youngpetro - 2nd issue - summer 2011

66
SUMMER /  2011 MESSAGE FROM THE CHIEF •  ABANDONED DRY WELLS EAST MEETS WEST •  WORKING FOR AN OPERATOR

Upload: young-petro

Post on 13-Mar-2016

221 views

Category:

Documents


1 download

DESCRIPTION

2nd issue of YoungPetro Magazine.

TRANSCRIPT

Page 1: YoungPetro - 2nd Issue - Summer 2011

summer / 2011

messAGe FrOm THe CHIeF • ABANDONeD DrY WeLLs

eAsT meeTs WesT • WOrKING FOr AN OPerATOr

sum

mer

 / 2

011

02

spe.net.pl /emW

Page 2: YoungPetro - 2nd Issue - Summer 2011

summer / 2011

Call for PapersAutumnIssue

YoungPetroiswaitingforYourpaper!

Thetopicsofthepapersshouldrefertothosepresentedinthelistbelow:

DrillingEngineeringReservoirEngineering

FuelsandEnergyGeologyandGeophysics

EnvironmentalProtectionManagementandEconomics

[email protected]

SubmissionDeadline

8 August 2011MoreinformationsYoungPetro.org/Papers

A youngpetro.org/[email protected]

Tableofcontents 3

6  People, engineers and SPE membersɸɸ AɸletterɸfromɸSergeɸRueff

8  East Meets Westɸɸ PawełɸWilaszek

10  Integration of geological, geophysical and completion data to Invetigate Abandoned Dry Wells

ɸɸ KashifɸSaeed,ɸKashifɸYaqoob

24  Intensification of high-viscosity oil production on the example of Yablunivske oil-and-gas condenate field

ɸɸ NazariiɸHedzyk

34  SuPErSonic natural gas dehydration process compared to tEg performance

ɸɸ TudorɸF.ɸPrecup

45  Approach for full field scale smart well modeling and optimization

ɸɸ AlexeyɸA.ɸKhrulenko

54  Zeolites as natural sorbent in removing pollutants from drilling waste

ɸɸ DawidɸWojaczek

58  Working for an operatorɸɸ JędrzejɸBryła

61  The fire withinɸɸ JakubɸSlek

63  Oil and Gas Horizonsɸɸ DawidɸWojaczek

n

n

n

n

Page 3: YoungPetro - 2nd Issue - Summer 2011

summer / 2011

Call for PapersAutumnIssue

YoungPetroiswaitingforYourpaper!

Thetopicsofthepapersshouldrefertothosepresentedinthelistbelow:

DrillingEngineeringReservoirEngineering

FuelsandEnergyGeologyandGeophysics

EnvironmentalProtectionManagementandEconomics

[email protected]

SubmissionDeadline

8 August 2011MoreinformationsYoungPetro.org/Papers

A youngpetro.org/[email protected]

Tableofcontents 3

6  People, engineers and SPE membersɸɸ AɸletterɸfromɸSergeɸRueff

8  East Meets Westɸɸ PawełɸWilaszek

10  Integration of geological, geophysical and completion data to Invetigate Abandoned Dry Wells

ɸɸ KashifɸSaeed,ɸKashifɸYaqoob

24  Intensification of high-viscosity oil production on the example of Yablunivske oil-and-gas condenate field

ɸɸ NazariiɸHedzyk

34  SuPErSonic natural gas dehydration process compared to tEg performance

ɸɸ TudorɸF.ɸPrecup

45  Approach for full field scale smart well modeling and optimization

ɸɸ AlexeyɸA.ɸKhrulenko

54  Zeolites as natural sorbent in removing pollutants from drilling waste

ɸɸ DawidɸWojaczek

58  Working for an operatorɸɸ JędrzejɸBryła

61  The fire withinɸɸ JakubɸSlek

63  Oil and Gas Horizonsɸɸ DawidɸWojaczek

n

n

n

n

Page 4: YoungPetro - 2nd Issue - Summer 2011

summer / 2011

4 Intro

I remember whenI first entered doorof my lecture hallas well as it wasyesterday. In factI remember theexact first couple

of my professor‘s words from that day.'Please imagine this classroom in theworld without oil and gas…' – he saidand paused for a minute – '…welcometoPetroleum Industry, thebiggestandmostimportantofthemall'.

Whoever you are, student orYoungProfessional,youhavetoknowthatyouareapartofthephenomenonprovidingworldwithsupplyforalmosteverythingyou can think of. From the energy pro-pellingyourcar,throughtarmacfortheroadyouaredrivingon,totheinkwith-out which this magazine could not beprinted. Everything people have beenproducing fornearly last twocenturies

waseitherdirectlyornot,madethankstothepetroleumindustry.Butaspartofityoumustnotrestonyourlaurels.

Theissuesworldofoilandgasfacingnow were unknown for our predeces-sors.Suchgreatriseofenergydemandswhichyoucanperceivehavetoresultinadequate advancement of technology.Otherwisetheconsumer’srequestswillnotbefulfilled.

Tomeetthesefuturegoalsyouhaveto be in constant motion, progressand progress even more, because anyachievementyoumadeworksforgoodof all of us. No matter how cheesy itsounds, it is true. So take an examplefromyourcolleagueswhosepapersaremaking summer issue and start yourworkrightnow!

FromthisplaceIwouldliketothankallthepeoplewhohelpusprovideyouwith that magazine, but most of allthankyouforbeingapartof .

WElcomE to PEtrolEum InduStry

Editor-in-Chief

Editor-in-ChiefWojtek [email protected]

Deputy Editor-in-ChiefBartlomiej [email protected]

[email protected] JagielloAlexey KhrulenkoLukasz MalinowskiAgnieszka OlechRobert Skwara Lukasz ŚwirkLiliana TrzepizurPawel WilaszekDawid Wojaczek

Art [email protected] Nogiec

Website [email protected] Malinowski

[email protected] BrylaDawid JachKrzysztof A. Fugiel

Chapter supervisorDariusz Knez PhD

[email protected]/ads

Partner

Page 5: YoungPetro - 2nd Issue - Summer 2011

summer / 2011

4 Intro

I remember whenI first entered doorof my lecture hallas well as it wasyesterday. In factI remember theexact first couple

of my professor‘s words from that day.'Please imagine this classroom in theworld without oil and gas…' – he saidand paused for a minute – '…welcometoPetroleum Industry, thebiggestandmostimportantofthemall'.

Whoever you are, student orYoungProfessional,youhavetoknowthatyouareapartofthephenomenonprovidingworldwithsupplyforalmosteverythingyou can think of. From the energy pro-pellingyourcar,throughtarmacfortheroadyouaredrivingon,totheinkwith-out which this magazine could not beprinted. Everything people have beenproducing fornearly last twocenturies

waseitherdirectlyornot,madethankstothepetroleumindustry.Butaspartofityoumustnotrestonyourlaurels.

Theissuesworldofoilandgasfacingnow were unknown for our predeces-sors.Suchgreatriseofenergydemandswhichyoucanperceivehavetoresultinadequate advancement of technology.Otherwisetheconsumer’srequestswillnotbefulfilled.

Tomeetthesefuturegoalsyouhaveto be in constant motion, progressand progress even more, because anyachievementyoumadeworksforgoodof all of us. No matter how cheesy itsounds, it is true. So take an examplefromyourcolleagueswhosepapersaremaking summer issue and start yourworkrightnow!

FromthisplaceIwouldliketothankallthepeoplewhohelpusprovideyouwith that magazine, but most of allthankyouforbeingapartof .

WElcomE to PEtrolEum InduStry

Editor-in-Chief

Editor-in-ChiefWojtek [email protected]

Deputy Editor-in-ChiefBartlomiej [email protected]

[email protected] JagielloAlexey KhrulenkoLukasz MalinowskiAgnieszka OlechRobert Skwara Lukasz ŚwirkLiliana TrzepizurPawel WilaszekDawid Wojaczek

Art [email protected] Nogiec

Website [email protected] Malinowski

[email protected] BrylaDawid JachKrzysztof A. Fugiel

Chapter supervisorDariusz Knez PhD

[email protected]/ads

Partner

Page 6: YoungPetro - 2nd Issue - Summer 2011

People,EngineersandSPEMembers 7

summer / 2011

or Husband needs us at home we can-notbeagoodvolunteerfors p e .

I am personally pushing for an ex-tended spread of integrated multidisci-plinaryprojectmanagementteams.Butifonedoesnotlikeanyothermemberofthisteamtheprojectwillthenmostlike-lygowrongastheindividualthinkingswill not integrate.This was most likelysituation that was at the origin of theMacondocatastrophe.

We learn a lot at school then at uni-versity,butwedonotlearnhowtoworkwithpeople,howtounderstandourco-workers.This isnotamatterofpsycho-

analyze(!...),butjustamatterofcare.Wemustcareforpeopleandshowit.Thenthework,theproject,willbeenjoyableandmostlikelysuccessful.

When you compete with other stu-dents in the course of paper contests,then later on with your co-workers forobtainingapromotion,orwithothers p eMembers for getting an award, pleasebefair,pleasecareforyourcompetitors.The competition will then be fun andthe winner will deserve the glory andyourfaithfulsupport.

Care,andpeoplewillgiveyoumoreinreturnthanyoucaneverdream.

SergeRueff,PhD

 ʇ a lEttEr from thE dirEctor

6 Letter

People, Engineers  and SPE Members

Houstonisfullofengineering«thinktanks».Thebuildingsof suchengineer-ing companies as Technip, Worley Par-sons, Brown and Root, Coots, MustangandSercelforinstanceareasbigasthebuildings of Conoco-Phillips, Devon orBP.Whatispopulatingthesebuildings?People.

There are as many engineers in con-sultingcompaniessuchasGaffneyandCline,KnowledgeReservoirandDeGoly-erandMacNaughtonasintheOperatorsoffices.Whatispopulatingthesecompa-nies?People.

Yes, I heavily insist on people. Oureducation,thenourworkinglife,donotrecognize enough that we are dealingwith people before than dealing withengineersandwiths p e Members.Weaspeoplewehaveourfamilybackground,our environment, our education, andthen later on we have our family life –husbandorwife,andkids.Allthiscreateand induce satisfaction and dissatisfac-tion,pleasuresandpains,happinessandmadness.Whateverourprofessionalism,allthisdirectlyimpactsourworkasengi-neersandourbehaviorass p e Members.Ifwehaveproblemsathomewecannotconcentrateonourwork,andifourWife

2011 isnowcalled«TheYearofthePeo-ple» because what has happened andishappeninginNorthAfricaandinMid-dle East. Poland had already itsYear ofthePeople….some30yearsagobutin-formation technology was not that im-mensely developed at this time as it istoday and your liberation movementdidnotsplashtheWorldasthoseofto-daydo.Butyoumadeitverysuccessful-ly:Polandbecameademocracy,thankstoyourpeople.

People, this is what we engineers and spe Members do not take care enough. We are people first, then engineers, then spe Members. Peo-ple come always first.

I have attended and participated tothe Offshore Technology Conferenceof Houston,Texas, for the last 20 years.Eachandeveryyeartherearepaneldis-cussions, presentations of hundreds ofpapersandalsomultiplepostersessionsfromservicecompaniesandcontractors.They all discuss, report and commenton techniques, methods, budgets andprojects but also on all kinds of prob-lems such as delays in completion (ofwells,ofprojects,etc.),repairtimes,fail-uresofequipment(notseldomenoughreported), stand-bye times.What is be-hindallthis?People.

Serge Rueff, PhD Member of the Board of Directors of the Society

of Petroleum Engineers InternationalRegional Director of South, Central and East Europe

Page 7: YoungPetro - 2nd Issue - Summer 2011

People,EngineersandSPEMembers 7

summer / 2011

or Husband needs us at home we can-notbeagoodvolunteerfors p e .

I am personally pushing for an ex-tended spread of integrated multidisci-plinaryprojectmanagementteams.Butifonedoesnotlikeanyothermemberofthisteamtheprojectwillthenmostlike-lygowrongastheindividualthinkingswill not integrate.This was most likelysituation that was at the origin of theMacondocatastrophe.

We learn a lot at school then at uni-versity,butwedonotlearnhowtoworkwithpeople,howtounderstandourco-workers.This isnotamatterofpsycho-

analyze(!...),butjustamatterofcare.Wemustcareforpeopleandshowit.Thenthework,theproject,willbeenjoyableandmostlikelysuccessful.

When you compete with other stu-dents in the course of paper contests,then later on with your co-workers forobtainingapromotion,orwithothers p eMembers for getting an award, pleasebefair,pleasecareforyourcompetitors.The competition will then be fun andthe winner will deserve the glory andyourfaithfulsupport.

Care,andpeoplewillgiveyoumoreinreturnthanyoucaneverdream.

SergeRueff,PhD

 ʇ a lEttEr from thE dirEctor

6 Letter

People, Engineers  and SPE Members

Houstonisfullofengineering«thinktanks».Thebuildingsof suchengineer-ing companies as Technip, Worley Par-sons, Brown and Root, Coots, MustangandSercelforinstanceareasbigasthebuildings of Conoco-Phillips, Devon orBP.Whatispopulatingthesebuildings?People.

There are as many engineers in con-sultingcompaniessuchasGaffneyandCline,KnowledgeReservoirandDeGoly-erandMacNaughtonasintheOperatorsoffices.Whatispopulatingthesecompa-nies?People.

Yes, I heavily insist on people. Oureducation,thenourworkinglife,donotrecognize enough that we are dealingwith people before than dealing withengineersandwiths p e Members.Weaspeoplewehaveourfamilybackground,our environment, our education, andthen later on we have our family life –husbandorwife,andkids.Allthiscreateand induce satisfaction and dissatisfac-tion,pleasuresandpains,happinessandmadness.Whateverourprofessionalism,allthisdirectlyimpactsourworkasengi-neersandourbehaviorass p e Members.Ifwehaveproblemsathomewecannotconcentrateonourwork,andifourWife

2011 isnowcalled«TheYearofthePeo-ple» because what has happened andishappeninginNorthAfricaandinMid-dle East. Poland had already itsYear ofthePeople….some30yearsagobutin-formation technology was not that im-mensely developed at this time as it istoday and your liberation movementdidnotsplashtheWorldasthoseofto-daydo.Butyoumadeitverysuccessful-ly:Polandbecameademocracy,thankstoyourpeople.

People, this is what we engineers and spe Members do not take care enough. We are people first, then engineers, then spe Members. Peo-ple come always first.

I have attended and participated tothe Offshore Technology Conferenceof Houston,Texas, for the last 20 years.Eachandeveryyeartherearepaneldis-cussions, presentations of hundreds ofpapersandalsomultiplepostersessionsfromservicecompaniesandcontractors.They all discuss, report and commenton techniques, methods, budgets andprojects but also on all kinds of prob-lems such as delays in completion (ofwells,ofprojects,etc.),repairtimes,fail-uresofequipment(notseldomenoughreported), stand-bye times.What is be-hindallthis?People.

Serge Rueff, PhD Member of the Board of Directors of the Society

of Petroleum Engineers InternationalRegional Director of South, Central and East Europe

Page 8: YoungPetro - 2nd Issue - Summer 2011

EastmeetsWest 9

summer / 2011

tionswasonaveryhighlevel,andonceit was very hard to judge them, speak-er fromUniversityofClausthal–KashifSaeed appeared to be the winner.Thesecond place was for Nazarii Hedzykfrom Ivano-Frankivsk, and the third forGeorgina Kovacs-Lukoczki from Univer-sityofPecs.Aftertheclosingceremonytherewasa time forastudentparty inDivaMusicGallery.

DuringthewholeCongresswewerepleasuredtohostabout600guests.Wecan be especially proud of a very bigcontingentofstudentsfromsuchcoun-trieslikeFrance,Denmark,Norway,Ger-many, Czech Republic, Hungary, Roma-nia, Ukraine and Russia. Of course thethings couldn’t happen without sup-port of our generous sponsors: Halli-burton,Schlumberger,EniInternationalResources,AurelianOil,MaerskOil,Cam-eron,PGNiGZielonaGóraandMrNase-erBashar.Wewouldliketoexpressour

wordsofgratitudetoCongressPartners–PGNiGIgnacyŁukasiewiczFoundationand Drilling, Oil, Gas – Science andTra-ditions Foundation and OGEC Krakówwhichsponsoredspecialawardsforstu-dentstakingpart inPosterSessionandPaperContest.

Itwasagreatpleasureandhonorforus to host these all people here in Kra-kow. Every warm word that we heardabouttheCongressmadeuscertainthatsucheventshavegreatpotentialandas-suredusthat‘EastmeetsWest’Congresswillstayinheartsoftheparticipantsforthelongtime.

From this place we are very proud and happy to announce that in the coming year 2012 the next Congress will be organized and we hope to meet you all once again in Krakow – the city where ‘East meets West’.

East meets WestendedwithanIcebreakerPartyinTawoRestaurant.

On Thursday a Company Day wasestablished. In the first sessions the in-vited companies were given a possibil-ity to speak about their achievements,challenges taken and career opportu-nities. Congress guests heard presen-tations from such companies as Hal-liburton,Schlumberger,MaerskOilandPGNiGZielonaGóra. InthebreakaStu-dent Poster Session was established.Among ten well prepared posters, theone worked out by Alexey KhrulenkofromGubkinUniversityofMoscowwaschosentobethewinneroftheSession.Duringthesecondsessiontechnicalpa-perswerepresented.ProfessionalsfromHalliburton,Schlumberger,Weatherfordand Baker Hughes presented the mod-erntechnologiesappliedintheindustry,recently carried out surveys and pros-pects for the future. At the end of thedayanOfficialBanquetwasheld,whichtook place in the Kompania Kuflowa

‘PodWawelem’.The third day of the Congress was

covered with Student Paper Contest.During the whole day the invited stu-dents were showing results of their re-search. Each of the nineteen presenta-

After succeeding with the 1st editionof‘East meetsWest’ everyone was con-vinced that our SPE Student Chapterneeds to follow it up. A very long anddifficult year of preparation resultedwithbrandnewqualityofevent–Euro-peanStudentPetroleumCongress.

From the 13th till the 15th of April 2011 the most popular Polish city

– Krakow – once again became the technical heart of the Europe. We managed to gather students, aca-demic professors and professionals from the whole continent, and even further.

The first day of the Congress joineda Student Debate concerning ‘Conven-tional and Unconventional Gas’.Youngpeople from all over Europe present-ed their points of view, exchanged ide-as and discussed them with other col-leagues.

Theywerealsoabletohearsomelec-tures referring this topic given by pro-fessionals who shared some pricelessknowledgeaboutthiscase.Intheafter-noon each SPE Student Chapter had achance to present their activities, chal-lengesanddevelopmentplans.Theday

Pawel WilaszekAGH UST

Page 9: YoungPetro - 2nd Issue - Summer 2011

EastmeetsWest 9

summer / 2011

tionswasonaveryhighlevel,andonceit was very hard to judge them, speak-er fromUniversityofClausthal–KashifSaeed appeared to be the winner.Thesecond place was for Nazarii Hedzykfrom Ivano-Frankivsk, and the third forGeorgina Kovacs-Lukoczki from Univer-sityofPecs.Aftertheclosingceremonytherewasa time forastudentparty inDivaMusicGallery.

DuringthewholeCongresswewerepleasuredtohostabout600guests.Wecan be especially proud of a very bigcontingentofstudentsfromsuchcoun-trieslikeFrance,Denmark,Norway,Ger-many, Czech Republic, Hungary, Roma-nia, Ukraine and Russia. Of course thethings couldn’t happen without sup-port of our generous sponsors: Halli-burton,Schlumberger,EniInternationalResources,AurelianOil,MaerskOil,Cam-eron,PGNiGZielonaGóraandMrNase-erBashar.Wewouldliketoexpressour

wordsofgratitudetoCongressPartners–PGNiGIgnacyŁukasiewiczFoundationand Drilling, Oil, Gas – Science andTra-ditions Foundation and OGEC Krakówwhichsponsoredspecialawardsforstu-dentstakingpart inPosterSessionandPaperContest.

Itwasagreatpleasureandhonorforus to host these all people here in Kra-kow. Every warm word that we heardabouttheCongressmadeuscertainthatsucheventshavegreatpotentialandas-suredusthat‘EastmeetsWest’Congresswillstayinheartsoftheparticipantsforthelongtime.

From this place we are very proud and happy to announce that in the coming year 2012 the next Congress will be organized and we hope to meet you all once again in Krakow – the city where ‘East meets West’.

East meets WestendedwithanIcebreakerPartyinTawoRestaurant.

On Thursday a Company Day wasestablished. In the first sessions the in-vited companies were given a possibil-ity to speak about their achievements,challenges taken and career opportu-nities. Congress guests heard presen-tations from such companies as Hal-liburton,Schlumberger,MaerskOilandPGNiGZielonaGóra. InthebreakaStu-dent Poster Session was established.Among ten well prepared posters, theone worked out by Alexey KhrulenkofromGubkinUniversityofMoscowwaschosentobethewinneroftheSession.Duringthesecondsessiontechnicalpa-perswerepresented.ProfessionalsfromHalliburton,Schlumberger,Weatherfordand Baker Hughes presented the mod-erntechnologiesappliedintheindustry,recently carried out surveys and pros-pects for the future. At the end of thedayanOfficialBanquetwasheld,whichtook place in the Kompania Kuflowa

‘PodWawelem’.The third day of the Congress was

covered with Student Paper Contest.During the whole day the invited stu-dents were showing results of their re-search. Each of the nineteen presenta-

After succeeding with the 1st editionof‘East meetsWest’ everyone was con-vinced that our SPE Student Chapterneeds to follow it up. A very long anddifficult year of preparation resultedwithbrandnewqualityofevent–Euro-peanStudentPetroleumCongress.

From the 13th till the 15th of April 2011 the most popular Polish city

– Krakow – once again became the technical heart of the Europe. We managed to gather students, aca-demic professors and professionals from the whole continent, and even further.

The first day of the Congress joineda Student Debate concerning ‘Conven-tional and Unconventional Gas’.Youngpeople from all over Europe present-ed their points of view, exchanged ide-as and discussed them with other col-leagues.

Theywerealsoabletohearsomelec-tures referring this topic given by pro-fessionals who shared some pricelessknowledgeaboutthiscase.Intheafter-noon each SPE Student Chapter had achance to present their activities, chal-lengesanddevelopmentplans.Theday

Pawel WilaszekAGH UST

Page 10: YoungPetro - 2nd Issue - Summer 2011

10 Papers IntegrationofGeological,Geophysical,andCompletionData 11

summer / 2011

and fold-thrust belt provenances wastransportedintodeltaanddispersedbyfluvial and wave processes. Basin fill isrelatedtocyclicdeltatopanddeltafrontdeposits, low stand canyon incisionsand fan progradation, and high standdeposition incanyonsandontheshelf(AbdulWaheed,2003).TheIndusRiverisabout2.900km’slongandtravelsabout1.200kmsintheplainsafterleavingthehighmountainswiththetotaldrainagearea of 966.000 sq. kms.There are four

2. A Late Tertiary subsided paleo-de-pression area in the centre withdown to basin normal, growth, lis-tricfaultsandassociatedrolloveran-ticlines;

3. Shalediapiricstructurestothewest;and

4. Anen-echelonfoldedsegmentadja-centtotheeasternsideoftheMur-rayRidge.

Regional studies in the Northern In-dian Ocean and high Asia shows that

mainstructuralfeatureswhicharedelin-eated within the sedimentary sequenc-es of this basin (Jaswal and Maqsood,2002)namely:

1. ThetiltedfaultblocksrelatedwithariftsystemintheeastbelowaTerti-aryPlatform

the drilling on the Indian Ocean sub-marine fans has for a long time beenconsidered difficult or impossible be-cause of limitations in drilling technol-ogy,despiteimportantadvancesbasedon earlier shallow-penetration drilling(Fig. 1). Integrated Ocean Drilling Pro-gram (IODP) and the Deep Sea Drilling

Integration of Geological, Geophysical,  and Completion Data  to Investigate  Abandoned Dry Wells. A Case Study

Kashif Saeed Technische Universität Clausthal, Germany

[email protected]

Kashif YaqoobSpecialist Geosciences Data Management,

Mubadala Oil & Gas, [email protected]

 ɨ IntroductionThe Offshore Indus Basin of Pakistan islocatedbetweenthecoordinates64°25´Eto68°10´Eand23°00´Nto25°00´NintheeastofMurrayRidgecoveringanarea of about 90.000–240.000 sq. km(Baluch and Quirk, 1998). The MurrayRidge-Owen Fracture Zone marks thewestern extremity of the basin and istheseparationoftheIndusOffshoreandMarkran Offshore, Pakistan. It extendsintheeasttowardswesterncoastlineofthe Indo-Pakistan subcontinent. IndusOffshore basin is a vast but under ex-ploredareaofPakistan.

The geological boundaries of theOffshore Indus extend up to Dabbo-Creek Anticline in the northeast, failedKutch Rift Basin in east, Murray Ridgein the northwest and west, and south-ernboundaryistakenalongsignificantlobesofdelta(Fig.1).

