if and only ifthey may be transformed into one another with certaintyusing LOCC protocols. Reviews of the LOCC paradigmand entanglement measures may be found inPlenio:2007,Horodecki:2007.

21 / 47

Page 22: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Orbits

Two states of a composite quantum system are regardedas LOCC equivalent if they are related by a unitarytransformation which factorizes into separatetransformations on the component parts (Bennett:1999),so-called local unitaries. The Hilbert space decomposesinto equivalence classes, or orbits under the action of thegroup of local unitaries.In the case of n qubits the group of local unitaries is given(up to a global phase) by [SU(2)]n.

22 / 47

Page 23: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

SLOCC

Stochastic Local Operations and ClassicalCommunication=SLOCCTwo quantum states are said to be SLOCC equivalent ifand only if they may be transformed into one another withsome non-vanishing probability using LOCC operations(Bennett:1999, Dur:2000). The set of SLOCCtransformations relating equivalent states forms a group(which we will refer to as the SLOCC equivalence group).For n qubits the SLOCC equivalence group is given (up toa global complex factor) by the n-fold tensor product,[SL(2,C)]n, one factor for each qubit (Dur:2000). Note, theLOCC equivalence group forms a compact subgroup of thelarger SLOCC equivalence group.

23 / 47

Page 24: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Complex qubit parameters

For unnormalized three-qubit states, the number ofparameters [Linden and Popescu: quant-ph/9711016]needed to describe inequivalent states or, what amounts tothe same thing, the number of algebraically independentinvariants [Sudbery: quant-ph/0001116] is given by thedimension of the space of orbits

C2 × C2 × C2

U(1)× SU(2)× SU(2)× SU(2)

namely, 16− 10 = 6.

24 / 47

Page 25: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Real qubit parameters

However, for subsequent comparison with the STU blackhole [Duff, Liu and Rahmfeld: hep-th/9508094; Behrndt etal: hep-th/9608059], we restrict our attention to states withreal coefficients aABC .In this case, one can show that there are five algebraicallyindependent invariants: Det a, SA, SB, SC and the norm〈Ψ|Ψ〉 , corresponding to the dimension of

R2 × R2 × R2

SO(2)× SO(2)× SO(2)

namely, 8− 3 = 5.

25 / 47

Page 26: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

5 parameter state

Hence, the most general real three-qubit state can bedescribed by just five parameters.Acin et al: quant-ph/0009107It may conveniently be written

|Ψ〉 = −N3cos2θ|001〉 − N2|010〉+ N3sinθcosθ|011〉−N1|100〉 − N3sinθcosθ|101〉+ (N0 + N3sin2θ)|111〉.

26 / 47

Page 27: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Representatives

Representatives from each class are:Class A-B-C (product states):

N0|111〉.

Classes A-BC, (bipartite entanglement):

N0|111〉 − N1|100〉,

and similarly B-CA, C-AB.Class W (maximizes bipartite entanglement):

−N1|100〉 − N2|010〉 − N3|001〉.

Class GHZ (genuine tripartite entanglement):

N0|111〉 − N1|100〉 − N2|010〉 − N3|001〉.

27 / 47

Page 28: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

STU black holes

STU BLACK HOLES

28 / 47

Page 29: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

STU model

The STU model consists of N = 2 supergravity coupled tothree vector multiplets interacting through the special Kahlermanifold [SL(2)/SO(2)]3:

SSTU =1

16πG

∫e−η

[(

R +14

(Tr[∂M−1

T ∂MT

]+ Tr

[∂M−1

U ∂MU

] ))? 1

+ ? dη ∧ dη − 12? H[3] ∧ H[3] −

12? F T

S[2] ∧ (MT ⊗MU) FS[2]

]MS =

1=(S)

(1 <(S)<(S) |S|2

)etc.

29 / 47

Page 30: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

STU parameters

A general static spherically symmetric black hole solutiondepends on 8 charges denoted q0,q1,q2,q3,p0,p1,p2,p3,but the generating solution depends on just 8− 3 = 5parameters [Cvetic and Youm: hep-th/9512127; Cvetic andHull: hep-th/9606193], after fixing the action of the isotropysubgroup [SO(2)]3.