TheOffshoreIndusBasinofPakistanresultedfromthedevelopmentofapas-sivemargininLateCretaceousandcon-tinent-continent collision in Late Ceno-zoic.Earlysedimentswerederivedfrommildly uplifted orogenic fronts (due toinitialobliquecollision)andthetecton-

ically quiescent passive margin. Maxi-mumdeltaprogradationand fanbuild-ing occurred during Late Tertiary, aperiodcoincidentwiththehead-oncol-lision between Indo-Pakistan and Eura-sianPlates,thesubsequentmassiveup-lift and unroofing of Himalayas. Mainlyquartz-rich detritus of recycled orogen

Kashif Saeed, Kashif Yaqoob

including  source,  reservoir,  seal/cap, maturity,  trapping  mechanisms,  and stratigraphy  of  Offshore  Indus  Ba-sin  as  a  whole.  The  presented  work helps  in  the  determination  of  lithol-ogy, structure, and also the potential reasons of failure of PakCan–01 well, with  prediction  of  hydrocarbon  ac-cumulations, maturity and extent of source  rocks.  Offshore  Indus  Basin, Pakistan is by far the under-explored sedimentary basin of Pakistan and no economic discovery has been made so far, however only gas shows were ob-served  in  PakCan–01  well  but  these were  not  of  economic  significance. Cretaceous and younger stratigraphy is  encountered  in  exploratory  wells of  Indus  Offshore.  Sembar,  Goru, Mughalkot,  Pab,  Khadro,  Bara,  Laki-Gazij,  Kirthar,  Nari,  Gaj  formations are encountered in wells explored fol-

lowed by Siwalik Group. Shales, lime-stones, and argillaceous layers of Gaj, Nari,  Laki,  Ranikot,  and  Mughalkot formations  are  main  petroleum source  rocks  where  as  sandstones and  limestones  of  Gaj,  Nari,  Kirthar, and Ranikot formations are acting as the  main  reservoir  rocks  in  the  ba-sin. The intercalated shales and com-pact  limestones  act  as  seal/cap  rock. Isopach  maps  and  migration  fairway models  give  a  better  understanding of  hydrocarbon  generation  and  mi-gration.  A  detailed  post  well  analy-sis  including  well–velocity  survey analysis,  structural  and  stratigraphi-cal  interpretation,  regional  geologi-cal models, geothermal analysis, and burial history curves help  in  further exploration  and  drilling  activities  in the Indus Offshore, Pakistan.

Lessons learned are one of the important  assets  in  the  ex-ploration  and  production  in-dustry.  Keeping  that  in  view, the  current  work  focuses  on the  integration  of  geological, geophysical,  and  completion data  in  order  to  investigate the PakCan–01 well, which  is the  only  well  in  Offshore  In-dus  Basin,  PakCan–01  show-ing  gas  but  there  was  no  eco-nomic discovery.

The  work  involves  the  in-depth post well review of the PakCan–01  well,  Indus  Off-shore,  Pakistan,  with  the  fo-cus  on  integration  of  geo-logical,  geophysical,  and completion  data.  The  supple-mentary  work  includes  the study  of  petroleum  system 

8A

bStr

act8

Page 11: YoungPetro - 2nd Issue - Summer 2011

10 Papers IntegrationofGeological,Geophysical,andCompletionData 11

summer / 2011

and fold-thrust belt provenances wastransportedintodeltaanddispersedbyfluvial and wave processes. Basin fill isrelatedtocyclicdeltatopanddeltafrontdeposits, low stand canyon incisionsand fan progradation, and high standdeposition incanyonsandontheshelf(AbdulWaheed,2003).TheIndusRiverisabout2.900km’slongandtravelsabout1.200kmsintheplainsafterleavingthehighmountainswiththetotaldrainagearea of 966.000 sq. kms.There are four

2. A Late Tertiary subsided paleo-de-pression area in the centre withdown to basin normal, growth, lis-tricfaultsandassociatedrolloveran-ticlines;

3. Shalediapiricstructurestothewest;and

4. Anen-echelonfoldedsegmentadja-centtotheeasternsideoftheMur-rayRidge.

Regional studies in the Northern In-dian Ocean and high Asia shows that

mainstructuralfeatureswhicharedelin-eated within the sedimentary sequenc-es of this basin (Jaswal and Maqsood,2002)namely:

1. ThetiltedfaultblocksrelatedwithariftsystemintheeastbelowaTerti-aryPlatform

the drilling on the Indian Ocean sub-marine fans has for a long time beenconsidered difficult or impossible be-cause of limitations in drilling technol-ogy,despiteimportantadvancesbasedon earlier shallow-penetration drilling(Fig. 1). Integrated Ocean Drilling Pro-gram (IODP) and the Deep Sea Drilling

Integration of Geological, Geophysical,  and Completion Data  to Investigate  Abandoned Dry Wells. A Case Study

Kashif Saeed Technische Universität Clausthal, Germany

[email protected]

Kashif YaqoobSpecialist Geosciences Data Management,

Mubadala Oil & Gas, [email protected]

 ɨ IntroductionThe Offshore Indus Basin of Pakistan islocatedbetweenthecoordinates64°25´Eto68°10´Eand23°00´Nto25°00´NintheeastofMurrayRidgecoveringanarea of about 90.000–240.000 sq. km(Baluch and Quirk, 1998). The MurrayRidge-Owen Fracture Zone marks thewestern extremity of the basin and istheseparationoftheIndusOffshoreandMarkran Offshore, Pakistan. It extendsintheeasttowardswesterncoastlineofthe Indo-Pakistan subcontinent. IndusOffshore basin is a vast but under ex-ploredareaofPakistan.

The geological boundaries of theOffshore Indus extend up to Dabbo-Creek Anticline in the northeast, failedKutch Rift Basin in east, Murray Ridgein the northwest and west, and south-ernboundaryistakenalongsignificantlobesofdelta(Fig.1).

TheOffshoreIndusBasinofPakistanresultedfromthedevelopmentofapas-sivemargininLateCretaceousandcon-tinent-continent collision in Late Ceno-zoic.Earlysedimentswerederivedfrommildly uplifted orogenic fronts (due toinitialobliquecollision)andthetecton-

ically quiescent passive margin. Maxi-mumdeltaprogradationand fanbuild-ing occurred during Late Tertiary, aperiodcoincidentwiththehead-oncol-lision between Indo-Pakistan and Eura-sianPlates,thesubsequentmassiveup-lift and unroofing of Himalayas. Mainlyquartz-rich detritus of recycled orogen

Kashif Saeed, Kashif Yaqoob

including  source,  reservoir,  seal/cap, maturity,  trapping  mechanisms,  and stratigraphy  of  Offshore  Indus  Ba-sin  as  a  whole.  The  presented  work helps  in  the  determination  of  lithol-ogy, structure, and also the potential reasons of failure of PakCan–01 well, with  prediction  of  hydrocarbon  ac-cumulations, maturity and extent of source  rocks.  Offshore  Indus  Basin, Pakistan is by far the under-explored sedimentary basin of Pakistan and no economic discovery has been made so far, however only gas shows were ob-served  in  PakCan–01  well  but  these were  not  of  economic  significance. Cretaceous and younger stratigraphy is  encountered  in  exploratory  wells of  Indus  Offshore.  Sembar,  Goru, Mughalkot,  Pab,  Khadro,  Bara,  Laki-Gazij,  Kirthar,  Nari,  Gaj  formations are encountered in wells explored fol-

lowed by Siwalik Group. Shales, lime-stones, and argillaceous layers of Gaj, Nari,  Laki,  Ranikot,  and  Mughalkot formations  are  main  petroleum source  rocks  where  as  sandstones and  limestones  of  Gaj,  Nari,  Kirthar, and Ranikot formations are acting as the  main  reservoir  rocks  in  the  ba-sin. The intercalated shales and com-pact  limestones  act  as  seal/cap  rock. Isopach  maps  and  migration  fairway models  give  a  better  understanding of  hydrocarbon  generation  and  mi-gration.  A  detailed  post  well  analy-sis  including  well–velocity  survey analysis,  structural  and  stratigraphi-cal  interpretation,  regional  geologi-cal models, geothermal analysis, and burial history curves help  in  further exploration  and  drilling  activities  in the Indus Offshore, Pakistan.

Lessons learned are one of the important  assets  in  the  ex-ploration  and  production  in-dustry.  Keeping  that  in  view, the  current  work  focuses  on the  integration  of  geological, geophysical,  and  completion data  in  order  to  investigate the PakCan–01 well, which  is the  only  well  in  Offshore  In-dus  Basin,  PakCan–01  show-ing  gas  but  there  was  no  eco-nomic discovery.

The  work  involves  the  in-depth post well review of the PakCan–01  well,  Indus  Off-shore,  Pakistan,  with  the  fo-cus  on  integration  of  geo-logical,  geophysical,  and completion  data.  The  supple-mentary  work  includes  the study  of  petroleum  system 

8A

bStr

act8

Page 12: YoungPetro - 2nd Issue - Summer 2011

12 KashifSaeed,KashifYaqoob IntegrationofGeological,Geophysical,andCompletionData 13

summer / 2011

Projects(DSDP)havecameupwiththenew enhanced riser drilling capabilityas itopensnewopportunitiesfordeeppenetrationatatimewhenthescienceof climate-tectonic interactions hasreached the point where workable hy-pothesescanbetested.

TheIndianOceanremainstheclassicareatostudysuchinteractionsbecauseof theproposedcouplingbetweenthegrowth of the Himalaya andTibet andthe strengthening of the Asian mon-soon.BetweentheMurrayRidgeinthewestandthecoastlineintheeast,thereisthreefolddivisionoftheIndusfan:

1. Theoffshoredeltaicareaplatform2. Hingeortransitionzone3. Theoffshoredepression

 ɨ Tectonic History and Settings

Passive margin thermal subsidence intheEarlyJurassicresultedinthedeposi-tionofathicksuccessionoffine-grainedclasticsinwesternPakistan.BytheLateJurassic,thecombinationofwidespreadpassive margin conditions and tecton-ic quiescence resulted in the establish-ment of a widespread carbonate plat-formovermostofthecountry.

Continued breakup of Gondwana-land during the Late Jurassic to Ear-ly Cretaceous caused gentle uplift ofthe interior of the Indian Plate, so thatLate Jurassic carbonate platform wasreplaced by shallow marine to deltaicshalesandsandstones.

Separation of the Indian and Mada-gascanplatesoccurredatapproximately90Mato82Ma.Thisbreakupappearedtohaveresultedfromashearingmove-ment along the Owen Fracture Zoneand itsnorthernextension,TheMurrayRidge System which separates the Off-

shoreIndusBasinfromOffshoreMakranBasin,Pakistan(Fig.2).

Tectonically, three plates namely, In-dian, Arabian and Eurasian seem to in-teract directly to shape the sedimenta-ry basins in Pakistan offshore. A fourthplate (African plate) has also contrib-utedintheevolutionofthesebasinsinthe past. The offshore Indus Basin rep-resents thewesternpart of the trailingedgeoftheIndianPlate.

The Indus offshore is consideredas typical Atlantic Type passive mar-ginwhichisdevelopedasabreakupofGondwana during the Mesozoic and isacrossthecontinentalcrustofextensionofTharSlopePlatformandKirtharFore-deep.Itiscutinthesoutheasterncornerby the submarine canyon of the IndusRiver.Thebasin isdivided into twotec-tonicunitswithhingezone/shelflimitasthedividingline.Theunitsare:

1. OffshoreDepression(inthewest)2. OffshorePlatform(intheeast)

OffshoreDepressionisbetweenMur-rayRidgeandhingezone(66°to67°E).Here the pot Oligocene sedimentationseemstobenearlycontinuous.Itisrep-resentedbythickmarinecalcariousandterrigenous Miocene clastics, a fairlycontinuous silty-shaly sequence withlensesof sandstoneandbandsof lime-stone.

OffshorePlatformliesbetweenhingezone and Pakistan shoreline (67° to 68°E). It may be further divided into twounitsnamely:

1. KarachiTroughoffshoreplatform2. Thar Slope offshore platform or In-

dusriverdeltaicarea

The boundary between the two isroughly an extension of their onshoreboundary.

ʈ Fig.1:RegionalBathymetricandtopographicmapofthenorthernIndianOceanandhighAsiashowingthelocation(RedRectangle)andalsotheexistingscientificdeepseadrillingsitesinthearea.TheIndusFanhasbeenoutlined(modifiedafterCliftandMol-nar,2003)

Page 13: YoungPetro - 2nd Issue - Summer 2011

12 KashifSaeed,KashifYaqoob IntegrationofGeological,Geophysical,andCompletionData 13

summer / 2011

Projects(DSDP)havecameupwiththenew enhanced riser drilling capabilityas itopensnewopportunitiesfordeeppenetrationatatimewhenthescienceof climate-tectonic interactions hasreached the point where workable hy-pothesescanbetested.

TheIndianOceanremainstheclassicareatostudysuchinteractionsbecauseof theproposedcouplingbetweenthegrowth of the Himalaya andTibet andthe strengthening of the Asian mon-soon.BetweentheMurrayRidgeinthewestandthecoastlineintheeast,thereisthreefolddivisionoftheIndusfan:

1. Theoffshoredeltaicareaplatform2. Hingeortransitionzone3. Theoffshoredepression

 ɨ Tectonic History and Settings

Passive margin thermal subsidence intheEarlyJurassicresultedinthedeposi-tionofathicksuccessionoffine-grainedclasticsinwesternPakistan.BytheLateJurassic,thecombinationofwidespreadpassive margin conditions and tecton-ic quiescence resulted in the establish-ment of a widespread carbonate plat-formovermostofthecountry.

Continued breakup of Gondwana-land during the Late Jurassic to Ear-ly Cretaceous caused gentle uplift ofthe interior of the Indian Plate, so thatLate Jurassic carbonate platform wasreplaced by shallow marine to deltaicshalesandsandstones.

Separation of the Indian and Mada-gascanplatesoccurredatapproximately90Mato82Ma.Thisbreakupappearedtohaveresultedfromashearingmove-ment along the Owen Fracture Zoneand itsnorthernextension,TheMurrayRidge System which separates the Off-

shoreIndusBasinfromOffshoreMakranBasin,Pakistan(Fig.2).

Tectonically, three plates namely, In-dian, Arabian and Eurasian seem to in-teract directly to shape the sedimenta-ry basins in Pakistan offshore. A fourthplate (African plate) has also contrib-utedintheevolutionofthesebasinsinthe past. The offshore Indus Basin rep-resents thewesternpart of the trailingedgeoftheIndianPlate.

The Indus offshore is consideredas typical Atlantic Type passive mar-ginwhichisdevelopedasabreakupofGondwana during the Mesozoic and isacrossthecontinentalcrustofextensionofTharSlopePlatformandKirtharFore-deep.Itiscutinthesoutheasterncornerby the submarine canyon of the IndusRiver.Thebasin isdivided into twotec-tonicunitswithhingezone/shelflimitasthedividingline.Theunitsare:

1. OffshoreDepression(inthewest)2. OffshorePlatform(intheeast)

OffshoreDepressionisbetweenMur-rayRidgeandhingezone(66°to67°E).Here the pot Oligocene sedimentationseemstobenearlycontinuous.Itisrep-resentedbythickmarinecalcariousandterrigenous Miocene clastics, a fairlycontinuous silty-shaly sequence withlensesof sandstoneandbandsof lime-stone.

OffshorePlatformliesbetweenhingezone and Pakistan shoreline (67° to 68°E). It may be further divided into twounitsnamely:

1. KarachiTroughoffshoreplatform2. Thar Slope offshore platform or In-

dusriverdeltaicarea

The boundary between the two isroughly an extension of their onshoreboundary.

ʈ Fig.1:RegionalBathymetricandtopographicmapofthenorthernIndianOceanandhighAsiashowingthelocation(RedRectangle)andalsotheexistingscientificdeepseadrillingsitesinthearea.TheIndusFanhasbeenoutlined(modifiedafterCliftandMol-nar,2003)

Page 14: YoungPetro - 2nd Issue - Summer 2011

14 KashifSaeed,KashifYaqoob IntegrationofGeological,Geophysical,andCompletionData 15

summer / 2011

 ɨ Exploration HistoryAlltheexploratorywellsweredrilledbythe foreign oil companies in the IndusOffshore area namely Dabbo Creek–01(Shelf area), Korangi Creek–01 (Shelfarea),PatianiCreek–01(Shelfarea),IndusMarine-A1(Basinarea), IndusMarine-B1(Basinarea),IndusMarineC1(Basinarea),KarachiSouth-A1(Shelfarea),PakCan–01(Basin area), and Sadaf–01 (Basin area)asdisplayedinFig.3.MesozoicandTer-tiary sedimentary successions havebeen encountered in these offshore In-duswells.Allthewellswereabandonedas they proved to be dry although gasshowsandtraceswerefound.However,thereareprospectsofoilandgas in In-dusOffshoreasthediscoveryhasbeenmade intheBombayoffshorebasin (in

Eocene and Miocene sandstone andLimestone) as well as the discovery ofKhaskelioilfieldbyUnionTexas,inEarlyCretaceouslowerGorusandstoneatthedepth of about 1.040 m.This field is lo-cated150KmeastofKarachicityinTharslope. Reinterpretation of seismic datashowsDabboCreektohavebeendrilledon the downthrown side of fault blockstructure,PatianiCreektobelocatedonthenorthernflank,whiletheseismicaswell as drilling results don’t justify thepresenceofeastboundaryfaultprovid-ingclosureforthetraptestedinKarachiSouth A–1. All the three Indus Marinewellswerestoppedduetotechnicaldif-ficulties without reaching objective res-ervoirs.

ʈ Fig.3:WellLocationMapofOffshoreIndusBasin,Pakistan(modifiedafterRaza,2007)

Karachi trough is generally a rockyarea and is characterized by thick postEocene cretaceous sediments, where-asTharSlope ismostlycoveredbyallu-vium. Post-early Cetaceous sedimentsare either lacking or thinning out inThar Slope. Post Oligocene sedimenta-tion seems to have been continuous,except forashortbreakduring lateMi-oceneasencounteredinoffshorewells.PostOligocenestratahaveamaximumthickness of more then 10.660 ft (3.249m) in Indus marine B–1. Post-early Mi-ocenesedimentsaremissinginKorangiCreek–01, Patiani Creek–01, and DabboCreek–01.SotheKarachitroughoffshoremay be divided tectonically as easternoffshoreplatformandwesternoffshoredepression.

Structurally the Indus offshore con-sistsoffollowingunits:

1. Half graben-extension of Kutch ba-sin

2. Aplatformareawhichisconsideredas prolongation of onshore sindhmonocline but it may be a part ofKutch basin due to its similarity ofsedimentary rocks encountered increekwells.

3. A deep depression which may belinked with the onshore depres-sions, this area is severely faultedbysinousandgravitygrowthfaults.Thesouthwesternmarginofthisde-pressionisboundedbyagentleup-liftrunningparalleltotheaxisofthedeep.Hugediapiricfeaturesarede-veloped in the west of the depres-siontowardsMurrayridge.

4. The fault patterns fit in the region-al tectonic setting resulting fromnorthwardflightoftheIndianplate.And subsequent rifting in its southeasternpart.

ʈ Fig.2:TectonicelementsofOffshoreIndus,Pakistan.MurrayRidgeisboundarybetweenMakranOffshoreandIndusOffshore(modifiedafterRaza,2007)

Page 15: YoungPetro - 2nd Issue - Summer 2011

14 KashifSaeed,KashifYaqoob IntegrationofGeological,Geophysical,andCompletionData 15

summer / 2011

 ɨ Exploration HistoryAlltheexploratorywellsweredrilledbythe foreign oil companies in the IndusOffshore area namely Dabbo Creek–01(Shelf area), Korangi Creek–01 (Shelfarea),PatianiCreek–01(Shelfarea),IndusMarine-A1(Basinarea), IndusMarine-B1(Basinarea),IndusMarineC1(Basinarea),KarachiSouth-A1(Shelfarea),PakCan–01(Basin area), and Sadaf–01 (Basin area)asdisplayedinFig.3.MesozoicandTer-tiary sedimentary successions havebeen encountered in these offshore In-duswells.Allthewellswereabandonedas they proved to be dry although gasshowsandtraceswerefound.However,thereareprospectsofoilandgas in In-dusOffshoreasthediscoveryhasbeenmade intheBombayoffshorebasin (in

Eocene and Miocene sandstone andLimestone) as well as the discovery ofKhaskelioilfieldbyUnionTexas,inEarlyCretaceouslowerGorusandstoneatthedepth of about 1.040 m.This field is lo-cated150KmeastofKarachicityinTharslope. Reinterpretation of seismic datashowsDabboCreektohavebeendrilledon the downthrown side of fault blockstructure,PatianiCreektobelocatedonthenorthernflank,whiletheseismicaswell as drilling results don’t justify thepresenceofeastboundaryfaultprovid-ingclosureforthetraptestedinKarachiSouth A–1. All the three Indus Marinewellswerestoppedduetotechnicaldif-ficulties without reaching objective res-ervoirs.

ʈ Fig.3:WellLocationMapofOffshoreIndusBasin,Pakistan(modifiedafterRaza,2007)

Karachi trough is generally a rockyarea and is characterized by thick postEocene cretaceous sediments, where-asTharSlope ismostlycoveredbyallu-vium. Post-early Cetaceous sedimentsare either lacking or thinning out inThar Slope. Post Oligocene sedimenta-tion seems to have been continuous,except forashortbreakduring lateMi-oceneasencounteredinoffshorewells.PostOligocenestratahaveamaximumthickness of more then 10.660 ft (3.249m) in Indus marine B–1. Post-early Mi-ocenesedimentsaremissinginKorangiCreek–01, Patiani Creek–01, and DabboCreek–01.SotheKarachitroughoffshoremay be divided tectonically as easternoffshoreplatformandwesternoffshoredepression.

Structurally the Indus offshore con-sistsoffollowingunits:

1. Half graben-extension of Kutch ba-sin

2. Aplatformareawhichisconsideredas prolongation of onshore sindhmonocline but it may be a part ofKutch basin due to its similarity ofsedimentary rocks encountered increekwells.

3. A deep depression which may belinked with the onshore depres-sions, this area is severely faultedbysinousandgravitygrowthfaults.Thesouthwesternmarginofthisde-pressionisboundedbyagentleup-liftrunningparalleltotheaxisofthedeep.Hugediapiricfeaturesarede-veloped in the west of the depres-siontowardsMurrayridge.

4. The fault patterns fit in the region-al tectonic setting resulting fromnorthwardflightoftheIndianplate.And subsequent rifting in its southeasternpart.

ʈ Fig.2:TectonicelementsofOffshoreIndus,Pakistan.MurrayRidgeisboundarybetweenMakranOffshoreandIndusOffshore(modifiedafterRaza,2007)

Page 16: YoungPetro - 2nd Issue - Summer 2011

16 KashifSaeed,KashifYaqoob IntegrationofGeological,Geophysical,andCompletionData 17

summer / 2011

Interpretation is the transformationofseismicreflecteddataintoastructuralpicturebytheapplicationofcorrections,migration and time depth conversion.Seismic reflection method uses soundwavestoinvestigatethesubsurface.Theacoustic impedance governs the reflec-tion,whichisoneoftherockpropertiesandisgivenbytheformula:

Acoustic Impedance=IntervalVeloc-ityxDensity

Reflectionarisesatboundariesacrosswhich acoustic impedances changes.Greater the difference in the acousticimpedanceacrossaninterface,strongerwillbethereflectiongenerated.

Seismicsectionsgiveusthedetailedinsight about the structure of the sub-surface, where as for the stratigraphy,we need to integrate the seismic sec-tionswithwelllogdataandcompletionprofiles(ifany),forthroughunderstand-ingofreservoir

The main application of Structur-al analysis of seismic sections is in thesearch for hydrocarbon traps. Moststructuralinterpretationusetwowayre-flectiontimeratherdepthandtime.

Structural maps are constructed todisplaythegeometryofselectedreflect-ed events. Discontinuous reflectionsclearly indicate parts and undulatingreflections reveals folded beds. Simi-larlydiffractionisindicationoffaults.InoffshoreIndustherearemostlygrowthfaults.

Mainly there are three types of fea-turesasidentifiesontheseismicdata.

1. ChannelSystem2. GrowthFaluting3. ProgradingSequence

Apartfromthesethreemainfeaturesanothersetofepisodehasbeen recog-nized in this work. This is the upward

stretch of the reflectors in very young-erstrata,showninFig.4.IntheFig.thenavy blue reflector (second from top)has been stretched upward from themiddle of the section where as it sepa-ratesapartwithrespecttothetopmostreflector as it moves towards its NE ex-treme.

Arapiddumpingofclasticsedimentsoccurred particularly in the depressionarea during Neogene time. The Neo-gene strata during its deposition wereoccasionallysubjectedtoerosionbytheshiftingchannels(Fig.4)ofProto-IndusRiver,whichweresubsequentlyfilledbyclastics during Middle to Late MioceneaswellasduringPliocene.

 ɨ Well Log InterpretationInterpretationofoldwelllogsisagreatlearningexperienceandachallenge intheerawhenwehavewhiledrillinglog-ging and measurements.The availablelogdatawassortedandkeywellswereidentified. 'A key well is one which hasthemaxdataandhencetheinterpretedparameters will have the least amountofuncertainty'.Thesewellswillbeusedto estimate the relevant petro-physicalparametersforthewellswhicharelack-ingkeydata.

All the available logs were catego-rized to help implement a consistentsystem of interpretation that dependsontheavailablesuiteoflogsaccordingtothefollowingscheme:

Type A:thekeywellsi.e.themostcom-pletesuiteoflogs(i.e.petro-graphiclog,completedanalysesfrompastengineers,ashallowreadingloge.g.microloganda deep reading log, GR, SP) and coredata, production data, perforated inter-vals,RFTdataandWelltestdata

 ɨ Seismic Data Interpretation

Seismic Interpretation means the con-version of seismic data into useful geo-logic information.The interpretationofreflectiondatarequiresthefittingofallgeologicalandgeophysicalinformationinto an integrated picture that is morecompleteandreliablethaneithersourceis likely to give alone. Ideally, this inte-grationwouldbeaccomplishedmostef-ficientlyifasinglepersonhighlycompe-tentbothingeophysicsandgeologydidit. However in actual practice such per-sons are very few and it is usually nec-essary for a geophysicist and geologistto collaborate at this stage of interpre-tation.Theaddedinformationfromthearealikeproductionanalysisanddriller’sobservationsarealwayshelpfulbut for

thewildcatsandearlyexplorationstageof the field, such information is sparseandusuallyoflessadvantage.

Geophysics is the investigation ofsubsurface using the laws and meth-ods of physics and till date the seismicsection is the most reliable picture ofthe subsurface. With the developmentof 3D seismic method, seismic cube isthe latest approach and of the surveyis done after time intervals to monitorthe changes; resulting output is called4D seismic. In seismic method meas-urementaremadeatthesurfacebyus-ing different geophysical instruments,which are then interpreted in terms ofwhat might be in the subsurface. Thebehaviorofdifferentinterfacesthatgiverise to reflection events is calculatedfromarrivaltimesofseismicwavesfromtheseinterfaces.

ʈ Fig.4:ChannelsandyoungersetsofeventshownonSeismicLineNP–12

Page 17: YoungPetro - 2nd Issue - Summer 2011

16 KashifSaeed,KashifYaqoob IntegrationofGeological,Geophysical,andCompletionData 17

summer / 2011

Interpretation is the transformationofseismicreflecteddataintoastructuralpicturebytheapplicationofcorrections,migration and time depth conversion.Seismic reflection method uses soundwavestoinvestigatethesubsurface.Theacoustic impedance governs the reflec-tion,whichisoneoftherockpropertiesandisgivenbytheformula:

Acoustic Impedance=IntervalVeloc-ityxDensity

Reflectionarisesatboundariesacrosswhich acoustic impedances changes.Greater the difference in the acousticimpedanceacrossaninterface,strongerwillbethereflectiongenerated.

Seismicsectionsgiveusthedetailedinsight about the structure of the sub-surface, where as for the stratigraphy,we need to integrate the seismic sec-tionswithwelllogdataandcompletionprofiles(ifany),forthroughunderstand-ingofreservoir

The main application of Structur-al analysis of seismic sections is in thesearch for hydrocarbon traps. Moststructuralinterpretationusetwowayre-flectiontimeratherdepthandtime.

Structural maps are constructed todisplaythegeometryofselectedreflect-ed events. Discontinuous reflectionsclearly indicate parts and undulatingreflections reveals folded beds. Simi-larlydiffractionisindicationoffaults.InoffshoreIndustherearemostlygrowthfaults.

Mainly there are three types of fea-turesasidentifiesontheseismicdata.

1. ChannelSystem2. GrowthFaluting3. ProgradingSequence

Apartfromthesethreemainfeaturesanothersetofepisodehasbeen recog-nized in this work. This is the upward

stretch of the reflectors in very young-erstrata,showninFig.4.IntheFig.thenavy blue reflector (second from top)has been stretched upward from themiddle of the section where as it sepa-ratesapartwithrespecttothetopmostreflector as it moves towards its NE ex-treme.

Arapiddumpingofclasticsedimentsoccurred particularly in the depressionarea during Neogene time. The Neo-gene strata during its deposition wereoccasionallysubjectedtoerosionbytheshiftingchannels(Fig.4)ofProto-IndusRiver,whichweresubsequentlyfilledbyclastics during Middle to Late MioceneaswellasduringPliocene.

 ɨ Well Log InterpretationInterpretationofoldwelllogsisagreatlearningexperienceandachallenge intheerawhenwehavewhiledrillinglog-ging and measurements.The availablelogdatawassortedandkeywellswereidentified. 'A key well is one which hasthemaxdataandhencetheinterpretedparameters will have the least amountofuncertainty'.Thesewellswillbeusedto estimate the relevant petro-physicalparametersforthewellswhicharelack-ingkeydata.

All the available logs were catego-rized to help implement a consistentsystem of interpretation that dependsontheavailablesuiteoflogsaccordingtothefollowingscheme:

Type A:thekeywellsi.e.themostcom-pletesuiteoflogs(i.e.petro-graphiclog,completedanalysesfrompastengineers,ashallowreadingloge.g.microloganda deep reading log, GR, SP) and coredata, production data, perforated inter-vals,RFTdataandWelltestdata

 ɨ Seismic Data Interpretation

Seismic Interpretation means the con-version of seismic data into useful geo-logic information.The interpretationofreflectiondatarequiresthefittingofallgeologicalandgeophysicalinformationinto an integrated picture that is morecompleteandreliablethaneithersourceis likely to give alone. Ideally, this inte-grationwouldbeaccomplishedmostef-ficientlyifasinglepersonhighlycompe-tentbothingeophysicsandgeologydidit. However in actual practice such per-sons are very few and it is usually nec-essary for a geophysicist and geologistto collaborate at this stage of interpre-tation.Theaddedinformationfromthearealikeproductionanalysisanddriller’sobservationsarealwayshelpfulbut for

thewildcatsandearlyexplorationstageof the field, such information is sparseandusuallyoflessadvantage.

Geophysics is the investigation ofsubsurface using the laws and meth-ods of physics and till date the seismicsection is the most reliable picture ofthe subsurface. With the developmentof 3D seismic method, seismic cube isthe latest approach and of the surveyis done after time intervals to monitorthe changes; resulting output is called4D seismic. In seismic method meas-urementaremadeatthesurfacebyus-ing different geophysical instruments,which are then interpreted in terms ofwhat might be in the subsurface. Thebehaviorofdifferentinterfacesthatgiverise to reflection events is calculatedfromarrivaltimesofseismicwavesfromtheseinterfaces.

ʈ Fig.4:ChannelsandyoungersetsofeventshownonSeismicLineNP–12

Page 18: YoungPetro - 2nd Issue - Summer 2011

18 KashifSaeed,KashifYaqoob IntegrationofGeological,Geophysical,andCompletionData 19

summer / 2011

tantfordrillingfluidsengineerstoknowthe geothermal gradient in an areawhen they are designing a deep well.Thedown-holetemperaturecanbecal-culatedbyaddingthesurfacetempera-turetotheproductofthedepthandthegeothermalgradient.

As the geothermal analysis dependmainlyondepthsoinoffshoreIndusba-sin (table 1), the two main areas whichneedtobedistinguishedare:

1. ShelfArea2. BasinArea

TalkingparticularlyofPakCan–01well,theinputparametersaredepth,typeoflithology,thickness,porosity,eventtype(depositionanderosion),timeandbaseage, water depth, paleo-temperatureandheatflowrateshavebeenusedforeach lithological unit/layer. The poros-ityvariationsindepthplayanimportantrole in sediment compaction and de-compactioninabasin.Lastbutnottheleast,theoverlayingsedimentload,wa-tercolumn,eustaticchangeswithtimeand tectonics have crucial impact overthesedimentsburialhistory.

ThedataofPakCan–01wellhasbeenused to precisely simulate deposition,fluiddynamics,andheatflowoccurredduringtheprocessofsubsidence,uplift

and erosion while various basin devel-opment stages. The results determinethepotentialvolumeandtypeofhydro-carbonsgeneratedinthebasinandtheperiodduringwhichsuchhydrocarbongenerationtookplace.

The output data as a result of basinsimulation comprises the generatedhydrocarbon volume for individual lay-ers encountered in the PakCan–01 well(BasinArea). Inadditiontothecomput-edtotalmatrixporosity,andcomputedsubsidence, and type-II hydrocarbonhistorieshavebeengenerated.

Thehydrocarbonvolumesgeneratedfor each layer in the well has been de-scribedinTable2.

ʈ Table1:ThedescriptionofPakCan–01wellwithrespecttothegeothermalanalysis

Location Shelf Area

Spud Date 27 / 9 / 1985

Completion Date 05 / 05 / 1986

Total Depth (m) 3702

Formation at TD Gaj

Age Burdigalian

Comments Declared as non-commercial hydrocarbon discovery from lower Miocene Sandstone

Status Plugged and Abandoned

Layer Name

Thickness (m)

Lithology Total oil generated per km2/S.R. Thickness

(mm tones)

Total gas generated per km2/S.R. Thickness (mm cubic meters)

M. Miocene 1250 Sandstone and Siltstone

8.152 199.490

L. Miocene 1307 Silty Shaly Sand

10.171 19.478

Pliocene 840 Sandstone and Siltstone

0.037 0.000

Pleis. / Ho. 1553 Sandstone and Siltstone

0.000 0.000

ʈ Table2:Outputdatareport:HydrocarbonvolumesgeneratedineachlayerofPakCan–01

Type B:sameasTypeAbutnocoresareavailableType C: incomplete logsuitee.g.nore-sistivitylogsType D:Noavailablelogs

Apartfromtheindividualwell login-terpretation,anattempttocorrelatesixwells was done. The stratigraphic andstructural features of the basin havebeenlinkedtotheadjacentonshorear-easandtothetectonicevolutionofthewestern margin of the Indian Plate. Adetailedmodelofcorrelationofonshore

andnearbyoffshoreregionisdisplayedasFig.5.

 ɨ Geothermal AnalysisThe geothermal gradient is the rate ofincrease intemperatureperunitdepthin the earth. Although the geothermalgradientvariesfromplacetoplace,itav-erages25to30°C/km[15°F/1000ft].

Temperaturegradientsvarywidelyallover the surface and subsurface, some-times increasing dramatically aroundvolcanic areas. It is particularly impor-

ʈ Fig.5:Thestratigraphicmodelofoffshoreandnearbyonshoreareasasderivedfromdataofsixwells,inter-wellareahasbeenfilledbyrelatedseismicdata.

Page 19: YoungPetro - 2nd Issue - Summer 2011

18 KashifSaeed,KashifYaqoob IntegrationofGeological,Geophysical,andCompletionData 19

summer / 2011

tantfordrillingfluidsengineerstoknowthe geothermal gradient in an areawhen they are designing a deep well.Thedown-holetemperaturecanbecal-culatedbyaddingthesurfacetempera-turetotheproductofthedepthandthegeothermalgradient.

As the geothermal analysis dependmainlyondepthsoinoffshoreIndusba-sin (table 1), the two main areas whichneedtobedistinguishedare:

1. ShelfArea2. BasinArea

TalkingparticularlyofPakCan–01well,theinputparametersaredepth,typeoflithology,thickness,porosity,eventtype(depositionanderosion),timeandbaseage, water depth, paleo-temperatureandheatflowrateshavebeenusedforeach lithological unit/layer. The poros-ityvariationsindepthplayanimportantrole in sediment compaction and de-compactioninabasin.Lastbutnottheleast,theoverlayingsedimentload,wa-tercolumn,eustaticchangeswithtimeand tectonics have crucial impact overthesedimentsburialhistory.

ThedataofPakCan–01wellhasbeenused to precisely simulate deposition,fluiddynamics,andheatflowoccurredduringtheprocessofsubsidence,uplift

and erosion while various basin devel-opment stages. The results determinethepotentialvolumeandtypeofhydro-carbonsgeneratedinthebasinandtheperiodduringwhichsuchhydrocarbongenerationtookplace.

The output data as a result of basinsimulation comprises the generatedhydrocarbon volume for individual lay-ers encountered in the PakCan–01 well(BasinArea). Inadditiontothecomput-edtotalmatrixporosity,andcomputedsubsidence, and type-II hydrocarbonhistorieshavebeengenerated.

Thehydrocarbonvolumesgeneratedfor each layer in the well has been de-scribedinTable2.

ʈ Table1:ThedescriptionofPakCan–01wellwithrespecttothegeothermalanalysis

Location Shelf Area

Spud Date 27 / 9 / 1985

Completion Date 05 / 05 / 1986

Total Depth (m) 3702

Formation at TD Gaj

Age Burdigalian

Comments Declared as non-commercial hydrocarbon discovery from lower Miocene Sandstone

Status Plugged and Abandoned

Layer Name

Thickness (m)

Lithology Total oil generated per km2/S.R. Thickness

(mm tones)

Total gas generated per km2/S.R. Thickness (mm cubic meters)

M. Miocene 1250 Sandstone and Siltstone

8.152 199.490

L. Miocene 1307 Silty Shaly Sand

10.171 19.478

Pliocene 840 Sandstone and Siltstone

0.037 0.000

Pleis. / Ho. 1553 Sandstone and Siltstone

0.000 0.000

ʈ Table2:Outputdatareport:HydrocarbonvolumesgeneratedineachlayerofPakCan–01

Type B:sameasTypeAbutnocoresareavailableType C: incomplete logsuitee.g.nore-sistivitylogsType D:Noavailablelogs

Apartfromtheindividualwell login-terpretation,anattempttocorrelatesixwells was done. The stratigraphic andstructural features of the basin havebeenlinkedtotheadjacentonshorear-easandtothetectonicevolutionofthewestern margin of the Indian Plate. Adetailedmodelofcorrelationofonshore

andnearbyoffshoreregionisdisplayedasFig.5.

 ɨ Geothermal AnalysisThe geothermal gradient is the rate ofincrease intemperatureperunitdepthin the earth. Although the geothermalgradientvariesfromplacetoplace,itav-erages25to30°C/km[15°F/1000ft].

Temperaturegradientsvarywidelyallover the surface and subsurface, some-times increasing dramatically aroundvolcanic areas. It is particularly impor-

ʈ Fig.5:Thestratigraphicmodelofoffshoreandnearbyonshoreareasasderivedfromdataofsixwells,inter-wellareahasbeenfilledbyrelatedseismicdata.

Page 20: YoungPetro - 2nd Issue - Summer 2011

20 KashifSaeed,KashifYaqoob IntegrationofGeological,Geophysical,andCompletionData 21

summer / 2011

ing,normalorgentleocean-wardtiltofthe basin, deltas and carbonate bankswithreefalbuild-ups.Themainstructureon which the PakCan–1 well has beendrilledisshownasFig.7.

Stratigraphic analysis involves thesubdivision of seismic sections into se-quences of reflections that are inter-preted as the seismic expression of ge-neticallyrelatedsedimentarysequences.Unconformities can be mapped fromthedivergencepatternofreflectionsonaseismicsection.

Thepresenceofunconformablecon-tacts on a seismic section provides im-portant information about the deposi-

tionalanderosionalhistoryof theareaand on the environment existing dur-ingthetime,whenthemovementstookplace.

The success of seismic reflectionmethod in finding stratigraphic trapsvaries with the type of trap involved.Mostsuchentrapmentfeaturesarereefs,unconformity, disconformities, facieschange,pinch-outsandothererosionaltruncations.

After the detailed analysis from seis-micdataandcorrelationwithWellLogdata, the summarized stratigraphy ofPakCan–01well,atdifferentdepthinter-valshasbeenlistedintable3.

ʈ Fig.6:ThemainstructuredrilledbyPakCan–01isindicatedbyred,SP480SeismicLineNP–12

 ɨ Well to Seismic TieWell–Seismic Tie means to correlatedata in order to formulate or verify aninterpretationortodemonstratethere-lationship between data sets acquiredfromseismicmodelandtheassociatedwelldatamodelofthesamearea.Long,regional-scale 2D seismic lines are alsotied to 3D surveys that cover a limitedarea,and3Dsurveysofdifferentvintag-esaretiedtoeachother.

Well logs are tied into seismic dataroutinely todeterminetherelationshipbetween lithologic boundaries in thelogsandseismicreflections.Properlyty-ingallavailabledata, includingseismicdata,well logs,check-shotsurveys,syn-theticseismogramsandverticalseismicprofiles,canreduceor, iftherearesuffi-cientdata,eliminateambiguity in inter-pretations.

Itisacomparisonorthelocationofacomparison,ofdata.Properlyprocessedand interpretedseismic linescanshowgoodties,orcorrelations,atintersectionpoints.

From Well Velocity Survey of Pa-kCan–01,117pointswereselectedonthecurvetoreadthetimefromdepth.

 ɨ Integrated Evaluation and Results

As Indus Offshore basin has beenmarked as marginal sag basin so it isexpected that it could contain/providemajor hydrocarbon plays when theyare associated with appropriately bur-ied basal fault blocks, and non-marinedepositionofthebasalinteriorfracturecycle,contemporaneousoryoungersaltdomeuplift,growthfaults,wrenchfault-

ʈ Fig.6:TwoWayTimeVs.DepthPlotofSelected117pointsfromwellvelocitysurvey

Page 21: YoungPetro - 2nd Issue - Summer 2011

20 KashifSaeed,KashifYaqoob IntegrationofGeological,Geophysical,andCompletionData 21

summer / 2011

ing,normalorgentleocean-wardtiltofthe basin, deltas and carbonate bankswithreefalbuild-ups.Themainstructureon which the PakCan–1 well has beendrilledisshownasFig.7.

Stratigraphic analysis involves thesubdivision of seismic sections into se-quences of reflections that are inter-preted as the seismic expression of ge-neticallyrelatedsedimentarysequences.Unconformities can be mapped fromthedivergencepatternofreflectionsonaseismicsection.

Thepresenceofunconformablecon-tacts on a seismic section provides im-portant information about the deposi-

tionalanderosionalhistoryof theareaand on the environment existing dur-ingthetime,whenthemovementstookplace.

The success of seismic reflectionmethod in finding stratigraphic trapsvaries with the type of trap involved.Mostsuchentrapmentfeaturesarereefs,unconformity, disconformities, facieschange,pinch-outsandothererosionaltruncations.

After the detailed analysis from seis-micdataandcorrelationwithWellLogdata, the summarized stratigraphy ofPakCan–01well,atdifferentdepthinter-valshasbeenlistedintable3.

ʈ Fig.6:ThemainstructuredrilledbyPakCan–01isindicatedbyred,SP480SeismicLineNP–12

 ɨ Well to Seismic TieWell–Seismic Tie means to correlatedata in order to formulate or verify aninterpretationortodemonstratethere-lationship between data sets acquiredfromseismicmodelandtheassociatedwelldatamodelofthesamearea.Long,regional-scale 2D seismic lines are alsotied to 3D surveys that cover a limitedarea,and3Dsurveysofdifferentvintag-esaretiedtoeachother.

Well logs are tied into seismic dataroutinely todeterminetherelationshipbetween lithologic boundaries in thelogsandseismicreflections.Properlyty-ingallavailabledata, includingseismicdata,well logs,check-shotsurveys,syn-theticseismogramsandverticalseismicprofiles,canreduceor, iftherearesuffi-cientdata,eliminateambiguity in inter-pretations.

Itisacomparisonorthelocationofacomparison,ofdata.Properlyprocessedand interpretedseismic linescanshowgoodties,orcorrelations,atintersectionpoints.

From Well Velocity Survey of Pa-kCan–01,117pointswereselectedonthecurvetoreadthetimefromdepth.

 ɨ Integrated Evaluation and Results

As Indus Offshore basin has beenmarked as marginal sag basin so it isexpected that it could contain/providemajor hydrocarbon plays when theyare associated with appropriately bur-ied basal fault blocks, and non-marinedepositionofthebasalinteriorfracturecycle,contemporaneousoryoungersaltdomeuplift,growthfaults,wrenchfault-

ʈ Fig.6:TwoWayTimeVs.DepthPlotofSelected117pointsfromwellvelocitysurvey

Page 22: YoungPetro - 2nd Issue - Summer 2011

22 KashifSaeed,KashifYaqoob IntegrationofGeological,Geophysical,andCompletionData 23

summer / 2011

 ɨ Acknowledgements 

Authors thank DGPC-Ministry of Petroleum and Natural Resources for making available public data for study and LMKR for helping to reach and get the copies of data from repository.

 ɨ References1. AbdulWaheed,2003,AspectsofPetroleumProspectivityofTertiary IndusDelta:

Pakistan’suntappedExplorationFrontier,AAPGInternationalConference,(Sep21–24,2003),Barcelona,Spain.

2. Baloch,S.M.,andDavidG.Quirk,1998,SeuenceStratigraphicandStructuralInter-pretationoftheOffshoreIndusBasinofPakistan,AmericanAssociationofPetrole-umGeologists,AnnualConferenceSaltLakeCity(May1998Abstract),Utah,U.S.A.,p.1–4.

3. Clift,P.,andMolnar.P.,2003,ScientificDrillingoftheIndianOceanSubmarineFans,JOI/USSAC workshop for future IODP Drilling, 23 – 25th July 2003, University ofColorado,Boulder,CO,USA.,p.3.

4. Jaswal,T.M.,andMaqsood,T.,2002,StructuralGeometryoftheOffshoreIndusBa-sin,Pakistan,PAPG–SPEAnnualTechnicalConferenceandOilShow(2–4Novem-ber,2002),Islamabad,Pakistan.

 ɨ Conclusions and Recommendations

Thepresentwork isprimarilybasedoninterpretation of seismic data, its corre-lationwithwelldata,wellvelocitysurvey,and completion data from PakCan–01well inordertologicallyreasonthefail-ureofwell,withalittleglimpseonover-allpictureof IndusOffshoreBasin,Paki-stan.Inthegrowingindustrychallengesfromconventionaltounconventional,itis the need of the hour to integrate alltypesofdataavailable,especiallyinthebasinswithnosignificantdiscovery.

The integration strategy should beappliedtounder-exploredareasandba-sins with technical and drilling difficul-tieslikeOffshoreIndusBasin,Pakistantolearnlessonsfromthemisshitsandplana foolproof strategy for future spudsin the area. The tectonics, stratigraphy,andhydrocarbongenerationshouldbe

studiedindetailreachingthepotentialsource, reservoir, and seal/cap rock de-terminingthehydrocarbonpotentialofthearea.

Acompleteworkflowprior to the in-itiation of study is relatively helpful, inordertointegrateallthedataavailablefrom all the sources and preferably, allthe wells in the area. The vitrinite re-flectance data, maturation history, ba-sin analysis, and kerogen type studiesshould be done prior to static and dy-namic model generation and incorpo-rationofthisinformationinthemodelsissignificantlyimportanttoportraythecomplete picture and developing themaximumtrustonourmodelswithmin-imumuncertainty.

A detailed study on timing of devel-opments of structures and maturationofsourcerockisstronglyrecommendedforhydrocarbonhuntinIndusOffshoreBasin,Pakistan.

Depth (m) Statigraphy

1112 Sea Floor – Holocene / Pliocene Marine Shales & Silts

1112 – 1454 Light Grey Shales & Siltstone with rare Sands

1454 – 1703 Near Shore Deltaic Sequence Fining Upwards

1703 – 1828 Marine Sequence regressing upwards to Fine Sand between 1703 and 1730 m

1828 – 2262 Deltaic Complex, mainly Bottom and Foreset Beds with major topset bars Sands between 1903 and 1863 m

2262 – 2710 Deepwater marine Shales with minor Siltstone, minor thin distal marine Sands between 2514 and 2616 m

2710 – 2908 Upward Fining deltaic Sequence with topset Sands between 2850 and 2908 m, grading upwards to thin forest

2908 – 2980 Deep water marine Shales and Siltstones.

2980 – 3118 Prodrading Deltaic Sequence below 3020 m. Regrading deeper water section between 2880 and 3020 m.

3118 – 3392 Deeper water marine Shales and Siltstones, Thin, Coarse grained, gas sands at 3313 – 3314 m.

3392 – 3398 Oxidized reddish brown iron rich Shales

3398 – 3700 Distal marine Shales and Siltstones with thin foreset beds at 3310, 3395, and 3525 m.

ʈ Table3:ThedetailedstratigraphyofPakCan–01well,atdifferentdepthintervals

Page 23: YoungPetro - 2nd Issue - Summer 2011

22 KashifSaeed,KashifYaqoob IntegrationofGeological,Geophysical,andCompletionData 23

summer / 2011

 ɨ Acknowledgements 

Authors thank DGPC-Ministry of Petroleum and Natural Resources for making available public data for study and LMKR for helping to reach and get the copies of data from repository.

 ɨ References1. AbdulWaheed,2003,AspectsofPetroleumProspectivityofTertiary IndusDelta:

Pakistan’suntappedExplorationFrontier,AAPGInternationalConference,(Sep21–24,2003),Barcelona,Spain.

2. Baloch,S.M.,andDavidG.Quirk,1998,SeuenceStratigraphicandStructuralInter-pretationoftheOffshoreIndusBasinofPakistan,AmericanAssociationofPetrole-umGeologists,AnnualConferenceSaltLakeCity(May1998Abstract),Utah,U.S.A.,p.1–4.

3. Clift,P.,andMolnar.P.,2003,ScientificDrillingoftheIndianOceanSubmarineFans,JOI/USSAC workshop for future IODP Drilling, 23 – 25th July 2003, University ofColorado,Boulder,CO,USA.,p.3.

4. Jaswal,T.M.,andMaqsood,T.,2002,StructuralGeometryoftheOffshoreIndusBa-sin,Pakistan,PAPG–SPEAnnualTechnicalConferenceandOilShow(2–4Novem-ber,2002),Islamabad,Pakistan.

 ɨ Conclusions and Recommendations

Thepresentwork isprimarilybasedoninterpretation of seismic data, its corre-lationwithwelldata,wellvelocitysurvey,and completion data from PakCan–01well inordertologicallyreasonthefail-ureofwell,withalittleglimpseonover-allpictureof IndusOffshoreBasin,Paki-stan.Inthegrowingindustrychallengesfromconventionaltounconventional,itis the need of the hour to integrate alltypesofdataavailable,especiallyinthebasinswithnosignificantdiscovery.

The integration strategy should beappliedtounder-exploredareasandba-sins with technical and drilling difficul-tieslikeOffshoreIndusBasin,Pakistantolearnlessonsfromthemisshitsandplana foolproof strategy for future spudsin the area. The tectonics, stratigraphy,andhydrocarbongenerationshouldbe

studiedindetailreachingthepotentialsource, reservoir, and seal/cap rock de-terminingthehydrocarbonpotentialofthearea.

Acompleteworkflowprior to the in-itiation of study is relatively helpful, inordertointegrateallthedataavailablefrom all the sources and preferably, allthe wells in the area. The vitrinite re-flectance data, maturation history, ba-sin analysis, and kerogen type studiesshould be done prior to static and dy-namic model generation and incorpo-rationofthisinformationinthemodelsissignificantlyimportanttoportraythecomplete picture and developing themaximumtrustonourmodelswithmin-imumuncertainty.

A detailed study on timing of devel-opments of structures and maturationofsourcerockisstronglyrecommendedforhydrocarbonhuntinIndusOffshoreBasin,Pakistan.

Depth (m) Statigraphy

1112 Sea Floor – Holocene / Pliocene Marine Shales & Silts

1112 – 1454 Light Grey Shales & Siltstone with rare Sands

1454 – 1703 Near Shore Deltaic Sequence Fining Upwards

1703 – 1828 Marine Sequence regressing upwards to Fine Sand between 1703 and 1730 m

1828 – 2262 Deltaic Complex, mainly Bottom and Foreset Beds with major topset bars Sands between 1903 and 1863 m

2262 – 2710 Deepwater marine Shales with minor Siltstone, minor thin distal marine Sands between 2514 and 2616 m

2710 – 2908 Upward Fining deltaic Sequence with topset Sands between 2850 and 2908 m, grading upwards to thin forest

2908 – 2980 Deep water marine Shales and Siltstones.