30 / 47

Page 31: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Black hole entropy

Black hole entropy S given by the one quarter the area ofthe event horizon.Hawking: 1975The STU black hole entropy is a complicated function ofthe 8 charges :

(S/π)2 = −(p · q)2

+4[(p1q1)(p2q2) + (p1q1)(p3q3) + (p3q3)(p2q2)

+q0p1p2p2 − p0q1q2q3

]Behrndt et al: hep-th/9608059

31 / 47

Page 32: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Qubit correspondence

By identifying the 8 charges with the 8 components of thethree-qubit hypermatrix aABC ,

p0

p1

p2

p3

q0q1q2q3

=

a000−a001−a010−a100a111a110a101a011

one finds that the black hole entropy is related to the3-tangle as in

S = π√|Det aABC | =

π

2√τABC

Duff: hep-th/060113432 / 47

Page 33: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

BH/qubit correspondence

The measure of tripartite entanglement of three qubits(Alice, Bob and Charlie), known as the 3-tangle τABC , andthe entropy S of the 8-charge STU black hole ofsupergravity are both given by Cayley’s hyperdeterminant.

33 / 47

Page 34: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Further developments

Further papers have written a more complete dictionary,which translates a variety of phenomena in one languageto those in the other:

34 / 47

Page 35: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Further developments contd

The attractor mechanism on the black hole side is relatedto optimal local distillation protocols on the QI side.Moreover, supersymmetric and non-supersymmetric blackholes corresponding to the suppression ornon-suppression of bit-flip errors .

Levay:[arXiv:0708.2799 [hep-th]]

35 / 47

Page 36: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Wrapped D3-branes and 3 qubits

WRAPPED D3-BRANES AND 3 QUBITS

36 / 47

Page 37: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Microscopic analysis

String interpretation:N = 4 supergravity with symmetry SL(2)×SO(6,22) is thelow-energy limit of the heterotic string compactified on T 6.N = 8 supergravity with symmetry E7(7) is the low-energylimit of the Type IIA or Type IIB strings, compactified on T 6

or M-theory on T 7.Black holes are now 0-branes obtained by wrappingp-branes around p of the compactifying circles.

37 / 47

Page 38: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Stringy version

The stringy version of the STU black hole is not uniquesince there are many ways of embedding the STU modelin string/M-theory, but a useful one from our point of view isthat of four D3-branes wrapping the(579), (568), (478), (469) cycles of T 6 (intersecting over astring) with wrapping numbers N0,N1,N2,N3.Klebanov and Tseytlin: hep-th/9604166The wrapped circles are denoted by a cross and theunwrapped circles by a nought as shown in the followingtable:

38 / 47

Page 39: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

4 5 6 7 8 9 macro charges micro charges |ABC〉

x o x o x o p0 0 |000〉

o x o x x o q1 0 |110〉

o x x o o x q2 −N3sinθcosθ |101〉

x o o x o x q3 N3sinθcosθ |011〉

o x o x o x q0 N0 + N3sin2θ |111〉

x o x o o x −p1 −N3cos2θ |001〉

x o o x x o −p2 −N2 |010〉

o x x o x o −p3 −N1 |100〉

Table: Three qubit interpretation of the 8-charge D = 4 black holefrom four D3-branes wrapping around the lower four cycles of T 6 withwrapping numbers N0,N1,N2,N3.

39 / 47

Page 40: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Fifth parameter

The fifth parameter θ is obtained by allowing the N3 braneto intersect at an angle which induces additional effectivecharges on the (579), (569), (479) cycles[Balasubramanian and Larsen: hep-th/ 9704143;Balasubramanian: hep-th/9712215; Bertolini and Trigiante:hep-th/0002191].The microscopic calculation of the entropy consists oftaking the logarithm of the number of microstates andyields the same result as the macroscopic one [Bertoliniand Trigiante: hep-th/0008201].

40 / 47

Page 41: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Qubit interpretation

To make the black hole/qubit correspondence we associatethe three T 2 with the SL(2)A × SL(2)B × SL(2)C of thethree qubits Alice, Bob, and Charlie. The 8 different cyclesthen yield 8 different basis vectors |ABC〉 as in the lastcolumn of the Table, where |0〉 corresponds to xo and |1〉to ox.We see immediately that we reproduce the five parameterthree-qubit state |Ψ〉:

|Ψ〉 = −N3cos2θ|001〉 − N2|010〉+ N3sinθcosθ|011〉−N1|100〉 − N3sinθcosθ|101〉+ (N0 + N3sin2θ)|111〉.