2980 – 3118 Prodrading Deltaic Sequence below 3020 m. Regrading deeper water section between 2880 and 3020 m.

3118 – 3392 Deeper water marine Shales and Siltstones, Thin, Coarse grained, gas sands at 3313 – 3314 m.

3392 – 3398 Oxidized reddish brown iron rich Shales

3398 – 3700 Distal marine Shales and Siltstones with thin foreset beds at 3310, 3395, and 3525 m.

ʈ Table3:ThedetailedstratigraphyofPakCan–01well,atdifferentdepthintervals

Page 24: YoungPetro - 2nd Issue - Summer 2011

24 Papers Intensificationofhigh-viscosityoilproduction 25

summer / 2011

urethecoefficientofdynamicviscosityandothercharacteristics.

Experiments show this dependenceofoildensityontemperature:

ρo = −0,0029t2 − 0,3374t + 933,27kg/m3

1

Increasing of temperature fromstandard (20°C) to formation (92°C) in-volvedecreasingofdensityfrom925.36to877.68kg/m3(by5.15%).

The experiments results confirm theprobability of the oil dynamic viscositycoefficientreducingduetothethermalinfluence and adding of hydrocarbonsolvent.

As a result of temperature increasefrom25to80°Ctheoildynamicviscos-itycoefficientdecreasedfrom874.07to30.04mPa∙s(bymore29.1times).

At the temperature of 25°C with in-crease in volumetric condensate con-tent in the system from 0 to 60% vol.theoildynamicviscositycoefficientde-creased from 874.04 to 11.56 mPa∙s (by75.61times).

But the joint influence of both thetemperature and the hydrocarbon sol-vent showed that with the increase intemperature from 25 to 80°C and add-ing60%ofcondensateintothesystem,theoildynamicviscositycoefficientde-creased from 874.07 to 4.96 mPa∙s (by176.22times).

The experiments results were alsoused for calculating the optimum oilheating temperature above which theoildynamicviscositycoefficientalmostdoes not change. With the increase inthevolumetrichydrocarboncondensatecontentfrom0to60%vol.theoptimumoilheatingtemperaturedecreasesfrom49.83to44.46°C.

According to the results of tests op-timum oil heating temperature of oilequals 49.83°C and reducing with in-

Thesampleofoilfromthewellmouthnumber 96 of Yablunivske oil-and-gas-condensatefieldwasusedforthetests(experiments).Depthofthewell–3600m, initial formation pressure – 37 MPa,formation temperature – 92°C. Compo-sitionofoilisasthefollowing:

» silicagelresin25.5%byweight » asphaltene12.2% » sulfur1.39% » boundwater9.9% » smallamountofparaffin0.53%

 ɨ Dependence of oil viscosity on availability of hydrocarbon condensate and surfactant species in the mixture

The experiments were conducted withthe help of the device 're o t e s t–2' andareometer in the temperature range of25to80°C(aftereach5°C)andvolumet-riccondensatecontentinthesystem0;10;20;30;40;50;60%withthedensityof735kg/m3.Thisdeviceallowsustomeas-

Intensification of high-viscosity oil production on the example of Yablunivske oil-and-gas-condensate field

Nazarii Hedzyk Ivano–Frankivsk National Technical

University of Oil and Gas, Ukraine e–mail: [email protected]

Scientific supervisor: Oleksandr Kondrat

 ɨ IntroductionUkraine has favorable conditions forthe formingofhigh-viscosityoildepos-its.SuchoilfieldsintheWestern,South-ernandEasternregionsoccurinawidestratigraphic range and are controlledby different types of traps. The use ofthemodernmethodsofexplorationanddevelopment of such oil fields play animportantroleinbuildingenergyfuture.

Asyouknowtheprocessofheavyoilproductionhassomecomplicationsbe-

causeofphysicalandmechanicalprop-ertiesofoil:

» significantlossofpressureinthecolumnsofpipes

» faststoppingofnaturalflowing » heavyhydrocarbonspollutionof

bottomholezone

Methods for intensification of the high-viscosity oil production can be dividedinto:

» Thermalmethods » Usingofthehydrocarbonsolvents » Usingofthesurfactantspecies

Nowadays  we  are  faced  with the  problem  of  complete  and profitable  extraction  of  hy-drocarbons  from  already  ex-plored oil and gas deposits.

The  influence  of  availabili-ty of the hydrocarbon solvent and/or the surfactant species helps  us  to  reduce  the  oil  dy-namic  viscosity  coefficient and thereby increase the well production. 

Experiments  with  high-viscosity oil with the example of  Yablunivske  oil-gas-con-

densate  field  for  measuring  oil  dy-namic  viscosity  coefficient  confirm all anticipation. There were also sug-gested technologies of using reagents for  development  high-viscosity  oil fields. 

Heating  the  oil  and  adding  the hydrocarbon  solvent  and  other  sur-factant species into it allows us to re-duce  the  coefficient  of  viscosity  sig-nificantly  and  thereby  increase  the well  productions,  prevent  complica-tions during the process of its opera-tion  and  intensify  the  process  of  de-veloping heavy oil deposits.

ʇA

bStr

actʈ

Page 25: YoungPetro - 2nd Issue - Summer 2011

24 Papers Intensificationofhigh-viscosityoilproduction 25

summer / 2011

urethecoefficientofdynamicviscosityandothercharacteristics.

Experiments show this dependenceofoildensityontemperature:

ρo = −0,0029t2 − 0,3374t + 933,27kg/m3

1

Increasing of temperature fromstandard (20°C) to formation (92°C) in-volvedecreasingofdensityfrom925.36to877.68kg/m3(by5.15%).

The experiments results confirm theprobability of the oil dynamic viscositycoefficientreducingduetothethermalinfluence and adding of hydrocarbonsolvent.

As a result of temperature increasefrom25to80°Ctheoildynamicviscos-itycoefficientdecreasedfrom874.07to30.04mPa∙s(bymore29.1times).

At the temperature of 25°C with in-crease in volumetric condensate con-tent in the system from 0 to 60% vol.theoildynamicviscositycoefficientde-creased from 874.04 to 11.56 mPa∙s (by75.61times).

But the joint influence of both thetemperature and the hydrocarbon sol-vent showed that with the increase intemperature from 25 to 80°C and add-ing60%ofcondensateintothesystem,theoildynamicviscositycoefficientde-creased from 874.07 to 4.96 mPa∙s (by176.22times).

The experiments results were alsoused for calculating the optimum oilheating temperature above which theoildynamicviscositycoefficientalmostdoes not change. With the increase inthevolumetrichydrocarboncondensatecontentfrom0to60%vol.theoptimumoilheatingtemperaturedecreasesfrom49.83to44.46°C.

According to the results of tests op-timum oil heating temperature of oilequals 49.83°C and reducing with in-

Thesampleofoilfromthewellmouthnumber 96 of Yablunivske oil-and-gas-condensatefieldwasusedforthetests(experiments).Depthofthewell–3600m, initial formation pressure – 37 MPa,formation temperature – 92°C. Compo-sitionofoilisasthefollowing:

» silicagelresin25.5%byweight » asphaltene12.2% » sulfur1.39% » boundwater9.9% » smallamountofparaffin0.53%

 ɨ Dependence of oil viscosity on availability of hydrocarbon condensate and surfactant species in the mixture

The experiments were conducted withthe help of the device 're o t e s t–2' andareometer in the temperature range of25to80°C(aftereach5°C)andvolumet-riccondensatecontentinthesystem0;10;20;30;40;50;60%withthedensityof735kg/m3.Thisdeviceallowsustomeas-

Intensification of high-viscosity oil production on the example of Yablunivske oil-and-gas-condensate field

Nazarii Hedzyk Ivano–Frankivsk National Technical

University of Oil and Gas, Ukraine e–mail: [email protected]

Scientific supervisor: Oleksandr Kondrat

 ɨ IntroductionUkraine has favorable conditions forthe formingofhigh-viscosityoildepos-its.SuchoilfieldsintheWestern,South-ernandEasternregionsoccurinawidestratigraphic range and are controlledby different types of traps. The use ofthemodernmethodsofexplorationanddevelopment of such oil fields play animportantroleinbuildingenergyfuture.

Asyouknowtheprocessofheavyoilproductionhassomecomplicationsbe-

causeofphysicalandmechanicalprop-ertiesofoil:

» significantlossofpressureinthecolumnsofpipes

» faststoppingofnaturalflowing » heavyhydrocarbonspollutionof

bottomholezone

Methods for intensification of the high-viscosity oil production can be dividedinto:

» Thermalmethods » Usingofthehydrocarbonsolvents » Usingofthesurfactantspecies

Nowadays  we  are  faced  with the  problem  of  complete  and profitable  extraction  of  hy-drocarbons  from  already  ex-plored oil and gas deposits.

The  influence  of  availabili-ty of the hydrocarbon solvent and/or the surfactant species helps  us  to  reduce  the  oil  dy-namic  viscosity  coefficient and thereby increase the well production. 

Experiments  with  high-viscosity oil with the example of  Yablunivske  oil-gas-con-

densate  field  for  measuring  oil  dy-namic  viscosity  coefficient  confirm all anticipation. There were also sug-gested technologies of using reagents for  development  high-viscosity  oil fields. 

Heating  the  oil  and  adding  the hydrocarbon  solvent  and  other  sur-factant species into it allows us to re-duce  the  coefficient  of  viscosity  sig-nificantly  and  thereby  increase  the well  productions,  prevent  complica-tions during the process of its opera-tion  and  intensify  the  process  of  de-veloping heavy oil deposits.

ʇA

bStr

actʈ

Page 26: YoungPetro - 2nd Issue - Summer 2011

26 NazariiHedzyk Intensificationofhigh-viscosityoilproduction 27

summer / 2011

ʈ Fig.3:Graphofthedependenceoftheabsoluteoildynamicviscositycoefficientdecreaseonthetemperatureforthevolumetriccontentinthesystemofthe20%hydrocarbonscondensate

ʈ Fig.4:Graphofthedependenceoftheabsoluteoildynamicviscositycoefficientdecreaseonthevolumetriccondensatecontentinthesystemfortemperature45°C

ʈ Fig.1:1–0;2–10;3–15;4–20;5–25;6–30;7–40;8–50;9–60%byweightGraphsofthedependenceoftheoildynamicviscositycoefficientonthetemperaturefordifferentvolumetriccondensatecontentsinthesystem.

ʈ Fig.2:1–25;2–30;3–35;4–40;5–45;6–50;7–55;8–60;9–65;10–70;11–75;12–80°CGraphsofthedependenceoftheoildynamicviscositycoefficientonthedifferentvolumetriccondensatecontentsinthesystemfortemperature

Page 27: YoungPetro - 2nd Issue - Summer 2011

26 NazariiHedzyk Intensificationofhigh-viscosityoilproduction 27

summer / 2011

ʈ Fig.3:Graphofthedependenceoftheabsoluteoildynamicviscositycoefficientdecreaseonthetemperatureforthevolumetriccontentinthesystemofthe20%hydrocarbonscondensate

ʈ Fig.4:Graphofthedependenceoftheabsoluteoildynamicviscositycoefficientdecreaseonthevolumetriccondensatecontentinthesystemfortemperature45°C

ʈ Fig.1:1–0;2–10;3–15;4–20;5–25;6–30;7–40;8–50;9–60%byweightGraphsofthedependenceoftheoildynamicviscositycoefficientonthetemperaturefordifferentvolumetriccondensatecontentsinthesystem.

ʈ Fig.2:1–25;2–30;3–35;4–40;5–45;6–50;7–55;8–60;9–65;10–70;11–75;12–80°CGraphsofthedependenceoftheoildynamicviscositycoefficientonthedifferentvolumetriccondensatecontentsinthesystemfortemperature

Page 28: YoungPetro - 2nd Issue - Summer 2011

28 NazariiHedzyk Intensificationofhigh-viscosityoilproduction 29

summer / 2011

 ɨ Dependence of oil viscosity from availability of hydrocarbon condensate and surfactant species in the mixture

Theother method for intensificationofheavyoilproduction is the jointuseofthe hydrocarbon solvents and the sur-factantspecies.

As reagents the surfactants r i p ox–6and n i o g e n p –1000 were used. Themassconcentrationofsurfactantsinthemixturewas0.125;0.25;0.5;1;2;4;6;8%.

The results of these studies showedpositiveeffectofaddingthesurfactant

species for reduction in the number oftimes the dynamic viscosity coefficientof oil and to reduce the optimum tem-perature of oil heating. Therefore, forintensification of high viscosity oil pro-duction from wells of Yablunovske oiland gas field recommend append con-densate into the well (r i p ox–6 or n i o -g e n p–1000)withamassconcentrationof1%.

ʈ Fig.6:1–0;2–0.125;3–0.25;4–0.5;5–0.75;6–1;7–2;8–4;9–6;10–8%wt

ʈ Graphsofthede-pendenceoftheoildynamicviscosityco-efficientwiththevol-umetriccondensatecontentof20%vol.onthetemperatureunderdifferentmassconcentrationsofthen i o g e n p–1000

№ % 0.125 0.25 0.5 1 2 6

1 RIPOX–6 27.62 26.19 24.71 20.43 16.31 10.47

2 NIOGEN P–1000 16.11 15.4 14.95 14.16 13.69 12.6

creasing condensate content in thesystem: 10% vol. −49.43°C, at 15% vol.

−9.07°C,at20%vol.−48.35°C,at25%vol.−47.49°C, at 30% vol. − 46.91°C, at 40%vol. −45.67°C, at 50% vol. −44.63°C, at60%vol.−44.62°C.

The optimum oil heating tempera-ture for optimal hydrocarbon conden-sate content in the system 20% of vol.

(25% of vol. if considering oil) equals48.35°C.Theoildynamicviscositycoeffi-cientequals35.37mPa∙s(24.46timeslessthanthevalueoftheoildynamicviscos-itycoefficientatthetemperatureof25°Cand condensate absence) for these val-ues of the volumetric condensate con-tent in thesystemandoilheating tem-perature.

ʈ Fig.5:1–0;2–0.125;3–0.25;4–0.5;5–0.75;6–1;7–2;8–4;9–6;10–8%wght

ʈ Graphsofthedependenceoftheoildynamicviscositycoefficientwiththevolumetricconden-satecontentof20%vol.onthetempera-tureunderdifferentmassconcentrationsofther i p ox–6

ʈ Table1–Valuesofdynamicviscositycoefficient(mPa∙s)withcondensatecontentof20%atthetemperatureof25°Cfromdifferentconcentrationofsurfactantspecies

Page 29: YoungPetro - 2nd Issue - Summer 2011

28 NazariiHedzyk Intensificationofhigh-viscosityoilproduction 29

summer / 2011

 ɨ Dependence of oil viscosity from availability of hydrocarbon condensate and surfactant species in the mixture

Theother method for intensificationofheavyoilproduction is the jointuseofthe hydrocarbon solvents and the sur-factantspecies.

As reagents the surfactants r i p ox–6and n i o g e n p –1000 were used. Themassconcentrationofsurfactantsinthemixturewas0.125;0.25;0.5;1;2;4;6;8%.

The results of these studies showedpositiveeffectofaddingthesurfactant

species for reduction in the number oftimes the dynamic viscosity coefficientof oil and to reduce the optimum tem-perature of oil heating. Therefore, forintensification of high viscosity oil pro-duction from wells of Yablunovske oiland gas field recommend append con-densate into the well (r i p ox–6 or n i o -g e n p–1000)withamassconcentrationof1%.

ʈ Fig.6:1–0;2–0.125;3–0.25;4–0.5;5–0.75;6–1;7–2;8–4;9–6;10–8%wt

ʈ Graphsofthede-pendenceoftheoildynamicviscosityco-efficientwiththevol-umetriccondensatecontentof20%vol.onthetemperatureunderdifferentmassconcentrationsofthen i o g e n p–1000

№ % 0.125 0.25 0.5 1 2 6

1 RIPOX–6 27.62 26.19 24.71 20.43 16.31 10.47

2 NIOGEN P–1000 16.11 15.4 14.95 14.16 13.69 12.6

creasing condensate content in thesystem: 10% vol. −49.43°C, at 15% vol.

−9.07°C,at20%vol.−48.35°C,at25%vol.−47.49°C, at 30% vol. − 46.91°C, at 40%vol. −45.67°C, at 50% vol. −44.63°C, at60%vol.−44.62°C.

The optimum oil heating tempera-ture for optimal hydrocarbon conden-sate content in the system 20% of vol.

(25% of vol. if considering oil) equals48.35°C.Theoildynamicviscositycoeffi-cientequals35.37mPa∙s(24.46timeslessthanthevalueoftheoildynamicviscos-itycoefficientatthetemperatureof25°Cand condensate absence) for these val-ues of the volumetric condensate con-tent in thesystemandoilheating tem-perature.

ʈ Fig.5:1–0;2–0.125;3–0.25;4–0.5;5–0.75;6–1;7–2;8–4;9–6;10–8%wght

ʈ Graphsofthedependenceoftheoildynamicviscositycoefficientwiththevolumetricconden-satecontentof20%vol.onthetempera-tureunderdifferentmassconcentrationsofther i p ox–6

ʈ Table1–Valuesofdynamicviscositycoefficient(mPa∙s)withcondensatecontentof20%atthetemperatureof25°Cfromdifferentconcentrationofsurfactantspecies

Page 30: YoungPetro - 2nd Issue - Summer 2011

30 NazariiHedzyk Intensificationofhigh-viscosityoilproduction 31

summer / 2011

 ɨ Technology of high viscosity oil producing

Usingtheresultsof laboratoryandana-lytical research developed the technol-ogyofexploitationofoilwellsofYablu-novske deposit. In the initial period athighformationpressure,recommendedto serve on the well annulus hydrocar-bon solvent (condensate) with or with-out surfactant, which reduces the vis-cosityofoil.

As the reduction of pressure in thedevelopment field and after stop offlowing recommend exploit well usinggas-lift.

Toreducetheoperatingpressureandprocess costs, increase oil productiongas should enter along the column ofpipes.

For gas-lift operation well 96 gasfrom high-pressure gas wells wereused:fromwell102bygas-liftmanifoldandfromwell87–bypipeline.Forpre-ventinghydrationinthegas-liftstreammethanolwasadded.

Using results of experiments recom-mendwell96explorationusinggas-lift,with admission hydrocarbon conden-sate after each two days by 2–3 hoursgas with pressure 10–12 MPa and flow20h.m3/dwithaddinghydrocarbonsol-vent in concentration 20% vol. and sur-factantspecies(r i p ox–6)–1–2%weight.

Inthefinalperiodoffieldinlowreser-voir pressure, recommended pumpingexploitation of wells using rod pumpsspeciallydesigned

 ɨ ConclusionsTheoilheatingandaddingofthehydro-carboncondensateandothersurfactantspecies into it allows us to reduce thecoefficientofviscositysignificantlyandthereby increase the well productions,prevent complications during the proc-essof theiroperationand intensifytheprocess of developing heavy oil depos-its. And results of well 96 exploitationsuggest the possibility of practical useoftechnologygas-liftexploitationofoilwells.Literaturereferences

ʈ Fig.7:1–25;2–30;3–35;4–40;5–45;6–50;7–55;8–60;9–65;10–70;11–75;12–80°СGraphsofthedependenceoftheoildynamicviscositycoefficientwiththevolumetriccondensatecontentof20%vol.onthemassconcentrationsofther i p ox–6underdif-ferenttemperature

ʈ Fig.8:1–25;2–30;3–35;4–40;5–45;6–50;7–55;8–60;9–65;10–70;11–75;12–80°CGraphsofthedependenceoftheoildynamicviscositycoefficientwiththevolumetriccondensatecontentof20%vol.onthemassconcentrationsofthen i o g e n p–1000un-derdifferenttemperature

Page 31: YoungPetro - 2nd Issue - Summer 2011

30 NazariiHedzyk Intensificationofhigh-viscosityoilproduction 31

summer / 2011

 ɨ Technology of high viscosity oil producing

Usingtheresultsof laboratoryandana-lytical research developed the technol-ogyofexploitationofoilwellsofYablu-novske deposit. In the initial period athighformationpressure,recommendedto serve on the well annulus hydrocar-bon solvent (condensate) with or with-out surfactant, which reduces the vis-cosityofoil.

As the reduction of pressure in thedevelopment field and after stop offlowing recommend exploit well usinggas-lift.

Toreducetheoperatingpressureandprocess costs, increase oil productiongas should enter along the column ofpipes.

For gas-lift operation well 96 gasfrom high-pressure gas wells wereused:fromwell102bygas-liftmanifoldandfromwell87–bypipeline.Forpre-ventinghydrationinthegas-liftstreammethanolwasadded.

Using results of experiments recom-mendwell96explorationusinggas-lift,with admission hydrocarbon conden-sate after each two days by 2–3 hoursgas with pressure 10–12 MPa and flow20h.m3/dwithaddinghydrocarbonsol-vent in concentration 20% vol. and sur-factantspecies(r i p ox–6)–1–2%weight.

Inthefinalperiodoffieldinlowreser-voir pressure, recommended pumpingexploitation of wells using rod pumpsspeciallydesigned

 ɨ ConclusionsTheoilheatingandaddingofthehydro-carboncondensateandothersurfactantspecies into it allows us to reduce thecoefficientofviscositysignificantlyandthereby increase the well productions,prevent complications during the proc-essof theiroperationand intensifytheprocess of developing heavy oil depos-its. And results of well 96 exploitationsuggest the possibility of practical useoftechnologygas-liftexploitationofoilwells.Literaturereferences

ʈ Fig.7:1–25;2–30;3–35;4–40;5–45;6–50;7–55;8–60;9–65;10–70;11–75;12–80°СGraphsofthedependenceoftheoildynamicviscositycoefficientwiththevolumetriccondensatecontentof20%vol.onthemassconcentrationsofther i p ox–6underdif-ferenttemperature

ʈ Fig.8:1–25;2–30;3–35;4–40;5–45;6–50;7–55;8–60;9–65;10–70;11–75;12–80°CGraphsofthedependenceoftheoildynamicviscositycoefficientwiththevolumetriccondensatecontentof20%vol.onthemassconcentrationsofthen i o g e n p–1000un-derdifferenttemperature

Page 32: YoungPetro - 2nd Issue - Summer 2011

32 Papers Papers 33

summer / 2011

 ɨ References1. BoikoV.S.Developmentandexploitationofoilfields.-K.:ISDO,1995.-496p..2. HandbookofPetroleumEngineering/Bycommon.yet.Drs.Engineering.Science

V.S.Boyko,R.M.Kondrat,R.S.Yaremiychuka.-K.:Lviv,1996.-620p.3. Petroleumequipment:Handbook/Ed.EIBuhalenko. -2nded. -Moscow:Nedra,

1990.-559p..4. Handbook of oil production / under. Ed. Sh.K. Gimatudinova. -Moscow: Nedra,

1974.-704Sec.5. Theoryandpracticeofgas lift /YuriZaitsev,R.A.Maksutov,O.V.Chubanovetc. -

Moscow:Nedra,1987.-256p.6. ChekalyukE.B.Thermodynamicsoftheoilreservoir.-Moscow:Nedra,1965.–240p.7. www.halliburton.com

viSit uS atyoungpetro.org

wojtek
Typewritten Text
Page 33: YoungPetro - 2nd Issue - Summer 2011

32 Papers Papers 33

summer / 2011

 ɨ References1. BoikoV.S.Developmentandexploitationofoilfields.-K.:ISDO,1995.-496p..2. HandbookofPetroleumEngineering/Bycommon.yet.Drs.Engineering.Science

V.S.Boyko,R.M.Kondrat,R.S.Yaremiychuka.-K.:Lviv,1996.-620p.3. Petroleumequipment:Handbook/Ed.EIBuhalenko. -2nded. -Moscow:Nedra,

1990.-559p..4. Handbook of oil production / under. Ed. Sh.K. Gimatudinova. -Moscow: Nedra,

1974.-704Sec.5. Theoryandpracticeofgas lift /YuriZaitsev,R.A.Maksutov,O.V.Chubanovetc. -

Moscow:Nedra,1987.-256p.6. ChekalyukE.B.Thermodynamicsoftheoilreservoir.-Moscow:Nedra,1965.–240p.7. www.halliburton.com

viSit uS atyoungpetro.org

wojtek
Typewritten Text
Page 34: YoungPetro - 2nd Issue - Summer 2011

34 Papers SUPERSONICnaturalgasdehydrationprocess 35

summer / 2011

thecase.Acidgasesexhibitaminimuminthewatercontent.Sourgases(theseare natural gases with an appreciableamountofacidgas)behave inan inter-mediateway.

The humidity can be determined in-directly using correlations and chartsor measured directly by dewpointme-ters.OneofthefirstmethodsusedistheMcKetta–Wehechart (1958):Themainchartisforarelativelylowgravitygas.Asmallerchartisprovidedtoobtainacor-rectionfactorforhighergravitygasanda second correction factor is provided

fortheeffectofbrineversuspurewater.If used correctly, errors of less than 5%canbeobtained.

 ɨ ungS facilityThe Bilciuresti reservoir together withthe surface equipment is the biggestUNGS facility in Romania. It is locatedabout40kmNNVawayfromthecapitalBucharest and it has produced naturalgasfrom1962to1983whenitwastrans-formed for storage. Here we presentsome general information about: 2000mdepth,73mDpermeability,25.5%po-rosity,52°Ctemperature,10.76km2area,10–18 m thickness, 57 extraction wellsand1.25blncmworkinggasvolume.ThegeologicalformationinwhichthegasisinjectedistheMeotian.Itismainlyusedto cover the high gas demand duringwintertime.

Thereareanumberof6dehydrationunits based on the absorption processinTEGdrying12mlncmofnaturalgasadayat85–125baroperatingpressure.

Asafirststep,wetookanaturalgascomposition from a chromatographanalysis and calculated its humidity us-ingaspecificmethod:

Naturalgascomposition: » 0.9646 CH4 » 0.0177 C2H6 » 0.0059 C3H8 » 0.0009 i-C4H10 » 0.0012 n-C4H10 » 0.0003 i-C5H12 » 0.0003 n-C5H12 » 0.0003 n-C6H14 » 0.0001 n-C7H16 » 0.0068 N2 » 0.0001 O2 » 0.0004 H2O » 0.0014 CO2

SUPERSONIC natural gas dehydration process compared to tEg performance

 ɨ IntroductionThe water content of natural gas is animportantparameterinthedesignoffa-cilities for theproduction, transmissionand processing of gas. In most coun-triesthisparameterisregulatedintermsofdewpoint temperature (forexample:

−15°CinRomania),notthemassamountof water contained by the natural gas(for example: 0.112 g / ncm in the USA)although no one can control the tem-peraturealongtransportationpipelines.

In order to prevent all grievanceswhich could be caused by wet naturalgas,advanceddehydrationsystemsarerequired.AmongthemostusedareTEGbased installations functioning on theabsorption principle. But a direct cool-ingsolutiontriesnowadaystoenterthemarketandseemstooffersomeadvan-tages that may push her to the top, atleastinsomefavorablescenarios.

 ɨ Natural gas humidityThe natural gas humidity gives us theamountofwatercontainedinthenatu-ralgas.Forasweetgas(likeCH4)itisadecreasingfunctionofthepressureandan increasing function of temperature.Foracidgases(H2SandCO2),thisisnot

Tudor Florin Precupassoc. prof. Florinel Dinu PhD

with natural gas and strips the water out of the gas. Then it is heated to a high  temperature  and  put  through  a condensing  system,  which  removes the  water  as  waste  and  reclaims  the TEG for continuous reuse within the system.

A  new  solution  in  terms  of  natu-ral  gas  processing  technology  is  the supersonic  natural  gas  dehydration system which promises to offer a sim-ple,  safe,  environmentally  friendly, quick start up gas conditioning proc-ess which enables chemical free, high availability and unmanned operation. The temperature drop  is achieved by transforming  pressure  to  kinetic  en-ergy (i.e. supersonic velocity). 

This  article  aims  to  compare  the performance (both technical and eco-nomic)  of  a  classic  TEG  dehydration system  and  a  possible  supersonic  so-lution  for  an  extraction  process  at an existing underground natural gas storage (UNGS) facility (working gas volume: 1.25 blncm).

Today’s  unconventional  gas challenges  require  unconven-tional  solutions  both  in  the upstream  and  downstream sector.  Natural  gases  either from  natural  production  or storage  reservoirs  contain water,  which  condenses  and forms  solid  gas  hydrates  to block  pipeline  flow  and  es-pecially affects metering and control  systems.  Natural  gas in  transit  to  market,  should be  dehydrated  to  a  control-led water content also to min-imize  corrosion  problems. There  are  three  methods  of dehydration:  refrigeration, adsorption and absorption.

Many  of  the  classic  dehy-dration  systems  use  trieth-ylene  glycol  (TEG),  which  is a  hygroscopic  liquid  (has  the ability  to  absorb  water)  for dewpointing.  In  this  process TEG  is  placed  into  contact 

ʇA

bStr

actʈ

Page 35: YoungPetro - 2nd Issue - Summer 2011

34 Papers SUPERSONICnaturalgasdehydrationprocess 35

summer / 2011

thecase.Acidgasesexhibitaminimuminthewatercontent.Sourgases(theseare natural gases with an appreciableamountofacidgas)behave inan inter-mediateway.

The humidity can be determined in-directly using correlations and chartsor measured directly by dewpointme-ters.OneofthefirstmethodsusedistheMcKetta–Wehechart (1958):Themainchartisforarelativelylowgravitygas.Asmallerchartisprovidedtoobtainacor-rectionfactorforhighergravitygasanda second correction factor is provided

fortheeffectofbrineversuspurewater.If used correctly, errors of less than 5%canbeobtained.

 ɨ ungS facilityThe Bilciuresti reservoir together withthe surface equipment is the biggestUNGS facility in Romania. It is locatedabout40kmNNVawayfromthecapitalBucharest and it has produced naturalgasfrom1962to1983whenitwastrans-formed for storage. Here we presentsome general information about: 2000mdepth,73mDpermeability,25.5%po-rosity,52°Ctemperature,10.76km2area,10–18 m thickness, 57 extraction wellsand1.25blncmworkinggasvolume.ThegeologicalformationinwhichthegasisinjectedistheMeotian.Itismainlyusedto cover the high gas demand duringwintertime.

Thereareanumberof6dehydrationunits based on the absorption processinTEGdrying12mlncmofnaturalgasadayat85–125baroperatingpressure.

Asafirststep,wetookanaturalgascomposition from a chromatographanalysis and calculated its humidity us-ingaspecificmethod:

Naturalgascomposition: » 0.9646 CH4 » 0.0177 C2H6 » 0.0059 C3H8 » 0.0009 i-C4H10 » 0.0012 n-C4H10 » 0.0003 i-C5H12 » 0.0003 n-C5H12 » 0.0003 n-C6H14 » 0.0001 n-C7H16 » 0.0068 N2 » 0.0001 O2 » 0.0004 H2O » 0.0014 CO2

SUPERSONIC natural gas dehydration process compared to tEg performance

 ɨ IntroductionThe water content of natural gas is animportantparameterinthedesignoffa-cilities for theproduction, transmissionand processing of gas. In most coun-triesthisparameterisregulatedintermsofdewpoint temperature (forexample:

−15°CinRomania),notthemassamountof water contained by the natural gas(for example: 0.112 g / ncm in the USA)although no one can control the tem-peraturealongtransportationpipelines.

In order to prevent all grievanceswhich could be caused by wet naturalgas,advanceddehydrationsystemsarerequired.AmongthemostusedareTEGbased installations functioning on theabsorption principle. But a direct cool-ingsolutiontriesnowadaystoenterthemarketandseemstooffersomeadvan-tages that may push her to the top, atleastinsomefavorablescenarios.

 ɨ Natural gas humidityThe natural gas humidity gives us theamountofwatercontainedinthenatu-ralgas.Forasweetgas(likeCH4)itisadecreasingfunctionofthepressureandan increasing function of temperature.Foracidgases(H2SandCO2),thisisnot

Tudor Florin Precupassoc. prof. Florinel Dinu PhD

with natural gas and strips the water out of the gas. Then it is heated to a high  temperature  and  put  through  a condensing  system,  which  removes the  water  as  waste  and  reclaims  the TEG for continuous reuse within the system.

A  new  solution  in  terms  of  natu-ral  gas  processing  technology  is  the supersonic  natural  gas  dehydration system which promises to offer a sim-ple,  safe,  environmentally  friendly, quick start up gas conditioning proc-ess which enables chemical free, high availability and unmanned operation. The temperature drop  is achieved by transforming  pressure  to  kinetic  en-ergy (i.e. supersonic velocity). 

This  article  aims  to  compare  the performance (both technical and eco-nomic)  of  a  classic  TEG  dehydration system  and  a  possible  supersonic  so-lution  for  an  extraction  process  at an existing underground natural gas storage (UNGS) facility (working gas volume: 1.25 blncm).

Today’s  unconventional  gas challenges  require  unconven-tional  solutions  both  in  the upstream  and  downstream sector.  Natural  gases  either from  natural  production  or storage  reservoirs  contain water,  which  condenses  and forms  solid  gas  hydrates  to block  pipeline  flow  and  es-pecially affects metering and control  systems.  Natural  gas in  transit  to  market,  should be  dehydrated  to  a  control-led water content also to min-imize  corrosion  problems. There  are  three  methods  of dehydration:  refrigeration, adsorption and absorption.

Many  of  the  classic  dehy-dration  systems  use  trieth-ylene  glycol  (TEG),  which  is a  hygroscopic  liquid  (has  the ability  to  absorb  water)  for dewpointing.  In  this  process TEG  is  placed  into  contact 

ʇA

bStr

actʈ

Page 36: YoungPetro - 2nd Issue - Summer 2011

36 TudorFlorinPrecup SUPERSONICnaturalgasdehydrationprocess 37

summer / 2011

Theresultwas0.558gH2O/ncmnat-uralgas.

Furtheron,weconductedastudyre-gardingthetechnicalperformanceandeconomic efficiency of such a dehydra-tionunitandthenewestsolutiononthemarketbasedonnaturalgasexpansionatsupersonicvelocities.

 ɨ tEg dehydrationDehydrationrefers to theprocessof re-moval of particulate water from a pro-ducedgasstream.

Triethylene glycol (C6H14O4) is amemberofahomologousseriesofdihy-droxyalcohols.Itisacolorless,odorlessandstableliquidwithlowviscosityandahighboilingpoint(288°C).Itisahygro-scopic liquid, 100% soluble in water at20°C and rich glycol (containing water)has a 92.8–99.7% regeneration rate inmoderninstallations.

The process itself is very simple: theso called lean substance is broughtinto contact with the natural gas pro-ducedfromthereservoir,duringwhichitstripesthewateroutofthegasbyab-sorbingit.

Thenitisheatedabove100°C(boilingpointforwater)butnotmorethan288°Csothatthewatercanevaporateandtheglycolrecycled.Suchaunitiscapableof60°Cdewpointdepression.

 ɨ The tEg dehydration system

ThemaincomponentsofsuchaTEGde-hydrationunitare:aninletscrubber,thecontact tower or absorber, a surge orstoragetank,thereboilerwiththewatervaporvent,theglycolpump,andathreephasegas,glycolandcondensatesepa-rator.

ʈ Fig.2:TEGdehydrationsystem,source:KIMRAYUniversityPresentations

FIG. 20-4Water Content of Hydrocarbon Gas

20-5

ʈ Fig.1:McKetta–Wehechart,source:gspaEngineeringDataBook

Page 37: YoungPetro - 2nd Issue - Summer 2011

36 TudorFlorinPrecup SUPERSONICnaturalgasdehydrationprocess 37

summer / 2011

Theresultwas0.558gH2O/ncmnat-uralgas.

Furtheron,weconductedastudyre-gardingthetechnicalperformanceandeconomic efficiency of such a dehydra-tionunitandthenewestsolutiononthemarketbasedonnaturalgasexpansionatsupersonicvelocities.

 ɨ tEg dehydrationDehydrationrefers to theprocessof re-moval of particulate water from a pro-ducedgasstream.

Triethylene glycol (C6H14O4) is amemberofahomologousseriesofdihy-droxyalcohols.Itisacolorless,odorlessandstableliquidwithlowviscosityandahighboilingpoint(288°C).Itisahygro-scopic liquid, 100% soluble in water at20°C and rich glycol (containing water)has a 92.8–99.7% regeneration rate inmoderninstallations.

The process itself is very simple: theso called lean substance is broughtinto contact with the natural gas pro-ducedfromthereservoir,duringwhichitstripesthewateroutofthegasbyab-sorbingit.

Thenitisheatedabove100°C(boilingpointforwater)butnotmorethan288°Csothatthewatercanevaporateandtheglycolrecycled.Suchaunitiscapableof60°Cdewpointdepression.

 ɨ The tEg dehydration system

ThemaincomponentsofsuchaTEGde-hydrationunitare:aninletscrubber,thecontact tower or absorber, a surge orstoragetank,thereboilerwiththewatervaporvent,theglycolpump,andathreephasegas,glycolandcondensatesepa-rator.

ʈ Fig.2:TEGdehydrationsystem,source:KIMRAYUniversityPresentations

FIG. 20-4Water Content of Hydrocarbon Gas

20-5

ʈ Fig.1:McKetta–Wehechart,source:gspaEngineeringDataBook

Page 38: YoungPetro - 2nd Issue - Summer 2011

38 TudorFlorinPrecup SUPERSONICnaturalgasdehydrationprocess 39

summer / 2011

 ɨ The SuPErSonic dehydration device

The supersonic dehydration device isbasicallyconstructedof4parts:avortexgeneratororswirlingdevice,asuperson-ic(deLawal)nozzle,acycloneseparatorandapressurerecoverydevice(diffuser).

Nowadays on the market there aretwo types of supersonic dehydrationdevices:aDutchconceptandaRussianone.ThemaindifferenceistheswirlingdevicewhichattheDutchsystemisde-signedtobealonginternalbody.

The swirling device (swirl valve orvortexgenerator)withit’sspecialdesigngivesthenaturalgasarotationalmotionwhichaimstobestrongerandstronger.Themainpurpose is tosustainthecoa-lescenceoftheliquid(waterinthegas)andconcentrateitatthewalls.

The supersonic nozzle allows the ro-tational flow to become supersonic.To

achieve that, the Mach number mustbeexactly1atthethroat.Thisistherea-son why this device allows very littleturndown in theflowingparameters.Asmaller Mach number means the noz-zleisnotworkingcorrectlyandthusthenatural gas speed will not exceed thesoundbarrier.Asolutionforthatistoin-stallmoreofthosetubesdesignedwith

ʈ Fig.4:Russiansupersonicdehydrationdevice,source:OilandGasJournal

ʈ Fig.5:Swirlingdevice,source:TWISTERBVwebsite

ʈ Fig.6:Supersonicnozzle,source:Wikipedia

The inlet scrubber is the first stageof liquid removal for the dehydrationprocess. It eliminates free liquids fromthegasstreamandrequiresaliquidlev-elcontrollerandahighpressuredumpvalve.

Theabsorberisthevesselwheregly-colandnaturalgasmakecontactincon-current flow (gas flows up and glycolflows down). The inlet glycol tempera-tureshouldbe12°Chigherthantheinletgastemperatureinordertoavoidfoam-ingorglycolloss.

The storage tank holds the lean gly-colbeforeitgoestotheglycolpump.Itcanbeseparatevesselorintegraltothereboiler.

The reboiler is the vessel where therichglycolisheatedandthewaterevap-oratesthroughthevaporvent.Thepres-sureshouldbehereataminimum.

The glycol pump circulates lean gly-coltotheabsorberandrichglycoltothereboiler.Ithasaspecialdesignandisse-curedonalevelsurface.

The three phase gas/glycol/conden-sate separator is used to reclaim someofthegasthatwouldordinarilygetlostthroughthestill columnandseparatesany liquids that might get carried overwith the glycol such as condensate orcompressoroils.

FixedparametersofaDehy: » Minimumandmaximumgasca-

pacityatagivenpressureandtemperature

» Gascomposition » Minimumandmaximumheatin-

putintotheregenerator » Firetubesurfacearea » Vaporcapacityofthestillcolumn » Liquidandgascapacityoftheinlet

scrubber

VariableparametersofaDehy: » Gasflowintotheabsorber » Watercontentofthedehydrated

gas » Glycolcirculationrate » Glycolconcentration

ʈ Fig.3:Dutchsupersonicdehydrationdevice,source:TWISTERBVwebsite

Page 39: YoungPetro - 2nd Issue - Summer 2011

38 TudorFlorinPrecup SUPERSONICnaturalgasdehydrationprocess 39

summer / 2011

 ɨ The SuPErSonic dehydration device

The supersonic dehydration device isbasicallyconstructedof4parts:avortexgeneratororswirlingdevice,asuperson-ic(deLawal)nozzle,acycloneseparatorandapressurerecoverydevice(diffuser).

Nowadays on the market there aretwo types of supersonic dehydrationdevices:aDutchconceptandaRussianone.ThemaindifferenceistheswirlingdevicewhichattheDutchsystemisde-signedtobealonginternalbody.

The swirling device (swirl valve orvortexgenerator)withit’sspecialdesigngivesthenaturalgasarotationalmotionwhichaimstobestrongerandstronger.Themainpurpose is tosustainthecoa-lescenceoftheliquid(waterinthegas)andconcentrateitatthewalls.

The supersonic nozzle allows the ro-tational flow to become supersonic.To

achieve that, the Mach number mustbeexactly1atthethroat.Thisistherea-son why this device allows very littleturndown in theflowingparameters.Asmaller Mach number means the noz-zleisnotworkingcorrectlyandthusthenatural gas speed will not exceed thesoundbarrier.Asolutionforthatistoin-stallmoreofthosetubesdesignedwith

ʈ Fig.4:Russiansupersonicdehydrationdevice,source:OilandGasJournal

ʈ Fig.5:Swirlingdevice,source:TWISTERBVwebsite

ʈ Fig.6:Supersonicnozzle,source:Wikipedia

The inlet scrubber is the first stageof liquid removal for the dehydrationprocess. It eliminates free liquids fromthegasstreamandrequiresaliquidlev-elcontrollerandahighpressuredumpvalve.

Theabsorberisthevesselwheregly-colandnaturalgasmakecontactincon-current flow (gas flows up and glycolflows down). The inlet glycol tempera-tureshouldbe12°Chigherthantheinletgastemperatureinordertoavoidfoam-ingorglycolloss.

The storage tank holds the lean gly-colbeforeitgoestotheglycolpump.Itcanbeseparatevesselorintegraltothereboiler.

The reboiler is the vessel where therichglycolisheatedandthewaterevap-oratesthroughthevaporvent.Thepres-sureshouldbehereataminimum.

The glycol pump circulates lean gly-coltotheabsorberandrichglycoltothereboiler.Ithasaspecialdesignandisse-curedonalevelsurface.

The three phase gas/glycol/conden-sate separator is used to reclaim someofthegasthatwouldordinarilygetlostthroughthestill columnandseparatesany liquids that might get carried overwith the glycol such as condensate orcompressoroils.

FixedparametersofaDehy: » Minimumandmaximumgasca-

pacityatagivenpressureandtemperature

» Gascomposition » Minimumandmaximumheatin-

putintotheregenerator » Firetubesurfacearea » Vaporcapacityofthestillcolumn » Liquidandgascapacityoftheinlet

scrubber

VariableparametersofaDehy: » Gasflowintotheabsorber » Watercontentofthedehydrated

gas » Glycolcirculationrate » Glycolconcentration

ʈ Fig.3:Dutchsupersonicdehydrationdevice,source:TWISTERBVwebsite

Page 40: YoungPetro - 2nd Issue - Summer 2011

40 TudorFlorinPrecup SUPERSONICnaturalgasdehydrationprocess 41

summer / 2011

differentnozzlegeometriesor,ofcourse,tohaveaconstantnaturalgaspressure.

The third part is where the nuclea-tion and droplet growth occur. Nuclea-tionreferstoaextremelylocalizedbud-dingofadistinctthermodynamicphase.Therearebasically twotypesofnuclea-tion which are described by differenttheories:heterogeneousnucleation(oc-cursatnucleationsitesorsurfacescon-taining the liquid or vapor) and homo-geneousnucleation(spontaneouslyandrandomly but requires superheating orsupercooling). The liquid formed hereisalsoremovedfromthegasusingacy-clonicco-axialseparator.(seeFig.s3and4).

The last part of the device recoversthe pressure lost, mainly in the super-sonicnozzle.Thisisachievedbythehelpof shock waves, technology borrowedfromtherocketindustry.

ʈ Fig.8:Supersonicdehydrationsystem,source:GasHandbook2004

ʈ Fig.10:SUPERSONICvs.TEG

ʈ Fig.7:Supersonicthermo-dynamicsonanalyzednaturalgas

ʈ Fig.8:Supersonicdehy-drationsystem,source:GasHandbook2004Fig.9:Liquiddegassingves-sel,source:TWISTERBVwebsite

1 – air/seawatercoolers2 – upstreamdehydration

(forNGLextraction)3 – gas/gascross-

exchange4 – inletseparator5 – twistertubes6 – liquiddegassing

vessel7 – reinjectionand/or

disposal

Page 41: YoungPetro - 2nd Issue - Summer 2011

40 TudorFlorinPrecup SUPERSONICnaturalgasdehydrationprocess 41

summer / 2011

differentnozzlegeometriesor,ofcourse,tohaveaconstantnaturalgaspressure.

The third part is where the nuclea-tion and droplet growth occur. Nuclea-tionreferstoaextremelylocalizedbud-dingofadistinctthermodynamicphase.Therearebasically twotypesofnuclea-tion which are described by differenttheories:heterogeneousnucleation(oc-cursatnucleationsitesorsurfacescon-taining the liquid or vapor) and homo-geneousnucleation(spontaneouslyandrandomly but requires superheating orsupercooling). The liquid formed hereisalsoremovedfromthegasusingacy-clonicco-axialseparator.(seeFig.s3and4).

The last part of the device recoversthe pressure lost, mainly in the super-sonicnozzle.Thisisachievedbythehelpof shock waves, technology borrowedfromtherocketindustry.

ʈ Fig.8:Supersonicdehydrationsystem,source:GasHandbook2004

ʈ Fig.10:SUPERSONICvs.TEG

ʈ Fig.7:Supersonicthermo-dynamicsonanalyzednaturalgas

ʈ Fig.8:Supersonicdehy-drationsystem,source:GasHandbook2004Fig.9:Liquiddegassingves-sel,source:TWISTERBVwebsite

1 – air/seawatercoolers2 – upstreamdehydration

(forNGLextraction)3 – gas/gascross-

exchange4 – inletseparator5 – twistertubes6 – liquiddegassing

vessel7 – reinjectionand/or

disposal

Page 42: YoungPetro - 2nd Issue - Summer 2011

42 TudorFlorinPrecup SUPERSONICnaturalgasdehydrationprocess 43

summer / 2011

 ɨ References1. GSPAEngineeringDataBook.2. KIMRAYUniversityPresentations–'KIMRAYUniversityDehydration',September26,

2006.3. Schinkelshoek,P.,Epsom,H.,–'SupersonicGasConditioning–LowPressureDrop

TwisterforNGLRecovery',OTC–17884-MS-P,TwisterB.V.4. Karimi,A.,Abdi,M.A.–'SelectiveRemovalofWaterFromSupercriticalNaturalGas',

SPE100442,MemorialU.ofNewfoundland.5. Alfyorov,V.,Bagirov,L.,Dimitriev,L.,Feygin,V.,Salavat,I.,Lacey,J.R.–'Supersonic

nozzleefficientlyseparatesnaturalgascomponents',OilandGasJournal,May23,2005

6. TwisterSupersonicGasSolutions–'HowdoesTwisterwork?'7. TwisterSupersonicGasSolutions–'TwisterSWIRLValve'8. Betting,M.,Epsom,H.–'Supersonicseparatorgainsmarketacceptance',TwisterBV,9. WorldOil,April2007

10. GasProcessesHandbook2004,GulfPublishingCompany.11. http://en.wikipedia.org/wiki/Nucleation.12. http://en.wikipedia.org/wiki/De_Laval_nozzle.13. Streletzky,K.A.,Zvinevich,Y.,Wyslouzil,B.E.,Strey,R.–'Controllingnucleationand

growth of nanodroplets in supersonic nozzles', Journal of Chemical Physics, vol-ume116,number10

14. McCabe,A.–'DesignofaSupersonicNozzle',TheMechanicsofFluidsDepartment,UniversityofManchester,1967

15. Nemec,T.,Marsik,F.–'ClassicalNucleationTheory–PowerCycleRemarks',14thIn-ternationalConferenceontheProprietiesofWaterandSteaminKyoto

16. Luijten,C.C.M.–'NucleationandDropletGrowthatHighPressure',TechnicalUni-versityEindhoven,1998

17. vanWissen,R.,Brouwers,J.J.H.,Golombok,M.–'In-lineCentrifugalSeparationofDispersedPhases',WileyInterScience,January4,2007

18. Peeters,P.–'NucleationandCondensationinGas-VaporMixturesofAlkanesandWater',TechnicalUniversityEindhoven,2002

19. SomnathSinha,B.E.– 'ExperimentalandModelingStudyofCondensationinSu-personicNozzles',GraduatePrograminChemicalEngineering,OhioStateUniver-sity,2008

20. Kalikmanov,V.,Betting,M.,Bruining,J.–'Newdevelopmentsinnucleationtheoryandtheirimpactonnaturalgasseparation',SPE–110736-PP,2007

21. Gandhidasan,P.–'ParametricAnalysisofNaturalGasDehydrationbyaTriethyleneGlycolSolution',MechanicalEngineeringDepartment,KingFahdUniversityofPe-troleumandMinerals,Dharan,SaudiArabia,2003

22. BinMohamad,A.S.–'NaturalGasDehydrationUsingTriethyleneGlycol(TEG)',Fac-ulty of Chemical & Natural Resources Engineering, University Malaysia Pahang,April2009

23. Forster,R.–'PracticalHintsforCostEffectiveGlycolDehydration',RuhrgasAG,Es-sen,Germany

 ɨ DiscussionsForthenaturalgastakenfromourUNGSfacility,wemadeaphasediagramusingspecialized computer software and weplotted above the supersonic thermodynamics to see the dewpoint depres-sionandpressure lost. It turnsoutthatthedevice isnotcapableofsuchgreatdepression like the absorption basedsystem, but it is enough for Romanianregulationsmentionedatthebeginningof this article. As it is visible in the pic-ture, the working parameters are cross-ing the hydrate boundary of the gas.Buthydratesdon’tformduetotheverysmall time that the gas remains in thetube(2milliseconds).

Anotherfactis,thatbyincreasingthenumber of supersonic devices, the sys-tem could dry more natural gas. Nowthe system is actually more complex,as it is shown in Fig. 7.The supersonictubes are connected to a so called liq-uiddegassingvesselwhichcollectstheliquid phase. Some glycol must be in-jectedhereinordertopreventhydrateformingsothedeviceisactuallynotsochemicalfreeasannounced,butthevol-umesinjectedaremuchsmallerthattheonesusedbytheabsorptionsystem.

The main economic parameters ana-lyzedarepresentedinthechartsbelow.Thereweredonebyusingcostnumbersgiven inthe literatureforbothsystemsandthegasflowratesoftheUNGSfacil-ityconsidered(Fig.10).

ThetechnologycanbealsousedforNGLrecoveryorhydrocarbondewpoint-ingandalthoughitisusedbothonshoreand offshore (on the Sarawak B11 plat-form in Malaysia), it has not been de-veloped and tested subsea and is thusnotprovenforsubseaapplications.Itisalsostatedthat if itweretobeapplied

ʈ Fig.11:Twistertube,source:ANSYSwebsite

remote fromthe wellhead thebenefitswouldbelost.