Note from the Table that the GHZ state describes fourD3-branes intersecting over a string, or groups of 4wrapping cycles with just one cross in common.

41 / 47

Page 42: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

IIA and IIB

Performing a T-duality transformation, one obtains a TypeIIA interpretation with zero D6-branes, N0 D0-branes,N1,N2,N3 D4-branes plus effective D2-brane charges,where |0〉 now corresponds to xx and |1〉 to oo.

42 / 47

Page 43: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

Summary

Our Type IIB microscopic analysis of the D = 4 black holehas provided an explanation for the appearance of thequbit two-valuedness (0 or 1) that was lacking in theprevious treatments: The brane can wrap one circle or theother in each T 2.To wrap or not to wrap? That is the qubit.The number of qubits is three because of the number ofextra dimensions is six.The five parameters of the real three-qubit state are seento correspond to four D3-branes intersecting at an angle.

43 / 47

Page 44: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

L. Borsten, D. Dahanayake, M. J. Duff, H. Ebrahim andW. Rubens, “Black Holes, Qubits and Octonions,” Phys.Rep. (to appear), arXiv:0809.4685 [hep-th].

M. J. Duff, “String triality, black hole entropy and Cayley’shyperdeterminant,” Phys. Rev. D 76, 025017 (2007)[arXiv:hep-th/0601134]

V. Coffman, J. Kundu and W. Wooters, “Distributedentanglement,” Phys. Rev. A61 (2000) 52306,

M. J. Duff, J. T. Liu and J. Rahmfeld, “Four-dimensionalstring-string-string triality,” Nucl. Phys. B 459, 125 (1996)[arXiv:hep-th/9508094].

K. Behrndt, R. Kallosh, J. Rahmfeld, M. Shmakova andW. K. Wong, “STU black holes and string triality,” Phys. Rev.D 54, 6293 (1996) [arXiv:hep-th/9608059].

44 / 47

Page 45: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

R. Kallosh and A. Linde, “Strings, black holes, and quantuminformation,” Phys. Rev. D 73, 104033 (2006)[arXiv:hep-th/0602061].

P. Levay, “Stringy black holes and the geometry ofentanglement,” Phys. Rev. D 74, 024030 (2006)[arXiv:hep-th/0603136].

M. J. Duff and S. Ferrara, “E7 and the tripartiteentanglement of seven qubits,” Phys. Rev. D 76, 025018(2007) [arXiv:quant-ph/0609227].

P. Levay, “Strings, black holes, the tripartite entanglementof seven qubits and the Fano plane,” Phys. Rev. D 75,024024 (2007) [arXiv:hep-th/0610314].

M. J. Duff and S. Ferrara, “E6 and the bipartiteentanglement of three qutrits,” Phys. Rev. D 76, 124023(2007) [arXiv:0704.0507 [hep-th]].

45 / 47

Page 46: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

P. Levay, “A three-qubit interpretation of BPS and non-BPSSTU black holes,” Phys. Rev. D 76, 106011 (2007)[arXiv:0708.2799 [hep-th]].

L. Borsten, D. Dahanayake, M. J. Duff, W. Rubens andH. Ebrahim, “Wrapped branes as qubits,”Phys.Rev.Lett.100:251602,2008 arXiv:0802.0840 [hep-th].

P. Levay, M. Saniga and P. Vrana, “Three-Qubit Operators,the Split Cayley Hexagon of Order Two and Black Holes,”arXiv:0808.3849 [quant-ph].

P. Lévay and P. Vrana, “Special entangled quantumsystems and the Freudenthal construction,”arXiv:0902.2269 [quant-ph].

P. Levay, M. Saniga, P. Vrana, and P. Pracna, “Black HoleEntropy and Finite Geometry,” Phys. Rev. D79 (2009)084036, arXiv:0903.0541 [hep-th].

46 / 47

Page 47: ZIF LECTURES LECTURE I Black hole/qubit correspondence · LECTURE I Black hole/qubit correspondence M. J. Duff Physics Department Imperial College October 2009 Bielefeld 1/47 Black

Black holes Qubits STU black holes Wrapped D3-branes and 3 qubits

M. Saniga, P. Levay, P. Pracna, and P. Vrana, “TheVeldkamp Space of GQ(2,4),” arXiv:0903.0715 [math-ph].

47 / 47