At last, we conclude that reducedfootprint, utility requirement and man-ning requirements together with lifecy-clecostreductionsofabout40%speaksforthistechnologywhich,forourUNGSfacility, would suite best, despite thehighpressuredrop(20%).

 ɨ Abbreviations:TEG–triethyleneglycolUNGS – underground natural gasstorageblncm–billioncubicmetersmlncm–millioncubicmetersncm–normalcubicmeter

Page 43: YoungPetro - 2nd Issue - Summer 2011

42 TudorFlorinPrecup SUPERSONICnaturalgasdehydrationprocess 43

summer / 2011

 ɨ References1. GSPAEngineeringDataBook.2. KIMRAYUniversityPresentations–'KIMRAYUniversityDehydration',September26,

2006.3. Schinkelshoek,P.,Epsom,H.,–'SupersonicGasConditioning–LowPressureDrop

TwisterforNGLRecovery',OTC–17884-MS-P,TwisterB.V.4. Karimi,A.,Abdi,M.A.–'SelectiveRemovalofWaterFromSupercriticalNaturalGas',

SPE100442,MemorialU.ofNewfoundland.5. Alfyorov,V.,Bagirov,L.,Dimitriev,L.,Feygin,V.,Salavat,I.,Lacey,J.R.–'Supersonic

nozzleefficientlyseparatesnaturalgascomponents',OilandGasJournal,May23,2005

6. TwisterSupersonicGasSolutions–'HowdoesTwisterwork?'7. TwisterSupersonicGasSolutions–'TwisterSWIRLValve'8. Betting,M.,Epsom,H.–'Supersonicseparatorgainsmarketacceptance',TwisterBV,9. WorldOil,April2007

10. GasProcessesHandbook2004,GulfPublishingCompany.11. http://en.wikipedia.org/wiki/Nucleation.12. http://en.wikipedia.org/wiki/De_Laval_nozzle.13. Streletzky,K.A.,Zvinevich,Y.,Wyslouzil,B.E.,Strey,R.–'Controllingnucleationand

growth of nanodroplets in supersonic nozzles', Journal of Chemical Physics, vol-ume116,number10

14. McCabe,A.–'DesignofaSupersonicNozzle',TheMechanicsofFluidsDepartment,UniversityofManchester,1967

15. Nemec,T.,Marsik,F.–'ClassicalNucleationTheory–PowerCycleRemarks',14thIn-ternationalConferenceontheProprietiesofWaterandSteaminKyoto

16. Luijten,C.C.M.–'NucleationandDropletGrowthatHighPressure',TechnicalUni-versityEindhoven,1998

17. vanWissen,R.,Brouwers,J.J.H.,Golombok,M.–'In-lineCentrifugalSeparationofDispersedPhases',WileyInterScience,January4,2007

18. Peeters,P.–'NucleationandCondensationinGas-VaporMixturesofAlkanesandWater',TechnicalUniversityEindhoven,2002

19. SomnathSinha,B.E.– 'ExperimentalandModelingStudyofCondensationinSu-personicNozzles',GraduatePrograminChemicalEngineering,OhioStateUniver-sity,2008

20. Kalikmanov,V.,Betting,M.,Bruining,J.–'Newdevelopmentsinnucleationtheoryandtheirimpactonnaturalgasseparation',SPE–110736-PP,2007

21. Gandhidasan,P.–'ParametricAnalysisofNaturalGasDehydrationbyaTriethyleneGlycolSolution',MechanicalEngineeringDepartment,KingFahdUniversityofPe-troleumandMinerals,Dharan,SaudiArabia,2003

22. BinMohamad,A.S.–'NaturalGasDehydrationUsingTriethyleneGlycol(TEG)',Fac-ulty of Chemical & Natural Resources Engineering, University Malaysia Pahang,April2009

23. Forster,R.–'PracticalHintsforCostEffectiveGlycolDehydration',RuhrgasAG,Es-sen,Germany

 ɨ DiscussionsForthenaturalgastakenfromourUNGSfacility,wemadeaphasediagramusingspecialized computer software and weplotted above the supersonic thermodynamics to see the dewpoint depres-sionandpressure lost. It turnsoutthatthedevice isnotcapableofsuchgreatdepression like the absorption basedsystem, but it is enough for Romanianregulationsmentionedatthebeginningof this article. As it is visible in the pic-ture, the working parameters are cross-ing the hydrate boundary of the gas.Buthydratesdon’tformduetotheverysmall time that the gas remains in thetube(2milliseconds).

Anotherfactis,thatbyincreasingthenumber of supersonic devices, the sys-tem could dry more natural gas. Nowthe system is actually more complex,as it is shown in Fig. 7.The supersonictubes are connected to a so called liq-uiddegassingvesselwhichcollectstheliquid phase. Some glycol must be in-jectedhereinordertopreventhydrateformingsothedeviceisactuallynotsochemicalfreeasannounced,butthevol-umesinjectedaremuchsmallerthattheonesusedbytheabsorptionsystem.

The main economic parameters ana-lyzedarepresentedinthechartsbelow.Thereweredonebyusingcostnumbersgiven inthe literatureforbothsystemsandthegasflowratesoftheUNGSfacil-ityconsidered(Fig.10).

ThetechnologycanbealsousedforNGLrecoveryorhydrocarbondewpoint-ingandalthoughitisusedbothonshoreand offshore (on the Sarawak B11 plat-form in Malaysia), it has not been de-veloped and tested subsea and is thusnotprovenforsubseaapplications.Itisalsostatedthat if itweretobeapplied

ʈ Fig.11:Twistertube,source:ANSYSwebsite

remote fromthe wellhead thebenefitswouldbelost.

At last, we conclude that reducedfootprint, utility requirement and man-ning requirements together with lifecy-clecostreductionsofabout40%speaksforthistechnologywhich,forourUNGSfacility, would suite best, despite thehighpressuredrop(20%).

 ɨ Abbreviations:TEG–triethyleneglycolUNGS – underground natural gasstorageblncm–billioncubicmetersmlncm–millioncubicmetersncm–normalcubicmeter

Page 44: YoungPetro - 2nd Issue - Summer 2011

44 TudorFlorinPrecup Papers 45

summer / 2011

24. Christensen,D.L.– 'Thermodynamicsimulationof thewater/glycolmixture',Aal-borgUniversityEsbjerg,February2009

25. Sulaiman, M.H. – 'Gas Dehydration using Glycol Solution in Absorption and Ad-sorptionUnit',UniversityMalaysiaPahang

26. Mohamadbeigy,Kh.–'StudyingoftheEffectivenessParametersonGasDehydra-tionPlant',ResearchInstituteofPetroleumIndustryTeheran,Iran,May15,2008

27. Erik, L., Tyvand, E., – 'Process Simulation of Glycol Regeneration', GPA Europe’smeetinginBergen,13th–14thMay2002

28. Brathen,A.,–'DevelopmentofProcessesforNaturalGasDrying',NorwegianUni-versityofScienceandTechnology,DepartmentofEnergyandProcessEngineering,June2008

29. Dengyu,J.,Eri,Q.,Wang,C.,Liu,H.,Yuan,Y.–'AFastandEfficiencyNumericalSimu-lationMethodforSupersonicGasProcessing',SPE131239,2010

30. Malyshkina,M.M.–'TheStructureofGasdynamicFlowinaSupersonicSeparatorofNaturalGas',TelpofizikaVysokikhTemperatur,vol.46,no.1,2008

31. Ijzermans,R.H.A–'Dynamicsofdispersedheavyparticlesinswirlingflow',ThesisUniversityofTwente,Enschede,2007

32. Janssen,J.W.F.,Betting,M.–'CombinedTestwiththeImprovedPerformanceTwist-erSupersonicSeparatorandtheGasunieCycloneSeparator',23rdWorldGasCon-ference,Amsterdam5–9June2006

pproach for full field  scale smart well modeling  

and optimization

tions for it can be briefly comprised inthefollowingpoints:

» Reductionofoperationalexpendi-tures(OpEx)relatedtowellinter-ventions;

» Increasingoilproduction; » Improvingoilrecovery; » Mitigationofanimpactthatres-

ervoiruncertaintycouldhaveonprojectperformance.

Thefollowing issuesmustbeconsid-eredwhilescreeningpossiblesmartwelldeployment:

» Howtoestimatethevalueaddedbysmartcompletion?

» Howtocontrolsmartwellcomple-tionseffectively?

In recent years a lot of publicationswas dedicated to these tasks (for in-stance, [1–5]). Most of researchers usedreservoir simulation as the main tool.Within their frameworks reservoir mod-

 ɨ IntroductionSmart (or intelligent) well is a wellequipped with downhole sensors anddownholevalvestocontrolfluidinflowsfromtheseparatedperforatedintervalsto the well, in real-time mode, withoutwell interventions, to optimize produc-tion(Fig.1).

Till present about 800 wells havebeenequippedwithsmartcompletionsaround the world and the key motiva-

ʈ Fig.1:Basicelementsofsmartwell

1 – Casing2 – Tubing;3 – Inflowcontrolvalves(i c v)4 – Isolationpacker5 – P/Tgauges

Alexey A. KhrulenkoGubkin Russian State University of Oil and Gas

Page 45: YoungPetro - 2nd Issue - Summer 2011

44 TudorFlorinPrecup Papers 45

summer / 2011

24. Christensen,D.L.– 'Thermodynamicsimulationof thewater/glycolmixture',Aal-borgUniversityEsbjerg,February2009

25. Sulaiman, M.H. – 'Gas Dehydration using Glycol Solution in Absorption and Ad-sorptionUnit',UniversityMalaysiaPahang

26. Mohamadbeigy,Kh.–'StudyingoftheEffectivenessParametersonGasDehydra-tionPlant',ResearchInstituteofPetroleumIndustryTeheran,Iran,May15,2008

27. Erik, L., Tyvand, E., – 'Process Simulation of Glycol Regeneration', GPA Europe’smeetinginBergen,13th–14thMay2002

28. Brathen,A.,–'DevelopmentofProcessesforNaturalGasDrying',NorwegianUni-versityofScienceandTechnology,DepartmentofEnergyandProcessEngineering,June2008

29. Dengyu,J.,Eri,Q.,Wang,C.,Liu,H.,Yuan,Y.–'AFastandEfficiencyNumericalSimu-lationMethodforSupersonicGasProcessing',SPE131239,2010

30. Malyshkina,M.M.–'TheStructureofGasdynamicFlowinaSupersonicSeparatorofNaturalGas',TelpofizikaVysokikhTemperatur,vol.46,no.1,2008

31. Ijzermans,R.H.A–'Dynamicsofdispersedheavyparticlesinswirlingflow',ThesisUniversityofTwente,Enschede,2007

32. Janssen,J.W.F.,Betting,M.–'CombinedTestwiththeImprovedPerformanceTwist-erSupersonicSeparatorandtheGasunieCycloneSeparator',23rdWorldGasCon-ference,Amsterdam5–9June2006

pproach for full field  scale smart well modeling  

and optimization

tions for it can be briefly comprised inthefollowingpoints:

» Reductionofoperationalexpendi-tures(OpEx)relatedtowellinter-ventions;

» Increasingoilproduction; » Improvingoilrecovery; » Mitigationofanimpactthatres-

ervoiruncertaintycouldhaveonprojectperformance.

Thefollowing issuesmustbeconsid-eredwhilescreeningpossiblesmartwelldeployment:

» Howtoestimatethevalueaddedbysmartcompletion?

» Howtocontrolsmartwellcomple-tionseffectively?

In recent years a lot of publicationswas dedicated to these tasks (for in-stance, [1–5]). Most of researchers usedreservoir simulation as the main tool.Within their frameworks reservoir mod-

 ɨ IntroductionSmart (or intelligent) well is a wellequipped with downhole sensors anddownholevalvestocontrolfluidinflowsfromtheseparatedperforatedintervalsto the well, in real-time mode, withoutwell interventions, to optimize produc-tion(Fig.1).

Till present about 800 wells havebeenequippedwithsmartcompletionsaround the world and the key motiva-

ʈ Fig.1:Basicelementsofsmartwell

1 – Casing2 – Tubing;3 – Inflowcontrolvalves(i c v)4 – Isolationpacker5 – P/Tgauges

Alexey A. KhrulenkoGubkin Russian State University of Oil and Gas

Page 46: YoungPetro - 2nd Issue - Summer 2011

46 TudorFlorinPrecup pproachforfullfieldscalesmartwellmodelingandoptimization 47

summer / 2011

properties description. A lot of simula-tionmodelscanbebuiltonthesamesetofinitialdata.Fiverealizationsofporos-ity and permeability were chosen andconsideredtobesufficienttoprovidearepresentative vision of possible reser-voirdevelopmentscenarios(Fig.3).

The simulated field consists of twoformations; each of them encloses themassivereservoir, fault-boundedintheeast(Fig.1).Theupperformationis40mthick,thelowerformationthicknessis45m.Oil-watercontactsoftheupperandlower objective intervals occur at thedepths3300and3525mwiththeinitialreservoir pressure 330 and 352.5 bar, re-spectively.

The model consists of 20×58×81blockswithatypicalsize100×100х1.25mandwithtotalnumber54019ofactivecells.

Non-volatile black oil model wasused with oil viscosity at the reservoirconditionsequalto0.55candwatervis-cosityof0.3cP.

elsofrealorgenericfieldswereusedasatoolforproductionoptimization.Thisworkadopts theseapproachesand,ontheotherhand, suggests themeansoftheirimplementationinscaleoffullfieldmodel.

 ɨ The problem descriptionLet’s consider a small offshore oil fieldthatisplannedtodevelopbythreewellsas subsea tie-back (Fig. 2). The wholeproducedwellstreamshallbetransport-edasamultiphaseflowtoanearbypro-ducingplatformona largerfield, sinceit requireswells tooperateathightub-ing head pressures. The smart comple-tionsarebeingconsideredasameanstomaintain production and to avoid wellinterventions caused by increasing wa-tercut,. It’snecessarytoassesswhetherdeployment of smart completions is acost-effectivesolution.

Although three exploration wellswere drilled but still there is a strongdegree of uncertainty in the reservoir

ʈ Fig.2:Theillustrationoftheproblem

Oil resources (s t o o i p , or StockTankOilOriginallyInPlace)forvariousmodelrealizationswerekeptapproximatelyatthefollowinglevels:

» fortheupperreservoir:10.65mlnm3

» forthelowerreservoir:26.1mlnm3

It isplannedtodevelop thefieldus-ingthreewells;eachofthemdrainstheupper reservoir through deviated inter-val, and the lower reservoir – throughthe horizontal interval. Three perfora-tion intervals were specified for eachwell: one in the upper formation andtwo (approximately equal in length) –inthelowerformation.Incaseofsmartcompletion these intervals are control-ledindependentlybyi c vseachofthemcanbesetin10possiblepositions('shut',8intermediate,'fullyopen').

The following system of parameters,controllingthewellsoperation,wasset(intheorderofsignificance):

» Liquidrateof1650m³/dforallwells;

» Minimumtubingheadpressure(THP):40bar;

» Minimumbottomholepressurewaslimitedbytheoilbubble-pointpressure(245bars).

 ɨ Framework for modeling and optimization

Two main types of optimization strate-giesarecurrently inuse,namely,proac-tiveandreactive.Reactiveoptimizationstrategy is aimed at improving instantproduction performance (increasingwelloilrates,reductioninwaterandgasproduction,etc.)bymeansofacertain

#1. #2. #3. #4. #5.

Realizations of permeability

Realizations of porosity

ʈ Fig.3:Modelrealizations

Page 47: YoungPetro - 2nd Issue - Summer 2011

46 TudorFlorinPrecup pproachforfullfieldscalesmartwellmodelingandoptimization 47

summer / 2011

properties description. A lot of simula-tionmodelscanbebuiltonthesamesetofinitialdata.Fiverealizationsofporos-ity and permeability were chosen andconsideredtobesufficienttoprovidearepresentative vision of possible reser-voirdevelopmentscenarios(Fig.3).

The simulated field consists of twoformations; each of them encloses themassivereservoir, fault-boundedintheeast(Fig.1).Theupperformationis40mthick,thelowerformationthicknessis45m.Oil-watercontactsoftheupperandlower objective intervals occur at thedepths3300and3525mwiththeinitialreservoir pressure 330 and 352.5 bar, re-spectively.

The model consists of 20×58×81blockswithatypicalsize100×100х1.25mandwithtotalnumber54019ofactivecells.

Non-volatile black oil model wasused with oil viscosity at the reservoirconditionsequalto0.55candwatervis-cosityof0.3cP.

elsofrealorgenericfieldswereusedasatoolforproductionoptimization.Thisworkadopts theseapproachesand,ontheotherhand, suggests themeansoftheirimplementationinscaleoffullfieldmodel.

 ɨ The problem descriptionLet’s consider a small offshore oil fieldthatisplannedtodevelopbythreewellsas subsea tie-back (Fig. 2). The wholeproducedwellstreamshallbetransport-edasamultiphaseflowtoanearbypro-ducingplatformona largerfield, sinceit requireswells tooperateathightub-ing head pressures. The smart comple-tionsarebeingconsideredasameanstomaintain production and to avoid wellinterventions caused by increasing wa-tercut,. It’snecessarytoassesswhetherdeployment of smart completions is acost-effectivesolution.

Although three exploration wellswere drilled but still there is a strongdegree of uncertainty in the reservoir

ʈ Fig.2:Theillustrationoftheproblem

Oil resources (s t o o i p , or StockTankOilOriginallyInPlace)forvariousmodelrealizationswerekeptapproximatelyatthefollowinglevels:

» fortheupperreservoir:10.65mlnm3

» forthelowerreservoir:26.1mlnm3

It isplannedtodevelop thefieldus-ingthreewells;eachofthemdrainstheupper reservoir through deviated inter-val, and the lower reservoir – throughthe horizontal interval. Three perfora-tion intervals were specified for eachwell: one in the upper formation andtwo (approximately equal in length) –inthelowerformation.Incaseofsmartcompletion these intervals are control-ledindependentlybyi c vseachofthemcanbesetin10possiblepositions('shut',8intermediate,'fullyopen').

The following system of parameters,controllingthewellsoperation,wasset(intheorderofsignificance):

» Liquidrateof1650m³/dforallwells;

» Minimumtubingheadpressure(THP):40bar;

» Minimumbottomholepressurewaslimitedbytheoilbubble-pointpressure(245bars).

 ɨ Framework for modeling and optimization

Two main types of optimization strate-giesarecurrently inuse,namely,proac-tiveandreactive.Reactiveoptimizationstrategy is aimed at improving instantproduction performance (increasingwelloilrates,reductioninwaterandgasproduction,etc.)bymeansofacertain

#1. #2. #3. #4. #5.

Realizations of permeability

Realizations of porosity

ʈ Fig.3:Modelrealizations

Page 48: YoungPetro - 2nd Issue - Summer 2011

48 TudorFlorinPrecup pproachforfullfieldscalesmartwellmodelingandoptimization 49

summer / 2011

optimizationroutine(orarule)thatuti-lizesdataofwellzonetests,carriedoutearlier, to determine the best combina-tionof i c v settings.Ontheotherhand,proactive strategies use reservoir mod-els, enabling to predict reservoir per-formances over a certain time horizon(or optimization step). Thus, the reser-voir model serves as 'crystal ball' thathelps to determine the i c v settingsdelivering the maximum of the targetfunction (it can be, say, oil production)inthefuture.

Reactivestrategies(refer,forinstance,[1, 5]) can easier be implemented in areal oil field than proactive ones. How-ever, proactive strategies can be muchmorerewarding.Bothstrategiescanbeusedinreservoirmodels.

In this work the proactive optimiza-tion strategy was implemented in thefollowingmanner:

» Timeofpredictionwasdividedintoanumberofoptimizationsteps;

» Thecommercialreservoirsimulator(Eclipse)wascoupledwithMatlab-basedprogramadd-inenablingtocontrolthei c v settings;

» Overeveryoptimizationstepthecontrollerperformsmultiplerunsofamodeltodetermineacombi-

nationofi c v settingsthatdeliversthemaximumofatargetfunc-tionbymeansofDirectSearch[4]method.Cumulativeoilwelloilproductionwasusedasthetargetfunction.

Previously this type of model-basedoptimization strategies (proactive strat-egies) was presented in several publi-cations (refer, for instance, [2–4]) andshowedgoodresults.

We do believe that it is difficult andinefficient to implement the aforemen-tionedapproachesinfullfieldreservoirmodels directly, because it would endupin large,multidimensionalandtime-consuming optimization problem. Theessenceoftheproposedapproachistodividetheinitialmodelintoafewsmallones.Thus, these small models, havingsmallerdimensionsthaninitialone,canbeeasilyoptimizedseparatelybymeansoftheabove-describedapproach.

It’snecessarytonotethatthisoptimi-zationstrategycanbeeasilyconverted(?)toreactiveonebyperformingtheop-timizationoverashorttimehorizonthatmay not cover entire period betweentwodecisionpoints.Inpointoffact,sec-tormodelsturntowellmodels.

Three sector models were definednear each well. The eliminated part of

ʈ Fig.4:Theinitialreservoirmodelanddefinedsectorsaroundwells

thereservoirwastakenintoaccountbymeansoftheFluxOption[6].

Thisoptionenablessimulatortopro-duce the flux-file containing boundaryconditions for sector models.Then theflux-file can be used for reduced runs.When sector models are optimized, itisnecessarytocheckifthesolutionob-

tainedforthemhasagoodmatchwiththesolutionfor fullfieldone(Fig.5). Inthis work the discrepancies of well oilrates and oil production were usedas the fitting criteria. In case of a poormatching(discrepancyofmorethan1%foreitherparameter)theoutercycleofoptimizationisrepeated.

Full field model

Full field run over the current time step

Flux-file

Sector model generation

Well settings optimization

Optimized valve settings

Do results of sector models have a good match with

full field one?

Yes

No

Full field model run

New flux-file, optimized

valve settings (as initial

guess)

Next step

Sector model #1

Sector model #2

Sector model #3

optim

izat

ion

step

ʈ Fig.5:Schemeoftheoptimizationroutine

Page 49: YoungPetro - 2nd Issue - Summer 2011

48 TudorFlorinPrecup pproachforfullfieldscalesmartwellmodelingandoptimization 49

summer / 2011

optimizationroutine(orarule)thatuti-lizesdataofwellzonetests,carriedoutearlier, to determine the best combina-tionof i c v settings.Ontheotherhand,proactive strategies use reservoir mod-els, enabling to predict reservoir per-formances over a certain time horizon(or optimization step). Thus, the reser-voir model serves as 'crystal ball' thathelps to determine the i c v settingsdelivering the maximum of the targetfunction (it can be, say, oil production)inthefuture.

Reactivestrategies(refer,forinstance,[1, 5]) can easier be implemented in areal oil field than proactive ones. How-ever, proactive strategies can be muchmorerewarding.Bothstrategiescanbeusedinreservoirmodels.

In this work the proactive optimiza-tion strategy was implemented in thefollowingmanner:

» Timeofpredictionwasdividedintoanumberofoptimizationsteps;

» Thecommercialreservoirsimulator(Eclipse)wascoupledwithMatlab-basedprogramadd-inenablingtocontrolthei c v settings;

» Overeveryoptimizationstepthecontrollerperformsmultiplerunsofamodeltodetermineacombi-

nationofi c v settingsthatdeliversthemaximumofatargetfunc-tionbymeansofDirectSearch[4]method.Cumulativeoilwelloilproductionwasusedasthetargetfunction.

Previously this type of model-basedoptimization strategies (proactive strat-egies) was presented in several publi-cations (refer, for instance, [2–4]) andshowedgoodresults.

We do believe that it is difficult andinefficient to implement the aforemen-tionedapproachesinfullfieldreservoirmodels directly, because it would endupin large,multidimensionalandtime-consuming optimization problem. Theessenceoftheproposedapproachistodividetheinitialmodelintoafewsmallones.Thus, these small models, havingsmallerdimensionsthaninitialone,canbeeasilyoptimizedseparatelybymeansoftheabove-describedapproach.

It’snecessarytonotethatthisoptimi-zationstrategycanbeeasilyconverted(?)toreactiveonebyperformingtheop-timizationoverashorttimehorizonthatmay not cover entire period betweentwodecisionpoints.Inpointoffact,sec-tormodelsturntowellmodels.

Three sector models were definednear each well. The eliminated part of

ʈ Fig.4:Theinitialreservoirmodelanddefinedsectorsaroundwells

thereservoirwastakenintoaccountbymeansoftheFluxOption[6].

Thisoptionenablessimulatortopro-duce the flux-file containing boundaryconditions for sector models.Then theflux-file can be used for reduced runs.When sector models are optimized, itisnecessarytocheckifthesolutionob-

tainedforthemhasagoodmatchwiththesolutionfor fullfieldone(Fig.5). Inthis work the discrepancies of well oilrates and oil production were usedas the fitting criteria. In case of a poormatching(discrepancyofmorethan1%foreitherparameter)theoutercycleofoptimizationisrepeated.

Full field model

Full field run over the current time step

Flux-file

Sector model generation

Well settings optimization

Optimized valve settings

Do results of sector models have a good match with

full field one?

Yes

No

Full field model run

New flux-file, optimized

valve settings (as initial

guess)

Next step

Sector model #1

Sector model #2

Sector model #3

optim

izat

ion

step

ʈ Fig.5:Schemeoftheoptimizationroutine

Page 50: YoungPetro - 2nd Issue - Summer 2011

50 TudorFlorinPrecup pproachforfullfieldscalesmartwellmodelingandoptimization 51

summer / 2011

ʈ Fig.6:FOPTsandincrementaloilproductionduetosmartcompletion

ʈ Fig.7:Thechangingofi c vsduringsimulation

 ɨ Results of numerical experimentsThefivemodelscorrespondingtothedifferentporosity-permeabilityrealizationswerebuiltandoptimized.Inaddition,fivebasecaseswithoutsmartcompletionwereevalu-atedforcomparisonpurposes.

FieldOilProductionTotals(fo p t )andincrementalproducedoil(thedifferencebe-tweenfo p t foroptimizedandbasecases)areshownontheplotbelow(Fig.6).Fig.7givesanexampleofvalvepositionschangingthroughthetimeofsimulation.

ʈ Fig.8:Economicalanalysisofsmartwelldeployment

Page 51: YoungPetro - 2nd Issue - Summer 2011

50 TudorFlorinPrecup pproachforfullfieldscalesmartwellmodelingandoptimization 51

summer / 2011

ʈ Fig.6:FOPTsandincrementaloilproductionduetosmartcompletion

ʈ Fig.7:Thechangingofi c vsduringsimulation

 ɨ Results of numerical experimentsThefivemodelscorrespondingtothedifferentporosity-permeabilityrealizationswerebuiltandoptimized.Inaddition,fivebasecaseswithoutsmartcompletionwereevalu-atedforcomparisonpurposes.

FieldOilProductionTotals(fo p t )andincrementalproducedoil(thedifferencebe-tweenfo p t foroptimizedandbasecases)areshownontheplotbelow(Fig.6).Fig.7givesanexampleofvalvepositionschangingthroughthetimeofsimulation.

ʈ Fig.8:Economicalanalysisofsmartwelldeployment

Page 52: YoungPetro - 2nd Issue - Summer 2011

52 TudorFlorinPrecup pproachforfullfieldscalesmartwellmodelingandoptimization 53

summer / 2011

 ɨ How to assess the effect in terms of nPv?When production profiles both for conventional and 'smart' case are obtained,it’spossibletomakeaneconomicanalysisofi c v deployment.Sincewecomparesmartvsconventionalwellcompletions,it’spossibletoexpresstheeconomicef-fectasthedifferencebetweenn pv ofthesmart('*')andbasecases:

where:

Rt–revenues,receivedduringthet-thtimestep(usuallyequalsto1year);Et–operationalandcapitalcostsof thewellconstructionandoperationduringthet-thtimestept;T–planningperiod;i–discountrate(fractionsofunit);αi–discountfactor

Ifat the timeofcommissioning thedifference betweencapital investmentsintoconventionalandsmartwellcompletionsisknownandisequalto,andop-erationalcostsareequalto,thentheequation(3)canbere-writtenintheform:

Finally,equationcanbewrittenintheform:

Theresultforcase#5youcanseeattheFig.8.Givenoilpricepis50$/bbl,dis-countrateiis12%,anadditionalcostofsmartcompletionΔE0is2mln$perwell(forinstance,costofsmartwellcompletionforShell’ssmartwellsinBruneiwereaboutUS$1.8mlnperwell[7]).

Itcanbeseenthatfinallysmartcompletionsbroughtthetangiblebenefitsandtheirrepaymentperiodturnedouttoberelativelyshort(5years).However,thereservoirconditionsandveryharshoperationalconstraintscanbeconsideredasveryfavorabletodeploysmartcompletions.

* * * * *

0 0 0( ) ( ) ( ) ; (1)

T T T

t t t t t t t t t t tt t t

Eff NPV NPV R E R E R R E Eα α α

− − ⋅ − − ⋅ − − ⋅ ∑ ∑ ∑

* * *0 0 0 0

0 0( ) ( ) ( ) ; (2)

T T

t t t t t tt t

Eff R R E E R R Eα α α

− ⋅ − − ⋅ − ⋅ − ∆ ∑ ∑

*0

0( ) ; (3)

T

t t tt

Eff Q Q p Eα

− ⋅ − ∆ ∑

 ɨ Brief conclusions » Theproposedapproachallowsto

estimatetheamountofincremen-taloilthatcouldbeproducedbyusingthesmartwelltechnology.Thoughintherealreservoirengi-neeringpracticemodelabilitytocorrectlypredictreservoirbehav-iorisoftenamatterofdispute(orbelief ),itisfeasibletogetmodelprovidingreliableshort-timepro-ductionforecastandusethismod-eltooptimizeproductionprofile.

» Theproposedapproachshowedgoodcomputationalperform-ances.1–2externaliterationswererequiredformostofoptimizationstepstoconverge.

» ThoughDirectSearchmethodturnedouttobeeffectiveitdoes

 ɨ Bibliography1. NausM.M.J.J.,DolleN.,JansenJ.-D.,OptimizationofCommingledProductionUsing

InfinitelyVariableInflowControlValves,SPEProduction&Operations,Volume21,Number2,pp.293–301,2006.

2. YetenB.,BrouwerD.R.,DurlofskyL.J.,AzizK.,Decisionanalysisunderuncertaintyforsmartwelldeployment,JournalofPetroleumScienceandEngineering43,pp.183–199,2004.

3. MeumP.,TøndelP.,GodhavnJ-M.,AamoO.M.,OptimizationofSmartWellProduc-tionthroughNonlinearModelPredictiveControl,SPE112100,2008

4. EmerickA.A.,PortellaR.C.M,ProductionOptimizationWith IntelligentWells,SPE107261,2007.

5. GrebenkinI.M.,DavisD.R.,AnalysisoftheImpactofanIntelligentWellCompletionontheOilProductionUncertainty,SPE136335,2010.

6. EclipseReferenceManual,Schlumberger,2008.7. ObendraufW.,SchraderK.,Al-FarsiN.,WhiteA.,SmartSnakeWells inChampion

West–ExpectedandUnexpectedBenefitsFromSmartCompletions,SPE100880,2006.

notguaranteethattheglobalop-timumisfound.

» Smartwellswerecapabletomiti-gatetheimpactofgeologicalun-certaintyontheprojectperform-ances.Theoveralleffect(bothn pvandincrementaloil)wasalwayspositive,butnotforallwells.Ineverycasetherewereatleastoneormoresmartwellsthatproducedlessoilthanconventional‘dumb’ones.

» Issuesofreliabilityandpossibleproductionlossescausedbyvalvefailureswerenotdiscussedinthisstudy,althoughweshouldpointoutthatitisveryimportantissue.

Page 53: YoungPetro - 2nd Issue - Summer 2011

52 TudorFlorinPrecup pproachforfullfieldscalesmartwellmodelingandoptimization 53

summer / 2011

 ɨ How to assess the effect in terms of nPv?When production profiles both for conventional and 'smart' case are obtained,it’spossibletomakeaneconomicanalysisofi c v deployment.Sincewecomparesmartvsconventionalwellcompletions,it’spossibletoexpresstheeconomicef-fectasthedifferencebetweenn pv ofthesmart('*')andbasecases:

where:

Rt–revenues,receivedduringthet-thtimestep(usuallyequalsto1year);Et–operationalandcapitalcostsof thewellconstructionandoperationduringthet-thtimestept;T–planningperiod;i–discountrate(fractionsofunit);αi–discountfactor

Ifat the timeofcommissioning thedifference betweencapital investmentsintoconventionalandsmartwellcompletionsisknownandisequalto,andop-erationalcostsareequalto,thentheequation(3)canbere-writtenintheform:

Finally,equationcanbewrittenintheform:

Theresultforcase#5youcanseeattheFig.8.Givenoilpricepis50$/bbl,dis-countrateiis12%,anadditionalcostofsmartcompletionΔE0is2mln$perwell(forinstance,costofsmartwellcompletionforShell’ssmartwellsinBruneiwereaboutUS$1.8mlnperwell[7]).

Itcanbeseenthatfinallysmartcompletionsbroughtthetangiblebenefitsandtheirrepaymentperiodturnedouttoberelativelyshort(5years).However,thereservoirconditionsandveryharshoperationalconstraintscanbeconsideredasveryfavorabletodeploysmartcompletions.

* * * * *

0 0 0( ) ( ) ( ) ; (1)

T T T

t t t t t t t t t t tt t t

Eff NPV NPV R E R E R R E Eα α α

− − ⋅ − − ⋅ − − ⋅ ∑ ∑ ∑

* * *0 0 0 0

0 0( ) ( ) ( ) ; (2)

T T

t t t t t tt t

Eff R R E E R R Eα α α

− ⋅ − − ⋅ − ⋅ − ∆ ∑ ∑

*0

0( ) ; (3)

T

t t tt

Eff Q Q p Eα

− ⋅ − ∆ ∑

 ɨ Brief conclusions » Theproposedapproachallowsto

estimatetheamountofincremen-taloilthatcouldbeproducedbyusingthesmartwelltechnology.Thoughintherealreservoirengi-neeringpracticemodelabilitytocorrectlypredictreservoirbehav-iorisoftenamatterofdispute(orbelief ),itisfeasibletogetmodelprovidingreliableshort-timepro-ductionforecastandusethismod-eltooptimizeproductionprofile.

» Theproposedapproachshowedgoodcomputationalperform-ances.1–2externaliterationswererequiredformostofoptimizationstepstoconverge.

» ThoughDirectSearchmethodturnedouttobeeffectiveitdoes

 ɨ Bibliography1. NausM.M.J.J.,DolleN.,JansenJ.-D.,OptimizationofCommingledProductionUsing

InfinitelyVariableInflowControlValves,SPEProduction&Operations,Volume21,Number2,pp.293–301,2006.

2. YetenB.,BrouwerD.R.,DurlofskyL.J.,AzizK.,Decisionanalysisunderuncertaintyforsmartwelldeployment,JournalofPetroleumScienceandEngineering43,pp.183–199,2004.

3. MeumP.,TøndelP.,GodhavnJ-M.,AamoO.M.,OptimizationofSmartWellProduc-tionthroughNonlinearModelPredictiveControl,SPE112100,2008

4. EmerickA.A.,PortellaR.C.M,ProductionOptimizationWith IntelligentWells,SPE107261,2007.

5. GrebenkinI.M.,DavisD.R.,AnalysisoftheImpactofanIntelligentWellCompletionontheOilProductionUncertainty,SPE136335,2010.

6. EclipseReferenceManual,Schlumberger,2008.7. ObendraufW.,SchraderK.,Al-FarsiN.,WhiteA.,SmartSnakeWells inChampion

West–ExpectedandUnexpectedBenefitsFromSmartCompletions,SPE100880,2006.

notguaranteethattheglobalop-timumisfound.

» Smartwellswerecapabletomiti-gatetheimpactofgeologicalun-certaintyontheprojectperform-ances.Theoveralleffect(bothn pvandincrementaloil)wasalwayspositive,butnotforallwells.Ineverycasetherewereatleastoneormoresmartwellsthatproducedlessoilthanconventional‘dumb’ones.

» Issuesofreliabilityandpossibleproductionlossescausedbyvalvefailureswerenotdiscussedinthisstudy,althoughweshouldpointoutthatitisveryimportantissue.

Page 54: YoungPetro - 2nd Issue - Summer 2011

54 Papers Zeolitesasnaturalsorbentinremovingpollutants 55

summer / 2011

Zeolites as natural sorbent in removing pollutants from the drilling waste

edtosaltcavernsorabsorbedstratums.[1]

Methodsofdisposaldrillingwastedi-videto:

» Physical–mechanicalmethods,thermalmethods,flocculation;

» Chemical–waterwash,silicondi-oxideemulsificationandstabiliza-tion;

» Biological–landfarming,compost-ing,bio-reactivation,vermiculture;

» Recycling–usagetocementpro-duction,concentrateblocks,stabi-lizationofgrounds,renovationofbogs,roadsurface.

 ɨ IntroductionUsed drilling muds are heterogene-

ous, hazardous waste which containssignificant percentages of water – solu-ble salts, heavy metals. Mainly, pollu-tions of used drilling muds are causedby:

» biocides, » oil, » completionorstimulationoffluid

components, » corrosioninhibitors, » reservoirfluids(crudeoil,brine), » drillingmud’schemicalcompo-

nents.Drilling muds and cuttings are the

biggest part of waste created duringdrilling processes. Nowadays, we canobservethreetrendsinmanagementofdrillingwaste:

Minimization of waste quantity canbemadebyusingdrillingmudsandad-ditives which are less environmentallyhazardous and by drillings which gen-erate minimal waste quantity (e.g. di-rectionaldrillings,withsmallerdiameterandwithuseofsmalleramountofdrill-ingmud).Drillingwastecanbestoredinspeciallocation(pits,mudboxes),inject-

 ɨ ResearchInthisinvestigationmodelpotassium

–polymerandusedpotassium–chloridedrillingmudswerecompared.Composi-tionsofeachdrillingmudsareshowninTable2andTable3.

component concentration

Bentonite 3.00%

CMC LV 1.60%

PHPA 0.40%

Biopolymer 0.60%

KCl 8.00%

NaCl 15.00%

Shale inhibitor 3.00%

Lubricant 1.20%

ʈ Table2.Modelpotassium–poly-merdrillingmud

component concentration

KCl 3.00%

CMC LV 2.50%

Polysaccharide 0.25%

PHPA 0.10%

K2CO3 0.05%

KOH 0.25%

Corrosion inhibitor 0.10%

Biodegradation preventing agent 0.30%

Detergent 0.50%

Organic blocker 7.00%

Non-organic blocker 0.70%

Baryte 0.40%

ʈ Table3.Usedpotassium–chloridedrillingmud

Toputintousedrillingwasteitisnec-essary toensure theirnon-toxicempiri-calformula.[2]

Zeolitesarecrystalline,highlyporousmaterials which belong to the class ofaluminosilicates. Crystals of zeolite arecharacterizedbya three–dimensionalpore system. [3] Zeolites create variousstructures,suchaszeolitesA(Fig.1)andX(Fig.2).Theyareusedasabsorbentinmany fields, for example nuclear andpetrochemical industry, medicine anddomesticpetcare.

Compositionofexaminedzeolites isshowninTable1.

component concentration

SiO2 65 – 71.3 %

Al2O2 11.5 – 13.1%

CaO 2.7 – 5.2 %

K2O 2.2 – 3.4 %

Fe2O3 0.7 – 1.9 %

MgO 0.6 – 1.2 %

Na2O 0.2 – 1.3 %

TiO2 0.1 – 0.3 %

ʈ Table1.Compositionofzeolites

Dawid WojaczekSupervisor: Aleksandra Jamrozik, PhD

ʈ Fig.1.ZeolitetypeA ʈ Fig.2.ZeolitetypeX

In experimental works there were examined  empirical  formula  of  mud, particularly  contents  of  toxic  chemi-cal substance, after and before adding zeolites’  sorbent.  In  research,  mod-el  and  used  drilling  muds  different in  contents  were  examined.  In  this study were used chromatography and UV-VIS  spectrophotometry  methods to  describe  the  results  of  the  effi-ciency of sorption of toxic substance from the drilling waste.

The  purpose  of  laborato-ry  investigation  was  to  esti-mate the influence of zeolites’ sorbent on used drilling mud. Usefulness  of  zeolites’  sorb-ent  in  removing  process  was trialed.  Zeolites  are  used  for removal  of  organic  matter, heavy  metals  and  pollutants from the drilling waste due to their  adsorption  and  ion  ex-change capacity. ʇ

AbS

trac

Page 55: YoungPetro - 2nd Issue - Summer 2011

54 Papers Zeolitesasnaturalsorbentinremovingpollutants 55

summer / 2011

Zeolites as natural sorbent in removing pollutants from the drilling waste

edtosaltcavernsorabsorbedstratums.[1]

Methodsofdisposaldrillingwastedi-videto:

» Physical–mechanicalmethods,thermalmethods,flocculation;

» Chemical–waterwash,silicondi-oxideemulsificationandstabiliza-tion;

» Biological–landfarming,compost-ing,bio-reactivation,vermiculture;

» Recycling–usagetocementpro-duction,concentrateblocks,stabi-lizationofgrounds,renovationofbogs,roadsurface.

 ɨ IntroductionUsed drilling muds are heterogene-

ous, hazardous waste which containssignificant percentages of water – solu-ble salts, heavy metals. Mainly, pollu-tions of used drilling muds are causedby:

» biocides, » oil, » completionorstimulationoffluid

components, » corrosioninhibitors, » reservoirfluids(crudeoil,brine), » drillingmud’schemicalcompo-

nents.Drilling muds and cuttings are the

biggest part of waste created duringdrilling processes. Nowadays, we canobservethreetrendsinmanagementofdrillingwaste:

Minimization of waste quantity canbemadebyusingdrillingmudsandad-ditives which are less environmentallyhazardous and by drillings which gen-erate minimal waste quantity (e.g. di-rectionaldrillings,withsmallerdiameterandwithuseofsmalleramountofdrill-ingmud).Drillingwastecanbestoredinspeciallocation(pits,mudboxes),inject-

 ɨ ResearchInthisinvestigationmodelpotassium

–polymerandusedpotassium–chloridedrillingmudswerecompared.Composi-tionsofeachdrillingmudsareshowninTable2andTable3.

component concentration

Bentonite 3.00%

CMC LV 1.60%

PHPA 0.40%

Biopolymer 0.60%

KCl 8.00%

NaCl 15.00%

Shale inhibitor 3.00%

Lubricant 1.20%

ʈ Table2.Modelpotassium–poly-merdrillingmud

component concentration

KCl 3.00%

CMC LV 2.50%

Polysaccharide 0.25%

PHPA 0.10%

K2CO3 0.05%

KOH 0.25%

Corrosion inhibitor 0.10%

Biodegradation preventing agent 0.30%

Detergent 0.50%

Organic blocker 7.00%

Non-organic blocker 0.70%

Baryte 0.40%

ʈ Table3.Usedpotassium–chloridedrillingmud

Toputintousedrillingwasteitisnec-essary toensure theirnon-toxicempiri-calformula.[2]

Zeolitesarecrystalline,highlyporousmaterials which belong to the class ofaluminosilicates. Crystals of zeolite arecharacterizedbya three–dimensionalpore system. [3] Zeolites create variousstructures,suchaszeolitesA(Fig.1)andX(Fig.2).Theyareusedasabsorbentinmany fields, for example nuclear andpetrochemical industry, medicine anddomesticpetcare.

Compositionofexaminedzeolites isshowninTable1.

component concentration

SiO2 65 – 71.3 %

Al2O2 11.5 – 13.1%

CaO 2.7 – 5.2 %

K2O 2.2 – 3.4 %

Fe2O3 0.7 – 1.9 %

MgO 0.6 – 1.2 %

Na2O 0.2 – 1.3 %

TiO2 0.1 – 0.3 %

ʈ Table1.Compositionofzeolites

Dawid WojaczekSupervisor: Aleksandra Jamrozik, PhD

ʈ Fig.1.ZeolitetypeA ʈ Fig.2.ZeolitetypeX

In experimental works there were examined  empirical  formula  of  mud, particularly  contents  of  toxic  chemi-cal substance, after and before adding zeolites’  sorbent.  In  research,  mod-el  and  used  drilling  muds  different in  contents  were  examined.  In  this study were used chromatography and UV-VIS  spectrophotometry  methods to  describe  the  results  of  the  effi-ciency of sorption of toxic substance from the drilling waste.

The  purpose  of  laborato-ry  investigation  was  to  esti-mate the influence of zeolites’ sorbent on used drilling mud. Usefulness  of  zeolites’  sorb-ent  in  removing  process  was trialed.  Zeolites  are  used  for removal  of  organic  matter, heavy  metals  and  pollutants from the drilling waste due to their  adsorption  and  ion  ex-change capacity. ʇ

AbS

trac

Page 56: YoungPetro - 2nd Issue - Summer 2011

56 DawidWojaczek Zeolitesasnaturalsorbentinremovingpollutants 57

summer / 2011

 ɨ Samples preparationInthislaboratoryinvestigation4sam-

pleswereprepared.Drillingmudswithzeolites were mixed achieving concen-tration of zeolites 20%. Afterwards allsampleswereshakenfor24hourstopro-videbetterions’exchange.Finallyfluidswere pressed by filtrate-press. Some fil-tratesweresipinfunnelonemoretimeto ensure sufficient cleanliness of sam-ples for spectrophotometry. Samplespreparedthiswaywereexamined.

 ɨ Research methodologyEmpirical formula of samples was

performed using Optima 7000 DV In-struments.Twoconcentrationsoffiltrate(1 and 10 %) were examined. For smallconcentrationsofelementtheresultoftest for greater contents is important.Analogically, for greater concentrationofelementtheresultoftestforsmallercontentsiscorrect.Adoptedmethodal-lowsappointing41differentchemicalel-ementsincompositionofdrillingwaste.Contest of chloride in drilling wastewas examined with titration method.Spectrophotometryset-upconsistedofU–1900HitachispectrophotometerandPC with UV solution software. Sampleswereputinglasscuvettesandtestedinwavelengthscanmeasuretype.Startingwavelength was 500 nm, ending wave-

lengthwas190nmandscanspeedwas400nmperminute.

 ɨ Contents of pollutants in drilling waste

Changes of ions’ contents in drillingmudsareshowninTable4.Forallsam-ples using of zeolites decreases con-tentsofpotassium,chlorideandsulfate.Contentsofcalciumandmagnesiumin-crease.

 ɨ Spectrophotometry results

Results of UV-Vis spectrophotome-tryexaminationareshowninFig.3andFig.4.Aswecanseeabsorbanceofeachsampledecrease.

 ɨ Conclusions1. Zeolitesdecreasecontentsofpollut-

antsfromdrillingmud.2. 20% contents of zeolites is not

enough to decrease all pollutantssubstandard.

3. Usingzeolitesdecreaseabsorbanceinallexaminedsamples.

4. Increasing contents of Ca2+ andMg2+ is not dangerous to environ-mentincompliancewithEUlaw.

chemical element used potassium – chloride model potassium – polymer

Cl- [mg/l] 23086.46 22373.91 120918.89 116999.89

Ca2+ [mg/l] 138.95 2072.95 8.97 69.06

K+ [mg/l] 14102.97 9078.66 4012.69 3729.38

Mg2+ [mg/l] 22.46 74.53 0.31 0.44

Na+ [mg/l] 8318.01 8857.22 5799.00 5830.55

SO42- [mg/l] 881.7 802.47 28.19 19.26

ʈ Table4.Contentsofpollutantsindrillingmuds

 ɨ References1. A.Jamrozik,Możliwośćkompleksowegorecyclingodpadowychpłuczekwiertnic-

zych,WydawnictwaAGH,Kraków20092. Z.Halat,J.Hycnar,Propertiesandutilizationofdrillingwaste,Gospodarkasurow-

camimineralnymi,t.24,20083. http://www.bza.org/zeolites.html(2011–05–05)4. A.Jamrozik,A.Gonet,S.Stryczek,D.Wojaczek,Ł.Maciołek,Aktywnośćsorbentów

klinoptylolitowychwśrodowiskuodpadowychpłuczekwiertniczych,Wiertnictwo,Nafta,Gaz2011

ʈ Fig.3:Absorbanceofmodelpotassium–polymerdrillingmud

ʈ Fig.4:Absorbanceofusedpotassium–chloridedrillingmud

Page 57: YoungPetro - 2nd Issue - Summer 2011

56 DawidWojaczek Zeolitesasnaturalsorbentinremovingpollutants 57

summer / 2011

 ɨ Samples preparationInthislaboratoryinvestigation4sam-

pleswereprepared.Drillingmudswithzeolites were mixed achieving concen-tration of zeolites 20%. Afterwards allsampleswereshakenfor24hourstopro-videbetterions’exchange.Finallyfluidswere pressed by filtrate-press. Some fil-tratesweresipinfunnelonemoretimeto ensure sufficient cleanliness of sam-ples for spectrophotometry. Samplespreparedthiswaywereexamined.

 ɨ Research methodologyEmpirical formula of samples was

performed using Optima 7000 DV In-struments.Twoconcentrationsoffiltrate(1 and 10 %) were examined. For smallconcentrationsofelementtheresultoftest for greater contents is important.Analogically, for greater concentrationofelementtheresultoftestforsmallercontentsiscorrect.Adoptedmethodal-lowsappointing41differentchemicalel-ementsincompositionofdrillingwaste.Contest of chloride in drilling wastewas examined with titration method.Spectrophotometryset-upconsistedofU–1900HitachispectrophotometerandPC with UV solution software. Sampleswereputinglasscuvettesandtestedinwavelengthscanmeasuretype.Startingwavelength was 500 nm, ending wave-

lengthwas190nmandscanspeedwas400nmperminute.

 ɨ Contents of pollutants in drilling waste

Changes of ions’ contents in drillingmudsareshowninTable4.Forallsam-ples using of zeolites decreases con-tentsofpotassium,chlorideandsulfate.Contentsofcalciumandmagnesiumin-crease.

 ɨ Spectrophotometry results

Results of UV-Vis spectrophotome-tryexaminationareshowninFig.3andFig.4.Aswecanseeabsorbanceofeachsampledecrease.

 ɨ Conclusions1. Zeolitesdecreasecontentsofpollut-

antsfromdrillingmud.2. 20% contents of zeolites is not

enough to decrease all pollutantssubstandard.

3. Usingzeolitesdecreaseabsorbanceinallexaminedsamples.

4. Increasing contents of Ca2+ andMg2+ is not dangerous to environ-mentincompliancewithEUlaw.

chemical element used potassium – chloride model potassium – polymer

Cl- [mg/l] 23086.46 22373.91 120918.89 116999.89

Ca2+ [mg/l] 138.95 2072.95 8.97 69.06

K+ [mg/l] 14102.97 9078.66 4012.69 3729.38

Mg2+ [mg/l] 22.46 74.53 0.31 0.44

Na+ [mg/l] 8318.01 8857.22 5799.00 5830.55

SO42- [mg/l] 881.7 802.47 28.19 19.26

ʈ Table4.Contentsofpollutantsindrillingmuds

 ɨ References1. A.Jamrozik,Możliwośćkompleksowegorecyclingodpadowychpłuczekwiertnic-

zych,WydawnictwaAGH,Kraków20092. Z.Halat,J.Hycnar,Propertiesandutilizationofdrillingwaste,Gospodarkasurow-

camimineralnymi,t.24,20083. http://www.bza.org/zeolites.html(2011–05–05)4. A.Jamrozik,A.Gonet,S.Stryczek,D.Wojaczek,Ł.Maciołek,Aktywnośćsorbentów

klinoptylolitowychwśrodowiskuodpadowychpłuczekwiertniczych,Wiertnictwo,Nafta,Gaz2011

ʈ Fig.3:Absorbanceofmodelpotassium–polymerdrillingmud

ʈ Fig.4:Absorbanceofusedpotassium–chloridedrillingmud

Page 58: YoungPetro - 2nd Issue - Summer 2011

Workingforanoperator 59

summer / 2011

Working for an operator

Currently,thereare68graduatesfrom23countriesenrolledinm i t a s .

Maersk Oil is an upstream operatorand explorer of the fields in the Dan-ishandUKNorthSea,offshoreQatar,inKazakhstan, Brazil, Angola and Norway,andsoonintheGulfofMexico.Throughthegrowingportfolioofoperationsnu-merous opportunities arise for youngengineerslikeme.

IstartedmyadventurewiththeDrill-ingDepartmentinCopenhagen,withinthe Danish Underground Consortium(DUC),whichisajointventurebetweenMaersk Oil, the operator, Chevron andShell. I have been employed as a WellSiteEngineer(WSE),whichissomewhatadrillingengineerwhoisworkingmost-lyoffshore.Myschedulewas2weeksontherig,2weeksintheoffice,2weeksonthe rigagain,and2weeksoff. Itmightsoundlikealotofwork,andactuallyitis,but it carries an invaluable steep learn-ingcurve.Especiallywhenbeingonthespot where the action occurs – on anoffshoredrillingrig. Ihavethen,after8months, transferred to work as a WSEin Doha, Qatar. 'Rotating' to other loca-tions and business units is one of theideasbehindtheMITASprogramme.

I have joined Maersk Oil and the MI-TAS programme just after graduatingfrom AGH University of Science andTechnology, Faculty of Drilling, Oil andGas,inAugust2009.IamaMSc.DrillingEngineerbyeducationbutalsoanengi-neeratheart.

FirsttimeIhaveheardaboutMaerskOil was during a presentation that thecompanygaveatmyuniversityin2008.Before that the‘white star on the bluesquare’logowasinmymindstrictlytiedtothecontainershippingbusiness.Ididnotrealisethatthere isanoilpartto it,nor that Denmark is an oil producingcountrycoveringit’sownconsumptionand even exporting hydrocarbons. Asyoucanseenow,Iworkunderthewhitestarlogo,aclearsuccessoftheadvertis-ingcampaign.

AtthemomentthreemoregraduatesfrommyfacultyworkinMaerskOil,withone more coming this summer to jointhem i t a s ranks.m i t a s –MaerskInterna-tionalTechnicalandScienceprogramme

–isthegraduateentrylevelprogrammebringingrecentuniversitygraduatestowork in the energy sector of the a p m mGroup. That is, not only in Maersk Oil,butinMaerskDrillingandf p s osaswell.

Jędrzej Bryła

tion.Havingsaidthat, ifyoufollowtherulesandprocedures,youareassafeasyouwouldbeworkingintheoffice.

My day to day tasks on the rig in-volved mostly reporting and support-ing the Company Man (a fellow rep-resentative of Maersk, the companywhichispayingthebills,sotosay)withany kind of engineering or operationalwork.Mostimportantly,theoverallgoalofthisassignment,inthelongrun,istolearnandexperienceasmuchaspossi-bleaboutthedrillingoperations.UntilIhadgonetotherig,Ididnotrealisethedegreethattheexecutionlimitationsofa project define the initial engineeringandplanningparts.

Obviously you cannot go home every night, and you cannot work 24 hours a day, some time is left for you to try to enjoy life while being there.

The weather – a subject you talkabout when you actually run out ofthingstotalkabout.Well,notwhenoff-shore!Ihaveexperiencedtwoextremesduring my 'rotations' in Denmark andQatar – winter in the North Sea andsummerintheMiddleEast.From−20°C,taking into account the 70 knot windsmakingachillfactorof−50°C,to+50°CoffshoreDoha.

The locations of the business unitsinfluencethewholeexperienceaswell.Copenhagen, a picturesque capital ofDenmark,offersafeelingoftranquillity.AsIamstilltoexperience,itissaidtobeamazingduringsummer,withthelongdaystobespentbesidetheNyhavnca-nal and with weekends on the beach.Doha in turn offers a bundled experi-enceofthetraditionalArabworldwitha mix of, mostly hotel based, 'high life'.Tripstothedesertusingallkindsofvehi-

The work and life on a drilling rig is definitely something that you will not experience anywhere else.

But first things first! Before you gooffshore you have to pass a… survivalcourse.No, it isnottheonewhereyougo to thewoodsandeat rootsorhuntforrabbits.Thisisacoursethatteachesyouhowtodealwithalmostanyemer-gencythatmighthappenwhileoffshore,from first aid training and fire fightingto… escaping from a crashing helicop-ter while being submersed in freezingwater – upside down! As scary it maysound, it is pretty much good fun, butmore importantly, it’s better to experi-ence this in a controlled environmentwith divers by your side, than havingfirstcontactwithsuchaneventinareallifesituation.

The work and life on a drilling rig isdefinitely something that you will notexperienceanywhereelse. Iamdeliber-ately using the word 'life', as obviouslyyou cannot go home every night, andyou cannot work 24 hours a day, sometime is left for you to try to enjoy lifewhilebeingthere.But Iwillcomebacktothatlater.

While thinking about the work off-shoreonethingpopsup intomymind

– it is all about making sure, and thenmaking sure that you are actually sure.Anykindofmistakes,especiallytheonesthatinhindsightcouldhavebeenavoid-ed,areverycostly.Letmestressithere

–monetaryvalueisonething,butdoingsomethingthewrongwayonadrillingrigcanseriouslyinjureorkillyouoryourcolleagues.There is not enough ink intheworldtodescribehowimportantissafetyawarenessinthatkindofenviron-ment. All in all, it is a kind of mine/fac-torytypeofplaceinaveryremoteloca-

Page 59: YoungPetro - 2nd Issue - Summer 2011

Workingforanoperator 59

summer / 2011

Working for an operator

Currently,thereare68graduatesfrom23countriesenrolledinm i t a s .

Maersk Oil is an upstream operatorand explorer of the fields in the Dan-ishandUKNorthSea,offshoreQatar,inKazakhstan, Brazil, Angola and Norway,andsoonintheGulfofMexico.Throughthegrowingportfolioofoperationsnu-merous opportunities arise for youngengineerslikeme.

IstartedmyadventurewiththeDrill-ingDepartmentinCopenhagen,withinthe Danish Underground Consortium(DUC),whichisajointventurebetweenMaersk Oil, the operator, Chevron andShell. I have been employed as a WellSiteEngineer(WSE),whichissomewhatadrillingengineerwhoisworkingmost-lyoffshore.Myschedulewas2weeksontherig,2weeksintheoffice,2weeksonthe rigagain,and2weeksoff. Itmightsoundlikealotofwork,andactuallyitis,but it carries an invaluable steep learn-ingcurve.Especiallywhenbeingonthespot where the action occurs – on anoffshoredrillingrig. Ihavethen,after8months, transferred to work as a WSEin Doha, Qatar. 'Rotating' to other loca-tions and business units is one of theideasbehindtheMITASprogramme.

I have joined Maersk Oil and the MI-TAS programme just after graduatingfrom AGH University of Science andTechnology, Faculty of Drilling, Oil andGas,inAugust2009.IamaMSc.DrillingEngineerbyeducationbutalsoanengi-neeratheart.

FirsttimeIhaveheardaboutMaerskOil was during a presentation that thecompanygaveatmyuniversityin2008.Before that the‘white star on the bluesquare’logowasinmymindstrictlytiedtothecontainershippingbusiness.Ididnotrealisethatthere isanoilpartto it,nor that Denmark is an oil producingcountrycoveringit’sownconsumptionand even exporting hydrocarbons. Asyoucanseenow,Iworkunderthewhitestarlogo,aclearsuccessoftheadvertis-ingcampaign.

AtthemomentthreemoregraduatesfrommyfacultyworkinMaerskOil,withone more coming this summer to jointhem i t a s ranks.m i t a s –MaerskInterna-tionalTechnicalandScienceprogramme

–isthegraduateentrylevelprogrammebringingrecentuniversitygraduatestowork in the energy sector of the a p m mGroup. That is, not only in Maersk Oil,butinMaerskDrillingandf p s osaswell.

Jędrzej Bryła

tion.Havingsaidthat, ifyoufollowtherulesandprocedures,youareassafeasyouwouldbeworkingintheoffice.

My day to day tasks on the rig in-volved mostly reporting and support-ing the Company Man (a fellow rep-resentative of Maersk, the companywhichispayingthebills,sotosay)withany kind of engineering or operationalwork.Mostimportantly,theoverallgoalofthisassignment,inthelongrun,istolearnandexperienceasmuchaspossi-bleaboutthedrillingoperations.UntilIhadgonetotherig,Ididnotrealisethedegreethattheexecutionlimitationsofa project define the initial engineeringandplanningparts.

Obviously you cannot go home every night, and you cannot work 24 hours a day, some time is left for you to try to enjoy life while being there.

The weather – a subject you talkabout when you actually run out ofthingstotalkabout.Well,notwhenoff-shore!Ihaveexperiencedtwoextremesduring my 'rotations' in Denmark andQatar – winter in the North Sea andsummerintheMiddleEast.From−20°C,taking into account the 70 knot windsmakingachillfactorof−50°C,to+50°CoffshoreDoha.

The locations of the business unitsinfluencethewholeexperienceaswell.Copenhagen, a picturesque capital ofDenmark,offersafeelingoftranquillity.AsIamstilltoexperience,itissaidtobeamazingduringsummer,withthelongdaystobespentbesidetheNyhavnca-nal and with weekends on the beach.Doha in turn offers a bundled experi-enceofthetraditionalArabworldwitha mix of, mostly hotel based, 'high life'.Tripstothedesertusingallkindsofvehi-

The work and life on a drilling rig is definitely something that you will not experience anywhere else.

But first things first! Before you gooffshore you have to pass a… survivalcourse.No, it isnottheonewhereyougo to thewoodsandeat rootsorhuntforrabbits.Thisisacoursethatteachesyouhowtodealwithalmostanyemer-gencythatmighthappenwhileoffshore,from first aid training and fire fightingto… escaping from a crashing helicop-ter while being submersed in freezingwater – upside down! As scary it maysound, it is pretty much good fun, butmore importantly, it’s better to experi-ence this in a controlled environmentwith divers by your side, than havingfirstcontactwithsuchaneventinareallifesituation.

The work and life on a drilling rig isdefinitely something that you will notexperienceanywhereelse. Iamdeliber-ately using the word 'life', as obviouslyyou cannot go home every night, andyou cannot work 24 hours a day, sometime is left for you to try to enjoy lifewhilebeingthere.But Iwillcomebacktothatlater.

While thinking about the work off-shoreonethingpopsup intomymind

– it is all about making sure, and thenmaking sure that you are actually sure.Anykindofmistakes,especiallytheonesthatinhindsightcouldhavebeenavoid-ed,areverycostly.Letmestressithere

–monetaryvalueisonething,butdoingsomethingthewrongwayonadrillingrigcanseriouslyinjureorkillyouoryourcolleagues.There is not enough ink intheworldtodescribehowimportantissafetyawarenessinthatkindofenviron-ment. All in all, it is a kind of mine/fac-torytypeofplaceinaveryremoteloca-

Page 60: YoungPetro - 2nd Issue - Summer 2011

60 JędrzejBryła YoungProffesionals 61

summer / 2011

clesarealsoapopularwayofspendingfreetime.DohaaswellservesasaverygooddeparturepointfortripstoAsiaorforaweekendinDubaiorOman.

Workingforanoperatorbringsa lotof technical and non technical experi-encestogether.Throughthevariousop-erations,assignmentsandprojectsoneisexposedtodifferenttechnologiesandarangeofapplications.

It gives a broader view on the in-dustry,andbusinessasawhole,thanastrictlytechnicallyfocusedcareerwithaservicecompany.Apartfromtheowner,anoperatorhasthebiggeststakeintheassetthat isbeingdeveloped–theoil/gasfield.Wehavethelicencetooperatehence the optimum development of areservoirliesinourinterest.Thisinturnnecessitates the work of the brightestpeople and cutting edge technologies(to be fair, the technology is often sup-pliedbythevariousservicecompanies);

especially in Maersk Oil’s case whichdeals with mostly tight and difficult toproducereservoirs.

Depending on the production shar-ing agreement with the owner, an op-erator is the end-party that owns theproducedoil.Aservicecompanyinturnisfocusedmostlyonsellingtheservice,independentofthefinalproduction.Ofcourse, the more successful the prod-uctis(thatwilleventuallyleadtoanin-creaseinproduction),themoreitwillbeboughtandapplied.

Taking the m i t a s programme as anexample, it isclear, thatagreatempha-sis is put on versatility of skills gainedthrough the different positions andprojects. I can only recommend an 'op-erating'careerasatruewaytogetthemost exposure and insight into the oilbusiness and the entire world energysector.

The Fire WithinJakub Slek

SPE Poland Young Professionals Founding Committee

Wehavedecidedtoestablishs p e Po-land Young Professionals committeeto help students keep this fire burningwithinthemandadvisethemonhowtochannelthispositiveenergy.

Young Professionals combines (or-ganization, so singular, like u s a ) therookie’s enthusiasm, passion and a bitofnaivetywiththeaspirationtogainfullprofessionalexperience.s p e isanassoci-ationthatdoesnotrecognizecorporate,politicalornationalbanners,inaway–it'standsabovedifferences'andthereforeprovides the best plane for building astructureofassistanceandmutualsup-port,butmost importantlyoftrustandfriendship.

We are the first generation of Poleswhobarelyrememberordonotremem-ber times of People’s Republic of Po-landatall.Wedonotcarry theburdenof communism and even as teenagerswewereabletostartdoingourpart inbuilding a modern society of educatedcitizensandnotaofmindlessmob.Thesooner one begins, the better.The pe-riod of academic education is the besttime to start releasing the positive en-ergythatcomesfromthefirewithinus.That’s what we did and that’s what weshallcontinuetodothroughSPEPoland

Oneofthosewarmmorningsinthemid-dleofApril,chestnuttreeshadjuststart-edtoblossom– itmeantthatthetimeof high school final exams or 'Tests ofmaturity'wasapproaching.Oncefadedmemories of me seven years ago be-camelittlebylittlemorevividandclear.I almost felt the stress before the finalexamsandtheuniversityentryexams.Isummonedbackimagesfromfiveyearsofhardworking,studying,butalsopar-tying and having good time with new-ly met people, who later became myfriends. I brought back the feeling of'job-well-done',asourteamgatheredal-togethertoworkforthesakeofSPEandthe student’s community. Internship,master’s degree exam, first serious joband…wait!Isthatit?

s p e Student Chapter forged friend-ships that have lasted against all odds,despitethefactthatwehavescatteredacrossEuropeandbeyond.Thedepositsof positive energy which drove us dur-ingthefiveyearsofstudyingandwork-ing, seem to be inexhaustible. We cansee the same fire within students rightnowandItrulybelievethat'EastmeetsWest'ConferenceisthebestexampleofwhatPolishstudentsarecapableof.

Page 61: YoungPetro - 2nd Issue - Summer 2011

60 JędrzejBryła YoungProffesionals 61

summer / 2011

clesarealsoapopularwayofspendingfreetime.DohaaswellservesasaverygooddeparturepointfortripstoAsiaorforaweekendinDubaiorOman.

Workingforanoperatorbringsa lotof technical and non technical experi-encestogether.Throughthevariousop-erations,assignmentsandprojectsoneisexposedtodifferenttechnologiesandarangeofapplications.

It gives a broader view on the in-dustry,andbusinessasawhole,thanastrictlytechnicallyfocusedcareerwithaservicecompany.Apartfromtheowner,anoperatorhasthebiggeststakeintheassetthat isbeingdeveloped–theoil/gasfield.Wehavethelicencetooperatehence the optimum development of areservoirliesinourinterest.Thisinturnnecessitates the work of the brightestpeople and cutting edge technologies(to be fair, the technology is often sup-pliedbythevariousservicecompanies);

especially in Maersk Oil’s case whichdeals with mostly tight and difficult toproducereservoirs.

Depending on the production shar-ing agreement with the owner, an op-erator is the end-party that owns theproducedoil.Aservicecompanyinturnisfocusedmostlyonsellingtheservice,independentofthefinalproduction.Ofcourse, the more successful the prod-uctis(thatwilleventuallyleadtoanin-creaseinproduction),themoreitwillbeboughtandapplied.

Taking the m i t a s programme as anexample, it isclear, thatagreatempha-sis is put on versatility of skills gainedthrough the different positions andprojects. I can only recommend an 'op-erating'careerasatruewaytogetthemost exposure and insight into the oilbusiness and the entire world energysector.

The Fire WithinJakub Slek

SPE Poland Young Professionals Founding Committee

Wehavedecidedtoestablishs p e Po-land Young Professionals committeeto help students keep this fire burningwithinthemandadvisethemonhowtochannelthispositiveenergy.

Young Professionals combines (or-ganization, so singular, like u s a ) therookie’s enthusiasm, passion and a bitofnaivetywiththeaspirationtogainfullprofessionalexperience.s p e isanassoci-ationthatdoesnotrecognizecorporate,politicalornationalbanners,inaway–it'standsabovedifferences'andthereforeprovides the best plane for building astructureofassistanceandmutualsup-port,butmost importantlyoftrustandfriendship.

We are the first generation of Poleswhobarelyrememberordonotremem-ber times of People’s Republic of Po-landatall.Wedonotcarry theburdenof communism and even as teenagerswewereabletostartdoingourpart inbuilding a modern society of educatedcitizensandnotaofmindlessmob.Thesooner one begins, the better.The pe-riod of academic education is the besttime to start releasing the positive en-ergythatcomesfromthefirewithinus.That’s what we did and that’s what weshallcontinuetodothroughSPEPoland

Oneofthosewarmmorningsinthemid-dleofApril,chestnuttreeshadjuststart-edtoblossom– itmeantthatthetimeof high school final exams or 'Tests ofmaturity'wasapproaching.Oncefadedmemories of me seven years ago be-camelittlebylittlemorevividandclear.I almost felt the stress before the finalexamsandtheuniversityentryexams.Isummonedbackimagesfromfiveyearsofhardworking,studying,butalsopar-tying and having good time with new-ly met people, who later became myfriends. I brought back the feeling of'job-well-done',asourteamgatheredal-togethertoworkforthesakeofSPEandthe student’s community. Internship,master’s degree exam, first serious joband…wait!Isthatit?

s p e Student Chapter forged friend-ships that have lasted against all odds,despitethefactthatwehavescatteredacrossEuropeandbeyond.Thedepositsof positive energy which drove us dur-ingthefiveyearsofstudyingandwork-ing, seem to be inexhaustible. We cansee the same fire within students rightnowandItrulybelievethat'EastmeetsWest'ConferenceisthebestexampleofwhatPolishstudentsarecapableof.

Page 62: YoungPetro - 2nd Issue - Summer 2011

62 JakubSlek Conference 63

summer / 2011

Young Professionals committee. 'Aca-demic' period of our lives was just thebeginning.

We have just begun our adventure.Our ideasofhows p e y p shall looklike,time shall shape. We can declare withconfidence though, as we are gainingourprofessionalexperience indifferentregionsoftheglobe,thatthemainouractivitieswillbeperformedthroughin-ternet.

Website with articles, blogs, pic-ture galleries, our achievements andthoughts we want to share, as well aswebinars,'AskaYoungProfessional'op-tion and so on. Live meetings are alsoconsidered.Lectures,workshops–these

arethekindofactivitiesthatyoucanex-pectustoperform.

As students our parents fought forfree Poland with strikes, marches, un-dergroundnewspapersandself-educa-tion.Wedidnothaveto,butasSPEYP,wewantthenextgenerationofstudentsto realize that through sharing knowl-edge and experience, learning mutualtrust and respect, through becomingself-awarecitizens,wecandoourpartinmakingPoland,EuropeandtheWorldabetterplace.Soundspompously?Sure,itdoes,buteveryhomeisbuiltofsmallercomponents.Andeveryhomeneedsits'Vestal Virgin' to keep the household’sfireburning.

StudEnt  intErnational  SciEntific 

and  Practical  confErEncE 

oil and gaS horiZonSDawid Wojaczek

AGH University of Science and Technology Cracow

The Second Student InternationalScientific and Practical Conference o i l a n d g a s h o r i zo n s tookplaceinGubkinRussianStateUniversityofOilandGasinDecember2010.

Attheconferencestudentspresentedtheirworksonfivedifferentsectionre-lated to oil and gas field development,drillings, ecology and economy. DawidJachpreparedpapertitledMudsystemused in h d d based on activated ben-tonite with new polymer PT–51. His su-pervisor was Sławomir Wysocki, PhD.I presented my Laboratory investiga-tiononusezeolitesasnaturalsorbentsinremovingpollutantsfromthedrillingwaste. My supervisor was AleksandraJamrozik,PhD.Myworkwasawardedaspecialjuryprize.

Page 63: YoungPetro - 2nd Issue - Summer 2011

62 JakubSlek Conference 63

summer / 2011

Young Professionals committee. 'Aca-demic' period of our lives was just thebeginning.

We have just begun our adventure.Our ideasofhows p e y p shall looklike,time shall shape. We can declare withconfidence though, as we are gainingourprofessionalexperience indifferentregionsoftheglobe,thatthemainouractivitieswillbeperformedthroughin-ternet.

Website with articles, blogs, pic-ture galleries, our achievements andthoughts we want to share, as well aswebinars,'AskaYoungProfessional'op-tion and so on. Live meetings are alsoconsidered.Lectures,workshops–these

arethekindofactivitiesthatyoucanex-pectustoperform.

As students our parents fought forfree Poland with strikes, marches, un-dergroundnewspapersandself-educa-tion.Wedidnothaveto,butasSPEYP,wewantthenextgenerationofstudentsto realize that through sharing knowl-edge and experience, learning mutualtrust and respect, through becomingself-awarecitizens,wecandoourpartinmakingPoland,EuropeandtheWorldabetterplace.Soundspompously?Sure,itdoes,buteveryhomeisbuiltofsmallercomponents.Andeveryhomeneedsits'Vestal Virgin' to keep the household’sfireburning.

StudEnt  intErnational  SciEntific 

and  Practical  confErEncE 

oil and gaS horiZonSDawid Wojaczek

AGH University of Science and Technology Cracow

The Second Student InternationalScientific and Practical Conference o i l a n d g a s h o r i zo n s tookplaceinGubkinRussianStateUniversityofOilandGasinDecember2010.

Attheconferencestudentspresentedtheirworksonfivedifferentsectionre-lated to oil and gas field development,drillings, ecology and economy. DawidJachpreparedpapertitledMudsystemused in h d d based on activated ben-tonite with new polymer PT–51. His su-pervisor was Sławomir Wysocki, PhD.I presented my Laboratory investiga-tiononusezeolitesasnaturalsorbentsinremovingpollutantsfromthedrillingwaste. My supervisor was AleksandraJamrozik,PhD.Myworkwasawardedaspecialjuryprize.

Page 64: YoungPetro - 2nd Issue - Summer 2011

64 DawidWojaczek

Additionally, at the conference wehad possibility to listen to lectures ofprofessionals working in petroleum in-dustry, for example Andrew MabianfromSalymPetroleumandRolandChe-malifromHalliburton.WeattendedEng-lishSPEakingClub,wherewepresentedour section and met representatives ofStudentSPEsection fromRussia,ChinaandKazakhstan.

WealsofoundtimetosightseeMos-cowanditsmonuments.WewalkedontheRedSquarewherewehaveseentheKremlinandtheLenin’sMausoleum.WewereveryimpressedbyMoscow’smetrostations.

Participation inThe Second StudentInternational Scientific and PracticalConferenceo i l a n d g a s h o r i zo n s gaveusgreatopportunitytopresentourre-search, hear interesting lectures andmeetstudents fromforeigncountries. Ihopethatdescribedeventwillhelpoursectionestablishsuccessfulcooperationwithstudentsfromothercountries.

Call for PapersAutumnIssue

YoungPetroiswaitingforYourpaper!

Thetopicsofthepapersshouldrefertothosepresentedinthelistbelow:

DrillingEngineeringReservoirEngineering

FuelsandEnergyGeologyandGeophysics

EnvironmentalProtectionManagementandEconomics

[email protected]

SubmissionDeadline

8 August 2011MoreinformationsYoungPetro.org/Papers

A youngpetro.org/[email protected]

Page 65: YoungPetro - 2nd Issue - Summer 2011

64 DawidWojaczek

Additionally, at the conference wehad possibility to listen to lectures ofprofessionals working in petroleum in-dustry, for example Andrew MabianfromSalymPetroleumandRolandChe-malifromHalliburton.WeattendedEng-lishSPEakingClub,wherewepresentedour section and met representatives ofStudentSPEsection fromRussia,ChinaandKazakhstan.

WealsofoundtimetosightseeMos-cowanditsmonuments.WewalkedontheRedSquarewherewehaveseentheKremlinandtheLenin’sMausoleum.WewereveryimpressedbyMoscow’smetrostations.

Participation inThe Second StudentInternational Scientific and PracticalConferenceo i l a n d g a s h o r i zo n s gaveusgreatopportunitytopresentourre-search, hear interesting lectures andmeetstudents fromforeigncountries. Ihopethatdescribedeventwillhelpoursectionestablishsuccessfulcooperationwithstudentsfromothercountries.

Call for PapersAutumnIssue

YoungPetroiswaitingforYourpaper!

Thetopicsofthepapersshouldrefertothosepresentedinthelistbelow:

DrillingEngineeringReservoirEngineering

FuelsandEnergyGeologyandGeophysics

EnvironmentalProtectionManagementandEconomics

[email protected]

SubmissionDeadline

8 August 2011MoreinformationsYoungPetro.org/Papers

A youngpetro.org/[email protected]

Page 66: YoungPetro - 2nd Issue - Summer 2011

summer / 2011

messAGe FrOm THe CHIeF • ABANDONeD DrY WeLLs

eAsT meeTs WesT • WOrKING FOr AN OPerATOr

sum

mer

 / 2

011

02

spe.net.pl /emW